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Abstract

We call a graph H Ramsey-unsaturated if there is an edge in the
complement of H such that the Ramsey number r(H) of H does not
change upon adding it to H. This notion was introduced by Balister,
Lehel and Schelp in [2], where it is shown that cycles (except for C4)
are Ramsey-unsaturated, and conjectured that, moreover, one may
add any chord without changing the Ramsey number of the cycle Cn,
unless n is even and adding the chord creates an odd cycle.

We prove this conjecture for large cycles by showing a stronger
statement: If a graph H is obtained by adding a linear number of
chords to a cycle Cn, then r(H) = r(Cn), as long as the maximum
degree of H is bounded, H is either bipartite (for even n) or almost
bipartite (for odd n), and n is large.

This motivates us to call cycles strongly Ramsey-unsaturated. Our
proof uses the regularity method.

1. Introduction

The Ramsey number r(H) of a graph H is the smallest integer N such
that every 2-colouring of the edges of the complete graph KN on N vertices
contains a monochromatic copy of H.

It has been known [4, 7, 12] for a long time that the cycles Cn on n
vertices have Ramsey numbers linear in n, while the Ramsey numbers of
complete graphs Kn are exponential. So from the beginnings of Ramsey
theory one important question has been hovering in the background: if we
keep adding chords to Cn until reaching Kn, at which point will the Ramsey
number jump up? Very little is known. When we are close to the complete
graph, then, for 3 ≤ n ≤ 6, it holds that r(Kn) > r(Kn − e), and it is
conjectured (see [2]) that this is also true for every n > 6.

At the other end of the spectrum, that is, when we are close to the
cycle, all that is known is the aforementioned result by Balister, Lehel,
and Schelp [2]. Using their terms, we call a graph H Ramsey saturated if
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r(H + e) > r(H) for every edge e in the complement of H, and Ramsey
unsaturated otherwise. In [2] it is proved that the cycle Cn is Ramsey
unsaturated for every n > 4, and it is conjectured that one may add any
edge e to Cn without increasing the Ramsey number, unless n is even and
adding e destroys the bipartiteness of Cn (Conjecture 3 in [2]). Balister,
Lehel, and Schelp also remark ‘One would expect to be able to add more
than one edge to the cycle without increasing the Ramsey number’.

We show that this is indeed the case, at least asymptotically. Our main
result is that one may add a linear number cn of chords to Cn without
changing the Ramsey number, as long as the obtained graph H has bounded
maximum degree ∆(H), and as long as H is bipartite if n is even, and almost
bipartite if n is odd. (A non-bipartite graph is called almost bipartite if the
removal of one vertex results in a bipartite graph.) Since our proof relies
on the regularity method, our result holds only for large graphs, with the
constant c depending only on ∆(H).

Theorem 1. For every ∆ ∈ N there are n0 ∈ N and c > 0 such that, for
every n ≥ n0 and every collection D of chords of Cn with

(1) |D| ≤ cn and

(2) ∆(Cn ∪D) ≤ ∆,

the following two conditions are equivalent

(a) r(Cn ∪D) = r(Cn),

(b) either n is even and Cn∪D is bipartite, or n is odd and Cn∪D is almost
bipartite.

Observe that Theorem 1 confirms Conjecture 3 of [2], as an odd cycle
plus one chord is almost bipartite.

When n > 4 is even, r(Cn) = 3n/2 − 1 ≤ 2(n − 1) (see [7, 12]) and the
implication (a) ⇒ (b) of Theorem 1 can easily be seen by considering the
following construction: Colour all edges of a maximal cut in K2(n−1) blue,
and the remaining edges red. By (a), there is a monochromatic copy of
Cn ∪D. Since the components of the red subgraph of K2(n−1) are too small
to contain Cn ∪D, there is a blue copy of Cn ∪D in K2(n−1). Thus Cn ∪D
is bipartite.

For odd n > 4, we know that r(Cn) = 2n−1 (see [7, 12]). Take the above
colouring of K2(n−1) and add one new vertex to K2(n−1) all whose incident
edges are coloured blue. Then as above, we find a blue copy of Cn∪D. This
copy cannot be bipartite since it contains the odd cycle Cn, hence it must
be almost bipartite.

The odd case of Theorem 1 follows from a slightly more general result.
As a generalization of almost-bipartiteness, let us call a graph k-almost
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bipartite (for k ∈ N) if it contains a set of k independent vertices such that
the removal of these vertices leaves a bipartite graph, but the removal of any
set of less than k independent vertices does not. Then a graph is 1-almost
bipartite if, and only if, it is almost bipartite.

Theorem 2. For every ∆ and k ∈ N there are n0 ∈ N and c > 0 such that,
for every odd n ≥ n0 and every collection D of chords of Cn with

(1) |D| ≤ cn and

(2) ∆(Cn ∪D) ≤ ∆,

the following two conditions are equivalent

(a) r(Cn ∪D) = r(Cn) + k − 1,

(b) Cn ∪D is k-almost bipartite.

Again, the implication (a)⇒ (b) of Theorem 2 is straightforward: Sup-
pose that r(Cn ∪ D) = r(Cn) + k − 1 = 2(n − 1) + k and n is large (in
particular, n > k). We partition the vertices of Kr(Cn∪D) into sets X, Y ,
and Z such that |X| = |Y | = n− 1 and |Z| = k and colour all edges within
X or Y or Z red and the rest blue. Clearly, the red subgraph has no large
enough component to contain Cn ∪ D, so we find a blue copy of Cn ∪ D
in K2(n−1)+k. Since the blue subgraph is k-almost bipartite, we find that
Cn ∪D is k′-almost bipartite for some k′ ≤ k. Now, if k′ < k, then we can
use the implication (b)⇒ (a) for k′ to obtain a contradiction. Hence, Cn∪D
is k-almost bipartite.

Both our results are, apart from the value of c, best possible for ev-
ery sufficiently large ∆. To see this, we first recall the following result of
Graham, Rödl and Ruciński:

Theorem 3 (Graham, Rödl and Ruciński, [9]). There exists a constant
c1 > 1 such that, for every ∆ ≥ 1 and for every n ≥ ∆ + 1 (except for
∆ = 1 and n = 2, 3, 5), there exists a bipartite graph H with n vertices and
maximum degree at most ∆ which satisfies r(H) > c∆

1 n.

