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Abstract. Starting from an n-by-n matrix of zeros, choose uniformly ran-

dom zero entries and change them to ones, one-at-a-time, until the matrix
becomes invertible. We show that with probability tending to one as n→∞,

this occurs at the very moment the last zero row or zero column disappears.

We prove a related result for random symmetric Bernoulli matrices, and give
quantitative bounds for some related problems. These results extend earlier

work by Costello and Vu. [9].

1. Introduction

In this paper, we initiate an investigation of hitting time theorems for random
matrix processes. Hitting time theorems have their origins in the study of random
graphs; we briefly review this history, then proceed to an overview of recent work
on discrete and continuous random matrix models and a statement of our results.

To begin, consider the classical Erdős-Rényi graph process {Gn,p}0≤p≤1, defined
as follows. Independently for each pair {i, j} ⊂ [n] = {1, . . . , n}, let Uij be a
Uniform[0, 1] random variable. Then, for p ∈ [0, 1] let Gn,p have vertex set [n]
and edge set {{i, j} : Uij ≤ p}. In Gn,p, each edge is independently present with
probability p, and for p < p′ we have that Gn,p is a subgraph of Gn,p′ .

Bollobás and Frieze [4] proved the following hitting time theorem for Gn,p, which
is closely related to the main result of the present work. Let τδ≥1 be the first time
p that Gn,p has minimum degree one, and let τpm be the first time p that Gn,p
contains a perfect matching (or let p = 1 if n is odd). Then as n→∞ along even
numbers, we have

P (τδ≥1 = τpm)→ 1.

In other words, the first moment that the trivial obstacle to perfect matchings
(isolated vertices) disappears, with high probability a perfect matching appears.
Ajtai, Komlós and Szemerédi [1] had slightly earlier shown a hitting time theorem
for Hamiltonicity; the first time Gn,p has minimum degree two, with high prob-
ability Gn,p is Hamiltonian. In fact, [4] generalizes this, showing that if τδ≥2k

is the first time Gn,p has minimum degree 2k and τk−Ham is the first time Gn,p
contains k disjoint Hamilton cycles, then with high probability τδ≥2k = τk−Ham.
Hitting time theorems have since been proved for a wide variety of other models
and properties, including: connectivity [5], k-edge-connectivity [3, 21] and k-vertex-
connectivity [3] in random graphs and in maker-breaker games; connectivity in geo-
metric graphs [19]; and Hamiltonicity in geometric graphs and in the d-dimensional
Gilbert model [2].

In this work we introduce the study of hitting time theorems for random discrete
matrices. The study of random matrices is burgeoning, with major advances in
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our understanding over the last three to five years. Thanks to work by a host
of researchers, the behaviour of the determinant [22], a wide range of spectral
properties [11, 25], invertibility [6], condition numbers [23, 24], and singular values
[20, 16] are now well (though not perfectly) understood. (This list of references
is representative, rather than exhaustive.) The recent paper [14] provides a nice
collection of open problems, with a focus on random discrete matrices.

In order to have a concept of hitting time theorems for matrices, we need to
consider matrix processes, and we focus on two such processes. The first is the
Bernoulli process Rn = {Rn,p}0≤p≤1, defined as follows. Independently for each
ordered pair {ij : 1 ≤ i 6= j ≤ n}, let Uij be a Uniform[0, 1] random variable. Then
let Rn,p be an n-by-n matrix with i, j entry Rn,p(i, j) equal to one if Uij ≤ p and
zero otherwise. For n ≥ 1 and 0 ≤ p ≤ 1 we let Hn,p be the directed graph with
adjacency matrix Rn,p, so {Hn,p}0≤p≤1 is a directed Erdős–Rényi graph process.
(We take Rn,p to have zero diagonal entries as it is technically convenient for Hn,p

to have no loop edges; however, all our results for this model would still hold
if the diagonal entries were generated by independent uniform random variables
{Uii : 1 ≤ i ≤ n}, and with essentially identical proofs.)

The second model we consider is the symmetric Bernoulli processQn = {Qn,p}0≤p≤1:
with Uij as above, for 1 ≤ i < j ≤ n let Qn,p(i, j) = Qn,p(j, i) = 1[Uij≤p], and set
all diagonal entries equal to zero. Throughout the paper, we work in a space in
which Qn,p is the adjacency matrix of Gn,p for each 0 ≤ p ≤ 1. The principal result
of this paper is to prove hitting time theorems for invertibility (or full rank) for
both the Bernoulli matrix process and the symmetric Bernoulli process; we now
proceed to state our new contributions in detail.

2. Statement of results

Given a real-valued matrix M , write

Zrow(M) = {i : all entries in row i of M equal zero},
define Zcol(M) similarly, and let z(M) = max(|Zrow(M)|, |Zcol(M)|). Given a
collection of matrices M = {Mp}0≤p≤1, let τ(M) = inf{p : z(Mp) = 0}, with
the convention that inf ∅ = 1. We write τ = τ({Mp}0≤p≤1) when the matrix
process under consideration is clear. We say that a square matrix M is singular
if detM = 0, and otherwise say that M is non-singular. Our main result is the
following.

Theorem 2.1. As n→∞ we have

P
(
Rn,τ(Rn) is non-singular

)
→ 1

P
(
Qn,τ(Qn) is non-singular

)
→ 1.

In proving Theorem 2.1, we also obtain the following new result, which states
that for a wide range of probabilities p, with high probability there are no non-trivial
linear dependencies in the random matrix Rn,p.

Theorem 2.2. For any fixed c > 1/2, uniformly over p ∈ (c lnn/n, 1/2), we have

P (rank(Rn,p) = n− z(Rn,p)) = 1−O((ln lnn)−1/2) .

The analogue of Theorem 2.2 for the symmetric process Qn was established by
Costello and Vu [9], and our analysis builds on theirs as well as that of [7]. The
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requirement that c > 1/2 in Theorem 2.2 is necessary, since for p = c lnn/n with
c < 1/2, with probability 1 − o(1) the matrix Rn,p will contain two identical rows
each with a single non-zero entry, as well as two identical columns each with a single
non-zero entry; in this case rank(Rn,p) < n− z(Rn,p).

Our analyses of the processes Rn and Qn are similar, but each presents its own
difficulties. In the former, lack of symmetry yields a larger number of potential
“problematic configurations” to control; in the latter, symmetry reduces indepen-
dence between the matrix entries. Where possible, we treat the two processes in a
unified manner, but on occasion different proofs are required for the two models.

There are two main challenges in proving Theorem 2.1. First, there are existing
bounds of the form of Theorem 2.2 for the symmetric Bernoulli process [9]. However,
in both models, τ is of order lnn/n+ Θ(1/n). This is rather diffuse; it means that
the moment when the last zero row/column disappears is spread over a region in
which Θ(n) ones appear in the matrix (Θ(n) new edges appear in the associated
graph). As such, a straightforward argument from Theorem 2.2 or its symmetric
analogue, using a union bound, is impossible. This is not purely a weakness of
our methods. Indeed, if the matrix contains two identical non-zero rows then it
is singular, and the probability there are two such rows (each containing a single
non-zero entry, say) when p ≤ lnn/n is Ω(ln2 n/n). This is already too large for a
naive union bound to succeed. Moreover, with current techniques there seems no
hope of replacing our bound by one that is even, say, Ω(nε) for any positive ε, so
another type of argument is needed.

The second challenge is that invertibility is not an increasing property (adding
ones to a zero-one matrix can destroy invertibility). All existing proofs of hitting
time theorems for graphs (of which we are aware) use monotonicity, usually in the
following way. An increasing graph property is a collection G of graphs, closed under
graph isomorphism, and such that if G ∈ G and G is a subgraph of H, then H ∈ G.
Suppose that H and K are increasing graph properties with H ⊂ K. If there is a
function f(n, p) such that uniformly in 0 < p < 1,

P
(
Gn,f(n,p) ∈ H

)
= p+ o(1) = P

(
Gn,f(n,p) ∈ K

)
,

then with probability 1− o(1), the first hitting times of H and of K coincide. This
follows easily from the fact that H and K are increasing. However, it breaks down
for non-increasing properties and there is no obvious replacement.

To get around these two issues, we introduce a method for decoupling the event
of having full rank from the precise time the last zero row or column disappears.
This method is most easily explained in graph terminology. We take a subset
of the vertices of the graph under consideration, and replace their (random) out-
and/or in-neighbourhoods with deterministic sets of neighbours. We prove results
about the modified model, and then show that by a suitable averaging out, we can
recover results about the original, fully random model. We believe the results about
the partially deterministic models are independently interesting, and we now state
them.

Definition 2.3. Given n ≥ 1, a template (or n-template) is an ordered pair
L = (L+,L−) = ((S+

i )i∈I+ , (S
−
j )j∈I−), where

(1) I+, I− are subsets of [n],
(2) (S+

i )i∈I+ and (S−j )j∈I− are sequences of non-empty, pairwise disjoint sub-

sets of [n],
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(3)
⋃
i∈I+ S

+
i ⊂ [n] \ I− and

⋃
j∈I− S

−
j ⊂ [n] \ I+.

The size of L is max(|I+|, |I−|,max(|S+
i |, i ∈ I+),max(|S−i |, i ∈ I−)). We write

I = I(L) = (I+, I−). Also, we say L is symmetric if L+ = L−. Finally, for l ∈ N,
we let Mn(l) be the collection of n-templates of size at most l.

We remark there is a unique template L of size zero, which satisfies I+ = ∅ = I−;
we call this template degenerate.

Given n ≥ 1, an undirected or directed graph G on n vertices and a template
L as defined above, let GL be the graph obtained from G by letting each i ∈ I+

have out-neighbours S+
i (and no others) and each j ∈ I− in-neighbours S−j (and

no others). Note that if G is undirected and L is symmetric, then GL is again
undirected, provided we view a pair uv, vu of directed edges as a single undirected
edge. We write QLn,p and RLn,p for the adjacency matrix of GLn,p and HLn,p. In QLn,p
and RLn,p, for i ∈ I+ (resp. i ∈ I−), the non-zero entries of row i are precisely those

with indices in S+
i (resp. in S−i ).

Theorem 2.4. Fix K ∈ N and c > 1/2. For any p ∈ (c lnn/n, 1/2) and any
template L ∈Mn(K),

P
(
rank(RLn,p) = n− z(RLn,p)

)
= 1−O((ln lnn)−1/2) .

If, additionally, L is symmetric then

P
(
rank(QLn,p) = n− z(QLn,p)

)
= 1−O((ln lnn)−1/4) .

We briefly remark on the assertions of the latter theorem. First, the first proba-
bility bound immediately implies Theorem 2.2, by taking I+ and I− to be empty.
Next, the condition of pairwise disjointness is necessary. To see this, note that
if vertices u, v have degree one and have a common neighbour w then the rows
of the adjacency matrix corresponding to u and w are identical, creating a non-
degenerate linear relation. Finally, in proving the theorem we in fact only require
that if K = maxi∈I+ |S+

i |, then |I+| · K = o(p−2/(n lnn)) (and similiarly for the
maximum size of S−i ). As we do not believe this condition is optimal we have opted
for a more easily stated theorem. However, it would be interesting to know how far
the boundedness condition could be weakened.

The proof of Theorem 2.4 is based on an analysis of an iterative exposure of
minors; the first use of such a procedure to study the rank of random matrices was
due to Komlós [13]. In brief, we first show that for suitably chosen n′ < n, a fixed
n′-by-n′ minor of Rn,p is likely to have nearly full rank. Adding the missing rows
and columns one-at-a-time, we then show that any remaining dependencies are
likely to be “resolved”, i.e. eliminated, by the added rows. Our argument is similar
to that appearing in [9] for the study of Qn,p, but there are added complications
due to the fact that our matrices are partially deterministic on the one hand, and
asymmetric on the other. The proof of Theorem 2.4 occupies a substantial part of
the paper; a somewhat more detailed sketch appears in Section 4.

