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Abstract

Let H be a graph, and let CH(G) be the number of (subgraph isomorphic) copies of H contained
in a graph G. We investigate the fundamental problem of estimating CH(G). Previous results cover
only a few specific instances of this general problem, for example, the case when H has degree at
most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph
isomorphism counting problem which is almost always efficiently approximable. The results rely on a
new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that
every edge is between vertices with different labels and for every vertex all neighbors with a higher label
have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to
break the problem of counting embeddings of large subgraphs into that of counting embeddings of small
subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For
all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for
all graphs H having a decomposition where each of the bipartite graphs generated is small and almost
all graphs G, the algorithm is a fully polynomial randomized approximation scheme.

We show that the graph classes ofH for which we obtain a fully polynomial randomized approxima-
tion scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-
length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs,
series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded. Addition-
ally, our general technique can easily be applied to proving many more similar results.

1 Introduction

Given a template graph H and a base graph G, we call an injection ϕ between vertices of H and vertices
of G an embedding of H into G if ϕ maps every edge of H into an edge of G. In other words, ϕ is
an isomorphism between H and a subgraph (not necessarily induced) of G. Deciding whether such an
injection exists is known as the subgraph isomorphism problem. Subgraph isomorphism is an important
and general form of pattern matching. It generalizes many interesting graph problems, including Clique,
Hamiltonian Path, Maximum Matching, and Shortest Path. This problem arises in application areas ranging
from text processing to physics and chemistry [8, 3, 35, 29]. The general subgraph isomorphism problem is
NP-complete, but there are various special cases which are known to be fixed-parameter tractable in the size
of H [2].

In this work, we consider the related fundamental problem of counting the number of copies of a tem-
plate graph in another graph. By a copy of H in G we mean any, not necessarily induced subgraph of
G, isomorphic to H . In general the problem is #P-complete (introduced by Valiant [37]). The class #P is
∗A preliminary version of this paper appeared in 12th International Workshop on Randomization and Computation (RANDOM

2008).
†Pennsylvania State University, furer@cse.psu.edu. Research supported in part by NSF Grant CCF-0964655.
‡General Electric Research, kasivisw@gmail.com.

1

ar
X

iv
:0

80
6.

22
87

v2
  [

cs
.D

S]
  2

1 
Ju

n 
20

13



defined as {f : ∃ a non-deterministic polynomial time Turing machine M such that on input x, the compu-
tation tree of M has exactly f(x) accepting leaves}. Problems complete for this class are presumably very
difficult, especially since Toda’s result [36] implies that a call to a #P-oracle suffices to solve any problem
in the polynomial hierarchy in polynomial time.

Fixed-parameter tractability of this counting problem has been well-studied with negative results for
exact counting [11] and positive results for some special cases of approximate counting [4]. In this paper,
we are interested in the more general problem of counting copies of large subgraphs. Exact counting is
possible for very few classes of non-trivial large subgraphs. A key example is perfect matchings in a planar
graph [27]. A slightly different problem that is also solvable in polynomial time is counting the number of
spanning trees in a graph. A few more problems such as counting perfect matchings in a bipartite graph
(a.k.a. (0-1) permanent) [25], counting all matchings in a graph [24], counting labeled subgraphs of a given
degree sequence in a bipartite graph [5], counting combinatorial quantities encoded by the Tutte polynomial
in a dense graph [1], and counting Hamilton cycles in dense graphs [9], can be done approximately. But
problems like counting perfect matchings in general graphs are still open.

Since most of the other interesting counting problems are hopelessly hard to solve (in many cases
even approximately) [22], we investigate whether there exists a fully polynomial randomized approxima-
tion scheme (henceforth, abbreviated as fpras) that works well for almost all graphs. The statement can be
made precise as: Let Gn be a graph chosen uniformly at random from the set of all n-vertex graphs. We say
that a predicate P holds for almost all graphs if Pr[P(Gn) = true] → 1 as n → ∞ (probability over the
choice of a random graph). By fpras we mean a randomized algorithm that produces a result that is correct
to within a relative error of 1±εwith high probability (i.e., probability tending to 1). The algorithm must run
in time poly(n, ε−1), where n is the input size. We call a problem almost always efficiently approximable
if there is a randomized polynomial time algorithm producing a result within a relative error of 1 ± ε with
high probability for almost all instances.

Previous attempts at solving these kinds of problems have not been very fruitful. For example, even
seemingly simple problems like counting cycles in a random graph have remained open for a long time
(also stated as an open problem in the survey by Frieze and McDiarmid [14]). In this paper we present new
techniques that can not only handle simple graphs like cycles, but also major subclasses of more complicated
graph classes like outerplanar, series-parallel, planar etc.

The theory of random graphs was initiated by Erdős and Rényi [10]. The most commonly used models
of random graphs are G(n, p) and G(n,m). Both models specify a distribution on n-vertex graphs with a
fixed set of vertices. In G(n, p) each of the

(
n
2

)
edges is added to the graph independently with probability p

and G(n,m) assigns equal probability to all graphs with exactlym edges. Unless explicitly stated otherwise,
the default model addressed in this paper is G(n, p).

There has been a lot of interest in using random graph models for analyzing typical cases (beating
the pessimism of worst-case analysis). Here, we mention some of these results relevant to our counting
problem (see the survey of Frieze and McDiarmid [14] for more). One of the most well-studied problems is
that of counting perfect matchings in graphs. For this problem, Jerrum and Sinclair [23] have presented a
simulation of a Markov chain that almost always is an fpras (extended to all bipartite graphs in [25]). Similar
results using other approaches were obtained later in [12, 31, ?, 17]. Another well-studied problem is that of
counting Hamiltonian cycles in random digraphs. For this problem, Frieze and Suen [15] have obtained an
fpras, and later Rasmussen [31] has presented a simpler fpras. Afterwards, Frieze et al. [13] have obtained
similar results in random regular graphs. Randomized approximation schemes are also available for counting
the number of cliques in a random graph [32]. However, there are no general results for counting copies of
an arbitrary given graph in a random graph.
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ALGORITHM COUNT(S = {x1, . . . , xz},A)

t← A(S) (let Algorithm A return xi with probability pi > 0 for all i ∈ {1, . . . , z} with
∑z

i=1 pi ≤ 1)
If t = xi for i ∈ {1, . . . , z}, then Z = 1

pi
Else Z = 0
Output Z

Figure 1: Estimator for the cardinality of S.

1.1 Our Results and Techniques

In this paper, we remedy this situation by presenting the first general subcase of the subgraph isomorphism
counting problem that is almost always efficiently approximable. For achieving this result we introduce a
new graph decomposition that we call an ordered bipartite decomposition. Informally, an ordered bipartite
decomposition is a labeling of vertices such that every edge is between vertices with different labels and
for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates
a sequence of bipartite graphs and the crucial part is to ensure that each of the bipartite graphs is of small
size. The size of the largest bipartite graph defines the width of the decomposition. The decomposition
allows us to obtain general results for the counting problem which could not be achieved using the previous
methods. It also leads to a relatively simple and elegant analysis. We will show that many graph classes have
such a decomposition, while at the same time many simple small graphs (like a triangle) may not possess a
decomposition.