Let ∆ ≥ 3 be such that c∆−2
1 ≥ 4, and let n be even and larger

than 2(∆ + 2). Then Theorem 3 assures that there is a bipartite graph H
on n/2 > 5 vertices and of maximum degree at most ∆ − 2 such that
r(H) > c∆−2

1 (n/2) ≥ 2n. Clearly, we can add H into Cn respecting the
natural bipartition of Cn. Denote the set of chords by D and note that
∆(Cn ∪ D) ≤ ∆ and |D| ≤ e(H) ≤ 1

2(∆ − 2)n2 < (∆/4)n. On the other
hand, we have

r(Cn) = 3n/2− 1 < 2n ≤ r(H) ≤ r(Cn ∪D).
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Hence, this construction shows that the function from Condition (1) of The-
orem 1 cannot be improved to anything above ∆n/4.

A similar construction works for large odd n. In this case, let ∆ ≥ 3 be
such that c∆−2

1 ≥ 6, n > max{2∆, 6k+1}, and let H be a bipartite graph on
(n+1)/2 vertices with ∆(H) ≤ ∆−2 and r(H) > c∆−2

1 (n+1)/2 ≥ 3(n+1).
Let v1, v2, . . . , vn be the (consecutive) vertices of Cn. We add k chords

v1v3, v4v6, . . . , v3k−2v3k and add H into the path v3k+1, v3k+2, . . . , vn, re-
specting its natural bipartition. Denote the set of thus created chords by D.
Then Cn ∪ D had maximum degree ∆, it is k-almost bipartite because it
contains k vertex-disjoint triangles v1v2v3, v4v5v6, . . . , v3k−2v3k−1v3k and re-
moving vertices v1, v4, . . . , v3k−2 from Cn ∪D yields a bipartite graph, and
|D| ≤ e(H) + k ≤ 1

2(∆− 2)n2 + k < ∆
4 n. On the other hand, we have

r(Cn) + k − 1 = 2n+ k − 2 < 3(n+ 1) ≤ r(H) ≤ r(Cn ∪D).

Furthermore, Theorem 3 also implies that Theorems 1 and 2 cannot
be true for non-constant ∆. Suppose that ∆ = ∆(n) → ∞ as n → ∞
arbitrarily slowly. Note that we may assume that 2 log n > ∆, because for
faster growing ∆, or more precisely, for all ∆ ≥ 2 log n, we can add Klogn,logn

to Cn so that the resulting graph has maximum degree at most ∆ and it is
bipartite, but its Ramsey number is at least r(Klogn,logn) > 2n for large n
(cf. Chung and Graham [5]).

Now, let n0 be such that c∆
1 /∆

2 > 2 for every n > n0. Let H be
a bipartite graph on n/∆2 > ∆ + 1 vertices and of maximum degree at
most ∆ such that r(H) > c∆

1 (n/∆2) > 2n. Again, we can add H into Cn
respecting the natural bipartition of Cn. Denote the set of chords by D and
note that |D| ≤ e(H) ≤ 1

2(∆ n
∆2 ) = o(n). On the other hand, we have

r(Cn) = 3n/2− 1 ≤ 2n < r(H) ≤ r(Cn ∪D).

2. Preliminaries

2.1. Notation and Two Facts

We use standard graph-theoretic notation. For a graph G, let V (G) denote
the set of its vertices and E(G) the set of its edges. We denote by |G| and
e(G) the number of vertices and edges of G. Given a set A ⊂ V (G) of
vertices and a set F ⊂ E(G) of edges, G[A] stands for the subgraph of G
induced by the vertices of A, and G − F is the subgraph of G with vertex
set V (G) and edge set E(G) \ F .

Given two disjoint sets of vertices, A and B, we write E(A,B) for the
set of edges with one endpoint in A and the other in B, we set e(A,B) :=
|E(A,B)|, and call G[A,B] the bipartite subgraph of G with bipartition
A,B and edge set E(A,B). The quantity d(A,B) := d(A,B)/|A||B| is the
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density of the pair (A,B). For a vertex a and a set B, we denote by N(a)
the set of all vertices adjacent to a and set deg(a) := |N(a)|.

Next, let us clarify some notation on paths: The length of a path is the
number of edges it contains. An odd path is a path of odd length, an even
path is a path of even length. A path is trivial if it consists of one vertex
only. An x–y path is a path starting at vertex x and ending at vertex y. If
x and y are vertices of some path P , then we denote by xPy the subpath of
P starting at x and ending at y. If P is a path with one endvertex in a set
A and the other one in a set B and does not meet A ∪ B otherwise, then
we say that P is an A–B path. For a set A, a non-trivial A–A path is also
called an A-path.

We finish this subsection by quickly proving two easy facts, which will
be needed in Section 3.3.

Fact 4. Let G be a bipartite graph, and let H ⊆ G be such that all V (H)-
paths of G − E(H) are odd. Then H has a bipartition U1, U2 of its vertex
set so that each V (H)-path in G− E(H) is a U1–U2 path.

Proof. Take any bipartition of G and consider its restriction U1, U2 to the
vertices of H. Since the endpoints of every odd path cannot be in the same
partite set, the statement of the fact follows.

Fact 5. Let H ′, G be a tripartite graphs such that G is obtained from H ′ by
adding at most |H ′| pairwise internally vertex disjoint V (H ′)-paths, each of
odd length at least m, m ≥ 3.

Then there is a graph H with H ′ ⊆ H ⊆ G and |H| ≤ 3|H ′| which
has a tripartition U1, U2, U3 of its vertex set such that each V (H)-path in
G− E(H) is an odd U1–U2 path of length at least m− 2.

Proof. Let H ′ have colour classes U ′1, U ′2 and U ′3. For each V (H ′)-path
P = abc . . . xyz in G−E(H ′) that has at least one endvertex (a or z) in U ′3,
we add both b and y to H ′. More precisely, if a, z ∈ U ′3, then we add b to
U ′1 and y to U ′2, and if only one of a, z lies in U ′3, say a ∈ U ′3, and z ∈ U ′i ,
i ∈ {1, 2}, then we add b to U ′i and y to U ′3−i. Call the obtained tripartite
graph H, with partition classes U1, U2 and U3. Clearly, the V (H)-paths in
G−E(H) all have odd length ≥ m− 2, and since H is obtained from H ′ by
adding two vertices from each V (H ′)-path, we also have |H| ≤ 3|H ′|.