Vershynin [26] has very recently strengthened the bounds of Costello, Tao and
Vu [7], showing that for a broad range of dense symmetric random matrices,

the singularity probability decays at least as quickly as e−n
β

, for some (model-
dependent) β > 0. It seems plausible (though not certain) that Vershynin’s tech-
niques could be transferred to the current, sparse setting, to yield bounds of the

form 1 − O(e−(ln lnn)β ) in Theorems 2.2 and 2.4. However, we believe, and the
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results of [8] suggest, that aside from zero-rows, the most likely cause of singularity
is two identical rows, each containing a single one. If the latter is correct then it
should in fact be possible to obtain bounds of the form 1− O(n1−2c) (for c > 1/2
as above); as alluded to earlier, for the moment such bounds seem out of reach.

Notation

Before proceeding with details, we briefly pause to introduce some terminology.
Given an m×m matrix M = (mij)1≤i,j≤m, the deficiency of M is the quantity

Y (M) := m− rank(M)− z(M).

Also, for any i, j ∈ [m] we denote by M (i,j) the matrix obtained by removing
the i-th row of M and the j-th column; we refer to M (i,j) as the (i, j) minor of M .
More generally, given A,B ⊂ [m] we write M (A,B) for the matrix obtained from
M by removing the rows indexed by A and the columns indexed by B. Also, for
1 ≤ k ≤ m we write M [k] = (Mij)1≤i,j≤k.

For a graph G = (V,E) and v ∈ V , we write N+
G (v) for the set of out-neighbours

of v in G and N−G (v) for the set of in-neighbours of v in G. (If G is undirected then

we write N+
G (v) = N−G (v) = NG(v) for the set of neighbours of G.) If M is the

adjacency matrix of G then for 1 ≤ i ≤ m we write N+
M (i) = N+

G (i), and similarly

for N−M (i) (and NM (i) if M is symmetric). Note that in this case, Zrow(M) and

Zcol(M) correspond to the sets {v ∈ V : |N+
G (v)| = 0} and {v ∈ V : |N−G (v)| = 0},

respectively.
Given real random variables X and Y we write X �st Y if for all t ∈ R,

P (X ≥ t) ≤ P (Y ≥ t), and in this case say that Y stochastically dominates X.
Finally, we omit floors and ceilings for readability whenever possible.

Outline

The structure of the remainder of the paper is as follows. In Section 3 we explain
how to “decouple” the linear dependencies of the matrix process from the time at
which the last zero row or zero column disappears. This decoupling allows us to
prove Theorem 2.1 assuming that Theorem 2.4 holds.

In Section 4 we introduce the iterative exposure of minors, analogous to the ver-
tex exposure martingale for random graphs, which we use to study how Y (Rn,p[m])
changes as m increases. We then state a key “coupling” lemma (Lemma 4.3),
which asserts that for some n′ < n with n − n′ sufficiently small, the process
(Y (Rn,p[m]), n′ ≤ m ≤ n) is stochastically dominated by a reflected simple random
walk with strongly negative drift. Postponing the proof of this lemma, we then
show how Theorem 2.4 follows by standard simple hitting probability estimates for
simple random walk.

In Section 5, we describe “good” structural properties, somewhat analogous to
graph expansion, that we wish for the matrices Rn,p[m] to possess. The properties
we require are tailored to allow us to apply linear and quadratic Littlewood-Offord
bounds on the concentration of random sums. Proposition 5.10, whose proof is
postponed, states that these properties hold with high probability throughout the
iterative exposure of minors. Assuming the properties hold, it is then a straight-
forward matter to complete the proof of Lemma 4.3.

In Section 6 we complete the proof of Proposition 5.10. This, the most technical
part of the proof, is most easily described in the language of random graphs rather
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than of random matrices. It is largely based on establishing suitable expansion
and intersection properties of the neighbourhoods that hold for all “small” sets of
vertices and in each of the graphs Rn,p[m] considered in the iterative exposure of
minors.

Finally, Appendix A states standard binomial tail bounds that we use in our
proofs, and Appendix B contains proofs of results that are either basic but technical,
or that essentially follow from previous work but do not directly apply in our setting.

3. Decoupling connectivity from rank estimates: the proof of
Theorem 2.1 from Theorem 2.4

In this section we explain how the first assertion of Theorem 2.1 follows from the
first assertion of Theorem 2.4. A similar argument applies to the second assertion
of Theorem 2.1; we comment on the necessary adjustments to the argument in
Section 3.1.

Recall that the process Rn is generated by a family {Uij : 1 ≤ i 6= j ≤ n} of
independent Uniform[0, 1] random variables. Given I+, I− ⊂ [n], let I = (I+, I−)
and write

FI = σ({Uij : i ∈ I+ or j ∈ I−}),
GI = σ({Uij : i ∈ [n] \ I+ and j ∈ [n] \ I−}).

Informally, FI contains all information that can be determined from the process
Rn by observing only rows with indices in I+ and columns with indices in I−. All
information about all remaining entries is contained in GI .

Next, given p ∈ (0, 1), let

AI(p) = {z(R(I+,I−)
n,p ) = 0} ,

and let

BI(p) = {I+ ⊂ Zrow(Rn,p), I
− ⊂ Zcol(Rn,p)} .

In words, AI(p) is the event that the matrix obtained from Rn,p by deleting the
rows indexed by I+ and the columns indexed by I− has neither zero rows nor zero
columns. We remark that AI(p) and BI(p) are measurable with respect to GI and
FI , respectively, and that AI(p) ∩ BI(p) is precisely the event that Zrow(Rn,p) =
I+ and Zcol(Rn,p) = I−. We write AI , BI instead of AI(p), BI(p) when the
dependence on p is clear from context.

Finally, let

τI = τI(Rn) = min{p ∈ (0, 1) : Zrow(Rn,p) ∩ I+ = ∅ = Zcol(Rn,p) ∩ I−} .

Then, for any template L = ((S+
i )i∈I+ , (S

−
j )j∈I−), let

CL = {∀ i ∈ I+, N+
Rn,τI

(i) = S+
i } ∩ {∀ j ∈ I−, N−Rn,τI (j) = S−j } .

Observe that CL and τI are measurable with respect to FI . Furthermore, the
entries that are random in RLn,p are precisely those corresponding to the random
variables generated by GI . Lemma 3.1, below, uses this fact in order to express
the conditional distribution of τ given AI , BI , and CL, as an integral against a
conditional density function.
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Lemma 3.1. Fix 1 ≤ l ≤ n and p ∈ (0, 1). Then for any non-degenerate n-
template L = ((S+

i )i∈I+ , (S
−
i )i∈I−), letting I = (I+, I−) and writing τ = τ(Rn),

we have

P (Y (Rn,τ ) = 0 | AI(p), BI(p), CL)

=

∫ 1

0

P
(
Y (RLn,t) = 0 | AI(p)

)
f(t | BI(p), CL)dt,

where f(· | BI(p), CL) is the conditional density of τI given BI(p) and CL.

In proving Lemma 3.1 we use the following basic observation. Given independent
σ-algebras F1 and F2, for every E1, F1 ∈ F1 and E2, F2 ∈ F2, we have

P (E1, E2 | F1, F2) = P (E1 | F1) P (E2 | F2) .

Proof. If AI , BI and CL all occur, we necessarily have rank(Rn,τ ) = rank(RLn,τ )
and τI = τ . For any K ∈ N, we may thus rewrite P (Y (Rn,τ ) = 0 | AI , BI , CL) as

K−1∑

i=0

P
(
Y (RLn,τI ) = 0, τI ∈ [ iK ,

i+1
K ) | AI , BI , CL

)
.

For any 0 ≤ i < K, if i
K ≤ τI < i+1

K and no edges arrive in the interval (τI , i+1
K ],

then RLn,τI and RL
n, i+1

K

are identical. Writing D for the event that a pair of distinct

edges arrive within one of the intervals {[ iK , i+1
K ], 0 ≤ i < K}, it follows that

∣∣∣∣P (Y (Rn,τ ) = 0 | AI , BI , CL)

−
K−1∑

i=0

P
(
Y (RL

n, i+1
K

), τI ∈ [ iK ,
i+1
K ) | AI , BI , CL

) ∣∣∣∣

≤ P
(
RLn,τI 6= RLn,τI+ 1

K
| AI , BI , CL

)
≤ P (D)

P (AI , BI , CL)
. (1)

For fixed edges e and e′, we have P
(
|Ue − Ue′ | ≤ 1

K

)
≤ 2

K . By a union bound it

follows that P (D) ≤ 2n(n−1)
K , and so the final term in (1) tends to 0 as K →∞.

Finally, by the observation about conditional independence just before the start
of the proof, for all K we have

K−1∑

i=0

P
(
Y (RL

n, i+1
K

), τI ∈ [ iK ,
i+1
K ) | AI , BI , CL

)

=

K−1∑

i=0

P
(
Y (RL

n, i+1
K

) | AI
)

P
(
τI ∈ [ iK ,

i+1
K ) | BI , CL

)
,

and taking K →∞ completes the proof. �

The next definition captures the event that, for a given p < τ , the rows (resp.
columns) of Rn,τ indexed by Zrow(Rn,p) (resp. Zcol(Rn,p)) are such that Theo-
rem 2.4 can be applied.

Definition 3.2. Given 0 < p < p′ < 1 and K ∈ N, let DK(p, p′) be the event
that ((N+

Rn,p′
(i))i∈Zrow(Rn,p), (N

−
Rn,p′

(i))i∈Zcol(Rn,p)) is a non-degenerate n-template

of size at most K.
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Lemma 3.3. For any ε > 0 there exists a > 0 and integer K = K(a) > 0 such
that, setting p1 = lnn−a

n and p2 = lnn+a
n , for all n sufficiently large,

P (τ(Rn) > p2) ≤ ε ,
P (DK(p1, τ(Rn))) ≥ 1− ε .

The proof of Lemma 3.3 is straightforward but technical, and is presented in
Appendix B.

Now recall the definition of Y (M) from the notation section on page 5. Ob-
serve that the first claim of Theorem 2.1 is equivalent to the statement that with
high probability Y (Rn,τ(Rn)) = 0. Therefore, to establish the first assertion of
Theorem 2.1, it suffices to prove the following theorem.

Theorem 3.4. P
(
Y (Rn,τ(Rn)) = 0

)
→ 1 as n→∞.

Proof. Fix ε > 0, let a > 0 and K = K(a) > 0 be as in Lemma 3.3. Throughout the
proof write p1 = lnn−a

n , p2 = lnn+a
n , and τ = τ(Rn). Note that DK(p1, τ) occurs

precisely if there exists a non-degenerate L ∈Mn(K) such thatAI(L)(p1), BI(L)(p1),
and CL all occur. Furthermore, if L 6= L′ then AI(L)(p1) ∩ BI(L)(p1) ∩ CL and

AI(L′)(p1)∩BI(L′)(p1)∩CL′ are disjoint events. Writing M̂n(K) = {L ∈ Mn(K) :
L is non-degenerate}, it follows that

P (Y (Rn,τ ) = 0)

≥ P (Y (Rn,τ ) = 0,DK(p1, τ))

=
∑

L∈M̂n(K)

P (Y (Rn,τ ) = 0, AI , BI , CL)

We will show that for any L ∈ M̂n(K),

P (Y (Rn,τ ) = 0, AI , BI , CL)

P (AI , BI , CL, τ ≤ p2)
≥ 1− o(1) . (2)

Assuming this, it follows that

P (Y (Rn,τ ) = 0)

≥ (1− o(1))
∑

L∈M̂n(K)

P (AI , BI , CL, τ ≤ p2)

= (1− o(1))P (DK(p1, τ), τ ≤ p2)

≥ 1− 2ε

for n large, the last inequality by Lemma 3.3. Since ε > 0 was arbitrary, it thus
remains to prove (2), for which we use Lemma 3.1.