The actual algorithm itself is based on the following simple sampling idea (known as importance sam-
pling in statistics): let S = {x1, . . . , xz} be a large set whose cardinality we want to estimate. Assume that
we have a randomized algorithm (A) that picks each element xi with non-zero known probability pi. Then,
the Algorithm Count (Fig. 1) produces an estimate for the cardinality of S. The following proposition shows
that the estimate is unbiased, i.e., E[Z] = |S|.

Proposition 1.1. The Algorithm Count (Fig. 1) is an unbiased estimator for the cardinality of S.

Proof. It suffices to show that each element xi has an expected contribution of 1 towards |S|. This holds
because on picking xi (an event that happens with probability pi), we set Z to the inverse probability of this
event happening. Therefore, E[Z] =

∑
i pi ·

1
pi

= |S|.

Similar schemes of counting have previously been used by Hammersley [19] and Knuth [28] in other
settings. Recently, this scheme has been used by Rasmussen for approximating the permanent of a (0-1)
matrix [31], and later for approximately counting cliques in a graph [32]. A variant of this scheme has
also been used by the authors to provide a near linear-time algorithm for counting perfect matchings in
random graphs [16, 17]. This is however the first generalization of this simple idea to the general problem
of counting graph embeddings. Another nice feature of such schemes is that they also seem to work well in
practice [34].

Our randomized algorithm will try to embed H into G. If the algorithm succeeds in finding an embed-
ding ofH inG, it outputs the inverse probability of finding this embedding. The challenging task here is not
only to ensure that each embedding of H in G has a positive probability of being found but also to pick each
embedding with approximately equal probability to obtain a low variance. For this purpose, the algorithm
considers an increasing sequence of subgraphs H̄1 ⊂ H̄2 ⊂ · · · ⊂ H̄` = H of H . The algorithm starts by
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randomly picking an embedding of H̄1 into G, then randomly an embedding of H̄2 into G containing the
embedding of H̄1 and so on. It is for defining the increasing sequence of subgraphs that our decomposition
is useful.

The algorithm is always an unbiased estimator for CH(G). The decomposition provides a natural suffi-
cient condition for the class of algorithms based on the principle of the Algorithm Count to be an unbiased
estimator. Additionally, if the base graph is a random graph from G(n, p) with constant p and if the template
graph has an ordered bipartite decomposition of bounded width, we show that the algorithm is an fpras. The
interesting case of the result is when p = 1/2. Since the G(n, 1/2) model assigns a uniform distribution
over all graphs of n given vertices, an fpras (when the base graph is from G(n, 1/2)) can be interpreted as
an fpras for almost all base graphs. This result is quite powerful because now to prove that the number of
copies of a template graph can be well-approximated for most graphs G, one just needs to show that the
template graph has an ordered bipartite decomposition of bounded width.

The later half of the paper is devoted to showing that a lot of interesting graph classes naturally have an
ordered bipartite decomposition of bounded width. Let Ck denote a cycle of length k. If a graph H does not
have a subgraph isomorphic to Ck, then we say H is Ck-free.1 In this paper, we show that graphs of degree
at most two, bounded-degree forests, bounded-length grid (lattice) graphs,2 subdivision of bounded-degree
graphs, bounded-degree outerplanar graphs which are C3-free, bounded-degree series-parallel graphs which
are both C3- and C5-free3, and planar graphs of girth at least 16 have an ordered bipartite decomposition of
bounded width. Using this we obtain the following result (proved in Theorems 3.7 and 4.1).

Theorem 1.2 (Main Result4). Let H be a connected graph from one of the following graph classes: graphs
of degree at most two, bounded-degree trees, bounded-length grid graphs, subdivision of bounded-degree
graphs, bounded-degree C3-free outerplanar graphs, bounded-degree [C3, C5]-free series-parallel graphs, or
bounded-degree planar graphs of girth at least 16. Then, there exists an fpras for estimating the number of
copies of H in G ∈ G(n, p) for constant p.

Even when restricted to graphs of degree at most two, this theorem recovers most of the older results.
It also provides simpler, unified proofs for (some of) the results in [12, 31, ?, 15]. For example, to count
matchings of cardinality k one could use a template consisting of k disjoint edges. Similarly, to count all
cycles of length k the template is a cycle of that length. By varying k and boosting the success probability,
the algorithm can easily be extended to count all matchings or all cycles. This provides the first fpras for
counting all cycles in a random graph (solving an open problem of Frieze and McDiarmid [14]).

For template graphs coming from the other classes, our result supplies the first efficient randomized
approximation scheme for counting copies of them in almost all base graphs. For example, it was not
known earlier how to even obtain an fpras for counting the number of copies of a given bounded-degree tree
in a random graph. For the simpler graph classes the decomposition follows quite straightforwardly, but for
graph classes such as subdivision, outerplanar, series-parallel, and planar, constructing the decomposition
requires several new combinatorial/algorithmic ideas. Even though our techniques can be extended to other
interesting graph classes, we conclude by showing that our techniques can’t be used to count the copies of
an unbounded-length grid graph in a random graph.

Organization. In Section 2, we review some useful definitions. In Section 3, we define the ordered bipar-
tite decomposition, and use that to obtain an fpras for counting copies of a graph in a random graph. Sec-

1This is a weaker definition that the notion of minor-free graphs used commonly in the graph theory literature [7].
2The length of an n1 × n2 grid graph is min{n1, n2}.
3Denoted henceforth as [C3, C5]-free.
4The proof of this theorem follows by combining Theorems 3.8 and 4.1.
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tion 4 shows that many graph classes have an ordered bipartite decomposition of bounded width, whereas
in Section 5, we show that an unbounded-length grid graph does not have this property. We conclude in
Section 6.

2 Definitions and Notation

Definition 2.1 (Fully Polynomial Randomized Approximation Scheme (fpras)). Let Q be some function
from the set of input strings Σ∗ to natural numbers. A fully polynomial randomized approximation scheme
for Q is a randomized algorithm that takes input x ∈ Σ∗ and an accuracy parameter ε ∈ (0, 1) and outputs
a number Z (a random variable depending on the coin tosses of the algorithm) such that,

Pr[(1− ε)Q(x) ≤ Z ≤ (1 + ε)Q(x)] ≥ 3/4,

and runs in time polynomial in |x|, ε−1. The success probability can be boosted to 1 − δ by running the
algorithm O(log δ−1) times and taking the median [26].

Graph Notation. Throughout this paper, we use G to denote a base random graph on n vertices. The
graph H is the template whose copies we want to count in G. We can assume without loss of generality
that the graph H also contains n vertices, otherwise we just add isolated vertices to H . The number of
isomorphic images remains unaffected. Let4 = 4(H) denote the maximum degree of H .

For a graph F , we use VF to denote its vertex set and EF to denote its edge set. Furthermore, we
use vF = |VF | and eF = |EF | for the number of vertices and edges. For a subset S of vertices of F ,
NF (S) = {v ∈ VF − S : ∃u ∈ S such that (u, v) ∈ EF } denotes the neighborhood of S in F . F [S]
denotes the subgraph of F induced by S.

Automorphisms are edge respecting permutations on the set of vertices, and the set of automorphisms
form a group under composition. For a graph H , we use aut(H) to denote the size of its automorphism
group. For a bounded-degree graph H , aut(H) can be evaluated in polynomial time [30].

We use CH(G) to denote the number of copies of H in G. Let LH(G) = CH(G) · aut(H) denote
the number of embeddings (or labeled copies) of H in G. For a random graph G, we will be interested in
quantities E[CH(G)2] and E[CH(G)]2.

