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Abstract

We call a graph H Ramsey-unsaturated if there is an edge in the
complement of H such that the Ramsey number r(H) of H does not
change upon adding it to H. This notion was introduced by Balister,
Lehel and Schelp in [2], where it is shown that cycles (except for Cy)
are Ramsey-unsaturated, and conjectured that, moreover, one may
add any chord without changing the Ramsey number of the cycle C,,,
unless n is even and adding the chord creates an odd cycle.

We prove this conjecture for large cycles by showing a stronger
statement: If a graph H is obtained by adding a linear number of
chords to a cycle Cy,, then r(H) = r(C,), as long as the maximum
degree of H is bounded, H is either bipartite (for even n) or almost
bipartite (for odd n), and n is large.

This motivates us to call cycles strongly Ramsey-unsaturated. Our
proof uses the regularity method.

1. Introduction

The Ramsey number r(H) of a graph H is the smallest integer N such
that every 2-colouring of the edges of the complete graph Ky on N vertices
contains a monochromatic copy of H.

It has been known [4, [7, 12] for a long time that the cycles C, on n
vertices have Ramsey numbers linear in n, while the Ramsey numbers of
complete graphs K, are exponential. So from the beginnings of Ramsey
theory one important question has been hovering in the background: if we
keep adding chords to C), until reaching K,,, at which point will the Ramsey
number jump up? Very little is known. When we are close to the complete
graph, then, for 3 < n < 6, it holds that r(K,) > r(K, — €), and it is
conjectured (see [2]) that this is also true for every n > 6.

At the other end of the spectrum, that is, when we are close to the
cycle, all that is known is the aforementioned result by Balister, Lehel,
and Schelp [2]. Using their terms, we call a graph H Ramsey saturated if
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r(H +e) > r(H) for every edge e in the complement of H, and Ramsey
unsaturated otherwise. In [2] it is proved that the cycle C,, is Ramsey
unsaturated for every n > 4, and it is conjectured that one may add any
edge e to C,, without increasing the Ramsey number, unless n is even and
adding e destroys the bipartiteness of ), (Conjecture 3 in [2]). Balister,
Lehel, and Schelp also remark ‘One would expect to be able to add more
than one edge to the cycle without increasing the Ramsey number’.

We show that this is indeed the case, at least asymptotically. Our main
result is that one may add a linear number cn of chords to C),, without
changing the Ramsey number, as long as the obtained graph H has bounded
maximum degree A(H ), and as long as H is bipartite if n is even, and almost
bipartite if n is odd. (A non-bipartite graph is called almost bipartite if the
removal of one vertex results in a bipartite graph.) Since our proof relies
on the regularity method, our result holds only for large graphs, with the
constant ¢ depending only on A(H).

Theorem 1. For every A € N there are ng € N and ¢ > 0 such that, for
every n > ng and every collection D of chords of C,, with

(1) |D| < en and

(2) A(C,UD) <A,

the following two conditions are equivalent
(a) 7(Cr, UD) =r(Cy),

(b) either n is even and C,,UD is bipartite, orn is odd and Cr,UD is almost
bipartite.

Observe that Theorem [1| confirms Conjecture 3 of [2], as an odd cycle
plus one chord is almost bipartite.

When n > 4 is even, r(Cy,) = 3n/2 —1 < 2(n — 1) (see [7, [12]) and the
implication (a) = (b) of Theorem [I| can easily be seen by considering the
following construction: Colour all edges of a maximal cut in Ky(,_1) blue,
and the remaining edges red. By (a), there is a monochromatic copy of
Cn U D. Since the components of the red subgraph of Kj(,,_1) are too small
to contain Cy, U D, there is a blue copy of C, U D in Ky(,_1). Thus C,, U D
is bipartite.

For odd n > 4, we know that (C),) = 2n—1 (see [7,12]). Take the above
colouring of Ky(,_1) and add one new vertex to Ky(,_1) all whose incident
edges are coloured blue. Then as above, we find a blue copy of C,, U D. This
copy cannot be bipartite since it contains the odd cycle C,, hence it must
be almost bipartite.

The odd case of Theorem [I] follows from a slightly more general result.
As a generalization of almost-bipartiteness, let us call a graph k-almost



bipartite (for k € N) if it contains a set of k independent vertices such that
the removal of these vertices leaves a bipartite graph, but the removal of any
set of less than k independent vertices does not. Then a graph is 1-almost
bipartite if, and only if, it is almost bipartite.

Theorem 2. For every A and k € N there are ng € N and ¢ > 0 such that,
for every odd n > ng and every collection D of chords of Cy, with

(1) |D| < en and

(2) A(C,UD) < A,

the following two conditions are equivalent
(a) 7(Cr,UD) =r(Cy)+k—1,

(b) C,, U D is k-almost bipartite.

Again, the implication (a) = (b) of Theorem [2|is straightforward: Sup-
pose that r(C,, UD) = r(Cy) + k—1 = 2(n—1) + k and n is large (in
particular, n > k). We partition the vertices of K,(c,up) into sets X, Y,
and Z such that | X| =|Y| =n—1 and |Z| = k and colour all edges within
X or Y or Z red and the rest blue. Clearly, the red subgraph has no large
enough component to contain C,, U D, so we find a blue copy of C, U D
in Ko(;,—1)4%- Since the blue subgraph is k-almost bipartite, we find that
C, U D is k’-almost bipartite for some k' < k. Now, if k¥’ < k, then we can
use the implication (b) = (a) for k' to obtain a contradiction. Hence, C,,UD
is k-almost bipartite.