Fix L ∈ M̂n(K) and let N = n − |I+| ≥ n −K. Then p1 = lnn−a
n = lnN−a

N +

O( 1
N2 ). For any fixed integer i ≥ 1 and distinct v1, . . . , vi ∈ [n] \ (I+ ∪⋃i∈I− S−i ),

P




i⋂

j=1

{N+
RLn,p1

(vj) = ∅}


 = (1− p1)i(N−i)+i(i−1) = (1 + o(1))(1− p1)N ·i .

Furthermore, for j ∈ I+ ∪ ⋃i∈I− S−i necessarily N+
RLn,p1

(vj) 6= ∅ since L is non-

degenerate. It follows by the method of moments (see [12], Chapter 6) that
|Zrow(RLn,p)| is asymptotically Poisson(ea). The same argument establishes that
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|Zcol(RLn,p)| has the same asymptotic distribution. It follows that P (AI) ≤ 2e−e
a

+
o(1), so by the first assertion of Theorem 2.4, for p ∈ (p1, p2) we have

P
(
Y (RLn,p) > 0 | AI

)
≤ P

(
Y (RLn,p) > 0

)

P (AI)
=

O(ee
a

)

(ln lnn)1/2
. (3)

Since a = O(1), by Lemma 3.1 we thus have

P (Y (Rn,τ ) = 0 | AI , BI , CL)

≥
∫ p2

p1

P
(
Y (RLn,t) = 0 | AI

)
f(t | BI , CL)dt, ,

≥ (1− o(1))

∫ p2

p1

f(t | BI , CL)dt,

= (1− o(1)) P (τI ∈ [p1, p2] | BI , CL) .

Multiply both sides of the preceding inequality by P (AI , BI , CL). Since AI is
independent from BI and CL, we obtain

P (Y (Rn,τ ) = 0, AI , BI , CL)

≥ (1− o(1))P (AI , BI , CL, τI ∈ [p1, p2])

Finally, if AI , BI , and CL all occur then necessarily τI = τ and τ > p1, so we may
replace {τI ∈ [p1, p2]} by {τ ≤ p2} in the final probability, and (2) follows. The
proof is complete. �

3.1. Notes on the proof of Theorem 2.1 for Gn,p. The decoupling of connec-
tivity from the rank estimates of Rn,p is not extremely sensitive to the structure of
Rn,p except through Theorem 2.4, and the broad strokes of the argument of this
section are therefore unchanged. In particular, define FI and GI as before (but
recall that only the variables {Uij}1≤i<j≤n are independent). Then Lemma 3.1
holds under the additional restriction that the template L is symmetric, as in this
case I+ = I− and the σ-algebras FI and GI are indeed symmetric. We replace the
event DK(p, p′) with the event that ((NQn,p′ (i))i∈Z(Qn,p), (NQn,p′ (i))i∈Z(Qn,p)) is a

non-degenerate n-template of size at most K (in which case it is necessarily sym-
metric). Lemma 3.3 then holds with τ(Rn) replaced by τ(Qn), with an essentially
identical proof. Assuming the second bound in Theorem 2.4, the rest of the proof
then follows without substantial changes.

4. Analysis of the iterative exposure process: the proof of
Theorem 2.4 modulo a coupling lemma

To prove Theorem 2.4, we analyze an iterative exposure of minors of the matrix.
(In other words, we will expose the edges incident to the vertices of HLn,p in a
vertex-by-vertex fashion.) This strategy was first used in the context of random
symmetric matrices in [7], to show that random symmetric Bernoulli(1/2) matrices
are almost surely non-singular.

For the remainder of the paper, c ∈ (1/2, 1) is a fixed constant, and c lnn/n ≤
p ≤ 1/2. Also, for the rest of the paper, let α < 1 be such that αc ∈ (1/2, 3/4),
write γ = αc− 1/2, and let n′ = dαne. Given any integer K ≥ 1, for n sufficiently
large and any n-template L = ((S+

i )i∈I+ , (S
−
i )i∈I−) ∈ Mn(K) by permuting the
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rows and columns of RLn,p we may assume that

I+ ∪ I− ∪
⋃

i∈I+
S+
i ∪

⋃

i∈I−
S−i ⊂ [n′] ;

we call such L ∈ Mn(K) permissible. We work only with permissible templates
to ensure that in the iterative exposure of minors in RLn,p starting from RLn,p[n

′],
all new off-diagonal matrix entries whose row (resp. column) is not in

⋃
i∈I+ S

+
i

(resp.
⋃
i∈I− S

−
i ) are Bernoulli(p) distributed. We begin by showing that RLn,p[n

′]
is extremely likely to have quite large rank.

Lemma 4.1. For any ε > 0 and c lnn/n ≤ p ≤ 1/2, there exists a constant c1
such that

P (rank(Rn,p) ≥ (1− ε)n) ≥ 1−O(n−c1n).

The proof of an analogous bound for random symmetric sparse Bernoulli matrices
appears in [9].

Proof. Denote the rows of Rn,p by r1, . . . , rn. Let S = span(r1, . . . , rb(1−ε)nc) and
d = dimS. Let R be the event that ri ∈ S for every b(1 − ε)nc < i ≤ n. By
symmetry we have

P (rank(Rn,p) ≤ (1− ε)n) ≤
(
n

εn

)
P (R) , (4)

so we now focus on bounding P (R). By relabelling (i.e., replacingRn,p by URn,pU
−1

for some permutation matrix U), we may assume Rn,p is a block matrix

Rn,p =

(
A B
C D

)
,

where A is an b(1−ε)nc×d matrix with rank(A) = d ≤ (1−ε)n. Thus, the columns
in B are in the span of the columns in A, so AG = B for some (unique) matrix G.

On the other hand, D is an dεne × (n − d) matrix and d ≤ εn. It follows that
there exists c2 > 0 such that for any fixed matrix M ,

P (D = M) ≤ (1− p)(εn)2−εn ≤ e−ε2cn lnn+εn/2 ≤ n−c2n,
The first inequality holds since D has at least (εn)2 − εn independent Bernoulli(p)
entries.

Now, if R holds, then there exists a matrix F such that both FA = C and
FB = D hold. Furthermore, note that if F ′ also satisfies F ′A = C then

FB = FAG = F ′AG = F ′B,

so if R occurs then D = FB is uniquely determined by A,B and C. Consequently,
for any such F we have

P (R | A,B,C) ≤ P (D = FB | A,B,C) ≤ n−c2n .
Since P (R) = E [P (R | A,B,C)], by (4) it follows that

P (rank(Rn,p) ≤ (1− ε)n) ≤
(
n

εn

)
P (R) ≤

(e
ε

)εn
n−c2n.

�
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In fact, Lemma 4.1 also holds for RLn,p[n
′] as well. To see this, observe that since

L has size at most K, |rank(RLn,p[n
′])− rank(Rn,p[n

′])| ≤ K2 = O(1), and Rn,p[n
′]

has the same distribution as Rn′,p. We thus obtain the following corollary.

Corollary 4.2. For any K ∈ N and ε > 0, there exists a constant c1 such that
uniformly over L ∈Mn(K) and c lnn/n ≤ p ≤ 1/2,

P
(
rank(RLn,p[n

′]) ≥ (1− ε)n
)
≥ 1−O(n−c1n).

We next consider how the deficiency Y (RLn,p[m]) drops as m increases from n′

to n. We have

Y (RLn,p[m+ 1]) = Y (RLn,p[m]) + 1

+ (z(RLn,p[m])− z(RLn,p[m+ 1]))

− (rank(RLn,p[m+ 1])− rank(RLn,p[m])), (5)

so Y decreases as the rank increases and, on the other hand, increases when zero
rows or zero columns disappear causing that z(RLn,p[m]) > z(RLn,p[m+1]). To show

that Y (RLn,p) is likely zero, we will couple (Y (RLn,p[m]), n′ ≤ m ≤ n) to a simple
random walk with strongly negative drift, in such a way that with high probability
the random walk provides an upper bound for (Y (RLn,p[m]), n′ ≤ m ≤ n). Of course,
showing that such a coupling exists involves control on the rank increase and on
the decrease in z(RLn,p[m]) as m increases from n′ to n. Observe that we always

have rank(RLn,p[m]) ≤ rank(RLn,p[m+ 1]) ≤ rank(RLn,p[m]) + 2 since RLn,p[m] may be

obtained from RLn,p[m+ 1] by deleting a single row and column. It follows from (5)

that if z(RLn,p[m]) = z(RLn,p[m+ 1]) then Y (RLn,p[m+ 1])−Y (RLn,p[m]) ∈ {−1, 0, 1}.
Also, if z(RLn,p[m]) = z(RLn,p[m + 1]) − 1 then necessarily rank(RLn,p[m + 1]) ≥
rank(RLn,p[m])+1 and so Y (RLn,p[m+1])−Y (RLn,p[m]) ∈ {0, 1}. Together, this shows

that |Y (RLn,p[m+ 1])−Y (RLn,p[m])| ≤ 1 whenever z(RLn,p[m])− z(RLn,p[m+ 1]) ≤ 1,
Establishing further control on the rank increase is rather involved, and is the

primary work of Sections 5 and 6. It will turn out that typically, Y (RLn,p[m +

1]) − Y (RLn,p[m]) = −1 when Y (RLn,p[m]) > 0, and Y (RLn,p[m + 1]) = 0 when

Y (RLn,p[m]) = 0. More precisely, we have the following lemma.

Lemma 4.3. For fixed K ∈ N, there exists C > 0 such that the following holds.
Given integer n ≥ 10, let β = β(n) = C(ln lnn)−1/2. Then uniformly over L ∈
Mn(K) and c lnn/n ≤ p ≤ 1/2, there exists a coupling of (Y (RLn,p[m]), n′ ≤ m ≤ n)
and a collection (Xm, n

′ ≤ m < n) of iid random variables with P (Xi = 1) = β and
P (Xi = −1) = 1− β, such that with probability 1−O(n−γ/2), for all n′ ≤ m < n,

Y (RLn,p[m+ 1])− Y (RLn,p[m]) ≤
{
Xm if Y (RLn,p[m]) > 0

max(Xm, 0) if Y (RLn,p[m]) = 0 .

The proof of Lemma 4.3 occupies much of the remainder of the paper. We say the
coupling in the preceding lemma succeeds if for all n′ < m ≤ n, the final inequality
holds.

Now fix (Xi, i ≥ 1) iid random variables with P (Xi = 1) = β and P (Xi = −1) =

1 − β. Set S0 = 0, and for k ≥ 1 let Sk =
∑k
i=1Xi. We call (Sk, k ≥ 0) a β-

biased simple random walk (SRW). Also, for k ≥ 1 let Mk = min0≤i≤k Si, and let
Dk = Sk −Mk.
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Observe that when Sk is not at a new global minimum, Dk+1 is either Dk + 1
(with probability β) or Dk − 1. On the other hand, when Sk is at a new minimum
then Dk = 0, and either Dk+1 = 1 (again with probability β) or Dk+1 = 0.