Most of the other graph-theoretic concepts that we use (such as planarity) are covered in standard text
books (see, e.g., [7]), and we describe them as needed.

Randomization. Our algorithm is randomized. The output of the algorithm is denoted by Z, which is an
unbiased estimator of CH(G), i.e., CH(G) = EA[Z] (expectation over the coin tosses of the algorithm). As
the output of our algorithm depends on both the input graph, and the coin tosses of the algorithm, we use
expressions such as EG [EA[Z]]. Here, the inner expectation is over the coin-tosses of the algorithm, and the
outer expectation is over the graphs of G(n, p). Note that EA[Z] is a random variable defined on the set of
graphs.

3 Approximation Scheme for Counting Copies

We define a new graph decomposition technique which is used for embedding the template graph into the
base graph. As stated earlier our algorithm for embedding works in stages and our notion of decomposition
captures this idea.
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Definition 3.1 (Ordered Bipartite Decomposition). An ordered bipartite decomposition of a graph H =
(VH , EH) is a sequence V1, . . . , V` of subsets of VH such that:

¬ V1, . . . , V` form a partition of VH .

­ Each of the Vi (for i ∈ [`] = {1, . . . , `}) is an independent set in H .

® ∀v ∃j such that v ∈ Vi implies NH(v) ⊆
(⋃

k<i Vk
)
∪ Vj .

Property ® just states that if a neighbor of a vertex v ∈ Vi is in some Vj (j > i), then all other neighbors
of v which are not in V1 ∪ · · · ∪ Vi−1, are in Vj . Property ® will be used in the analysis for random graphs
to guarantee that in every stage, the base graph used for embedding is still random with the original edge
probability.

Let V i =
⋃
j≤i Vj . Define

Ui = NH(Vi) ∩ V i−1.

V i−1

⋃
j<i Uj

= Ui

= Vi

Ui is the set of neighbors of Vi in V1∪· · ·∪Vi−1. DefineHi to be the subgraph
of H induced by Ui ∪ Vi. Let EHi denote the edge set of graph Hi.

Definition 3.2 (Width of Ordered Bipartite Decomposition). Let V1, . . . , V` be the
ordered bipartite decomposition of a graph H = (VH , EH). Let Ui be the set of
neighbors of Vi in V1 ∪ · · · ∪ Vi−1. Define Hi to be the subgraph of H induced by
Ui ∪ Vi. The width of an ordered bipartite decomposition of H is the number of
edges (size) in the largest Hi.

The Ui’s will play an important role in our analysis. Note that given a Uj , its
corresponding Vj has the property that Vj ⊇ NH(Uj)− V j−1. Hereafter, when the context is clear, we just
use decomposition to denote an ordered bipartite decomposition. In general, the decomposition of a graph
needn’t be unique. The following lemma describes some important consequences of the decomposition.

Lemma 3.3. Let V1, . . . , V` be a decomposition of a graph H = (VH , EH). Then, the following assertions
are true.

1. Each of the Ui is an independent set in H (Hi is a bipartite graph).

2. The edge set EH is partitioned into EH1 , . . . , EH`
.

Proof. For Part 1, assume otherwise. Let (u, v) be an edge in H with both u, v ∈ Ui. Let u appear in
some Vj (j < i) and v appear in some Vk (k < i). Property ­ implies that j 6= k. Assume without loss of
generality that j < k. Property ® implies there exists no vertex w ∈ NH(u) such that w ∈ Vi. Therefore,
u /∈ Ui. Contradiction. Additionally, since each of the Ui and Vi is an independent set, each of the graph Hi

is bipartite.
For Part 2, first note that due to Properties ¬ and ®, the Ui’s are pairwise disjoint (but they do not necessarily
form a partition). Therefore, theEHi’s are also pairwise disjoint. Now since for every edge (u, v) there exist
a j, k such that u ∈ Uj and v ∈ Vk and without loss of generality j < k. Then, u ∈ Uk and (u, v) ∈ EHk

.
Thus, EH1 , . . . , EH`

form a partition of EH .

Every graph has a trivial decomposition satisfying Properties ¬ and ­, but the situation changes if we
add Property ® (C3 is the simplest graph which has no decomposition). Every bipartite graph though has a
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ALGORITHM EMBEDDINGS(G,H)

Initialize X ← 1, Mark(0)← ∅, ϕ(∅)← ∅
Let V1, . . . , V` denote an ordered bipartite decomposition of H
For i← 1 to ` do

Let Gf ← G[VG −Mark(i− 1) ∪ ϕ(Ui)] (Gf is the subgraph of G used for embedding Hi)
Compute Xi, the number of embeddings of Hi in Gf with fixed Ui mapping given by ϕ
Pick an embedding uniformly at random (if one exists) and use it to update ϕ
If no embedding exists, then set Z to 0 and terminate
X ← X ·Xi

Mark(i)← Mark(i− 1) ∪ ϕ(Vi)
Z ← X/aut(H)
Output Z

Figure 2: Algorithms for counting copies of graph H in G.

simple decomposition, but not necessarily of bounded width. Note that the bipartiteness of H is a sufficient
condition for it to have an ordered bipartite decomposition, but not a necessary one.

We will primarily be interested in cases where the decomposition is of bounded width. This can only
happen if4 is a constant. In general, if4 grows as a function of n, no decomposition could possibly have
a bounded width (4/2 is always a trivial lower-bound for the width). The size of the parameter ` is not
important in our analysis.

Algorithm for Counting Embeddings. The input to the Algorithm Embeddings (Fig. 2) is the template
graphH together with its decomposition and the base graphG. The algorithm tries to construct a bijection ϕ
between the vertices of H and G. Vi represents the set of vertices of H which get embedded into G during
the ith stage, and the already constructed mapping of Ui is used to achieve this. For a subset of vertices
S ⊆ VH , ϕ(S) denotes the image of S under ϕ. IfX > 0 (X is defined in the Algorithm Embeddings), then
the function ϕ represents an embedding of H in G (consequence of Properties ¬ and ­), and the output X
represents the inverse probability of this event happening. Since every embedding has a positive probability
of being found, X is an unbiased estimator for the number of embeddings of H in G (Proposition 1.1), and
Z is an unbiased estimator for the number of copies of H in G.

The actual procedure for computing the Xi’s is not very relevant for our results, but note that the Xi’s
can be computed in polynomial time ifH has a decomposition of bounded width. In this case the Algorithm
Embeddings runs in polynomial time.

Since the Algorithm Embeddings is an unbiased estimator, use of Chebychev’s inequality implies that
repeating the algorithm O(ε−2EA[Z2]/EA[Z]2) times and taking the mean of the outputs results in a ran-
domized approximation scheme for estimating CH(G). The ratio EA[Z2]/EA[Z]2 is commonly referred to
as the critical ratio.

3.1 FPRAS for Counting in Random Graphs

We now concentrate on showing that for random graphs the algorithm is an fpras. From here on, we abbre-
viate CH(G) as C. A few of the technical details in our proof are somewhat similar to previous applications
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of this sampling idea, such as that for counting perfect matchings [31, 17]. The simpler techniques in these
previous results, however, are limited to handling one edge per stage (therefore, they work only when H is
a matching). Algorithm Embeddings embeds a small sized subgraph at every stage. The key for obtaining
an fpras is to guarantee that the factor contributed to the critical ratio at every stage is very small (which
is now involved because it is no longer a simple ratio of binomial moments as in [31, 17]). We then do a
stage-by-stage analysis of the critical ratio to show that the Algorithm Embedding is an fpras.