Both our results are, apart from the value of ¢, best possible for ev-
ery sufficiently large A. To see this, we first recall the following result of
Graham, R6dl and Rucinski:

Theorem 3 (Graham, Rodl and Ruciniski, [9]). There exists a constant
c1 > 1 such that, for every A > 1 and for every n > A+ 1 (except for
A =1 andn=2,3,5), there exists a bipartite graph H with n vertices and
mazimum degree at most A which satisfies r(H) > cfn.

Let A > 3 be such that c] -2 > 4, and let n be even and larger
than 2(A + 2). Then Theorem [3| assures that there is a bipartite graph H
on n/2 > 5 vertices and of maximum degree at most A — 2 such that
r(H) > ¢27%(n/2) > 2n. Clearly, we can add H into C,, respecting the
natural bipartition of C,. Denote the set of chords by D and note that
A(C,UD) < A and |D| < e(H) < 4(A—2)2 < (A/4)n. On the other
hand, we have

r(Cp) = 3n/2—-1 < 2n < r(H) < r(C,UD).



Hence, this construction shows that the function from Condition of The-
orem (I cannot be improved to anything above An/4.

A similar construction works for large odd n. In this case, let A > 3 be
such that 01A—2 > 6, n > max{2A,6k+1}, and let H be a bipartite graph on
(n41)/2 vertices with A(H) < A—2and r(H) > 2 %(n+1)/2 > 3(n+1).

Let v1,vg,...,v, be the (consecutive) vertices of C,,. We add k chords
V1U3, V406, ... ,U3k—2vV3r and add H into the path wski1,v3k42,...,Vn, re-
specting its natural bipartition. Denote the set of thus created chords by D.
Then C,, U D had maximum degree A, it is k-almost bipartite because it
contains k vertex-disjoint triangles vqvovs, V4UsVg, . . ., Ugk_2U3k_1 U3k and re-
moving vertices vy, vy, ...,v3,_2 from C, U D yields a bipartite graph, and
|ID| <e(H)+ k< %(A —-2)5+k< %n. On the other hand, we have

r(Cn)+k—1=2n+k—-2 < 3(n+1) < r(H) < r(C,UD).

Furthermore, Theorem [3] also implies that Theorems [1] and [2] cannot
be true for non-constant A. Suppose that A = A(n) — oo as n — oo
arbitrarily slowly. Note that we may assume that 2logn > A, because for
faster growing A, or more precisely, for all A > 2logn, we can add Kiognlogn
to C,, so that the resulting graph has maximum degree at most A and it is
bipartite, but its Ramsey number is at least r(Kiogn,logn) > 2n for large n
(cf. Chung and Graham [0]).

Now, let ng be such that clA/A2 > 2 for every n > ng. Let H be
a bipartite graph on n/A% > A + 1 vertices and of maximum degree at
most A such that 7(H) > ¢ (n/A2) > 2n. Again, we can add H into C,
respecting the natural bipartition of C),. Denote the set of chords by D and
note that |D| < e(H) < 3(A%5) = o(n). On the other hand, we have

r(Cp) = 3n/2—-1 < 2n < r(H) < r(C,UD,).

2. Preliminaries

2.1. Notation and Two Facts

We use standard graph-theoretic notation. For a graph G, let V(G) denote
the set of its vertices and E(G) the set of its edges. We denote by |G| and
e(G) the number of vertices and edges of G. Given a set A C V(G) of
vertices and a set F' C E(G) of edges, G[A] stands for the subgraph of G
induced by the vertices of A, and GG — F' is the subgraph of G with vertex
set V(G) and edge set E(G) \ F.

Given two disjoint sets of vertices, A and B, we write E(A, B) for the
set of edges with one endpoint in A and the other in B, we set e(A, B) :=
|E(A, B)|, and call G[A, B] the bipartite subgraph of G with bipartition
A, B and edge set E(A, B). The quantity d(A, B) := d(A, B)/|A||B| is the



density of the pair (A, B). For a vertex a and a set B, we denote by N(a)
the set of all vertices adjacent to a and set deg(a) := |N(a)|.

Next, let us clarify some notation on paths: The length of a path is the
number of edges it contains. An odd path is a path of odd length, an even
path is a path of even length. A path is trivial if it consists of one vertex
only. An x—y path is a path starting at vertex z and ending at vertex y. If
x and y are vertices of some path P, then we denote by x Py the subpath of
P starting at « and ending at y. If P is a path with one endvertex in a set
A and the other one in a set B and does not meet A U B otherwise, then
we say that P is an A-B path. For a set A, a non-trivial A-A path is also
called an A-path.

We finish this subsection by quickly proving two easy facts, which will
be needed in Section B.3]

Fact 4. Let G be a bipartite graph, and let H C G be such that all V(H)-
paths of G — E(H) are odd. Then H has a bipartition Uy, Us of its vertex
set so that each V(H)-path in G — E(H) is a Uy-Us path.

Proof. Take any bipartition of G and consider its restriction Uy, Us to the
vertices of H. Since the endpoints of every odd path cannot be in the same
partite set, the statement of the fact follows. O

Fact 5. Let H',G be a tripartite graphs such that G is obtained from H' by
adding at most |H'| pairwise internally vertex disjoint V (H')-paths, each of
odd length at least m, m > 3.

Then there is a graph H with H C H C G and |H| < 3|H'| which
has a tripartition Uy, Us, Us of its vertex set such that each V(H)-path in
G — E(H) is an odd Uy-Usy path of length at least m — 2.