2.2. Structural tools

We now present some structural results we will use, and which come from [1,
6, 10]. We also prove a corollary of one of these theorems, which will be
tailor-made for our purposes.

The first two are well-known theorems of Erdős and Gallai.
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Theorem 6 (Erdős, Gallai, [6]). Every graph G with at least (n− 1)(|G| −
1)/2 + 1 edges contains a cycle of length at least n ≥ 3.

Theorem 7 (Erdős, Gallai, [6]). Let G be a graph with v(G) ≥ 3 and
minimum degree at least (|G|+ 1)/2. Then, for every two vertices u and v,
there exists an u–v-path containing all vertices of G.

The next result is a recent one on embedding bounded degree graphs.

Lemma 8 (Allen, Brightwell, Skokan, [1]). Given a natural number ∆ ≥ 1
and any 0 < ε < 1/(∆2+4), let F be an n-vertex graph in which every vertex
has degree at least 3∆εn, and all but at most εn vertices have degree at least
(1− 2ε)n. Let J be any n-vertex graph with ∆(J) ≤ ∆. Then J ⊂ F .

We also need a well-known result of Graham, Rödl and Ruciński on
linear bounds for Ramsey numbers of bounded degree graphs.

Theorem 9 (Graham, Rödl, Ruciński, [8]). There exists a constant c2 > 1
such that for all ∆ ≥ 2 and all n ≥ ∆ + 1, every graph H with n vertices
and maximum degree at most ∆ satisfies r(H) ≤ 2c2∆(log ∆)2n.

Finally, we will need stability results on monochromatic cycles in graphs
whose edges are multicoloured. (A multi-colouring of the edges of some
graphs is an assigment of colours to the edges in which an edge can have
more than one colour.) It will come as no surprise that there are two cases,
according to the parity of the cycle. We start with the odd case:

Theorem 10 (Kohayakawa, Simonovits, Skokan, [10]). For γ ∈ (0, 10−2),
let m̄, M̄ be integers with m̄ > γ−6 and M̄ ≥ (3/2 + 14γ)m̄. Suppose that G
is a graph on M̄ vertices with δ(G) ≥ M̄ − γm̄.

Then every multi-colouring of the edges of G with 2 colours contains
either a monochromatic odd cycle C` for some ` ≥ (1 + γ)m̄ or there is a
vertex x ∈ V (G), a partition of V (G) \ {v} into two sets V1 and V2, and an
i ∈ {1, 2} such that

(a) all edges of G[V1] ∪G[V2] have only colour i,

(b) all edges of G[V1, V2] have only colour 2− i, and

(c) |V1|, |V2| < (1 + γ)m̄.

A similar result holds for even cycles.

Theorem 11 (Kohayakawa, Simonovits, Skokan, [10]).For each β∈(0, 10−6),
there is an neven ∈ N such that the following holds for all integers m,M with
m > neven and M ≥ (3/2− β)m.
If the edges of a graph G on M vertices with δ(G) ≥ M − βm are multi-
coloured with 2-colours, then G either contains a monochromatic even cycle
C` for some ` ≥ (1 + β)m or there is a partition of V (G) into sets V1, V2

and W , and an i ∈ {1, 2} such that
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(a) all but at most β1/5|V1|2 edges of G[V1] have only colour i,

(b) all but at most β1/5|V1||V2| edges of G[V1, V2] have only colour 3− i, and

(c) |V1| ≥ (1− β)m, |V2| ≥ (1− β)m/2, |W | < β1/5m.

In addition to Theorem 11, we will use its following corollary:

Corollary 12. The sets V1 and V2 from Theorem 11 contain sets A and B,
respectively, such that

(a’) the minimum degree in colour i in G[A] is at least (1 − β1/20)|A|, the
maximum degree in colour 3− i in G[A] is at most β1/20|A|,

(b’) in colour 3 − i in G[A,B], every vertex of A has degree at least (1 −
β1/20)|B| and every vertex of B has degree at least (1− β1/20)|A|, and

(c’) |A| ≥ (2
3 − β

1/20)3
2m, |B| ≥ (1

3 − β
1/20)3

2m.

Proof. Observe that, firstly, condition (a) implies that, in V1, there are at
most 2β1/10|V1| vertices that, in colour 3− i, have degree at least β1/10|V1|
inside V1. Secondly, (b) implies that V1 contains at most β1/10|V1| vertices
sending at least β1/10|V2| edges of colour i to V2. Finally, (b) implies that,
in V2, there are at most β1/10|V2| vertices that send at least β1/10|V1| edges
of colour i to V1.

Remove these in total at most 3β1/10|V1| vertices from V1 and at most
β1/10|V2| vertices from V2 to obtain sets A and B as required. In fact, by
construction, each vertex of A is incident with at most β1/10|V1| ≤ β1/20|A|
edges of colour 3−i that go to other vertices of A. Thus (a’) holds. Similarly
we can see that (b’) holds.

For (c’), we have to see that |A| ≥ (1 − 3
2β

1/20)m and |B| ≥ (1 −
3β1/20)m2 . This is true as |A| ≥ (1 − 3β1/10)|V1| and |B| ≥ (1 − β1/10)|V2|
by construction. Using (c), we thus obtain (c’).

2.3. Regularity

In this section we introduce some very well-known concepts; the reader
familiar with regularity is invited to skip this section.

We start with giving the standard definition of regularity.

Definition 13. Given ε > 0 and disjoint subsets A,B of the vertex set of
a graph G, we say that the pair (A,B) is ε-regular in G if, for every pair
(A′, B′) with A′ ⊆ A, |A′| ≥ ε|A|, B′ ⊆ B, |B′| ≥ ε|B|, we have∣∣d(A′, B′)− d(A,B)

∣∣ < ε.

When there is no danger of confusion, we simply say that the pair (A,B) is
ε-regular.
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We now turn to the regularity lemma.

Theorem 14 (Regularity Lemma; Szemerédi, [13]). For every ε > 0 and
mreg > 0, there are Mreg and nreg such that, for each graph G on at least
nreg vertices, there exists a partition V0, V1, . . . , Vt of V (G) such that

(i) mreg ≤ t ≤Mreg;

(ii) |V1| = |V2| = ... = |Vt| and |V0| ≤ ε|V (G)|;

(iii) for each i, 1 ≤ i ≤ t, all but at most εt of the pairs (Vi, Vj), 1 ≤ j ≤ t,
are ε-regular.