Now imagine for a moment that Y (RLn,p[n
′]) = 0. In this case, in view of the

preceding paragraph, if the coupling succeeds then we have Dk ≥ Y (RLn,p[n
′ + k])

for all 0 ≤ k ≤ n− n′. It follows that if Y (RLn,p[n
′]) happens to equal zero then we

can bound P
(
Y (RLn,p[n]) > 0

)
by bounding P (Dn−n′ > 0). This is accomplished

by the following proposition and its corollary.

Proposition 4.4. Let H = |{k ≥ 0 : Sk ≥ 1}|. Then E (H) = β/(1− β)2.

Proof. This is an elementary fact about hitting times for simple random walk, and
in particular follows from Examples 1.3.3 and 1.4.3 of [17]. �

Corollary 4.5. For k ≥ 0, P (Dk > 0) < β/(1− β)2.

Proof. For any i ≤ k we have

P

(
Dk > 0, Si = min

1≤j≤k
Sj

)
≤ P (Sk−i ≥ 1) ,

and summing over i, plus a union bound, yields

P (Dk > 0) <
∑

i≥0

P (Si ≥ 1) = E (H) . �

In reality, Y (RLn,p[n
′]) may not equal zero, and so we should start the random

walk S not from zero but from a positive height. The following corollary addresses
this.

Corollary 4.6. For any integers d, k ≥ 1,

P (Sk + d > min(Mk + d, 0)) ≤ P (Sk > −d) + β/(1− β)2 .

Proof. Let τ = inf{i : Si = −d}. By the Markov property, for any i ≤ k,
P (Sk + d > min(Mk + d, 0)|τ = i) = P (Dk−i > 0) < β/(1 − β)2 by the preceding
corollary. On the other hand, P (τ > k) ≤ P (Sk > −d), and the result follows. �

On the other hand, if t > Y (RLn,p[n
′]) then when the coupling succeeds we have

Sk + t −min(Mk + t, 0) ≥ Y (RLn,p[n
′ + k]) for all 0 ≤ k ≤ n − n′. It then follows

from Lemma 4.3 and Corollary 4.6 that for any ε > 0,

P
(
Y (RLn,p) > 0

)
≤P

(
Y (RLn,p[n

′]) > εn
)

+ P (Sn−n′ > −εn) +
β

(1− β)2
+O

(
n−γ/2

)

≤n−Ω(n) + e−Ω(n) +
β

(1− β)2
+O

(
n−γ/2

)

=O((ln lnn)−1/2)

where the second inequality follows from a Chernoff bound for P (Sn−n′ > −εn)
(assuming ε is chosen small enough), plus the bound from Corollary 4.2, and the
last inequality follows from the definition of β in Lemma 4.3. This proves the first
assertion of Theorem 2.4.

When treating the symmetric model QLn,p, the following modifications are re-
quired. First, Corollary 4.2 holds for all symmetric n-templates L ∈ Mn(K) and
with QLn,p[n

′] in place of RLn,p[n
′]. This was proved in [9] for Qn,p[n

′], but as L has
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size K, |rank(Qn,p[n
′]) − rank(QLn,p[n

′])| ≤ K2 = O(1), so the same bound holds

for QLn,p[n
′].

Second, we will likewise establish a coupling lemma for Y (QLn,p[m]).

Lemma 4.7. For fixed K ∈ N, there exists C > 0 such that the following holds.
Given integer n ≥ 10, let β = β(n) = C(ln lnn)−1/4. Then uniformly over symmet-
ric L ∈Mn(K) and c lnn/n ≤ p ≤ 1/2, there exists a coupling of (Y (QLn,p[m]), n′ ≤
m ≤ n) and a collection (Xm, n

′ ≤ m < n) of iid random variables with P (Xi = 1) =
β and P (Xi = −1) = 1 − β, such that with probability 1 − O(n−γ/2), for all
n′ ≤ m < n,

Y ((QLn,p[m+ 1])− Y (QLn,p[m]) ≤
{
Xm if Y (QLn,p[m]) > 0

max(Xm, 0) if Y (QLn,p[m]) = 0 .

Together, these two ingredients yield the second claim of Theorem 2.4 by a reprise
of the arguments following Lemma 4.3 The remainder of the paper is therefore
devoted to proving Lemmas 4.3 and 4.7.

5. Rank increase via iterative exposure

In this section we focus on understanding when and why the rank increases.
In what follows, fix an m × m matrix Q = (qi,j)1≤i,j≤m. Given vectors x =
(x1, . . . , xm), y = (y1, . . . , ym), we write

Γ(Q,x,y) =




q1,1 · · · q1,m y1

...
. . .

...
...

...
. . .

...
...

qm,1 · · · qm,m ym
x1 · · · xm 0




Now fix a matrix Q, and vectors x = (x1, . . . , xm), y = (y1, . . . , ym). We remark
that rank(Γ(Q,x,y)) = rank(Q) + 2 if and only if x is linearly independent of the
non-zero rows of Q (i.e. it does not lie in the row-span of Q) and yT is linearly
independent of the non-zero columns of Q. (In particular, if Q is symmetric and
x = y then rank(Γ(Q,x,y)) = rank(Q)+2 if and only if x lies outside the row-span
of Q.) Note that for this to occur Q can not have full rank.

We prove Lemmas 4.3 and 4.7 as follows. First, we describe structural properties
of 0− 1 matrices such that for any matrix Q = (qij)1≤i,j≤m satisfying such proper-
ties, for suitable random vectors x and y, with high probability rank(Γ(Q,x,y)) =
min(rank(Q)+2,m+1). We then establish that with high probability, the matrices
(QLn,p[m], n′ ≤ m ≤ n) and (RLn,p[m], n′ ≤ m ≤ n) all have the requisite properties.

More precisely, for fixed Q and vectors x,y, we will see that rank(Γ(Q,x,y)) =
min(rank(Q) + 2,m+ 1) if and only if a suitable linear, bilinear or quadratic form
in x and y, with coefficients determined by the matrix Q, vanishes; we elaborate
on this very shortly. When x and y are Bernoulli random vectors, this leads us to
evaluate the probability that a particular random sum is equal to zero. To bound
such probabilities, we use Littlewood–Offord bounds proved in [9],[10], which we now
state.

Proposition 5.1. Let x1, . . . , xk, y1, . . . , yk be independent Bernoulli(p) random
variables.
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(a) Fix a1, . . . , ak ∈ R \ {0}. Then uniformly over 0 < p ≤ 1/2,

sup
r∈R

P

(
k∑

i=1

aixi = r

)
= O((kp)−1/2) .

(b) Fix l ≥ 1 and (aij , 1 ≤ i, j ≤ k) such that there are at least l indices j for
which |{i : ai,j 6= 0}| ≥ l. Then uniformly over 0 < p ≤ 1/2,

sup
r∈R

P


 ∑

1≤i,j≤k
aijxiyj = r


 = O((lp)−1/2) .

(c) With l ≥ 1 and (aij , 1 ≤ i, j ≤ k) as in (b), if also aij = aji for all
1 ≤ i, j ≤ k, then uniformly over 0 < p ≤ 1/2,

sup
r∈R

P


 ∑

1≤i,j≤k
aijxixj = r


 = O((lp)−1/4) .

The matrix structural properties we require are precisely those that allow us to
apply the bounds of Proposition 5.1. For this, the following definitions are germane.

Definition 5.2. Fix a matrix Q = (qij)1≤i,j≤m.

• Given S ⊂ [m], we say that j ∈ [m] is an S-selector (for Q) if |{i ∈ S :
qi,j 6= 0}| = 1.

• Given 2 ≤ b ≤ m, we say Q is b-blocked if any set S ⊂ [m] with S ∩
Zrow(Q) = ∅ and 2 ≤ |S| ≤ b has at least two S-selectors j, l ∈ [m].

The final condition in the definition says that in the sub-matrix formed by only
looking at the rows in S, there are at least two columns containing exactly one
non-zero entry. We call j an S-selector as we think of j as “selecting” the unique
row i with qij 6= 0. We remark that if a matrix Q is b-blocked then any set S of
non-zero rows of Q containing a linear dependency must have size at least b + 1.
More strongly, this is true even after deleting any single column of Q.

Definition 5.3. We say that Q is b-dense if

|{i ∈ [m] : row i of Q has > 1 non-zero entry}| ≥ b.

We then have the following bounds, which are key to the proofs of Lemmas 4.3
and 4.7.

Proposition 5.4. Fix integers m ≥ b ≥ 1 and a b-blocked m ×m matrix Q with
rank(Q) < m − zrow(Q). Then uniformly over 0 < p ≤ 1/2, if y = (y1, . . . , ym)
has iid Bernoulli(p) entries then yT is independent of the non-zero columns of Q
with probability at least 1−O((bp)−1/2).

Proof. Let k = rank(Q), and note that if rank(Q) < m− zrow(Q) then 1 ≤ k < m.
Write r1, . . . , rm for the rows of Q. By relabelling, we may assume that r1, . . . , rk
are linearly independent and that rk+1 is non-zero. It follows that there exist unique

coefficients a1, . . . , ak for which rk+1 =
∑k
i=1 airi. Then {ri : ai 6= 0} ∪ {rk+1}

forms a set of linearly dependent non-zero rows, and so has size at least b + 1 by
the observation just after Definition 5.2.
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Let Q̂ be the matrix obtained from Q by adding yT as column m+ 1. If yT lies
in the column-span of Q then rank(Q) = rank(Q̂), so necessarily

yk+1 =

k∑

i=1

aiyi.

Since |{ri : ai 6= 0}| ≥ b, by Proposition 5.1 (a) we have

P

(
k∑

i=1

aiyi = 0

)
= O((kp)−1/2) = O((bp)−1/2).

Therefore, the vector yT is independent of the non-zero columns of Q with proba-
bility at least 1−O((bp)−1/2). �

Proposition 5.5. Fix integers m ≥ b ≥ 1 and a b-blocked, b-dense, m×m matrix
Q with rank(Q) = m. Then uniformly over 0 < p ≤ 1/2, if x = (x1, . . . , xm) and
y = (y1, . . . , ym) have iid Bernoulli(p) entries then P (rank(Γ(Q,x,y)) = m) =
O((bp)−1/2).

Proof. Let A = (aij)1≤i,j≤m be the cofactor matrix of Q; that is,

aij = (−1)i+j+1det(Q(i,j))

where Q(i,j) is the (i, j) minor of Q. A double-cofactor expansion of the determinant
of Q′ = Γ(Q,x,y) yields

det(Q′) =

m∑

i,j=1

aijxiyj .

Note that aij = 0 when Q(i,j) is singular, so we want to lower-bound the number of

non-singular minors Q(i,j). To do so, fix j ∈ [m] and write Q(∅,j) for the m×m− 1
matrix obtained by deleting the j-th column of Q. Since Q has full rank it has no
zero rows. We claim that if Q(∅,j) also has no zero rows then |{i ∈ [m] : aij 6= 0}| >
b. To see this, note that Q(∅,j) has rank m− 1 and so since there are no zero rows,
there exists (up to scaling factors) a unique vanishing linear combination

m∑

i=1

cir
j
i = 0,

where rji is the i’th row of Q(∅,j). Now, Q(i,j) is invertible (and thus aij 6= 0)

if and only if ci 6= 0. But the rows {rji : ci 6= 0} are linearly dependent, and
by the remark just after Definition 5.2, since Q is b-blocked we therefore have
|{i ∈ [m] : ci 6= 0}| > b.