Proof. Let H' have colour classes U{, Uj and Uj;. For each V(H’)-path
P =abc...zyz in G — E(H') that has at least one endvertex (a or z) in U,
we add both b and y to H'. More precisely, if a,z € U, then we add b to
Ui and y to Uj, and if only one of a, z lies in Uj, say a € U, and z € U],
i € {1,2}, then we add b to U/ and y to Uj_,. Call the obtained tripartite
graph H, with partition classes Uy, Us and Us. Clearly, the V(H)-paths in
G — E(H) all have odd length > m — 2, and since H is obtained from H' by
adding two vertices from each V(H')-path, we also have |H| < 3|H’|. O

2.2. Structural tools

We now present some structural results we will use, and which come from [},
0, [10]. We also prove a corollary of one of these theorems, which will be
tailor-made for our purposes.

The first two are well-known theorems of Erdés and Gallai.



Theorem 6 (Erdés, Gallai, [0]). Every graph G with at least (n — 1)(|G| —
1)/2 + 1 edges contains a cycle of length at least n > 3.

Theorem 7 (Erdés, Gallai, [0]). Let G be a graph with v(G) > 3 and
minimum degree at least (|G| +1)/2. Then, for every two vertices u and v,
there exists an u—v-path containing all vertices of G.

The next result is a recent one on embedding bounded degree graphs.

Lemma 8 (Allen, Brightwell, Skokan, [1]). Given a natural number A > 1
and any 0 < ¢ < 1/(A2+4), let F be an n-vertex graph in which every vertex
has degree at least 3Aen, and all but at most en vertices have degree at least
(1 —2¢)n. Let J be any n-vertex graph with A(J) < A. Then J C F.

We also need a well-known result of Graham, Rédl and Rucinski on
linear bounds for Ramsey numbers of bounded degree graphs.

Theorem 9 (Graham, R6dl, Rucinski, [8]). There exists a constant ca > 1
such that for all A > 2 and all n > A + 1, every graph H with n vertices
and mazimum degree at most A satisfies r(H) < 2628108 8)%

Finally, we will need stability results on monochromatic cycles in graphs
whose edges are multicoloured. (A multi-colouring of the edges of some
graphs is an assigment of colours to the edges in which an edge can have
more than one colour.) It will come as no surprise that there are two cases,
according to the parity of the cycle. We start with the odd case:

Theorem 10 (Kohayakawa, Simonovits, Skokan, [10]). For v € (0,1072),
let m, M be integers with m > v~ and M > (3/2+ 14v)m. Suppose that G
is a graph on M wvertices with §(G) > M — ym.

Then every multi-colouring of the edges of G with 2 colours contains
either a monochromatic odd cycle Cy for some £ > (1 + ~)m or there is a
vertex x € V(G), a partition of V(G) \ {v} into two sets Vi and Va, and an
i € {1,2} such that

(a) all edges of G[Vi] U G[Va] have only colour i,
(b) all edges of G[V1, Va] have only colour 2 — i, and
(c) Vil,IVal < (1 +7)m.

A similar result holds for even cycles.

Theorem 11 (Kohayakawa, Simonovits, Skokan, [10]). For each 3€(0,107°),
there is an Neven € N such that the following holds for all integers m, M with
M > Neven and M > (3/2 — B)m.

If the edges of a graph G on M wvertices with §(G) > M — Bm are multi-
coloured with 2-colours, then G either contains a monochromatic even cycle
Cy for some £ > (1 + B)m or there is a partition of V(G) into sets Vi, Va
and W, and an i € {1,2} such that



(a) all but at most B/5|V1|? edges of G[V1] have only colour i,
(b) all but at most BY/°|V1||Va| edges of G[Vi, Va] have only colour 3—1, and
(¢c) Vil = (1= p)ym, [Va| > (1= B)ym/2, [W| < BY/5m.

In addition to Theorem we will use its following corollary:

Corollary 12. The sets Vi and Va from Theorem[11] contain sets A and B,
respectively, such that

(a’) the minimum degree in colour i in G[A] is at least (1 — BY/20)|A|, the
mazimum degree in colour 3 — i in G[A] is at most 31/?0| A,

(b’) in colour 3 —1i in G[A, B], every vertex of A has degree at least (1 —
BY/29)|B| and every vertez of B has degree at least (1 — BY/20)|A|, and

() 1Al = (§ = 6)3m, |B| = (5 — /™) 3m.

Proof. Observe that, firstly, condition (a) implies that, in Vj, there are at
most 2'/10|V;| vertices that, in colour 3 — i, have degree at least 3'/10|V|
inside V4. Secondly, (b) implies that V; contains at most 3'/°|V;]| vertices
sending at least 3'/19|V4| edges of colour i to V. Finally, (b) implies that,
in V5, there are at most 8/10|Va| vertices that send at least 51/19|V;| edges
of colour 7 to V7.

Remove these in total at most 351/10|V;| vertices from V; and at most
BY 101V4| vertices from V4 to obtain sets A and B as required. In fact, by
construction, each vertex of A is incident with at most 8/10|V;| < 51/29| 4]
edges of colour 3—1i that go to other vertices of A. Thus (a’) holds. Similarly
we can see that (b’) holds.

For (¢’), we have to see that |A| > (1 — 33Y2)m and |B| > (1 —
361/20)%. This is true as |[A| > (1 — 38Y/10)|Vj| and |B| > (1 — BY19)|V4|
by construction. Using (c), we thus obtain (c’). O

2.3. Regularity

In this section we introduce some very well-known concepts; the reader
familiar with regularity is invited to skip this section.
We start with giving the standard definition of regularity.