The analysis will be done for a worst-case graph H under the assumption that the width of the decom-
position of H is bounded by a universal constant w. Here, instead of investigating the critical ratio, we
investigate the much simpler ratio EG [EA[Z2]]/EG [EA[Z]]2, which we call the critical ratio of averages.
We use the second moment method to show that these two ratios (critical ratio and critical ratio of aver-
ages) are closely related. To establish this fact, we take a detour through the G(n,m) model. The ratio
E[C2]/E[C]2 plays an important role here and for bounding it we use a recent result of Riordan [33]. The
result (stated below) studies the related question of when a random graphG is likely to have a spanning sub-
graph isomorphic to H . Let4 = 4(H) denote the maximum degree of H . The idea behind the following
theorem is to use Markov’s inequality to bound Pr[C = 0] in terms of E[C] and V ar[C]. The main thrust
lies in proving that E[C2]/E[C]2 = 1 + o(1).5

In the following, N is used to denote
(
n
2

)
. We say an event holds with high probability (w.h.p.), if it

holds with probability tending to 1 as n→∞.

Theorem 3.4 (Riordan [33], Restated). Let H be a graph on n vertices. Let eH = αN = α(n)N , and
let p = p(n) ∈ (0, 1) with pN an integer. Suppose that the following conditions hold: αN ≥ n, and
pN, (1− p)

√
n, npγ/44 →∞, where

γ = γ(H) = max
3≤s≤n

{max{eF : F ⊆ H, vF = s}/(s− 2)}.

Then, w.h.p. a random graph G ∈ G(n, pN) has a spanning subgraph isomorphic to H . In particular,
C = CH(G) satisfies

E[C2]

E[C]2
= 1 + o(1).

The quantity γ is closely related to twice the maximum average degree of a subgraph of H .
The templates graph that we will be interested are bounded-degree connected graphs. For a bounded-

degree graph H , both4 and γ are constants. Also, since the graph is connected αN ≥ n. Additionally, for
us p is a constant (as we work with dense random graphs G). Therefore, the conditions of Theorem 3.4 are
all satisfied.

Corollary 3.5. Let H be a bounded-degree connected graph on n vertices. Then, w.h.p. a random graph
G ∈ G(n,Ω(n2)) satisfies E[C2]/E[C]2 = 1 + o(1).

Corollary 3.5 with Chebychev’s inequality gives, Pr[C < E(C)] tends to 0 as n tends to ∞. Using
this and standard results on asymptotic equivalence between G(n,m) and G(n, p) models of random graphs
(e.g., see Proposition 1.12 of [21]) yields the following corollary. Similar analysis has been used in the
previous works of [12, 15, 31, 32, ?].

Corollary 3.6. Let H be a bounded-degree connected graph on n vertices. Let ω = ω(n) be any function
tending to ∞ as n → ∞, and let p be a constant. Then, w.h.p. a random graph G ∈ G(n, p) satisfies
C ≥ E[C]/ω.

5 SinceC is fairly tightly concentrated around its mean, a rudimentary approximation forC is just E[C] = n!peH

aut(H)
(as vH = n).

However, this naive approach doesn’t produce for any ε > 0, an (1± ε)-approximation for C (see, e.g., [12, 15, 31, 32, ?]).
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Using the above result we investigate the performance of Algorithm Embeddings when G is a random
graph. The proof idea is to break the critical ratio analysis of the large subgraph into a more manageable
critical ratio analysis of small subgraphs.

Proposition 3.7. Let H be an n-vertex connected graph with a decomposition of width w (a constant).
Let Z be the output of Algorithm Embeddings, and let p be a constant. Then, w.h.p. for a random graph
G ∈ G(n, p) the critical ratio EA[Z2]/EA[Z]2 is polynomially bounded in n.

Proof. We first relate the critical ratio to the critical ratio of averages. As the estimator is unbiased EA[Z] =
C. Therefore, from Corollary 3.6,

C = EA[Z] =
EA[X]

aut(H)
≥ EG [EA[X]]

ω · aut(H)
.

Squaring both sides,

EA[Z]2 =
EA[X]2

aut(H)2
≥ EG [EA[X]]2

ω2 aut(H)2
.

Note that EA[X]/aut(H) refers to the expected output for fixed graphG, and the inequalities hold for almost
all such graphs G, while EG [EA[X]]/aut(H) is the expected output for a random graph G ∈ G(n, p).

The numerator of critical ratio of averages, EG [EA[Z2]] = EG [EA[X2]]/aut(H)2. Using Markov’s
inequality

Pr
[
EA[Z2] ≥ ωEG [EA[Z2]]

]
≤ 1

ω

n→∞−→ 0

Using the above inequalities yields

EA[Z2]

EA[Z]2
=

EA[X2]

EA[X]2
≤ ω3EG [EA[Z2]]

EG [EA[Z]]2
= ω3EG [EA[X2]]

EG [EA[X]]2
.

Now, we just concentrate on bounding the critical ratio of averages. Let V1, . . . , V` denote a decompo-
sition of H of width w. In the bipartite graph Hi between the vertices of Ui and Vi with edge set EHi , let
ei = |EHi |, vi = |Vi|, and ui = |Ui|. Let ni = n−

∑
j<i vj . We will rely on the fact that all the Hi’s are of

bounded (size) width.
Let n′i = ni+ui. LetGi be a random graph from G(n′i, p) with ui distinguished vertices. LetLHi|Ui

(Gi)
denote the number of embeddings of Hi in Gi where the mapping of the vertices in Ui to the distinguished
vertices in Gi is fixed (given). The results do not depend on the mapping used for Ui. We abbreviate
LHi|Ui

(Gi) by Li.
First we investigate the numerator of the critical ratio of averages. Here we use the fact that

EG [EA[X2]] = EG [EA[X2
1 ]] · · · · · EG [EA[X2

` ]].

The previous equality arises, because at the ith stage the graph used for embedding Hi is from G(n′i, p)
irrespective of the choices made over the first (i − 1) stages. This is guaranteed by Property ® of the
decomposition and in turn it allows us to perform a stage-by-stage analysis of the critical ratio.

Furthermore, EG [EA[X2
i ]] = E[L2

i ] (as the graph is random, it doesn’t matter which vertices Ui gets
mapped to). Next we investigate the denominator of the critical ratio of averages. Here we use the fact that

EG [EA[X]]2 = (n!peH )2 = E[L1]
2 · · · · · E[L`]

2.
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Therefore, the ratio

EG [EA[X2]]

EG [EA[X]]2
=

EG [EA[X2
1 ]] · · · · · EG [EA[X2

` ]]

EG [EA[X1]]2 · · · · · EG [EA[X`]]2

=
E[L2

1] · · · · · E[L2
` ]

E[L1]2 · · · · · E[L`]2
=
∏̀
i=1

E[L2
i ]

E[Li]2
.