We shall refer to a partition of V (G) satisfying coditions (i)–(iii) as ε-regular
with respect to G.

We continue by stating two facts on ε-regular pairs, which are very well-
known, and can be found for example in [11].

Fact 15. Let (V1, V2) be an ε-regular pair of density d ≥ 2ε in some graph G.
Then all but at most ε|V1| vertices v1 ∈ V1 are such that deg(v1) ≥ (d−ε)|V2|.
We shall refer to such a vertex v1 as ε-typical in G with respect to V2.

Fact 16. Let 0 < ε ≤ 1/4 and let (V1, V2) be an ε-regular pair of density d.
Then, for every V ′1 ⊆ V1, V ′2 ⊆ V2 such that |V ′1 | ≥ ε1/2|V1| and |V ′2 | ≥
ε1/2|V2|, the pair (V ′1 , V

′
2) is ε1/2-regular with density at least d− ε.

We now state the so-called embedding lemma. Given a graph R and
a positive integer s, let Rs be the graph obtained from R by replacing each
vertex v of R with an independent set Vv of size s, and each edge vw of R
with the complete bipartite graph on Vv and Vw.

Lemma 17 (Embedding lemma, [11]). For all ∆ ∈ N and p > 0, if ε′ > 0
is such that (p− ε′)∆−∆ε′ > p∆/2, then the following holds for every graph
H of maximum degree ∆.

Let R be a graph on vertices 1, . . . , r, and let G be a graph on the union
of the sets V1, . . . , Vr, where each Vi has the same size λ, and for each edge
ij ∈ E(R) the pair (Vi, Vj) is ε′-regular and of density at least p. Suppose
s ≤ p∆λ/2. If H ⊆ Rs, then also H ⊆ G.

In particular, we note that the conditions of Lemma 17 are satisfied if

ε′ ≤ p∆

4∆
and s ≤ 2∆ε′λ. (1)
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2.4. Embedding long paths

In this section we prove an important lemma, Lemma 19, which shall be used
later in the proof of our main theorems. This lemma is about embedding
a family of long paths into a sequence of ε-regular pairs. As a starting point,
we use a lemma from [3] that shows under which condition we can embed
a path into one regular pair.

Lemma 18 (Benevides, [3]). For every δ′ ∈ (0, 1) and for every ε′ ∈ (0, δ
′

20),
there is an n18 = n18(δ′, ε′) with the following property: Let n ≥ n18 and
let (X1, X2) be an ε′-regular pair (in some graph) with density at least δ′

and with |X1| = |X2| = n. Then, for every `, 1 ≤ ` ≤ n − 2ε′n/δ, and
for every two vertices v1 ∈ X1, v2 ∈ X2 such that deg(v1),deg(v2) ≥ δ′n/2,
there exists a v1–v2-path of length 2`+ 1.

We now show how to embed more paths into a longer sequence of regular
pairs.

Lemma 19. Let G be a graph, let ε ∈ (0, 1/625), and let P1, . . . , Pk be a
collection of pairwise internally vertex disjoint paths of odd lengths. Suppose
that ` ∈ N is odd and V1, . . . , V` ⊆ V (G) are such that

(i) |V1| = |V2| = . . . = |V`| ≥ n18(ε1/4, ε1/2)/4ε1/2;

(ii) V1, . . . , V` are pairwise disjoint, except (possibly) for V1 and V`;

(iii) for all i ∈ [`−1], the pair (Vi, Vi+1) is ε-regular of density at least 2ε1/4;

(iv) k ≤ ε1/2|V1|;

(v) for all i ∈ [k], pi := |E(Pi)| ≥ 3`;

(vi)
k∑
i=1

pi ≤
(
1− 2ε1/4

)
(`− 2)|V1|;

(vii) for all i ∈ [k], the first vertex of Pi is embedded in a vertex ai ∈ V1 and
the last vertex of Pi is embedded in a vertex bi ∈ V`; and

(viii) for all i ∈ [k], ai is ε-typical in G with respect to V2 and bi is ε-typical
in G with respect to V`−1.

Then we can extend A :=
⋃k
i=1{ai, bi} to an embedding of all of

⋃k
i=1 Pi

in G such that the only vertices from V1 ∪ V` used are those from A.

Notice that the sets V1 and V` can have a non-empty intersection. Con-
sequently, in such a case, it is possible to choose ai = bi and obtain a cycle
of length pi instead of path of length pi. However, in this paper, we will
always make sure that ai 6= bi.
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Proof. For every j ∈ [`− 1] and for all i ∈ [k], we choose an odd number qij
that will indicate how many edges of Pi we plan to embed into the pair
(Vj , Vj+1). We choose the numbers qij so that they satisfy the following
three conditions:

(a) qij = 1 if j is odd, and qij ≥ 3 if j is even;

(b)

`−1∑
j=1

qij = pi for each i ∈ [k]; and

(c)

k∑
i=1

(qij + 1) ≤ 2
(
1− 2ε1/4

)
|Vj | for each even j ∈ [`− 1].

Observe that such a choice is possible because of asumptions (v) and (vi).

a1 b1

q1
1 q1

2 q1
3

q1
4 q1

5

Figure 1: The numbers qij stand for the number of edges of Pi we wish to
embed in the pair (Vj , Vj+1).

Now, for j ∈ [`] and i ∈ [k], set

Qij :=

j−1∑
h=1

qih + 1

and let vij denote the Qij-th vertex on Pi. In particular, the preimage of

wi1 := ai is vi1 and the preimage of wi` := bi is vi`.
Next, successively, for each i ∈ [k], we embed Pi in the following way: For

each j = 2, . . . `− 1, we will consider certain sets W i
j ⊂ Vj . The idea is that,

for even j, the sets W i
j and W i

j+1 contain possible images for V (vijPiv
i
j+1)∩

Vj . The sets W i
j will satisfy the following conditions.

(d) W i
2 ⊂ N(wi1) ∩ V2, W i

`−1 ⊂ N(wi`) ∩ V`−1, and W i
j ⊂ Vj for each j =

3, . . . , `− 2;

(e) W i
j contains no vertex of P1, . . . , Pi−1, for any j = 2, . . . , `− 1;

10



(f)
(
1− 2ε1/4

)
|W i

j | > (qi
2b j

2
c + 1)/2 for each j = 2, . . . , `− 1;

(g) |W i
j | > 4ε1/2|Vj | for j = 2, . . . , `− 1; and

(h) |W i
j | = |W i

j+1| for each even j = 2, 4, . . . , `− 2.