Definition 13. Given € > 0 and disjoint subsets A, B of the vertex set of
a graph G, we say that the pair (A, B) is e-reqular in G if, for every pair
(A", B") with A" C A, |A'| > ¢|A|, B’ C B, |B'| > ¢|B|, we have

[d(A', B') — d(A, B)| < e.

When there is no danger of confusion, we simply say that the pair (A, B) is
e-reqular.



We now turn to the regularity lemma.

Theorem 14 (Regularity Lemma; Szemerédi, [13]). For every ¢ > 0 and
Myeg > 0, there are Mg and neeg such that, for each graph G on at least
Nreg vertices, there exists a partition Vo, Vi,..., Vi of V(G) such that

(Z) Mpeg <t < Mreg;
(ii) V1| = [Va| = ... = [Vi| and V| < e[V(G)];

(iii) for each i, 1 <1i <t, all but at most et of the pairs (V;, Vj), 1 < j <t,
are e-regular.

We shall refer to a partition of V(G) satisfying coditions (i)—(iii) as e-reqular
with respect to G.

We continue by stating two facts on e-regular pairs, which are very well-
known, and can be found for example in [11].

Fact 15. Let (Vi1,V2) be an e-regular pair of density d > 2¢ in some graph G.
Then all but at most e|Vy| vertices vi € Vi are such that deg(vi) > (d—e)|Va|.
We shall refer to such a vertexr vy as e-typical in G with respect to Va.

Fact 16. Let 0 < e < 1/4 and let (V1,Va) be an e-reqular pair of density d.
Then, for every V{ C Vi, V§ C Vu such that |V{| > €Y2|Vi| and |Vj| >
eY2|Vy, the pair (V{,V3) is '/?-regular with density at least d — e.

We now state the so-called embedding lemma. Given a graph R and
a positive integer s, let Rs be the graph obtained from R by replacing each
vertex v of R with an independent set V,, of size s, and each edge vw of R
with the complete bipartite graph on V,, and V,,.

Lemma 17 (Embedding lemma, [I1]). For all A € N and p > 0, if ¢’ > 0
is such that (p— &)™ — Ae’ > p™ /2, then the following holds for every graph
H of maximum degree A.

Let R be a graph on vertices 1,...,r, and let G be a graph on the union
of the sets V,...,V,., where each V; has the same size \, and for each edge
ij € E(R) the pair (V;,V;) is €' -regular and of density at least p. Suppose
s < pA/\/Q. If H C Ry, then also H C G.

In particular, we note that the conditions of Lemma [17] are satisfied if

/ Pt /
< — < .
€ =R and s < 2Ae'\ (1)



2.4. Embedding long paths

In this section we prove an important lemma, Lemma[T9] which shall be used
later in the proof of our main theorems. This lemma is about embedding
a family of long paths into a sequence of e-regular pairs. As a starting point,
we use a lemma from [3] that shows under which condition we can embed
a path into one regular pair.

Lemma 18 (Benevides, [3]). For every ¢’ € (0,1) and for every e’ € (0, %),
there is an ngg = ngg(d’, ") with the following property: Let n > ngg and
let (X1,X2) be an &'-regular pair (in some graph) with density at least &'
and with | X1| = |X2| = n. Then, for every £, 1 < ¢ < n —2'n/d, and
for every two vertices v1 € X1,v9 € Xo such that deg(vy), deg(va) > 6'n/2,
there exists a vi—va-path of length 20 + 1.

We now show how to embed more paths into a longer sequence of regular
pairs.

Lemma 19. Let G be a graph, let € € (0,1/625), and let Py,..., Py be a
collection of pairwise internally vertex disjoint paths of odd lengths. Suppose
that £ € N is odd and Vy,...,Vy CV(G) are such that

(i) Vi = [Va| = ... = |Vi| = magm(e™/*, €V/%) de /2,

(ii) Vi,...,Vp are pairwise disjoint, except (possibly) for Vi and Vy;
(iii) for alli € [(—1], the pair (V;, Viy1) is e-reqular of density at least 2/*;
(iv) k < Y2|V);

(v) for alli € [k], p' := |E(P;)| > 3¢;

k
(vi) > p' < (1—=2"") (0 - 2)[Vi;
=1

(vit) for alli € [k], the first vertex of P; is embedded in a verter a; € Vi and
the last vertex of P; is embedded in a vertex b; € Vy; and

(viii) for all i € [k], a; is e-typical in G with respect to Vo and b; is e-typical
in G with respect to Vy_q.

Then we can extend A = Ule{ai,bi} to an embedding of all of Ule P
in G such that the only vertices from Vi UV used are those from A.

Notice that the sets V; and V; can have a non-empty intersection. Con-
sequently, in such a case, it is possible to choose a; = b; and obtain a cycle
of length p’ instead of path of length p’. However, in this paper, we will
always make sure that a; # b;.



Proof. For every j € [¢ — 1] and for all i € [k], we choose an odd number qj-
that will indicate how many edges of P; we plan to embed into the pair
(Vj,Vjt1). We choose the numbers q;- so that they satisfy the following
three conditions:

(a) q} =1if 7 is odd, and q;- > 3if j is even;

~
=

(b) qé = p' for each i € [k]; and

.
Il
—

(c) (q; +1)<2(1- 251/4)|Vj] for each even j € [¢ — 1].

M=

1

Observe that such a choice is possible because of asumptions and .

.
I

Figure 1: The numbers q;- stand for the number of edges of P; we wish to
embed in the pair (V}, Vj11).