To bound this expression we investigate the parameter V ar[Li].
Now consider a complete bipartite graph Kui,ni with one side being the ui distinguished vertices of Gi

and the other side being the remaining (non-distinguished) vertices of Gi. Let FHi|Ui
(Kui,ni) be the set of

embeddings of Hi in Kui,ni where the mapping of the vertices in Ui to the distinguished vertices in Kui,ni

is fixed as in Gi (note that one side of Kui,ni contains these distinguished vertices) . For each embedding f
from FHi|Ui

(Kui,ni) define the indicator random variable If(Hi) = 1[f(Hi) ⊆ Gi]. For each F ⊆ Hi, let
eF be the number of edges in F , and let rF be the number of vertices in F which belong to Vi. Now there
are Θ(n2vi−rFi ) pairs (f, g) of embeddings of Hi in FHi|Ui

(Kui,ni) with f(Hi) ∩ g(Hi) isomorphic (') to
F . In the following, we use A � B for A = Θ(B).

V ar[Li] =
∑
f,g

Cov[If(Hi), Ig(Hi)]

=
∑
f,g

Ef(Hi)
∩Eg(Hi)

6= ∅

E[If(Hi)Ig(Hi)]− E[If(Hi)]E[Ig(Hi)]

=
∑

F⊆Hi,eF>0

∑
f,g

f(Hi)∩g(Hi)'F

E[If(Hi)Ig(Hi)]− E[If(Hi)]E[Ig(Hi)]

=
∑

F⊆Hi,eF>0

∑
f,g

f(Hi)∩g(Hi)'F

p2ei−eF − p2ei

�
∑

F⊆Hi,eF>0

n2vi−rFi (p2ei−eF − p2ei)

=
∑

F⊆Hi,eF>0

n2vii p2ei

nrFi peF
(1− peF )

�
∑

F⊆Hi,eF>0

E[Li]
2

nrFi peF
(1− peF )

� max
F⊆Hi,eF>0

E[Li]
2

nrFi peF
(1− peF ).

The second equality (above) used the fact that random variables If(Hi) and Ig(Hi) are independent ifEf(Hi)∩
Eg(Hi) = ∅. The implicit constants in the above equivalences depend on the width of Hi (a constant), but
are independent of ni. The quantity

max
F⊆Hi,eF>0

(1− peF )

nrFi peF
= O(1/ni) (rF = 1, provides the maximum).
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Therefore, V ar[Li]/E[Li]
2 = O(1/ni), implying E[L2

i ]/E[Li]
2 = 1 +O(1/ni). If ei = 0, then V ar[Li] =

0, and E[L2
i ] = E[Li]

2. Putting everything together, we obtain

EG [EA[X2]]

EG [EA[X]]2
=
∏̀
i=1

E[L2
i ]

E[Li]2
≤
∏̀
i=1

(
1 +

c

ni

)
=
∏̀
i=1

ni + c

ni
,

for constant c depending only on w and p. Since n = n1 > n2 > · · · > n`,
∏`
i=1

ni+c
ni

can be polynomially
bounded (to O(nc)) by a telescoping argument. Putting everything together, we get that the critical ratio
EA[Z2]/EA[Z]2 is polynomially bounded in n. This completes the proof.

Summarizing, we have the following result: if H has a decomposition of bounded width w, then for
almost all graphs G, running the Algorithm Embeddings poly(n)ε−2 times and taking the mean of the
outputs it generates results in an (1± ε)-approximation for C. Here, poly(n) is a polynomial in n depending
on w and p. Since each run of the Algorithm Embeddings also takes polynomial time (as H has bounded
width decomposition), this is, an fpras.

Theorem 3.8. Let H be an n-vertex connected graph with a decomposition of width w (a constant). Then,
there exists an fpras for estimating the number of copies of H in G ∈ G(n, p) for constant p.

4 Graphs with Ordered Bipartite Decomposition

We divide this section into subsections based on the increasing complexity of the graph classes. We will
prove the following result in the remainder of this section.

Theorem 4.1. 6 Let H be a graph from one of the following graph classes: graphs of degree at most two,
forests, bounded-length grid graphs, subdivision graphs, C3-free outerplanar graphs, [C3, C5]-free series-
parallel graphs, or planar graphs of girth at least 16. Then, there exists an ordered bipartite decomposition
of H . Furthermore, if H has bounded degree, then the decomposition has bounded width.

We concentrate on connected graphs H .7 Let 4 be the maximum degree of any vertex in H . For
constructing the decomposition, the following definitions are useful,

U i =
⋃
j≤i

Uj , V
i =

⋃
j≤i

Vj , and Di = V i − U i.

All our decomposition algorithms proceeds in steps with step i creating the (Ui, Vi) pair.

4.1 Some Easy Graph Classes

We start off by considering easy graph classes such as graphs of degree at most two (paths and cycles), trees,
and grid graphs. Fig. 3 illustrates some examples.

• Paths: Let H represent a path (s1, . . . , sk+1) of length k = k(n). Then, the decomposition is,
Vi = {si} for 1 ≤ i ≤ k + 1.

6The proof of this theorem follows by combining Propositions 4.2, 4.4, 4.7, 4.9, and 4.12.
7If H is disconnected then a decomposition is obtained by combining the decomposition of all the connected components (in

any order).
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Figure 3: Decomposition of a cycle, tree, and grid. Vertices with label i constitute Vi. Neighbors of Vi with
lower labels constitute Ui.

• Cycles: First consider the cycles of length four or greater. Let s1, . . . , sk be the vertices of a cycle H
of length k = k(n) enumerated in cyclic order. In the decomposition, V1 = {s1}, V2 = {s2, sk},
and Vi = {si} for 3 ≤ i ≤ k − 1. Cycles of length three (triangles) don’t have a decomposition,
but counting copies of triangles is easy (we describe an algorithm to do so in Appendix A). This also
completes the claim for graphs of degree at most two in Theorem 4.1.

• Trees: For a tree H , V1 = {s1}, where s1 is any vertex in H . For i ≥ 2, let Ui be any vertex from
Di−1, then Vi is the set of neighbors of this vertex which are not in V i−1. Intuitively, Vi is the set of
children of the vertex in Ui, if one thinks of H as a tree rooted at s1. The width of this decomposition
is at most4.

• Grid Graphs: Let w0 be the length of the grid graph H (for an n1 × n2 grid graph the length is
min{n1, n2}). Set V1 = {s1}, where s1 is any corner vertex in H . Later on, Vi is the set of all
vertices which are at a lattice (Manhattan) distance i from s1. Since for each i, there are at most w0

vertices at distance i from s1, the sizes of the Vi’s are bounded if w0 is bounded. Consequently, the
width of this decomposition is bounded if w0 is bounded. This construction also extends to higher
dimensional grid graphs.

Proposition 4.2. Let H be a graph from one of the following graph classes: graphs of degree at most two,
bounded-degree forests, or bounded-length grid graphs. Then, there exists an ordered bipartite decomposi-
tion of H with bounded width.

4.2 Decomposition of Subdivision Graphs

A k-subdivision graph of a graph is obtained by inserting k = k(n) new vertices in every edge, that is by
replacing each original edge by a path of length k + 1. We relax this definition and say that a k-subdivision
graph is the graph obtained by inserting at least one and at most k vertices in every edge. Let H be a
k-subdivision graph of a graph F . We now show that H has a decomposition of width at most4.