Observe that (g), together with Fact 16, ensures that, for j = 2, . . . , `−2,

(W i
j ,W

i
j+1) is ε1/2-regular with density at least 2ε1/4 − ε > ε1/4. (2)

First, assuming the existence of the sets W i
j , let us embed all the Pi. We

will show later that the sets W i
j ⊂ Vj satisfying (d)–(h) do exist. We shall

start with the vertices vij , which will be placed in the following way.

For j = 2, . . . `− 1, the vertex vij is embedded in a vertex wij of W i
j such

that

wij is ε1/2-typical in G with respect to W i
j−1 and W i

j+1, (3a)

and

wijw
i
j+1 is an edge of Gr if qij = 1. (3b)

By Fact 15, all but at most 2ε1/2|W i
j | vertices in W i

j satisfy (3a). In
order to see (3b), observe that the sets of vertices satisfying (3a) for j and
for j+1 are large enough to apply ε1/2-regularity of (W i

j ,W
i
j+1), hence there

must be an edge wijw
i
j+1 between them. (Note that condition (3b) holds also

for j = 1, `− 1, because of (d).)
The last step of our embedding is the embedding of the subpaths vijPiv

i
j+1

for each even j ∈ [`]. By (a) we know that vijPiv
i
j+1 has odd length qij ≥ 3.

We wish to embed the edges of vijPiv
i
j+1 into the pair (W i

j ,W
i
j+1). For this,

we plan to use Lemma 18 with δ′ = ε1/4 and ε′ = ε1/2. The assumptions
of Lemma 18 are verified in (2), (f), (h) and (3a), and the only condition
being left to check is that |W i

j | ≥ n18. But this follows from

|W i
j |

(g)

≥ 4ε1/2|Vj |
(i)

≥ n18(ε1/4, ε1/2) = n18(δ′, ε′).

This completes the embedding of the paths Pi. It only remains to show
that the sets W i

j ⊂ Vj satisfying (d)–(h) do exist. Let i ≤ k be given and
assume we have already embedded all paths Ph with h < i. Let U be the

set of all vertices used by our embedding of
⋃
h<i

Ph.

Now, for j = 2, `−1, choose W i
j ⊆ N(wij)∩Vj−U and, for j = 3, . . . , `−2,

W i
j ⊆ Vj−U as large as possible, but such that |W i

j | = |W i
j+1| for each even

j = 2, 4, . . . , `−2. This choice clearly guarantees conditions (d), (e), and (h).
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To show (g), observe that, for j = 2, `− 1, we have

|N(wij) ∩ Vj − U |
(viii)

≥ b(2ε1/4 − ε)|Vj |c − k
(iv)
> ε1/4|Vj | − ε1/2|Vj |
> 4ε1/2|Vj |.

Furthermore, for j = 3 . . . , `− 2, we know by (c) that

|Vj − U | ≥ |Vj | − (1− 2ε1/4)|Vj | ≥ 4ε1/2|Vj |,

thus (g) is established.
In a similar way we see (f). For all even j ∈ [`− 1], we have

|Vj − U | = |Vj | −
i−1∑
h=1

qhj + 1

2

(c)

≥ 1

1− 2ε1/4

k∑
h=1

qhj + 1

2
−

∑
h∈[k],h6=i

qhj + 1

2

≥ 1

1− 2ε1/4

qij + 1

2
.

For odd j ∈ [`− 1] it suffices to notice that |W i
j | = |W i

j−1| by (h).

3. The proof of the main theorems

3.1. Fixing the parameters

We shall prove at the same time, and with the same parameters c and n0,
Theorem 1 for even n ≥ n0 and Theorem 2 for odd n ≥ n0. Recall that we
only need to worry about the implication (b) ⇒ (a).

Suppose that ∆ > 2 and, for odd n, also a fixed k ∈ N are given. Set

ε :=
1

200k ·∆4000c2∆(log ∆)2
(4)

where the constant c2 comes from Theorem 9, and set

mreg :=
neven

ε6
, (5)

where c2 > 1 comes from Theorem 9 and neven is given by Theorem 11 for
the input

β := ε1/5.

12



For the parameters ε and mreg the Regularity Lemma (Theorem 14) yields
numbers Mreg and nreg. We now set

c :=
ε2

16M2
reg

(6)

and

n0 :=
Mregn18

4ε1/2(1− ε)
, (7)

where n18 is given by Lemma 18 for δ′ := ε1/4 and ε′ := ε1/2.
Now suppose n ≥ n0 and let

N :=

{
r(Cn) if n is even,
r(Cn) + k − 1 if n is odd.

Let a 2-colouring of the edges of KN be given, with colours red and blue,
say, which induce the (spanning) subgraphs Gr and Gb.

Further, let D be a set of chords of Cn satisfying assumptions 1 and 2
of Theorems 1 and 2, and such that Cn ∪ D is bipartite if n is even and
k-almost bipartite if n is odd. Our aim is to find a monochromatic copy of
Cn ∪D in KN .

3.2. Applying regularity to Gr and Gb

The regularity lemma (Theorem 14) applied to Gr yields a partition V0,
V1, . . . , Vt of V (Gr) that is ε-regular with respect to Gr. It is well-known
that this partition is also ε-regular with respect to Gb.

Substituting each Vi, i > 0, with a vertex i and each ε-regular pair
(Vi, Vj) with an edge ij, we obtain the so-called reduced graph R with vertex
set [t] = {1, 2, . . . , t} such that

(I) Mreg ≥ t ≥ mreg;

(II) N/t ≥ |Vi| ≥ (1− ε)N/t;

(III) δ(R) ≥ t− 1− εt.