Now, for j € [¢] and ¢ € [k], set
j—1
Q=2 a1
h=1

and let v} denote the Q;—th vertex on P;. In particular, the preimage of
wi := a; is v} and the preimage of w? := b; is v.

Next, successively, for each ¢ € [k], we embed P; in the following way: For
each j =2,...£—1, we will consider certain sets W; C Vj. The idea is that,
for even j, the sets W; and VVJz 41 contain possible images for V(U;-.Pﬂ); 41N
Vj. The sets W} will satisfy the following conditions.

(d) Wi C N(wi)n Vo, Wi, C N(wi) NV_q, and WJZ C Vj for each j =
3,...,0—2;

(e) I/V]Z contains no vertex of Py,..., P,_1, forany j=2,...,0—1;
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(f) (1- 261/4)|W;| > (q;LlJ +1)/2 for each j =2,...,0—1;
2

(2) |WJZ| > 4e'2|V;| for j =2,...,¢ —1; and
(h) |WJZ| = |W;+1| for each even j =2,4,...,0—2.
Observe that (g), together with Fact[L6], ensures that, for j = 2,...,0-2,

(W}, W;H) is €'/2-regular with density at least 2c6/* —¢ > /4. (2)

First, assuming the existence of the sets W;, let us embed all the P;. We
will show later that the sets VV]Z C Vj satisfying (d)—(h) do exist. We shall
start with the vertices v;, which will be placed in the following way.

For j =2,...¢—1, the vertex vji» is embedded in a vertex w;- of W; such
that

w;- is '/2-typical in G with respect to W;_l and W;H, (3a)

and
w}wj-H is an edge of G" if q; =1 (3b)

By Fact all but at most 2/ 2]W;\ vertices in WJZ satisfy (Ba). In
order to see (3b]), observe that the sets of vertices satisfying for j and
for j+1 are large enough to apply e!/2-regularity of (W;, W; +1), hence there
must be an edge wéwj- 41 between them. (Note that condition holds also
for j =1,¢ — 1, because of (d).)

The last step of our embedding is the embedding of the subpaths U;PZ’U; 11
for each even j € [¢]. By @ we know that v}Pw}H has odd length qj- > 3.
We wish to embed the edges of vj»Piv;-H into the pair (WJZ, W;H). For this,
we plan to use Lemma with & = e/4 and &' = /2. The assumptions
of Lemma [18] are verified in (2), (f), (h) and (3a)), and the only condition
being left to check is that [W}| > ngg. But this follows from

) @
(Wi > 4! |V;] = (e, e/?) = ng(0', €').

This completes the embedding of the paths P;. It only remains to show
that the sets WJZ C V; satisfying (d)-(h) do exist. Let ¢ < k be given and
assume we have already embedded all paths P, with h < ¢. Let U be the
set of all vertices used by our embedding of U Pp.

h<i

Now, for j = 2,/—1, choose WJZ C N(w})ﬂVj—U and, for j = 3,...,0-2,
W; C V;—U as large as possible, but such that |W}| = [W} | for each even
j=2,4,...,0—2. This choice clearly guarantees conditions (d), (e), and (h).

11



To show (g), observe that, for j =2,/ — 1, we have

;
IN(wi) NV —U| = [(2eV* =) [Vjl] — k
(iv)
> eV -2y
> 4e2|Vj).

Furthermore, for j =3...,¢ — 2, we know by that
Vi = Ul > V| = (1= 2Y/)|V;| > 4e' 2|V,

thus (g) is established.
In a similar way we see (f). For all even j € [¢ — 1], we have

i—1 _h
¢ +1
Vi —Ul= Vil = > ~5—
h=1
@ 1 g+l b1
Syt T
1 —2el/4 2 2
h=1 helk] hi
L1 gt
S 1-2/4 2

For odd j € [¢ — 1] it suffices to notice that |W;| = |W;_1| by ().

3. The proof of the main theorems

3.1. Fixing the parameters

We shall prove at the same time, and with the same parameters ¢ and ny,
Theorem [I] for even n > ng and Theorem [2] for odd n > ng. Recall that we
only need to worry about the implication (b) = (a).

Suppose that A > 2 and, for odd n, also a fixed k € N are given. Set

1

€= 200k - A4000c2A(log A)? (4)
where the constant ¢ comes from Theorem [9 and set
Teven
Mireg = eve ’ (5)

b

where ¢o > 1 comes from Theorem |§| and Neven is given by Theorem for
the input

12



For the parameters ¢ and mye the Regularity Lemma (Theorem yields
numbers Mee and npes. We now set

82

cm (6)

reg

and "
reg I8
= 3 7
10T 2 (1 g ™

where nyg is given by Lemma for &' := e'/* and & := £!/2,

Now suppose n > ng and let

N oo r(Ch) if n is even,
Tl r(Ch)+ k=1 ifnisodd.

Let a 2-colouring of the edges of Kn be given, with colours red and blue,
say, which induce the (spanning) subgraphs G™ and G®.

Further, let D be a set of chords of C,, satisfying assumptions [I| and
of Theorems (1| and [2], and such that C,, U D is bipartite if n is even and
k-almost bipartite if n is odd. Our aim is to find a monochromatic copy of
Cn UD in KN.

3.2. Applying regularity to G" and G°

The regularity lemma (Theorem applied to G" yields a partition Vj,
Vi,..., Vi of V(G") that is e-regular with respect to G". It is well-known
that this partition is also e-regular with respect to G®.