The main idea behind the decomposition is that as soon as a vertex v of F appears in some Vj , all
vertices in NH(v) not in V j are selected in Vj+1, i.e., v ∈ Uj+1. The decomposition of H can be formally
defined as,

Vi =


{s1} where s1 is any vertex in VF , if i = 1,
NH(ai)− V i−1, if i ≥ 2 and {ai} = VF ∩Di−1 6= ∅,
NH(bi)− V i−1 where bi is any vertex in Di−1, otherwise.

We now argue correctness of the decomposition for which the following lemma is useful.

12



Lemma 4.3. There exists at most one vertex in VF ∩Di for all i in the decomposition.

Proof. Proof by induction over i. True by construction for i = 1. Assume by the inductive hypothesis,
VF ∩Di−1 has at most one vertex. If there exists a vertex in VF ∩Di−1, then let ai be this vertex. In this
case, NH(ai) doesn’t contain any vertex from VF (this follows as subdivision of F creates H). Otherwise,
bi /∈ VF , therefore, there is at most one vertex of VF in Vi (again this follows because of subdivision of F
creates H). Therefore, in both cases, |VF ∩Di| ≤ 1.

Notice that the decomposition described above selects all vertices in H , and the vertices selected in any
Vi are not selected in V i−1, therefore, Vi’s form a partition of VH (Property ¬). For Property ­ notice that
if Vi is constructed using ai (or s1) then (by the subdivision graph construction) it is always the case that
NH(ai) is an independent set, and if it constructed using bi, then it has at most two neighbors who do not
have an edge between them (again due to the subdivision graph construction). Property ® is satisfied as for
the vertex ai or bi (or s1), we select all its neighbors which are not in V i−1 together.

The width of this decomposition is at most4 as the maximum degree of H is4.

Proposition 4.4. Let H be a subdivision of a bounded-degree graph. Then, there exists an ordered bipartite
decomposition of H with bounded width.

4.3 Decomposition of Outerplanar Graphs

In this section, we prove the decomposition property on outer planar graphs. A graph is outerplanar if it has
a planar embedding such that all vertices are on the same face. Let H be a C3-free outerplanar graph. The
idea behind the decomposition is that vertices in Ui partitions the outer face into smaller intervals, each of
which can then be handled separately.

Before we formally describe the decomposition, we need some terminology. Let s1, . . . , sk be the ver-
tices around the outer face with k = k(n) (ordering defined by the outerplanar embedding). For symmetry,
we add two dummy vertices s0, sk+1 without neighbors and define U1 = {s0, sk+1}, and V1 = {s1} (the
dummy vertices play no role and can be removed before running the Algorithm Embeddings).

The algorithm proceeds in steps with step i creating the (Ui, Vi) pair. For i > 1, two vertices sj0 , sj1
with j0 < j1, define an interval at step i if sj0 , sj1 ∈ U i−1, but for j0 < l < j1, sl /∈ U i−1. If the interval is
defined it is the sequence of vertices between sj0 , sj1 (including the endpoints).8 Let ai be a median vertex
of the vertices in I ∩ V i−1 (median based on the outerplanar vertex ordering), where I is a step i interval.
Define Ui as the smallest subset of V i−1 containing {ai} and also NH(NH(Ui) − V i−1) ∩ V i−1. In other
words, Ui is the smallest set of vertices in V i−1 including {ai} such that the set of neighbors of Ui excluding
the vertices from V i−1 (call this set Mi) have the property that the vertices in Mi have no neighbors outside
of Ui in V i−1. Note that setting Ui as V i−1 satisfies the above condition, but it may not be the smallest.

Define Vi = NH(Ui) − V i−1 = Mi. We now argue that this is indeed a decomposition. Consider the
interval I at the ith step, with sj0 , sj1 as the defining endpoints, and ai as the median of I ∩ V i−1.

Lemma 4.5. Let I be the interval at the ith step. Then, Ui ⊆ I .

Proof. Ui can only contain vertices that have a path to ai but not containing any vertex from U i−1 in the
path. Since the graph is outerplanar, any path from ai to any vertex w /∈ I passes through either of the
endpoints (sj0 , sj1), both of which are in U i−1. In other words, since the vertices not in I do not have a path
to ai which does not pass through a vertex in U i−1, we have Ui ⊆ I .

8If no interval exists, then all vertices are already part of the decomposition and we are done. Also, there could be more than
one interval at each i, in which case, we can pick any one.
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Figure 4: Decomposition of an outer planar graph. Vertices with label i constitute Vi. Neighbors of Vi with
lower labels constitute Ui.

Lemma 4.6. Let I be the interval at the ith step. Then, |Ui| ≤ |I ∩ V i−1| ≤ 24.

Proof. The first inequality follows as Ui ⊆ V i−1 (by construction) and Ui ⊆ I (Lemma 4.5).
For the second one we use induction over i. The hypothesis, is true by construction for i = 1. Assume

the hypothesis holds for i− 1. Let J be the interval used by the algorithm at the (i− 1)th step. By inductive
hypothesis, |J ∩V i−2| ≤ 24. The interval J is split into several new intervals (at least two as ai−1 ∈ Ui−1)
by the vertices of Ui−1, which define the step i intervals. The newly created interval are of two types: (a)
both its endpoints are from Ui−1, (b) one endpoint is from Ui−1 and other is from Ui−2. In the intervals of
the first type there are at most 24 vertices from Vi−1 (at most 4 vertices from each of the two endpoints)
and no vertex from V i−2. In the intervals of the second type, there are at most4 vertices from Vi−1 adjacent
to the endpoint in Ui−1 and at most 4 vertices from V i−2 (from the inductive hypothesis and the fact that
ai−1 is the median of J ∩ V i−2 ). Therefore, each of the newly created step i intervals (which includes I)
have at most 24 vertices from V i−1.

The Properties ¬ and ® are guaranteed by construction. Let us concentrate on Property ­. For con-
tradiction assume that there exists two vertices v1 and v2 in some Vi with the edge (v1, v2) in H . Since no
triangles exist in H , both v1 and v2 should be connected to two different vertices (say, u1 and u2) in Ui.
However, since the graph is outerplanar there exists no path from u1 to u2 going through any vertices of
Ui∪Vi other than v1 and v2. This would mean that we could remove at least one of u1 or u2 from Ui without
disturbing the condition that it needs to satisfy. This would lead to a contradiction to Ui being the smallest
set in V i−1 satisfying the condition.

Lemma 4.6 implies that the width of this decomposition is most 24 · 4 = 242 (as |Ui| ≤ 24). See
Fig. 4 for an illustration.

Proposition 4.7. Let H be a bounded-degree C3-free outerplanar graph. Then, there exists an ordered
bipartite decomposition of H with bounded width.

4.4 Decomposition of Series-Parallel Graphs

In this section, we prove the decomposition property on series-parallel graphs. A series-parallel graph (also
called a two-terminal series-parallel graph) is a graph with two distinguished vertices s and t that is obtained
as follows. A single edge (s, t) is a series-parallel graph (base case). Let Ha and Hb be two series-parallel
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graphs with terminals sa, ta and sb, tb respectively. The graph formed by identifying ta with sb is a series-
parallel graph with terminals sa, tb (series operation is denoted by ⊕). The graph formed by identifying sa
with sb and ta with tb is a series-parallel graph with terminals sa = sb and ta = tb (parallel operation is
denoted by ||).