Finally, sinceQ is b-dense, there are at mostm−b rows of Q with exactly one non-
zero entry. Thus, |{j ∈ [m] : Q(∅,j) has no zero rows}| ≥ b, and for any such j we
have |{i ∈ [m] : aij 6= 0}| > b by the preceding paragraph. By Proposition 5.1 (b)

it follows that, uniformly in 0 < p ≤ 1/2, we have P (det(Q′) = 0) ≤ O((bp)−1/2)
as claimed. �

The following proposition is an analogue of Proposition 5.5 which we use in
analyzing the symmetric Bernoulli process.



16 LOUIGI ADDARIO-BERRY AND LAURA ESLAVA

Proposition 5.6. Fix integers m ≥ b ≥ 1 and a b-blocked, b-dense, m × m
symmetric matrix Q with rank(Q) = m. Then uniformly over 0 < p ≤ 1/2,
if x = (x1, . . . , xm) has iid Bernoulli(p) entries then P (rank(Γ(Q,x,x)) = m) =
O((bp)−1/4).

Proof sketch. The proof is nearly identical to that of Proposition 5.5. However, in
this case the double cofactor expansion of det(Γ(Q,x,x)) has the form

∑m
i,j=1 aijxixj .

Consequently, we conclude by applying part (c), rather than part (b), of Proposi-
tion 5.1. We omit the details. �

We will apply Propositions 5.4 and 5.5 via the following lemma.

Lemma 5.7. Fix integers m ≥ b ≥ 1 and an m × m matrix Q for which both
Q and QT are b-blocked and b-dense. Then uniformly over 0 < p ≤ 1/2, if x =
(x1, . . . , xm) and y = (y1, . . . , ym) have iid Bernoulli(p) entries then

P
(
rank(Γ(Q,x,y)) 6= rank(Q) + 1 + 1[Y (Q)>0}]

)

= O((bp)−1/2).

Proof. In what follows we write Q′ = Γ(Q,x,y). Recall that if x and y lie outside
the row-span and column-span of Q, respectively, then rank(Q′) = rank(Q) + 2.
Note also that Y (Q) = Y (QT ) always holds.

If Y (Q) > 0 then by the definition of Y (Q) we have rank(Q) < m−zrow(Q) and

rank(QT ) = rank(Q) < m− zcol(Q) = m− zrow(QT ).

In this case the lemma follows by applying Proposition 5.4 twice, once to Q and y
and once to QT and x.

We now treat the case Y (Q) = 0 = Y (QT ). By replacing Q by QT if necessary,
we may assume that Q has s non-zero rows and t non-zero columns, for some
0 ≤ t ≤ s ≤ m; in particular note that rank(Q) = t. By relabelling the rows and
columns, we may assume that Q′ has the form

Q′ =



A 0 (y′)T

0 0 (y+)T

x′ x− 0


 ,

where A is an s × t matrix with no zero rows or columns, 0 represents a block of
zeros, and where x = (x′,x−) and y = (y′,y+).

If t = s then A is b-blocked and b-dense and rank(A) = t = rank(Q). Since

rank(Q′) ≥ rank(Γ(A,x′,y′))

and x′,y′ have iid Bernoulli(p) entries, in this case the lemma follows by applying
Proposition 5.5 to A, x′ and y′.

Finally, if t < s then rank(Q) = t < s = m − zrow(Q). Proposition 5.4 applied
to Q and y then yields that y lies outside the column-span of Q with probability
1 − O((bp)−1/2). If the latter occurs then rank(Q′) ≥ rank(Q) + 1; this completes
the proof. �

The analogous result for symmetric matrices is as follows.

Lemma 5.8. Fix integers m ≥ b ≥ 1 and a b-blocked, b-dense symmetric m ×
m matrix Q. Then uniformly over 0 < p ≤ 1/2, if x = (x1, . . . , xm) has iid
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Bernoulli(p) entries then

P
(
rank(Γ(Q,x,x)) < rank(Q) + 1 + 1[Y (Q)>0}]

)

= O((bp)−1/4).

The proof is practically identical to that of Lemma 5.7, but is slightly easier as
for symmetric matrices we always have z(Q) = zrow(Q) = zcol(Q). The resulting
bound is weaker as we must use Proposition 5.6 rather than Proposition 5.5. We
omit the details.

To shorten coming formulas, we introduce the following shorthand.

Definition 5.9. For n ≥ 1, let k = k(n, p) = ln lnn/(2p). We say that a square
matrix Q is n-robust if both Q and QT are k-blocked and k-dense.

The following proposition, whose proof is the most technical part of the paper,
says that robustness is very likely to hold throughout the final n − n′ steps of the
iterative exposure of minors in RLn,p. In the following proposition, recall from the
start of Section 4 the definition of permissible templates, and also the fact that
γ ∈ (0, 1/4) is a fixed constant depending only on c.

Proposition 5.10. Fix K ∈ N. For any p ∈ (c lnn/n, 1/2) and any permissible
template L ∈Mn(K), we have

P
(
∀ m ∈ [n′, n] : RLn,p[m] is n-robust

)
= 1−O

(
n−γ

)
, and

P
(
∀ m ∈ [n′, n] : QLn,p[m] is n-robust

)
= 1−O

(
n−γ

)
.

We provide the proof of Proposition 5.10 in Section 6.1, for now using it to
complete the proofs of Lemma 4.3 and Lemma 4.7 (and so of Theorem 2.4). We
begin by controlling the probability that z(RLn,p[m]) ever decreases by more than
one in a single step of the minor exposure process.

Lemma 5.11. For fixed K ∈ N, uniformly over permissible L ∈ Mn(K) and
c lnn/n ≤ p ≤ 1/2 we have

P
(
∃n′ ≤ m < n : z(RLn,p[m+ 1]) < z(RLn,p[m])− 1

)
= O(n−γ/2).

Proof. First, by symmetry this probability is at most twice

P
(
∃n′ ≤ m ≤ n : |Zrow(RLn,p[m])| − |Zrow(RLn,p[m+ 1])| > 1

)
.

For p ≥ 20 lnn
n , with high probability |Zrow(RLn,p[m])| = 0 for each n′ ≤ m ≤ n, so

we assume that c lnn
n ≤ p ≤ 20 lnn

n . The matrix Rn,p[n
′] is distributed as Rn′,p, and

we have p ≥ αc lnn′/n′ = (1/2 + γ) lnn′/n′. Since RLn,p contains at most K2 rows
with deterministic or partially deterministic coordinates, it follows that for n large,

P
(
|Zrow(RLn,p[n

′])| ≥ n1/2−γ/2
)

≤
(

n′

n1/2−γ/2

)(
(1− p)n′−K2

)n1/2−γ/2

≤e−nγ/2 . (6)
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We next bound the probability that z = |Zrow(RLn,p[n
′])| < n1/2−γ/2 and at least

two zero rows disappear in a single step. For fixed m with n′ ≤ m < n we have

P
(
|Zrow(RLn,p[m+ 1])| < |Zrow(RLn,p[m])| − 1, z < n1/2−γ/2

)

≤
(bn1/2−γ/2c

2

)
p2 , (7)

which is at most n−1−γ/2 for n large and p ≤ 20 lnn/n. By (6), (7), and a union
bound, the result follows. �

We state the symmetric analogue of Lemma 5.11 for later use.

Lemma 5.12. Under the conditions of Lemma 5.11, if L is symmetric then

P
(
∃n′ ≤ m ≤ n : z(QLn,p[m])− z(QLn,p[m+ 1]) > 1

)
≤ O(n−γ/2).

Proof. In this case, the desired probability is equal to the probability that

|Z(QLn,p[m])| − |Z(QLn,p[m+ 1])| > 1

for some n′ ≤ m ≤ n. The proof then follows as that of Lemma 5.11. �

Proof of Lemma 4.3. For n′ ≤ m ≤ n let Fn,m = σ({RLn,p[i] : n′ ≤ i ≤ m}) and

let En,m = {∀n′ ≤ i ≤ m : RLn,p[i] is n-robust}. Note that En,m ∈ Fn,m for all
n′ ≤ m ≤ n. Also, En,j ⊂ En,i for all n′ ≤ i < j ≤ n.

Now for n′ ≤ m ≤ n − 1 let Cm = {rank(RLn,p[m + 1]) = rank(RLn,p[m]) + 1 +

1[Y (RLn,p[m])>0]}. Then since RLn,p[m] is Fn,m-measurable and En,m ∈ Fn,m, we have

P (Cm | Fn,m)

≥P (Cm | Fn,m) 1[En,m]

≥ inf{P
(
Cm|RLn,p[m] = Q

)
: Q is n-robust} · 1[En,m].

≥(1−O((kp)−1/2))1[En,n] .

the last inequality by Lemma 5.7 and since 1[En,m] ≥ 1[En,n]. Therefore, there

exists C > 0 such that for all n′ ≤ m < n, writing β = C(ln lnn)1/2, we have

P
(
rank(RLn,p[m+ 1]) < rank(RLn,p[m]) + 1 + 1[Ym>0] | Fn,m

)

≤C(2kp)−1/21[En,n] + 1[Ecn,n]

≤β + 1[Ecn,n].

For n′ ≤ m < n let Im = 1[rank(RLn,p[m+1])<rank(RLn,p[m])+1+1[Ym>0]]. It follows from

the preceding bound that for m ∈ [n′, n− 1],

P (Im = 1|In′ , . . . , Im−1, En,n) ≤ β.
We may therefore couple (Im, n

′ ≤ m < n) with a family (Bm, n
′ ≤ m < n) of

independent Bernoulli(β) random variables such that for all n′ < m ≤ n,

Im ≤ Bm + (1−Bm)1[Ecn,n].

Finally, for n′ ≤ m < n let Xm = 2Bm − 1, so that P (Xm = 1) = β = 1 −
P (Xm = −1). By the identity (5) for Y (Rn,p[m+1]), if Y (Rn,p[m+1])−Y (Rn,p[m]) ≤
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max(Xm+1,−Y (Rn,p[m])) then either Im > Bm (in which case Ecn,n occurs) or

{z(RLn,p[m+ 1]) ≤ z(RLn,p[m])− 2}. It follows that

P
(
∀n′ ≤ m < n : Y (RLn,p[m+ 1])− Y (RLn,p[m]) ≤ max(Xm+1,−Y (Rn,p[m]))

)

≥1−P
(
Ecn,n

)
−P

(
∃n′ ≤ m < n : z(RLn,p[m+ 1]) ≤ z(RLn,p[m])− 2

)

=1−O(n−γ/2) ,

the final bound by Lemma 5.11 and Proposition 5.10. This completes the proof. �

The proof of Lemma 4.7 is practically identical, using the second rather than
the first bound of Proposition 5.10 and using Lemmas 5.12 and 5.8 rather than
Lemmas 5.11 and 5.7, respectively. We omit the details.

6. Structural properties that guarantee rank increase

In this section we prove Proposition 5.10. For the remainder of the paper, fix
K ∈ N, n ∈ N large, let k = k(n, p) = ln lnn/(2p), and fix a permissible template
L = (L+,L−) = ((S+

i )i∈I+ , (S
−
j )j∈I−) ∈ Mn(K). For i ∈ [n] write Ri = RLn,p[i],

Hi = HLn,p[i]. Also for the remainder of the paper, T = [n] \ (I− ∪⋃i∈I+ S+
i ) and

let U =
⋃
i∈I+ S

+
i . These definitions are illustrated in Figure 1. Finally, recall that

c ∈ (1/2, 1) and α are fixed so that αc ∈ (1/2, 3/4), that γ = αc − 1/2 and that
n′ = dαne. { {U =

⋃
i∈I+ S+

i I−

I+

⋃
i∈I− S−i

{
{

{T

≥ 1 non-zero

entry per row
0 0
≥ 1

non-zero
entry per
column

0

iid
Bernoulli(p)

entries

iid
Bernoulli(p)

entries

iid
Bernoulli(p)

entries

iid
Bernoulli(p)

entries

Figure 1. The deterministic and random structure of the matrix Rn.