Substituting each V;, ¢ > 0, with a vertex 7 and each e-regular pair
(V4,V;) with an edge ij, we obtain the so-called reduced graph R with vertex
set [t] ={1,2,...,t} such that

(I) Mreg >t> Mreg;
() N/t > Vil > (1 - )N/,
(ITT) 6(R) >t — 1 — et.

We define an edge-(multi)colouring of R as follows. Colour the edge
ij € E(R) red (blue) if the density of (V;,V;) in G" (in GY) is at least d,
where 1
d := 4max {51/100,(4A'25)1/A} < Ad0 (8)
Notice that every edge of R receives a colouring because d < 1/2.
Let us fix some more notation: if zy is a red/blue edge in R (or in G"

or in G?), then well call x a red/blue neighbour of 3.
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3.3. Preparing C,UD

Set
en
Z = —
Meg| D
and, since |D| < c¢n, notice that
2 @
€
2> > 16 Myeg. (9)
ClVlyeg

Let H” be the subgraph of C,, U D induced by D and all V(D)-paths in C),
of length at most z. Then

627’L

1
|H"| < 2z|D| 2Mreg. (10)
Now, C, UD — E(H") is the union P” of several V(D)-paths, each of them
longer than z. We wish to have them all of the same parity. For this reason,
for each such even path P = vy, v, ..., v24+1, We remove vertex ve and edge
vive from P, add them to H”, and call the obtained graph H’. Observe
that we have added at most |H”| new vertices. Thus,

|H'| < 2|H"|, (11)

and
all V(D)-paths of C,, U D — E(H') are odd. (12)

If n is even, then C,, U D, and thus also H’, is bipartite. By Fact 4| and
by (12), we can arrange the colour classes Uy, Us of H' so that C,,UD—E(H’)
is the edge-disjoint union of U;—Us-paths of length at least z — 1. Set H :=
H'.

If n is odd, then, since C,, UD D H' is k-almost-bipartite, the graph
H’ is 3-colourable. By Fact |5, there is a supergraph H of H' contained in
CpUD, with tripartition Uy, Us, Us of its vertex set such that all V (H)-paths
in C,, UD — E(H) are odd U;-Us paths of length at least z — 3.

So, in both cases we have obtained a graph H with partition classes Uy,
Us and (if n is odd) Us such that, by and by ,

2
g™n
H| <3|H'| <12 . 13

reg

Furthermore, for each V(H)-path P of C,, — E(H), we have that
P is an odd U;—U; path, (14)
and, since z > 16M,¢; > 6 by @D, also

E(P)|>z—-3> % > 8 Mieg. (15)

From now on, we split our proof into two cases, depending on the parity
of n. We shall deal with even n in Section[3.4] and with odd n in Section[3.5

14



3.4. Evenn

We wish to apply Theorem |11/ to G := R with 8 = £!/® (as fixed above),
m := [2t/3], and M :=t. Clearly, by ({l) and by the choice of Mg, we have
that m > [%mreg > Neven and

t > Myeg > 1/c. (16)

Thus, as m < %t +1= %M + 1, we obtain that

3 3@ 3 3 3 9 3
Finally, since 4¢ < 8, we know that

(I1I)

) > M —1—¢t
(16)
9M—2€t
t
> M — de-
= €2
> M —4em
> M — pm. (17)

So, Theorem [11] and Corollary [12] yield either
(A) R has a monochromatic even cycle Cy with ¢ > %(1 +e'/5)t, or

(B) there is a colour i € {1,2}, and sets A, B C V(R) so that, for £ =
el/100 < 1

(B1) the minimum degree in colour ¢ in R[A] is at least (1 —&)|A| and
the maximum degree in colour 3 —i in R[A] is at most &|A|,

(B2) in colour 3 — ¢ in R[A, B], every vertex in A has degree at least
(1 —&)|B| and every vertex in B has degree at least (1 — &)|A],

(B3) |A] = (5 — &t and |B| > (3 — &)t

Depending on which case we obtained, we split our proof further into
two cases.

3.4.1. Case

In this case, R contains an even monochromatic (say, red) cycle C; with
vertices Vi, Va,...,Vp, Vi (in this order). Let V{ C Vi, V/ C V; contain all
those vertices that are e-typical in G" with respect to V5 or V,_1, respectively.
Thus, because of Fact we have

A= min{[V{],[V/|} = (1 - )[VA.
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It follows from the definition of e-regularity that the pair (V{,V}) is 2e-
regular with density at least d — e > d/2 > (4A - 2¢)Y/2. Moreover, by con-
dition 2 of Theorems |1| and [2, we know that A(H) < A.

Thus we verified almost all conditions of Lemma which we would
like to use with parameters A, p:=d —¢, ¢’ :== 2e, A, s := |H| and graphs
R:= Ky, H, G := G"[V]/ UV/] in order to embed the bipartite graph H into
G"[V{ UV/]. By (1), it is only left to check that

|H| <2A -2\

This inequality holds because we have

(13) 2 2
H| < 12-—— n<12—— N
reg reg
N @ N
< 4A(1—2¢) - 2¢ - < 4A(1—€)? - 2 - (18)

reg

=
=

< 4A -2 - (1 —g)min {|V1], [Ve|} < 4A - 2¢ - min {|V]],|V/]}
=2A-2¢- A\

So Lemma guarantees we can embedd H as planned. We will now
embed the rest of C,, U D, that is, the long connections between the vertices
of H.

"(Ce

H
Vi
(a) First, the graph H is embedded in  (b) Then we use Lemma [19|to embed the long
the pair (V1,V;) via Lemma connections.