We define an edge-(multi)colouring of R as follows. Colour the edge
ij ∈ E(R) red (blue) if the density of (Vi, Vj) in Gr (in Gb) is at least d,
where

d := 4 max
{
ε1/100, (4∆ · 2ε)1/∆

}
<

1

∆40
. (8)

Notice that every edge of R receives a colouring because d < 1/2.
Let us fix some more notation: if xy is a red/blue edge in R (or in Gr

or in Gb), then well call x a red/blue neighbour of y.
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3.3. Preparing Cn ∪D

Set

z :=
ε2n

Mreg|D|
and, since |D| ≤ cn, notice that

z ≥ ε2

cMreg

(6)

≥ 16Mreg. (9)

Let H ′′ be the subgraph of Cn ∪D induced by D and all V (D)-paths in Cn
of length at most z. Then

|H ′′| ≤ 2z|D| = 2
ε2n

Mreg
. (10)

Now, Cn ∪D−E(H ′′) is the union P ′′ of several V (D)-paths, each of them
longer than z. We wish to have them all of the same parity. For this reason,
for each such even path P = v1, v2, . . . , v2i+1, we remove vertex v2 and edge
v1v2 from P , add them to H ′′, and call the obtained graph H ′. Observe
that we have added at most |H ′′| new vertices. Thus,

|H ′| ≤ 2|H ′′|, (11)

and
all V (D)-paths of Cn ∪D − E(H ′) are odd. (12)

If n is even, then Cn ∪D, and thus also H ′, is bipartite. By Fact 4 and
by (12), we can arrange the colour classes U1, U2 of H ′ so that Cn∪D−E(H ′)
is the edge-disjoint union of U1–U2-paths of length at least z − 1. Set H :=
H ′.

If n is odd, then, since Cn ∪ D ⊇ H ′ is k-almost-bipartite, the graph
H ′ is 3-colourable. By Fact 5, there is a supergraph H of H ′ contained in
Cn∪D, with tripartition U1, U2, U3 of its vertex set such that all V (H)-paths
in Cn ∪D − E(H) are odd U1–U2 paths of length at least z − 3.

So, in both cases we have obtained a graph H with partition classes U1,
U2 and (if n is odd) U3 such that, by (10) and by (11),

|H| ≤ 3|H ′| ≤ 12
ε2n

Mreg
. (13)

Furthermore, for each V (H)-path P of Cn − E(H), we have that

P is an odd U1–U2 path, (14)

and, since z ≥ 16Mreg ≥ 6 by (9), also

|E(P )| ≥ z − 3 ≥ z

2
≥ 8Mreg. (15)

From now on, we split our proof into two cases, depending on the parity
of n. We shall deal with even n in Section 3.4, and with odd n in Section 3.5.
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3.4. Even n

We wish to apply Theorem 11 to G := R with β = ε1/5 (as fixed above),
m := d2t/3e, and M := t. Clearly, by (I) and by the choice of mreg, we have
that m ≥ d2

3mrege > neven and

t ≥ mreg > 1/ε. (16)

Thus, as m ≤ 2
3 t+ 1 = 2

3M + 1, we obtain that

M ≥ 3

2
m− 3

2

(16)

≥ 3

2
m− 3

2
εM ≥ 3

2
m− 9

4
εm ≥

(
3

2
− β

)
m.

Finally, since 4ε ≤ β, we know that

δ(R)
(III)

≥ M − 1− εt
(16)
> M − 2εt

≥ M − 4ε
t

2
≥ M − 4εm

≥ M − βm. (17)

So, Theorem 11 and Corollary 12 yield either

(A) R has a monochromatic even cycle C` with ` ≥ 2
3(1 + ε1/5)t, or

(B) there is a colour i ∈ {1, 2}, and sets A,B ⊆ V (R) so that, for ξ =
ε1/100 < 1

1610
,

(B1) the minimum degree in colour i in R[A] is at least (1− ξ)|A| and
the maximum degree in colour 3− i in R[A] is at most ξ|A|,

(B2) in colour 3 − i in R[A,B], every vertex in A has degree at least
(1− ξ)|B| and every vertex in B has degree at least (1− ξ)|A|,

(B3) |A| ≥ (2
3 − ξ)t and |B| ≥ (1

3 − ξ)t.

Depending on which case we obtained, we split our proof further into
two cases.

3.4.1. Case (A)

In this case, R contains an even monochromatic (say, red) cycle C` with
vertices V1, V2, . . . , V`, V1 (in this order). Let V ′1 ⊆ V1, V ′` ⊆ V` contain all
those vertices that are ε-typical inGr with respect to V2 or V`−1, respectively.
Thus, because of Fact 15, we have

λ := min{|V ′1 |, |V ′` |} ≥ (1− ε)|V1|.

15



It follows from the definition of ε-regularity that the pair (V ′1 , V
′
` ) is 2ε-

regular with density at least d− ε > d/2 ≥ (4∆ · 2ε)1/∆. Moreover, by con-
dition 2 of Theorems 1 and 2, we know that ∆(H) ≤ ∆.

Thus we verified almost all conditions of Lemma 17, which we would
like to use with parameters ∆, p := d − ε, ε′ := 2ε, λ, s := |H| and graphs
R := K2, H, G := Gr[V ′1 ∪V ′` ] in order to embed the bipartite graph H into
Gr[V ′1 ∪ V ′` ]. By (1), it is only left to check that

|H| ≤ 2∆ · 2ε · λ.

This inequality holds because we have

|H|
(13)

≤ 12
ε2

Mreg
· n ≤ 12

ε2

Mreg
·N

(4)

≤ 4∆(1− 2ε) · 2ε · N

Mreg

(I)

≤ 4∆(1− ε)2 · 2ε · N
t

(18)

(II)

≤ 4∆ · 2ε · (1− ε) min
{
|V1|, |V`|

}
≤ 4∆ · 2ε ·min

{
|V ′1 |, |V ′` |

}
= 2∆ · 2ε · λ.

So Lemma 17 guarantees we can embedd H as planned. We will now
embed the rest of Cn ∪D, that is, the long connections between the vertices
of H.

H

V1

V6

(a) First, the graph H is embedded in
the pair (V1, V`) via Lemma 17.

H

V1

q1
2

q1
1a1

b1V6

q1
2

q1
3q1

4

q1
5

(b) Then we use Lemma 19 to embed the long
connections.

Figure 2: Our embedding of Cn ∪D = H ∪
⋃
Pi in Gr.

By (14), we know that the edges of Cn − E(H) form internally vertex-
disjoint paths P1, P2, . . . , Pk such that for all i ∈ [k] the first vertex of Pi is
mapped to ai ∈ V1, while the last vertex of Pi is embedded in bi ∈ V`. By
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the choice of V ′1 and V ′` , we know that, for each i ∈ [k] = {1, . . . k},

ai is ε-typical with respect to V2,

and bi is ε-typical with respect to V`−1. (19)

We now wish to employ Lemma 19 to embed the remaining part of H into
Gr. We have just verified that (vii) and (viii) of Lemma 19 hold. Also, (ii)
and (iii) are clear by construction.