Before proceeding to details, we pause to describe the broad strokes of our proof.
Our arguments are more straightforwardly described in the language of graphs
rather than matrices, so we shall begin to switch to the language of graphs.

We separately bound the probability that for some n′ ≤ m ≤ n, Rm either
is not k(n, p)-blocked or is not k(n, p)-dense. Bounding the latter probability is
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straightforward: this is essentially the event there are too many vertices with low
out-degree in Hn′ , and p ≥ c lnn/n is large enough that such vertices are rare.

Bounding the probability that Rm is not k(n, p)-blocked for some m is more
involved, and we pause to develop some intuition. Recall that for Rm to be k(n, p)-
blocked, we need that for any S ⊂ [m] with 2 ≤ |S| ≤ k(n, p), there are at least two
S-selectors in Rm. In the language of graphs, an S-selector is a vertex v such that
v has exactly one in-neighbour in S. For n′ ≤ m ≤ n and i ∈ S, conditional on
{N+

Hm
(j) : j ∈ S, j 6= i}, the larger the degree of i the more likely it is that N+

Hm
(i)

contains a vertex v lying outside
⋃
j∈S\{i}N

+
Hm

(j), and such a vertex v is an S-

selector. For this reason, low-degree vertices pose a potential threat to the existence
of S-selectors. (Indeed, low-degree vertices in a sense pose the greatest difficulty
for the proof; it is precisely out-degree one vertices that cause Theorems 2.2 and
Theorem 2.4 to be fail for c < 1/2.) We neutralize this threat by showing that
with high probability all (sufficiently) low degree vertices have pairwise disjoint
out-neighbourhoods, and so sets S of exclusively low-degree vertices have many
S-selectors.

We now turn to details. We begin by bounding the probability that some Rm is
not k(n, p) dense.

Lemma 6.1. Uniformly over c lnn/n ≤ p ≤ 1/2 we have

P (∀ n′ ≤ m ≤ n : Rm is k(n, p)-dense) = 1−O(n−1) ,

and if L is symmetric then

P
(
∀ n′ ≤ m ≤ n : QLn,p[m] is k(n, p)-dense

)
= 1−O(n−1)

Proof. For n′ ≤ m ≤ n, let

Am = {i ∈ [n′] \ I+ : |([m] ∩N+
Rm

(i)) \ I−| > 1}.
Observe that An′ ⊂ Am for all n′ ≤ m ≤ n. On the other hand, if Rm is k(n, p)-
dense, then |Am| ≥ k(n, p)−K(K+1) ≥ k(n, p)/2, the latter for n large. It follows
that

P
(
∃ n′ ≤ m ≤ n : RLn,p[m] is not k(n, p)-dense

)
≤ P (|An′ | < k(n, p)/2) .

For i ∈ [n′] \ (I+ ∪ ⋃i∈I− S−i ) let Bi be the event that i /∈ An′ . The event Bi
is monotone decreasing, so in bounding its probability from above we may assume
that p is equal to pmin = c lnn/n. Write s = |I−| ≤ K. For i ∈ [n′]\(I+∪⋃i∈I− S−i )
we then have

P (Bi)

= P (Binomial(n′ − s, pmin) ≤ 1)

=

(
1 +

(n′ − s)pmin

1− pmin

)
(1− pmin)n

′−s

≤ 2(1 + αc lnn)n−αc,

so E [|[n′] \An′ |] ≤ n′·2(1+αc lnn)n−αc ≤ 2n1−αc(1+αc lnn). A similar calculation
shows that E

[
|[n′] \An′ |4

]
≤ (2n1−αc(1+α lnn))416(1+αc lnn) and so by Markov’s

inequality

P (|An′ | < k(n, p)/2) ≤ E
[
|[n′] \An′ |4

]

(n′ − k(n, p)/2)4
≤ (4n1−αc)4(1 + α lnn)5

(n′ − k(n, p)/2)4
<

1

n2
,
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the last inequality holding for n large since 1−αc < 1/2 and n′−k(n, p)/2 = Ω(n).
The lemma follows by a union bound. An identical proof establishes the stated
bound for QLn,p in the case that L is symmetric. �

Next, we address the probability that the minors Rm, n′ ≤ m ≤ n, are not
k(n, p)-blocked. The next definition allows us to avoid the (partially) deterministic
neighbourhoods of Hm.

Definition 6.2. Fix b ≥ 2. A matrix Q = (qij)1≤i,j≤m is (b,L)-blocked if any set
S ⊂ [m] with 2 ≤ |S| ≤ b satisfies the following conditions.

• If S∩(Zrow(Q)∪I+) = ∅ then there exist distinct j, l ∈ [m]\(I−
⋃
i∈I+ S

+
i )

that are S-selectors for Q.
• If S∩ (Zcol(Q)∪I−) = ∅ then there exist distinct j, l ∈ [m]\ (I+

⋃
i∈I− S

−
i )

that are S-selectors for QT .

(In the last bullet of the preceding definition, it may be useful to note that if M
is the adjacency matrix of a directed graph then MT is the adjacency matrix of the
graph with all edge orientations reversed.) We then have the following lemma.

Proposition 6.3. Uniformly in c lnn/n ≤ p ≤ 1/2,

P (∀n′ ≤ m ≤ n : Rm is (k,L)-blocked) = 1−O
(
n−γ

)
,

and if L is symmetric then also

P
(
∀n′ ≤ m ≤ n : QLn,p[m] is (k,L)-blocked

)
= 1−O

(
n−γ

)
.

The proof of Proposition 5.10 assuming Proposition 6.3 is straightforward and
largely consists of showing that if Rm is (k,L)-blocked then most sets S ∈ [m] \
Zrow(Rm) deterministically have at least two S-selectors (even if S ∩ I+ 6= ∅). An
easy probability bound then polishes off the proof.

Proof of Proposition 5.10. Let

Cm1 = {E ⊂ [m] \ Zrow(Rm) : 2 ≤ |E| ≤ k(n, p), E ⊂ I+} ,
Cm2 = {E ⊂ [m] \ Zrow(Rm) : 2 ≤ |E| ≤ k(n, p), |E \ I+| ≥ 2} ,
Cm3 = {E ⊂ [m] \ Zrow(Rm) : 2 ≤ |E| ≤ k(n, p), |E \ I+| = 1} ,

and for k = 1, 2, 3 let Amk = {∀E ∈ Cmk : there are two E-selectors in T ∩ [m]}.
Note that if Rm is (k,L)-blocked for all n′ ≤ m ≤ n but is not k-blocked for some
n′ ≤ m ≤ n, then one of the events Amk , k ∈ {1, 2, 3}, n′ ≤ m ≤ n must fail to
occur. We consider the events Amk , k = 1, 2, 3 in turn.

First, note that since the sets (S+
i , i ∈ I+) are disjoint and non-empty, for

every E ∈ Cm1 , for all i ∈ E, every j ∈ S+
i is an E-selector. Thus, Am1 holds

deterministically.
Second, if Rm is (k,L)-blocked then for any E ∈ Cm2 there are (E \ I+)-selectors

`1, `2 ∈ T ∩ [m]. Since
⋃
i∈I+ S

+
i is disjoint from T , it follows that `1, `2 are not

in the out-neighbourhoods of any vertex in I+. Therefore `1 and `2 are also E-
selectors, so if Rm is (k,L)-blocked then Am2 holds. It follows by Proposition 6.3
that P (

⋂n
m=n′ A

m
2 ) = 1−O(n−γ).

Third, fix E ∈ Cm3 and write E \ I+ = {v}. Note that v must have at least
one neighbour in Hm as E ∩ Zrow(Rm) = ∅. If |N+

Hm
(v) ∩ T | ≥ 2 then any two

`1, `2 ∈ N+
Hm

(v)∩T are E-selectors sinceN+
Hm

(I+)∩T = ∅. Also, if |N+
Hm

(v)∩T | ≥ 1
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and N+
Hm

(v)∩N+
Hm

(I+) = ∅ then choose `1 ∈ S+
i ⊂ N+

Hm
(I+) for some i ∈ E ∩ I+,

and `2 ∈ N+
Hm

(v) ∩ T ; both `1 and `2 are again E-selectors.
It follows that

P

(
n⋃

m=n′

(Am3 )c

)
≤ P

(
∃v ∈ [n] \ I+ : |N+

Hn
(v) ∩ U | ≥ 1, |N+

Hn
(v) ∩ T ∩ [n′]| ≤ 1

)
.

(8)
For fixed v ∈ [n] \ I+, since |[n′] ∩ T | ≥ n′ −K(K + 1), we have

P
(
|N+

Hn′
(v) ∩ T ∩ [n′]| ≤ 1

)
≤P (Binomial(n′ −K(K + 1)− 1, p) ≤ 1)

≤(1 + n′p)(1− p)n′−(K+1)2

Furthermore,

P
(
|N+

Hn
(v) ∩ U | ≥ 1

)
≤ K2p.

The events in the two preceding probabilities are independent since U and T are
disjoint. By a union bound over v ∈ [n] \ I+, it follows that the probability in (8)
is bounded by

n · (1 + n′p)(1− p)n′−(K+1)2 ·K2p.

If p ≥ 4 lnn/(αn) then (1 − p)n
′−(K+1)2 ≤ e−p(n

′−(K+1)2) ≤ n−3 for n large,
proving the result in this case. If p ≤ 4 lnn/(αn) then np ≤ (4/α) lnn, and since
p ≥ c lnn/n and n′ ≥ αn, this expression is bounded by

K2(1 + (4/α) lnn)2(1− p)−(K+1)2e−pn
′

= O(ln2 n/nαc) .

Since αc = γ + 1/2 we conclude that

P
(
∃v ∈ [n] \ I+ : |N+

Hn
(v) ∩ U | ≥ 1, |N+

Hn
(v) ∩ T ∩ [n′]| ≤ 1

)
= O(n−γ) . (9)

Combining this bound with our bound on P (
⋂n
m=n′ A

m
2 ) and our deterministic

observation about the events Am1 , it follows that

P (∀n′ ≤ m ≤ n : Rm is k-blocked) = 1−O(n−γ) .

A symmetric argument for RTm (using the second bullet from Definition 6.2 instead
of the first) shows that

P
(
∀n′ ≤ m ≤ n : RTm is k-blocked

)
= 1−O(n−γ) ,

which completes the proof of the first assertion of the Proposition 5.10. The second
assertion of the proposition follows by a practically identical argument using the
second bound of Proposition 6.3 (the only difference is that in this case there is no
need to conclude by “a symmetric argument” as QLn,p[m] = (QLn,p[m])T ). �

The remainder of the paper is devoted to the proof of Proposition 6.3.

6.1. Proof of Proposition 6.3. First, suppose L is symmetric and write D =
I− ∪⋃i∈I+ S+

i = I+ ∪⋃i∈I− S−i . Then for n′ ≤ m ≤ n, QLn,p[m] is (k,L)-blocked
if and only if Qn,p[[m] \D] is k-blocked. It follows that

P
(
∀n′ ≤ m ≤ n : QLn,p[m] is (k,L)-blocked

)

= P (∀n′ ≤ m ≤ n : Qn,p[[m] \D] is k-blocked)

= 1−O(n−γ) ,
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the last bound by Lemma 2.10 of [9] (note that in that paper, the first property in
the definition of “good” is equivalent to our property “k-blocked”). This establishes
the second assertion of the lemma, so we may now focus exclusively on the first.