The algorithm again proceeds in steps with step i creating the (Ui, Vi) pair. In the following, the process
of adding a vertex to some Vi is referred by the term selecting. We say a vertex is finished once it is added
to some Ui, i.e., all its neighbors are selected. The construction is technical, but the basic idea is to first
finish the terminals, so that the parallel components separate (for the decomposition purposes). Then, the
algorithm finishes some vertex joining two serial components. In both these steps the algorithm might be
forced to finish some other vertices too.

To define the decomposition we need some more terminology. Let H = (VH , EH) be a [C3, C5]-free
series-parallel graph with (distinguished) terminals s and t. Let VH = V1,H , V2,H , . . . denote a decomposi-
tion of H . Let V i

H =
⋃
j≤i Vj,H . For a set of vertices S in H define

DH(i, S) = {u ∈ V i−1
H : there exists v ∈ S such that (u, v) ∈ EH}.

DH(i, S) represents the set of neighbors of S in H selected in the first (i − 1) steps of the algorithm. The
algorithm starts by finishing s and t as follows.

V1,H = {s}, and V2,H = NH(s)− V 1
H .

V3,H =

{
{t} ∪NH(DH(3, {t}))− V 2

H , if t /∈ V 2
H ,

∅, otherwise.

V4,H = NH(t) ∪NH(DH(4, NH(t)))− V 3
H .

In words, the first four steps of the algorithm achieves: (i) select s, (ii) finish s, (iii) select t unless already
selected, (iv) finish t. Define

VH = V1,H , V2,H , V3,H , V4,H ,VH|s,t
where VH|s,t is defined recursively as:

1. Base case: If all the vertices in H are selected, VH|s,t = ∅.

2. Parallel case: If H = Ha||Hb, find recursively VHa|s,t and VHb|s,t. Define

VH|s,t = VHa|s,t,VHb|s,t.

3. Serial case: If H = Ha ⊕Hb, with x as the vertex joining Ha and Hb. Let s ∈ VHa and t ∈ VHb
.

(a) If x is finished, define VH|s,t = VHa|s,x,VHb|x,t.

(b) If x ∈ V 4
H (x has already been selected) and x not finished, then finish x. This produces the set

V5,H = NH(x) ∪NH(DH(5, NH(x)))− V 4
H . Define VH|s,t = V5,H ,VHa|s,x,VHb|t,x.

(c) Otherwise, first select x which produces the set V5,H = {x} ∪ NH(DH(5, {x})) − V 4
H . Then,

finish x. This produces the set V6,H = NH(x) ∪ NH(DH(6, NH(x))) − V 5
H . Define VH|s,t =

V5,H , V6,H ,VHa|s,x,VHb|t,x.

The following lemma provides bounds on the sizes of Ui’s. The proof looks at two possible situations,
conditioning on the presence or absence of paths of length 2 or 3 between s and t. Since both C3 and C5 are
forbidden, it follows that there can either be a path of length 2 or 3 between any two vertices, but not both.
This fact will be crucial for implying Property ­. See Fig. 5 for an example.
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Figure 5: Decomposition of a series-parallel graph. Vertices with label i constitute Vi. Neighbors of Vi with
lower labels constitute Ui.

Lemma 4.8. LetH be a [C3, C5]-free series-parallel graph with terminals s and t. Then, the above algorithm
finishes O(42) vertices in every step (size of all the Ui’s is O(42)).

Proof. The proof is via induction on the size of series-parallel graph. The inductive hypothesis is that if s, t
and possibly some vertices in NH(s)∪NH(NH(s)) are the only vertices finished, then the above algorithm
finds a decomposition of H by finishing O(42) vertices in every step.

The algorithm always first finishes s and then t, and once s and t are finished the parallel components
can be handled independently for constructing the decomposition. In the process of finishing t, the algorithm
could possibly finish some vertices in NH(s)∪NH(NH(s)). Hence, in each of the parallel components H ′,
terminals s, t and possibly some vertices in NH′(s) ∪ NH′(NH′(s)) are finished. Therefore, inductively
a decomposition can be obtained. So the challenging case is when H has just one parallel component.
Let H = H1 ⊕ H2 with z as the vertex joining H1 and H2. There are three different cases. In each of
them the interesting event occurs after s, t, and z are finished, which splits H into H1 and H2. Afterwards,
decomposition on H1 and H2 could be constructed independently.

In the following, we describe the cases under the assumption that there exists no edge between s and
t. If there exists such an edge, then the description would remain the same except that the step where t is
selected would no longer exist (t is now selected when s is finished). Also if there is an edge between s and
t, then there exists no path of length 2 between s and t, as, otherwise there would be a triangle.

Case 1: No path of length 2 or 3 between s and t. Note that at the step when s is finished no other vertex
in H is finished. Later, when t is selected the only vertices in NH(s) that finish at that step are those which
are neighbors of t. This set is ∅ as, otherwise, there would be a path of length 2 between s, t. Similarly, at
the step when t is finished the only vertices in NH(s) that finish are those which share a common neighbor
with t. This set is also ∅ as, otherwise, there would be a path of length 3 between s, t. Now at the step
when z is selected some vertices in NH(s) and NH(t) could possibly be finished, and at the step when z
is finished some vertices in NH(s) ∪NH(t) ∪NH(NH(s)) ∪NH(NH(t)) could possibly be finished (this
supplies the O(42) bound). However, as soon as z is finished, the graphs H1 and H2 can be handled in-
dependently. Now H1 is a smaller series-parallel graph with terminals s, z, where s, z and possibly some
vertices in NH1(s)∪NH1(NH1(s)) are finished. Therefore, inductively a decomposition of H1 can be com-
pleted. Similarly, H2 can be viewed as a series-parallel graph with terminals t, z. In H2, terminals t, z and
possibly some vertices in NH2(t) ∪ NH2(NH2(t)) are finished. Therefore, inductively a decomposition of
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H2 can also be completed.

Case 2: Paths of length 2 between s and t: So there is no path of length 3 between s and t. If t has
been selected before s is finished, then t is finished together with s (at which step z is also selected). Note
that s and t can be finished in the same step because there is no path of length 3. At the step when z is
finished some vertices in NH(s) ∪NH(t) could possibly be finished. Afterwards, we can invoke induction
on both H1 and H2. If s is finished before selecting t, then z is finished while selecting t. At the step when
z is finished some vertices in NH(s) could possibly be finished. Later, at the step when t is finished some
vertices in NH(z) could possibly be finished. But again after t is finished, we can invoke induction on both
H1 and H2. See Fig. 6.

 s 
z 

t 
H1 H2 

Figure 6: Illustration for Case 2. The dotted edges may not be present in the graph.

Case 3: Paths of length 3 between s and t: So there is no path of length 2 between s and t. There are two
sub-cases based on the distance from s to z.
First Sub-case: First assume that the distance between s to z is one. At the step when s is finished z is
selected. At the step when t is selected no vertex in H is finished (absence of path of length 2). At the step
when t is finished, z is finished and also some other vertices in NH(s) could possibly be finished. Hereafter,
induction can be invoked over H1 and H2. See Fig. 7.

 s 
z 

t 
H1 

H2 

Figure 7: Illustration for the first sub-case of Case 3.

 s 
z 

t 

H1 

H2 

Figure 8: Illustration for the second sub-case of Case 3.