For (iv), note that by construction,

k ≤ |H|
(13)
< ε1/2|Vj |.

For (v), it suffices to observe that for each i ∈ [k], inequality (15) implies
that

pi ≥ z − 3 ≥ 8Mreg ≥ 3`.

Let us next establish (vi). For this, it is enough to see that, as M ≥ n ≥
1/ε, we have

k∑
i=1

pi ≤ n

=
2

3
(N + 1)

≤ 2

3
· N

1− ε
(II)

≤ 2

3
· |V1|t

(1− ε)2

≤ 2

3
· t

1− 3ε1/4
(1− 2ε1/4)|V1|

≤
(

2

3
(1 + ε1/5)t− 2

)
(1− 2ε1/4)|V1|

(A)

≤ (`− 2)(1− 2ε1/4)|V1|.

Finally, for (i) note that

4ε1/2|Vj |
(II)

≥ 4ε1/2(1− ε)N
t

≥ 4ε1/2(1− ε)n0

t

(6)

≥ Mregn18

t
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(I)

≥ n18.

This means we can use Lemma 19 as planned and thus finish our em-
bedding in this case.

3.4.2. Case (B)

We assume the colour i is red and colour 3− i to be blue. Let AG denote the
union of all vertices that belong to clusters in A. We estimate the number
of blue edges in AG as follows: there are

• at most |A| ·
(
n/t
2

)
blue edges within clusters in A;

• at most |A| · εt · (n/t)2 blue edges in irregular pairs in A;

• at most ξt|A| · (n/t)2 blue edges in pairs corresponding to blue edges
in A;

• at most
(|A|

2

)
· d(n/t)2 blue edges in the remaining pairs in A (those

which are coloured only by red).

Using the facts that |A| ≤ t, that 1/t < ε, and that ξ = ε1/100 ≤ d/4, we
find that AG contains in total at most(

ε

2
+ ε+ ξ +

d

2

)
n2 ≤ dn2

blue edges. Since the size of AG is bounded by

|AG| ≥ |A| ·
(1− ε)N

t

(B3)

≥ (1− ξ) (1− ε)n,

we obtain that AG contains a subset A′ of size at least |AG| − 2
√
d ≥ (1 −

3d1/2)n such that, in Gr, each vertex of A′ has degree at least |A′| − d1/2n.
Let C be the set of all vertices in V (G) \ A′ that send at least 6∆d1/2n

red edges to A′ and suppose that |A′|+ |C| ≥ n. Since

2d1/2
(8)
<

2

∆20
<

1

∆2 + 4
,

we may use Lemma 8 and conclude that the red graph Gr[A′ ∪ C] contains
Cn ∪D.

So let us from now on assume that |A′|+ |C| < n. Setting B′ := V (G) \
(A′ ∪ C), this means that |B′| ≥ n/2. Moreover, by definition of B′, each
vertex from B′ sends at least |A′| − 6∆d1/2n blue edges to A′. We embed
Cn ∪D in Gb[A′, B′] as follows.

Say Cn ∪D has the bipartition classes X and Y . We know that |X| =
|Y | = |Cn|/2. Now, embed all of X into B′ arbitrarily. Then, we embed
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the vertices in Y successively in the following way: Say we wish to embed
some vertex y ∈ Y . Vertex y has at most ∆ neighbours in X. The images
of these neighbours in B′ have at least |A′| − ∆ · 6∆d1/2n > n/2 common
blue neigbors in A′. Since we have used at most |Y | − 1 < n/2 vertices of
A′ in earlier steps, there is a vertex in A′ we may use to embed y. Thus we
manage to embed all of Y as desired in A′, which finishes the embedding of
Cn ∪D.

3.5. Odd n

In this case, we wish to apply Theorem 10 with parameters γ := β = ε1/5,
m̄ := t/2, and M̄ := t to the graph G := R. From (I) and (5), we get that
n > γ−6, and, clearly, we have M̄ ≥ (3/2 + 14γ)m̄. Finally, the fact that
δ(G) ≥M − βm ≥ M̄ − γm̄ follows from (17).

Thus Theorem 10 yields one of the following substructures:

(C) R has a monochromatic odd cycle C` with ` ≥ (1 + ε1/5)t/2, or

(D) there is a colour i ∈ {1, 2}, and sets A,B ⊆ V (R) so that

(D1) all edges in R[A] and in R[B] have only colour i,

(D2) all edges between A and B have only colour 3− i, and

(D3) |A|, |B| ≥ (1− ε1/5)t/2.

Depending on which case we obtained, we split our proof further into two
cases.

3.5.1. Case (C)

Suppose that C` is red and contains the vertices V1, V2, . . . , V`, V1 (in this
order). First of all, observe that since ` is odd, the set of all 2-chords of
C` span an odd cycle C ′` of the same length in R. Now, we split our proof
further depending on whether or not C ′` contains a red 2-chord.

3.5.1.1. C ′` has a red 2-chord. Let V`V2 be the red 2-chord of C`. Our
plan is to use the Lemma 17 to embed H into the ε-regular triangle V`V1V2

such that all vertices of H that have neighbours in G − H are mapped to
vertices of V` or V2 that are typical in red with respect to V`−1 or to V3,
respectively.

For this, let V ′` ⊆ V` and V ′2 ⊆ V2 consist of all vertices that are ε-typical
in Gr with respect to V`−1 or to V3, respectively. Then, by Fact 15, we have

λ := min{|V ′2 |, |V ′` |} ≥ (1− ε)|V2|,

from the definition of ε-regularity we have that the pairs (V ′` , V
′

2), (V ′` , V1)]
and (V1, V

′
2) are 2ε-regular, and (18) from the even case implies that |H| ≤
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2∆ · 2ε · λ. Hence Lemma 17 with parameters ∆, p := d − ε, ε′ := 2ε, λ,
s := |H| and graphs R := K3, H, G := Gr[V ′` ∪V1∪V ′2 ] yields an embedding
of the tripartite graph H into G. Recall that the tripartition classes of H
were U1, U2 and U3. We map U1 to V1, U2 to V ′` and U3 to V1.