We say a set E ⊂ [m] \ I+ is blocked if T ∩ [m] contains two distinct E-selectors.
Given n′ ≤ m ≤ n and 2 ≤ s ≤ k(n, p), let

Dm,s = {∃E ⊂ [m] \ (Zrow(Rm) ∪ I+) : |E| = s, E is not blocked} .
To prove Proposition 6.3 it suffices to show that

P




n⋃

m=n′

k(n,p)⋃

s=2

Dm,s


 = O(n−γ). (10)

Since n′ = Θ(n), our arguments are mostly insensitive to the value of m ∈ [n′, n].
The value of s plays a more significant role, and we tailor our arguments for different
values.

The region where (p ln1/2 n)−1 ≤ s ≤ k(n, p) is rather straightforward; fix such
s and n′ ≤ m ≤ n, and fix E ⊂ [m] \ (Zrow(Rm)∪ I+) with |E| = s. Then for fixed
j ∈ [m] \ (I− ∪⋃i∈I+ S+

i ),

P (j is an E-selector) = P
(
|N−Rm(j) ∩ E| = 1

)
= sp(1− p)s−1 ≥ spe−sp .

These events are independent for distinct j ∈ [m] \ (I− ∪⋃i∈I+ S+
i ), and it follows

that

P (E is not blocked) ≤ P
(
Bin(m−K(K + 1), spe−sp) ≤ 1

)
≤ n(1− spe−sp)n/2 ,

the last inequality sincem−K(K+1) ≥ n/2 for n large. Since
(
n
s

)
≤ exp(s ln(ne/s)),

it follows by a union bound over E ⊂ [m] \ I+ that

P (Dm,s) ≤ exp(s ln(ne/s) + lnn)(1− spe−sp)n/2

≤ exp(s ln(ne/s) + lnn− nspe−sp/2)

= exp(lnn+ s(ln(ne/s)− npe−sp/2))

≤ exp(lnn+ s(ln(npe ln1/2 n)− np/ ln1/2 n)) , (11)

the last bound following since (p ln1/2 n)−1 ≤ s ≤ ln lnn/(2p) = k(n, p). Using that

x/y ≥ 2 ln(xy) when x ≥ y2/2 ≥ 2e6, since np ≥ c lnn ≥ (ln1/2 n)2/2 it follows

that np/ ln1/2 n ≥ 2 ln(npe ln1/2 n) for n sufficiently large, and so (11) yields

P (Dm,s) ≤ exp(lnn− snp/(2 ln1/2 n)) ≤ exp(lnn− n/(2 lnn)) ,

where in the final inequality we use that s ≥ (p ln1/2 n)−1. A union bound and the

fact that (n− n′ + 1)(ln lnn/(2p)− (p ln1/2 n)−1) ≤ n2 then yields

P


 ⋃

n′≤m≤n

⋃

(p ln1/2 n)−1≤s≤ln lnn/(2p)

Dm,s


 ≤ exp(3 lnn− n/(2 lnn)) . (12)

This takes care of the range (p ln1/2 n)−1 ≤ s ≤ k(n, p), which for small p is the
lion’s share of the values of s under consideration (though the smaller values of s
require slightly more work).

For 2 ≤ s ≤ 1/(p ln1/2 n), our approach to bounding P (Dm,s) is based on the
pigeonhole principle and a simple stochastic relation, and we now explain both. For
convenience set n̂ = n′−K(K+1), and note that |T ∩ [m]| ≥ n̂. Note that for a set
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E ⊂ [m]\(Zrow(Hm)∪I+) if E is not blocked then at most one vertex in N+
Hm

(E)∩T
has less than two in-neighbours in E, so

∑
i∈E |N+

Hm
(i)∩ T | ≥ 2|N+

Hm
(E)∩ T | − 1.

It follows that

P (E is not blocked) ≤ P

(
|N+

Hm
(E) ∩ T | ≤

∑
i∈E |N+

Hm
(i) ∩ T |+ 1)

2

)
. (13)

Second, the number of distinct objects obtained by sampling with replacement is
always smaller than when taking the same number of samples without replacement.
We use this to couple each set N+

Hm
(i) ∩ T with a set (of smaller or equal size)

obtained by sampling with replacement |N+
Hm

(i)∩ T | times from T . It follows that

conditional on
∑
i∈E |N+

Hm
(i)∩ T |, the size |N+

Hm
(E)∩ T | stochastically dominates

|S|, where S is a set of
∑
i∈E |N+

Hm
(i)∩T | independent, uniformly random elements

of T . On the other hand, for such S and for fixed b < |T ∩ [m]|, if
∑
i∈E |N+

Hm
(i)∩

T | = b then |S| stochastically dominates a Binomial(b, 1 − b/|T ∩ [m]|) random
variable. It thus follows from standard Binomial tail estimates (see Proposition A.1)
and the fact that |T ∩ [m]| ≥ n̂, that if n̂ ≥ 4b then

P

(
|N+

Hm
(E) ∩ T | ≤ (b+ 1)/2

∣∣∣∣∣
∑

i∈E
|N+

Hm
(i) ∩ T | = b

)

≤ P ( Binomial(b, b/n̂) ≥ (b− 1)/2 )

≤ exp

(
−b− 1

2
log

n̂

4eb

)
.

We note that this upper bound is decreasing in b for b < n̂/(4e2), as can be
straightforwardly checked. With (13), this yields

P

(∑

i∈E
|N+

Hm
(i) ∩ T | = b, E is not blocked

)

≤ P

(∑

i∈E
|N+

Hm
(i) ∩ T | = b

)
· exp

(
−b− 1

2
log

n̂

4eb

)
, (14)

from which Proposition 6.3 will follow essentially by union bounds and Binomial
tail estimates. Some such estimates are encoded in the following straightforward
bound, whose proof we defer to Appendix B.

Lemma 6.4. Let G be the event that for all m ∈ [n′, n] and all E ⊂ [m] \
(Zrow(Hm)∪I+) with |E| ≤ 1/(p ln1/2 n), it is the case that |E| ≤∑i∈E |N+

Hm
(i)∩

T | < n̂/(4e2). Then

P (G) = 1−O(n−γ) .

Now fix E ⊂ [m]\I+, and write s = |E|. Then
∑
i∈E |N+

Hm
(i)∩T | stochastically

dominates a Binomial(n̂s, pmin) random variable (writing pmin = c log n/n). It
follows from the binomial tail bounds stated in Proposition A.1 that

P

(∑

i∈E
|N+

Hm
(i) ∩ T | ≤ 20s

)
≤
(

en̂pmin

20en̂pmin/20

)20s

≤
(
αc log n

nαc/20

)20s

, (15)
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the last inequality holding for n large since n̂ = n′ −K(K + 1) = αn−K(K + 1)

and so en̂pmin ≥ (e/20)en
′pmin = (e/20)nαc. Next, observe that

P (E is not blocked, G) (16)

≤ P

(
s ≤

∑

i∈E
|N+

Hm
(i) ∩ T | ≤ 20s, E is not blocked

)

+ P

(
20s ≤

∑

i∈E
|N+

Hm
(i) ∩ T | < n̂/(4e2), E is not blocked

)
.

Taking a union bound over sets E ⊂ [m] \ I+ with |E| = s and using the bounds
(14) and (15) in (16), it follows that

P (Dm,s, G)

≤
(
m

s

)
exp

(
−s− 1

2
log

n̂

4es

)
·
(
eαc log n

nαc/20

)20s

︸ ︷︷ ︸
(A)

+

(
m

s

)
exp

(
−4s log

n̂

80es

)

︸ ︷︷ ︸
(B)

.

Using that n̂ ≥ n/2 for n large and that
(
m
s

)
≤ (en/s)s, we have

(A) ≤
( n

4es

)1/2
(

(2e)3/2(eαc log n)20

nαc−1/2s1/2

)s
≤
(

(2e)3/2(eαc log n)20

16n7γ/8s1/2

)s
.

For s ≥ 4/γ = 4/(αc− 1/2), we then have n(αc−1/2)s−1/2 = nγs−1/2 ≥ n7γ/8, so for
such s and for n large,

(A) ≤
(

(2e)3/2(eαc log n)20

n7γ/8

)s
.

Again using that n̂ ≥ n/2 for n large and that
(
m
s

)
≤ (en/s)s, we have

(B) ≤
(

804e5s3

n3

)s
.

The preceding bounds on (A) and on (B) are decreasing in s for 4/γ ≤ s ≤
(p ln1/2 n)−1, as can be verified by differentiation; it follows that

P


G ∩

⋃

n′≤m≤n

⋃

4/γ<s<(p ln1/2 n)−1

Dm,s




≤
∑

4/γ<s<(p ln1/2 n)−1

∑

n′≤m≤n
[(A) + (B)]

≤(n− n′ + 1)(p ln1/2 n)−1

[(
4(eαc log n)20

n7γ/8

)4/γ

+

(
804e5(4/γ)3

n3

)4/γ
]

≤n2

[
44/γ(eαc log n)80/γ

n7/2
+
O(1)

n12/γ

]

=O(n−1) , (17)

since γ = αc− 1/2 ∈ (0, 1/4).
We now treat the range 2 ≤ s ≤ 4/γ; for this we require a final lemma. We

say Hn is well-separated if for all n′ ≤ m ≤ n, for any distinct u, v ∈ [m] \ I+, if
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|N+
Hm

(u)| ≤ ln lnn and |N+
Hm

(v)| ≤ ln lnn then there is no 2-edge path (with edges
of any orientation) joining u and v in Hm.

Lemma 6.5. P (Hn is well-separated) = 1−O(n−γ).

We defer the proof of Lemma 6.5 to Appendix B, as it is essentially a reprise
of an argument found in [7] (though the results of [7] do not themselves directly
apply).

Fix n′ ≤ m ≤ n, 2 ≤ s ≤ 4/γ and E ⊂ [m] \ I+ with |E| = s. Write Ĝ =
G ∩ {Hm is well separated for all n′ ≤ m ≤ n}. Arguing as at (16), we have

P
(
E is not blocked, Ĝ

)

≤ P

(
s ≤

∑

i∈E
|N+

Hm
(i) ∩ T | ≤ 20s, E is not blocked, Ĝ

)

+ P

(
20s ≤

∑

i∈E
|N+

Hm
(i) ∩ T | < n̂/(4e2), E is not blocked

)
.

Now note that if
∑
i∈E |N+

Hm
(i) ∩ T | ≤ 20s ≤ 80/γ then all vertices in E have

degree at most 80/γ + |[m] \ T | ≤ 80/γ + K(K + 1). For n large enough that
80/γ + K(K + 1) ≤ ln lnn, if Hm is well-separated then the sets {|N+

Hm
(i) ∩ T | :

i ∈ E} are disjoint. Since s ≥ 2, it follows that in this case E is blocked so the
first probability on the right hand side of the preceding bound is zero. By a union
bound and the same argument used to bound (B), above, it follows that

P


Ĝ ∩

⋃

n′≤m≤n

⋃

2≤s≤4/γ

Dm,s




≤(n+ 1) · 4

γ
·
(

804e523

n3

)2

=O(n−5) .

Combining this bound with (12), (17) and Lemmas 6.4 and 6.5 then yields

P


 ⋃

n′≤m≤n

⋃

2≤s≤ln lnn/(2p)

Dm,s




≤ exp (3 lnn− n/(2 lnn)) +O(n−1) +O(n−5) +O(n−γ) +O(n−γ)

=O(n−γ) ,

which, recalling (10), completes the proof of Proposition 6.3. �
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Appendix A. Binomial tail bounds

In this section we recall standard binomial tail bounds. The bounds in the
following proposition are contained in [18], Lemma 1.1 and [15], Theorem 1.1.