Figure 2: Our embedding of C,, UD = HUJP; in G".

By , we know that the edges of C,, — E(H) form internally vertex-
disjoint paths Py, Py, ..., Py such that for all ¢ € [k] the first vertex of P, is
mapped to a; € Vi, while the last vertex of P; is embedded in b; € V;. By
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the choice of V] and V/, we know that, for each i € [k] = {1,...k},

a; is e-typical with respect to Vs,
and b; is e-typical with respect to V,_q. (19)

We now wish to employ Lemma[I9to embed the remaining part of H into
G". We have just verified that and of Lemma |19 hold. Also, (i

and are clear by construction.
For , note that by construction,

(3]
k < |H| 951/2\Vj|.

For ([v]), it suffices to observe that for each i € [k], inequality implies
that

P>z — 3> 8Meg > 3L

Let us next establish . For this, it is enough to see that, as M > n >
1/e, we have

k .
Spsn
i=1
2
=-(N+1
SV 1)
2 N
< Z.
3 1-¢
@2 |nt
— 3 (1—¢)?

Finally, for (il) note that

N
42|V S 46?1 —9)

> 4e1/2(1 — e)%

@ Miegnag

t
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()
2 N8
This means we can use Lemma as planned and thus finish our em-
bedding in this case.

3.4.2. Case

We assume the colour 7 is red and colour 3 —1 to be blue. Let Ag denote the
union of all vertices that belong to clusters in A. We estimate the number
of blue edges in Ag as follows: there are

e at most |A| - (”2/t) blue edges within clusters in A;
e at most |A| - et - (n/t)? blue edges in irregular pairs in A;

e at most £t|A| - (n/t)? blue edges in pairs corresponding to blue edges
in A;

e at most ("3') -d(n/t)? blue edges in the remaining pairs in A (those
which are coloured only by red).

Using the facts that |A| < ¢, that 1/t < &, and that £ = /190 < d/4, we
find that A¢g contains in total at most

d
<§+s+§+2> n? < dn?

blue edges. Since the size of Ag is bounded by

_ (B3)
R

we obtain that Ag contains a subset A’ of size at least |Ag| — 2vd > (1 —
3d'/?)n such that, in G”, each vertex of A’ has degree at least |A'| — d'/?n.

Let C be the set of all vertices in V(G)\ A’ that send at least 6Ad'/?n
red edges to A" and suppose that |A'| + |C| > n. Since

2 1
o2 ® 2 1
S A% SATLg

we may use Lemma [8 and conclude that the red graph G"[A’ U C] contains
Cr,UD.

So let us from now on assume that |A’| 4+ |C| < n. Setting B' := V(G) \
(A" U C), this means that |B’| > n/2. Moreover, by definition of B’, each
vertex from B’ sends at least |A’| — 6AdY/?n blue edges to A’. We embed
C, U D in G’[A, B'] as follows.

Say Cp, U D has the bipartition classes X and Y. We know that |X| =
Y| = |Cyh|/2. Now, embed all of X into B’ arbitrarily. Then, we embed
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the vertices in Y successively in the following way: Say we wish to embed
some vertex y € Y. Vertex y has at most A neighbours in X. The images
of these neighbours in B’ have at least |A’| — A - 6Ad"/?n > n/2 common
blue neigbors in A’. Since we have used at most |Y| — 1 < n/2 vertices of
A’ in earlier steps, there is a vertex in A’ we may use to embed y. Thus we
manage to embed all of Y as desired in A’, which finishes the embedding of
CpUD.

3.5. Oddn

In this case, we wish to apply Theorem [10| with parameters v := 3 = /5,
m :=t/2, and M :=t to the graph G := R. From and , we get that
n > 7% and, clearly, we have M > (3/2 + 14v)m. Finally, the fact that
§(G) > M — pm > M — ~m follows from (17).

Thus Theorem [10] yields one of the following substructures:

(C) R has a monochromatic odd cycle C; with £ > (1 4+ £%/°)t/2, or
(D) there is a colour i € {1,2}, and sets A, B C V(R) so that

(D1) all edges in R[A] and in R[B] have only colour ¢,
(D2) all edges between A and B have only colour 3 — ¢, and
(D3) |A],|B| = (1 —¢'/%)t/2.

Depending on which case we obtained, we split our proof further into two
cases.

3.5.1. Case

Suppose that Cy is red and contains the vertices V1, Vs, ..., Vp, V4 (in this
order). First of all, observe that since ¢ is odd, the set of all 2-chords of
C¢ span an odd cycle Cj of the same length in R. Now, we split our proof
further depending on whether or not C} contains a red 2-chord.

3.5.1.1. () has a red 2-chord. Let V;V5 be the red 2-chord of Cy. Our
plan is to use the Lemma [17]to embed H into the e-regular triangle V,V; V5
such that all vertices of H that have neighbours in G — H are mapped to
vertices of V; or V5 that are typical in red with respect to V1 or to Vs,
respectively.

For this, let V/ C V; and V3 C V5 consist of all vertices that are e-typical
in G" with respect to Vy_1 or to V3, respectively. Then, by Fact we have

A= min{[V3], [V/[} = (1 - ¢)[Val,

from the definition of e-regularity we have that the pairs (V/,Vy), (V/,V1)]
and (V1,Vy) are 2e-regular, and from the even case implies that [H| <
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2A - 2¢ - . Hence Lemma (17| with parameters A, p := d — ¢, & := 2¢, A,
s := |H| and graphs R := K3, H, G := G"[V/UV; UV;] yields an embedding
of the tripartite graph H into G. Recall that the tripartition classes of H
were Uy, Uy and Us. We map Uy to Vq, Us to Vel and Us to V7.