We will now embed the rest of Cn ∪ D, that is, the long connections
between the vertices of H. We plan to use Lemma 19 on Gr with `Lem 19 :=
`− 1 and V Lem 19

j := Vj+1.
By (14), we know that the edges of Cn − E(H) form internally vertex-

disjoint odd paths P1, P2, . . . , Pk such that, for all i ∈ [k], the first vertex of
Pi is mapped to some ai ∈ V2, while the last vertex of Pi is embedded to
some bi ∈ V`. By the choice of V ′2 and V ′` , we know that, for each i ∈ [k], we
have that

ai is ε-typical to V3 and bi is ε-typical to V`−1. (20)

This means that conditions (ii), (iii), (vii) and (viii) of Lemma 19 are
satisfied. Conditions (i), (iv) and (v) follow as in the even case.

For (vi), we calculate similarly as in the even case:

k∑
i=1

pi ≤ n

≤ 1

2
(N + 1)

≤
(

1

2
(1 + ε1/5)t− 2

)
(1− 2ε1/4)|V1|

(C)

≤ (`− 2)(1− 2ε1/4)|V1|.

Thus with the help of Lemma 19 we may complete the embedding of H
to an embedding of Cn ∪D.

3.5.1.2. All 2-chords of C ′` are blue. Let V ′1 ⊆ V1 be the set of all
vertices in V1 that are typical in red with respect to V` and V2, and typical
in blue with respect to V`−1 and V3. Since |V ′1 | ≥ |V1| − 4ε|V1| by Fact 15,
we have

|V ′1 | ≥ (1− 4ε)|V1| ≥ (1− 5ε)
N

t
≥ n

Mreg

≥ 2c2∆(log ∆)2 · 12
ε2n

Mreg
≥ 2c2∆(log ∆)2 |H| ≥ R(H).

Hence, by Theorem 9, we find a monochromatic copy of H inside V ′1 .
Now only have to embed the long connections (in Gr if our copy of H is

red, and in Gb if our copy of H is blue). This will be done as before, either
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in C` or in C ′`, with the help of Lemma 19. Now the input for Lemma 19 is
`Lem 19 := `+ 1 and V Lem 19

j := Vj for j ∈ [`] and V Lem 19
`+1 := V1.

Conditions (i)–(viii) of Lemma 19 are seen to hold as above, so we can
finish our embedding as planned.

3.5.2. Case (D)

Assume again that colour i is red and 3− i is blue.
Again, let AG, BG denote the union of all vertices that belong to clusters

in A, or in B, respectively. We have that

|AG| ≥ |A| ·
(1− ε)N

t
≥ (1− ε)(1− ε1/5)

2n− 1 + k

2
≥ (1− 2ε1/5)n.

Similarly, |BG| ≥ (1− 2ε1/5)n.
Now we shall estimate the number of blue edges in G[AG] and G[BG]

and the number of red edges in G[AG, BG]. There are

• at most |A| ·
(
n/t
2

)
blue edges within the clusters in A;

• at most |A| ·εt · (n/t)2 blue edges in irregular pairs in A (i.e. non-edges
of R[A], here we use (III));

• at most
(|A|

2

)
· d(n/t)2 blue edges in the remaining pairs in A (here we

use (D1)).

Using the facts that |A| ≤ t, that 1/t < ε, and that ε < d/4, we find that
AG contains in total at most(

ε

2
+ ε+

d

2

)
n2 ≤ dn2

blue edges. In the same way we obtain that BG contains at most dn2 blue
edges.

As for the red edges in G[AG, BG]: There are

• at most |A| · εt · (n/t)2 red edges in irregular pairs corresponding to
non-edges in R[A,B], and

• at most |A| · |B| ·d(n/t)2 red edges in the pairs corresponding to edges
in R[A,B] (here we use (D2)).

Using the facts that |A|, |B| ≤ t, that 1/ε < t, and that ε < d/4, we find
that G[AG, BG] contains at most

(ε+ d)n2 ≤ 2dn2
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red edges. We remove at most 3
√
dn vertices with degree at least

√
dn in

one of Gb[A′], Gb[B′], and Gr[A′, B′], and obtain sets A′ ⊂ AG and B′ ⊂ BG
such that

|A′|, |B′| ≥ (1− 2ε1/5 − 3
√
d)n

and such that the graphs Gb[A′], Gb[B′], and Gr[A′, B′] have maximum
degree at most

√
dn.

Set ε′ = 2ε1/5 + 3
√
d, and let CA and CB be the sets of all vertices in

V (G)\(A′∪B′) that send at least 3∆ε′n red edges to A′ or to B′, respectively.
If |CA| + |A′| ≥ n, then we use Lemma 8 (note that ε′ < 1

∆2+4
by (4) and

by (8)) and conclude that the red graph Gr[A′ ∪ CA] contains Cn ∪D.
So let us from now on assume that |CA| + |A′|, |CB| + |B′| < n. This

means that there is a set S of

k ≤ 2n− 1 + k − 1− (|CA|+ |A′|+ |CB|+ |B′|)

vertices which each send at least |A′| − 3∆ε′n blue edges to A′ and at least
|B′| − 3∆ε′n blue edges to B′. Let AS and BS be the set of their common
blue neighbours in A′, or in B′, respectively. Note that

|AS |, |BS | ≥ (1− ε′)n− k · 3∆ε′n = (1− (3k∆ + 1)ε′)n (21)

≥ n/2, (22)

where the last inequality follows from (4).
We embed Cn ∪D as follows: let Z be the set of k independent vertices

such that Cn∪D−Z is a bipartite graph with bipartition X and Y . Clearly,
the sets X and Y differ in size by at most k, and therefore we have that
|X|, |Y | ≤ n/2.

Embed all of Z into S and all of X into BS arbitrarily (that X fits into
BS in ensured by (22)). Then embed the vertices in Y successively, similarly
as in the even case. For each vertex y ∈ Y that we wish to embed in AS ,
we know that the images of its at most ∆ neighbours have at least

|AS | −∆ ·
√
dn

(21)

≥ (1− 4k∆ε′ −
√
d∆)n > 0

common neighbours in AS (the last inequality follows from (4) and from (8)),
and thus there is space for embedding y properly.
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théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976),
Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.

23


	1 Introduction
	2 Preliminaries
	2.1 Notation and Two Facts
	2.2 Structural tools
	2.3 Regularity
	2.4 Embedding long paths

	3 The proof of the main theorems
	3.1 Fixing the parameters
	3.2 Applying regularity to Gr and Gb
	3.3 Preparing CnD
	3.4 Even n
	3.4.1 Case (A)
	3.4.2 Case (B)

	3.5 Odd n
	3.5.1 Case (C)
	3.5.2 Case (D)