Proposition A.1. For m ∈ N and 0 ≤ q ≤ 1, if X
d
= Binomial(m, q) then writing

µ = mq, for k ≥ µ we have

P (X ≥ k) ≤ exp(−µ− k ln(k/(eµ))) ,

for k ≤ µ we have

P (X ≤ k) ≤ exp(−µ− k ln(k/(eµ))) ,

and for ε > 0 we have

P (X − µ > εm) ≤ exp(−2ε2m) , P (X − µ < −εm) exp(−2ε2m) .

Appendix B. Remaining proofs

Proof of Lemma 3.3. Fix ε > 0 and let a > 1 large enough that 1 − e−e−a < ε/4
and that 6(e/4)e

a

< ε/2. Recall that p1 = lnn−a
n and p2 = lnn+a

n .
Observe that τ(Hn) > p2 if either Zrow(Hn,p2) or Zcol(Hn,p2) is non-empty. As

both |Zrow(Hn,p2)| and |Zcol(Hn,p2)| are asymptotically Poisson(e−a), our choice
of a yields that

P (τ(Hn) > p2) ≤ 2
(

1− e−e−a
)

+ o(1) ≤ ε

2
+ o(1).

This gives the first bound of the lemma. For the second bound, we claim that it
suffices to prove P (DK(p1, p2)) ≥ 1− ε/2.

Indeed, assuming this bound, since DK(p1, p2)∩{τ(Hn) = p2} ⊂ DK(p1, τ(Hn)),
we have

P (DK(p1, τ(Hn))) ≥ P (DK(p1, p2))−P (τ(Hn) > p2) ≥ 1− ε+ o(1).

Given i, j ∈ [n], if Uij > p1, then e = ij /∈ Hn,p1 . We have

P (e ∈ Hn,p2 | e /∈ Hn,p1) = P (Uij ≤ p2 | Uij > p1) ≤ p2 − p1

1− p1
≤ 4a

n
.

We use this estimate to study (N+
Hn,p2

(i))i∈Zrow(Hn,p1 ). For i, j ∈ [n], by the pre-

ceding bound and a union bound,

P
(
N+
Hn,p2

(i) ∩N+
Hn,p2

(j) 6= ∅ | i, j ∈ Zrow(Hn,p1)
)
≤ n(4a)2

n2
=

(4a)2

n
.

By another union bound, for any fixed set Z+ ∈ [n] it follows that

P
(
{N+

Hn,p2
(i)}i∈Z+ are not pairwise disjoint | Zrow(Hn,p1) = Z+

)
≤ 8a2|Z+|2

n
.

(18)
Similarly, for any fixed Z+, Z− ∈ [n]

P

( ⋃

i∈Z+

N+
Hn,p2

(i) ∩ Z− 6= ∅ | Zrow(Hn,p1) = Z+, Zcol(Hn,p1) = Z−
)
≤ 4a|Z+||Z−|

n
.

(19)
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Finally, given that i ∈ Zrow(Hn,p1) we have |N+
Hn,p2

(i)| �st Bin(n, 4a/n). It follows

by a Chernoff bound that

P
(
|N+

Hn,p2
(i)| > 8a | i ∈ Zrow(Hn,p1)

)
≤ e−16a2 ,

By a union bound, for any Z+ ⊂ [n],

P

( ⋃

i∈Z+

|N+
Hn,p2

(v)| > 8a | Zrow(Hn,p1) = Z+

)
≤ |Z+|e−16a2 . (20)

Observe that, a similar argument conditioning on Zcol(Hn,p1) = Z− gives the
same bounds in (18) and(20) for the sequence (N−Hn,p2 (i))i∈Zcol(Hn,p1 ). Additionally,⋃
i∈Zrow(Hn,p1 )N

+
Hn,p2

(i) ∩ Z− 6= ∅ implies
⋃
i∈Zcol(Hn,p1 )N

−
Hn,p2

(i) ∩ Zrow 6= ∅.
So far the bounds obtained depend on the size of fixed sets Z+, Z− ∈ [n]. Now

let K be the event that both Zrow(Hn,p1) and Zcol(Hn,p1) have size at most K =
K(a) = b2eac. We claim that

P (K) = P (|Zrow(Hn,p1)|, |Zcol(Hn,p1)| ≤ K) ≥ 1− 2(e/4)e
a

+ o(1). (21)

For this, we use that if X
d
= Poisson(λ), then P (X ≥ 2λ) ≤ (e/4)λ; see, e.g.,

Lemma 1.2 of [18]. Since |Zrow(Hn,p1)|, |Zcol(Hn,p1)| are asymptotically Poisson(λ),
(21) follows by a union bound.

We now bound DK(p1, p2) using the above inequalities. If K occurs, then there
exist (possibly empty) sets Z+, Z− ∈ [n] of size at most K. By (18),(19),(20) we
then obtain

P (DK(p1, p2) ∪ {τ(Hn) ≤ p1} | K) ≥ 1− 16a2K2 + 4aK2

n
− 2Ke−16a2 . (22)

Note that if τ(Hn) ≤ p1 then |Zrow(Hn,p1)|+ |Zcol(Hn,p1)| = 0. Thus,

P (DK(p1, p2))

≥P (DK(p1, p2) ∪ {τ(Hn) ≤ p1} | K) P (K)−P (τ(Hn) ≤ p1)

≥(1− 2Ke−16a2 − o(1))(1− 2(e/4)e
a

)− 2e−e
a

+ o(1)

≥1− 6(e/4)e
a

.

In the second inequality we use (21),(22) and the fact that |Zrow(Hn,p)| and
|Zrow(Hn,p)| are asymptotically Poisson(ea); the final inequality then follows from
the fact that a > 1 and K = b2eac by straightforward calculation. By our choice
of a, the final bound is at least 1− ε/2 + o(1), completing the proof. �

Proof of Lemma 6.4. We first bound the maximum degree of vertices in [n] \ I+.
A union bound together with a Chernoff bound yields

P
(
∃v ∈ [n] \ I+ : |N+

Hn
(v)| > 2np

)
≤ ne−(np)2 ≤ n1−c2 lnn,

where the last inequality uses that p ≥ pmin = c lnn/n. It follows that with high
probability, for any n′ ≤ m ≤ n,

∑

i∈E
|N+

Hm
(i) ∩ T | ≤ 2|E|np ≤ 2n/ ln1/2 n ≤ n̂/4e2.

To obtain the lower bound note that∑

i∈E
|N+

Hm
(i) ∩ T | ≥

∑

i∈E
|N+

Hm
(i) ∩ T ∩ [n′]|.
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Thus, it suffices to show that

P
(
∀v ∈ [n] \ I+ : |N+

Hn
(v) ∩ T ∩ [n′]| 6= ∅

)
≥ 1−O(n−γ).

For fixed v ∈ [n] \ I+, since |[n′] ∩ T | ≥ n′ −K(K + 1), we have

P
(
|N+

Hn
(v) ∩ T ∩ [n′]| = 0

)
≤ (1− p)n′−(K+1)2 ≤ Ce−αpn = O(n−γ−1/2).

The bound above applies in particular for vertices in ∪i∈I−S−i , and there are at
most K2 = O(1) such vertices. On the other hand, if v ∈ [n] \ (∪i∈I−S−i ∪ I+) and
N+
Hn

(v) ∩ [n′] 6= ∅, then either |N+
Hn

(v) ∩ T ∩ [n′]| 6= ∅ or |N+
Hn

(v) ∩ U ∩ [n′]| 6= ∅.
It thus remains to bound

P
(
∃v ∈ [n] \ I+ : |N+

Hn
(v) ∩ U | ≥ 1, |N+

Hn
(v) ∩ T ∩ [n′]| = 0

)
,

which is O(n−γ) by (9). �

Proof of Lemma 6.5. We say a vertex v has low degree in Hm if N+
Hm

(v) ≤ d :=
ln lnn.

First consider the graph Hn′ . The event that fixed vertices v1 and v2 are con-
nected by a 2-path is monotone increasing, while the event that both vertices have
low out-degree is monotone decreasing. By the FKG inequality, these events are
negatively correlated and so the probability that both events hold is bounded from
above by the product of their probabilities.

The random variable |N+
Hn′

(v1)| is Binomial(n′−1, p) distributed; we will bound

P
(
|N+

Hn′
(v1)| ≤ d

)
. We have

P
(
|N+

Hn′
(v1)| ≤ d

)
=

d∑

i=0

(
n′ − 1

i

)
(p)i(1− p)n′−i−1

≤ (1− p)n′
d∑

i=0

2(2n′p)i

≤ e−n
′p(2n′p)d+1

where in the first inequality we use that 1 − p ≥ 1
2 . Also, the random variables

|N+
Hn′

(v1)| and |N+
Hn′

(v2)| are iid and hence P
(
|N+

Hn′
(v1)| ≤ d, |N+

Hn′
(v2)| ≤ d

)
≤

e−2n′p(2n′p)2(d+1).

Since P
(
|N+

Hn′
(v1)| ≤ d

)
is decreasing in p, the preceding bound implies that

if p ≥ (2/α) lnn/n then P
(
|N+

Hn′
(v1)| ≤ d, |N+

Hn′
(v2)| ≤ d

)
≤ n−4(4 lnn)2(d+1).

Also, the same bound holds for P
(
|N+

Hm
(v1)| ≤ d, |N+

Hm
(v2)| ≤ d

)
for any m ∈

[n′, n], since |N+
Hm

(v1)| and |N+
Hm

(v2)| are increasing in m. In this case the bound
claimed in the statement of the lemma holds by a union bound over m ∈ [n′, n] and
over pairs of vertices v1, v2 of Hm.

We thus assume for the remainder of the proof that p ≤ (4/α) lnn/n. We
still also have p ≥ pmin = c lnn/n, so the preceding argument yields that for any
m ∈ [n′, n],

P
(
|N+

Hm
(v1)| ≤ d, |N+

Hm
(v2)| ≤ d

)
≤ (2 lnn)2d+2

n2cα
≤ ln3d n

n1+2γ
;
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On the other hand, the probability that v1 and v2 are adjacent or have a common
neighbour is at most 2p+ 4np2. By a union bound and the upper bound on p, the
probability that Hn′ contains two low degree vertices with a common neighbour is
therefore at most (

n′

2

)
ln3d n(2p+ 4np2)

n1+2γ
≤ 72 ln3d+2 n

n2γ
.

We next consider Hm with m > n′. Let z = m be the unique vertex of Hm not
in Hm−1. If Hm is the first graph which is not well separated, then it either (a) z is
adjacent to two low degree vertices v1, v2 which are neither connected by a two-edge
path nor adjacent in Hm−1 or (b) z is itself a low degree vertex at (undirected)
distance 1 or 2 of a second vertex v0 of low out-degree. By a union bound over the
pairs of vertices in Hm−1 we obtain that (a) occurs with probability at most

(
m− 1

2

)
4p2 ln3d n

n1+2γ
≤ (64/α2) ln3d+2 n

n1+2γ

Similarly, since z and any fixed vertex v0 ∈ [m − 1] are at distance 1 or 2 with
probability less than 2p + 4np2, a union bound over the vertices of Hm−1 implies
that (b) occurs with probability at most

(m− 1) ln3d n(2p+ 4np2)

n1+2γ
≤ (72/α2) ln3d+2 n

n1+2γ
,

Combining these bounds and summing over m ∈ [n′, n], we obtain that

P (Hn is well separated) = O(ln3d+2 n/n2γ) ,

and the latter term is O(n−γ), as required. �
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