We will now embed the rest of C,, U D, that is, the long connections
between the vertices of H. We plan to use Lemmaon G with ¢Lem 13—
£—1 and VjLem = Vi1,

By (14)), we know that the edges of C,, — E(H) form internally vertex-
disjoint odd paths Py, Ps, ..., Py such that, for all i € [k], the first vertex of
P; is mapped to some a; € Vo, while the last vertex of P; is embedded to
some b; € V. By the choice of V; and V, we know that, for each i € [k], we
have that

a; is e-typical to V3 and b; is e-typical to V_1. (20)
This means that conditions , , and of Lemma are

satisfied. Conditions , and follow as in the even case.
For , we calculate similarly as in the even case:

k
> p'<n
i=1

1
< —
< 2(N+ 1)
< <;(1 + /Py — 2) (1— 24 v
(@)
2 (0 —2)(1 —2eY|W).

Thus with the help of Lemma [19) we may complete the embedding of H
to an embedding of C), U D.

3.5.1.2. All 2-chords of () are blue. Let V] C V} be the set of all
vertices in Vj that are typical in red with respect to V; and V5, and typical
in blue with respect to Vy_1 and V3. Since |V{| > |V1| — 4¢|V4]| by Fact
we have

N n
VII > (1 —4e)|Vi| > (1 — be)— >
’1’—( g)’ 1‘—( E)t_Mreg
Allog A)? 1o E2N A(log A)?
> 902A0gA) 19— 7 > ge2Alos M) | > R(H).
reg

Hence, by Theorem |§|, we find a monochromatic copy of H inside V7.
Now only have to embed the long connections (in G" if our copy of H is
red, and in G? if our copy of H is blue). This will be done as before, either
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in Cy or in C), with the help of Lemma Now the input for Lemma [19|is
rem M= ¢4 1 and VI B .= v, for j € [(] and Vi = v;.

Conditions f of Lemma (19| are seen to hold as above, so we can
finish our embedding as planned.

3.5.2. Case @

Assume again that colour ¢ is red and 3 — 7 is blue.
Again, let Ag, Bg denote the union of all vertices that belong to clusters
in A, or in B, respectively. We have that

2n—1+k

46| = |4]- ;

> (1-e)(1 - )

Similarly, |Bg| > (1 — 2¢'/5)n.
Now we shall estimate the number of blue edges in G[Ag| and G[Bg]
and the number of red edges in G[Ag, Bg]. There are

e at most |A| - ("2/ ") blue edges within the clusters in A;

e at most |A|-et-(n/t)? blue edges in irregular pairs in A (i.e. non-edges
of R[A], here we use ([I));

e at most ("g') -d(n/t)? blue edges in the remaining pairs in A (here we
use (D1)).

Using the facts that |A| < t, that 1/t < e, and that € < d/4, we find that
Aq contains in total at most

e d 2 2
— — <

blue edges. In the same way we obtain that Bg contains at most dn? blue
edges.
As for the red edges in G[Ag, Bg]: There are

e at most |A| - et - (n/t)? red edges in irregular pairs corresponding to
non-edges in R[A, B], and

e at most |A|-|B|-d(n/t)? red edges in the pairs corresponding to edges
in R[A, B] (here we use (D2)).

Using the facts that |A|,|B| < t, that 1/ < ¢, and that ¢ < d/4, we find
that G[A¢q, B contains at most

(e + d)n? < 2dn?
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red edges. We remove at most 3v/dn vertices with degree at least Vdn in
one of G?[4’], G*[B'], and G"[A’, B'], and obtain sets A’ C Ag and B’ C Bg
such that

|A'),|B'| > (1 — 2% — 3Vd)n

and such that the graphs G[A'], G’[B'], and G"[A’, B'] have maximum
degree at most v/dn.

Set ¢/ = 2¢1/% 4+ 3/d, and let C4 and Cp be the sets of all vertices in
V(G)\(A'UB’) that send at least 3A&’n red edges to A’ or to B’, respectively.
If |Ca| + [A’| > n, then we use Lemma |8 (note that &’ < ﬁ by and
by (8)) and conclude that the red graph G"[A’ U C4] contains C,, U D.

So let us from now on assume that |Cy4| + |A'|,|Cp| + |B’| < n. This
means that there is a set S of

k< 2n—1+k—1—(|Ca|l+|A"|+|Cs|+|B|)

vertices which each send at least |A’| — 3A&’n blue edges to A’ and at least
|B| — 3A&’n blue edges to B'. Let A% and B® be the set of their common
blue neighbours in A’, or in B’, respectively. Note that

|A%),|BY| > (1—&)n—k-3Acn = (1—-BkA+1))n  (21)
> n/2, (22)

where the last inequality follows from .

We embed C), U D as follows: let Z be the set of k independent vertices
such that C,,UD — Z is a bipartite graph with bipartition X and Y. Clearly,
the sets X and Y differ in size by at most k, and therefore we have that
X, Y] < /2.

Embed all of Z into S and all of X into B* arbitrarily (that X fits into
BS in ensured by ) Then embed the vertices in Y successively, similarly
as in the even case. For each vertex y € Y that we wish to embed in A%,
we know that the images of its at most A neighbours have at least

|AS| = A-Vdn > (1 —4kAe —VdA)n >0

common neighbours in A° (the last inequality follows from (@) and from ),
and thus there is space for embedding y properly.
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