Second Sub-case: Now if the distance between s and z is two. Then, the distance between t and z is one.
At the step when s is finished no other vertex in H is finished. At the step when t is selected no vertex in
H is finished. At the step when t is finished, z gets selected and some vertices in NH(s) would be finished.
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Finally, at the step when z is finished some vertices in NH(s) ∪ NH(NH(s)) ∪ NH(t) could possibly be
finished. Hereafter, induction can be invoked over H1 and H2. See Fig. 8.

Therefore, a decomposition of H can be obtained with no more than O(42) finishing at each step. A
more precise upper bound of 242 can be obtained by a more careful analysis.

The Properties ¬ and ® are guaranteed by construction. Property ­ follows from the fact that during
any step of the above algorithm the set of vertices selected (appearing in the same Vi) is at most distance two
(i.e, two neighborhood away) from some fixed vertex (see the proof of Lemma 4.8). Since H has no C3 or
C5, the vertices selected together can’t have any edge between themselves (i.e., Vi’s are independent sets).

The width of this decomposition is O(42) · 4 = O(43) as O(42) vertices are finished in each step by
the above algorithm (Lemma 4.8).

Proposition 4.9. Let H be a bounded-degree [C3, C5]-free series-parallel graph. Then, there exists an
ordered bipartite decomposition of H with bounded width.

4.5 Decomposition of Planar Graphs

In this section, we prove the decomposition property on planar graphs. Define a thread as an induced path
in H whose vertices are all of degree 2 in H . A k-thread is a thread with k vertices. Let H be a planar graph
of girth at least 16. We first prove a structural result on planar graphs.

Lemma 4.10. Let H be a planar graph of minimum degree 2 and girth at least 16, then H always contains
a 3-thread.

Proof. Assume without loss of generality that the graph H is connected, otherwise it is sufficient to prove
the statement for each of the components. Let Ĥ be the graph obtained from H by contracting all degree 2
vertices. Then, Ĥ is a planar graph of minimum degree 3.

We first show that Ĥ contains a face of degree 5 or less. For contradiction, suppose that all the faces have
degree at least 6. Let n be the number of vertices, m be the number of edges, and k be the number of faces
of Ĥ . Moreover, let H be the set of faces and V the set of vertices of Ĥ . Since the degree of each face is at
least 6 (where the degree of a face f is the number of edges going around f ), 2m =

∑
f∈F deg(f) ≥ 6k.

Moreover, 2m =
∑

v∈V deg(v) ≥ 3n, since the minimum degree in Ĥ is at least 3. By Euler’s formula9

and the previous inequalities: m+ 2 = n+ k ≤ (2m)/3 +m/3 = m. A contradiction.
Let f̂ be a face of H that corresponds to a face of the degree 5 or less in Ĥ . Since the degree of f̂ is at

least 16 (the girth is 16), it is easy to see that f̂ contains a 3-thread in H .

In order to define a decomposition, we define a 3-thread partition X1, . . . , Xc of a planar graph H as a
partition of VH such that each Xi satisfies

Xi =

{
{ai},where ai is a degree 0 or 1 vertex in the graph induced by VH −

⋃
j<iXj on H, or

{ai, bi, ci},where ai, bi, ci form a 3-thread in the graph induced by VH −
⋃
j<iXj on H.

By Lemma 4.10 every planar graph with girth at least 16 has a 3-thread partition. As earlier, we say, a
vertex is selected if we add it to some Vk. Using the 3-thread partition (which can be constructed using
Lemma 4.10), a decomposition of a planar graph of girth at least 16 can be constructed by repeating this
following simple procedure,

9It states that in a planar graph with n vertices, m edges, and k faces, n−m+ k = 2.
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i. Find the largest index l such that Xl contains a vertex zl which has not yet been selected, but is
adjacent to an already selected vertex.

ii. Define Ui = NH(zl) ∩Di−1 and Vi = NH(Ui)− V i−1.

iii. Increment i.

Lemma 4.11. Let H be a planar graph of girth at least 16. Then, each of the (Ui, Vi) pair created by the
above algorithm satisfies that |Ui ≤ 2 and |Vi| ≤ 24.

Proof. Let X1, . . . , Xc be a 3-thread partition of H . Let H̄i be the graph induced by VH −
⋃
j<iXj on H .

The first observation is that a vertex in any Xj (1 ≤ j ≤ c − 1) has at most one edge connecting it to the
vertices in Xj+1 ∪ · · · ∪Xc. Consider some step i of the decomposition (step i is when the (Ui, Vi) pair is
created). Let l be the largest index with an unselected vertex zl. From the previous observation it follows
that vertices in N(zl) that are in X1 ∪ · · · ∪Xl−1 are not selected, in steps 1 to i − 1. Assume otherwise.
Let u be a vertex belonging to N(zl) ∩Xl′(l

′ < l) that is selected in the first i − 1 steps. Then, u needs to
have a neighbor in Xl ∪ · · · ∪Xc − {zl}, a contradiction since it would imply that u (which is in Xl′) has
two neighbors in Xl ∪ · · · ∪Xc. Therefore, till step i none of the neighbors of zl in X1 ∪ · · · ∪Xl−1 have
been selected. By definition of threads zl could have at most two neighbors in H̄i. The cases where it has
two neighbors are one of the following: (a) zl has one neighbor from Xl+1 ∪ · · · ∪Xc and another from Xl,
or (b) zl has both its neighbors from Xl. This implies that |NH(zl)∩Di−1| = |Ui| ≤ 2, and |Vi| ≤ 24.

The Properties ¬ and ® of the decomposition are again guaranteed by construction. The Property ­ is
satisfied because |Ui| ≤ 2 and the vertices in Ui are neighbors of zl, therefore, the vertices in Vi can not
have edges between themselves, otherwise it will result in a cycle of length 5. Since this holds for every Vi,
the Vi’s are independent sets.

The width of this decomposition is at most 24 (as |Ui| ≤ 2 from Lemma 4.11).

Proposition 4.12. Let H be a bounded-degree planar graph of girth at least 16. Then, there exists an
ordered bipartite decomposition of H with bounded width.

5 Negative Result for Ordered Bipartite Decomposition

As mentioned earlier only graphs of bounded degree have a chance of having a decomposition of bounded
width. So a natural question to ask is whether all bounded-degree graphs with a decomposition have one of
bounded width. In this section, we answer this question negatively by showing that every unbounded-length
grid graph fails to satisfy this condition. For simplicity, we will only consider

√
n ×
√
n grid graphs, but

our proof techniques extend to other cases as well.
Let H = (VH , EH) be a

√
n ×

√
n grid graph with VH = {(i, j) : 0 ≤ i, j ≤

√
n − 1} and

EH = {((i, j), (i′, j′)) : i = i′ and |j − j′| = 1 or |i − i′| = 1 and j = j′}. We now show that any
decomposition of H has a width of at least Ω(

√
n). Let V1, . . . , V` be any decomposition of H . Consider

any 2× 2 square of H defined by vertices a, c, b, d (in clockwise order). Assume without loss of generality
that the vertex c has the smallest label (given by the decomposition) among vertices a, b, c, and d, and let the
label on c be l. The two neighbors a, b of the vertex c always have the same label l′ > l. The fourth vertex d
has any label l′′ with l′′ ≥ l and l′′ 6= l′. We define a new graph H ′ = (VH , EH′) on the same set of vertices
by putting the edge (a, b) into EH′ . Note that all vertices in a connected component in H ′ have the same
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Figure 9: The figure illustrates the negative result. The dotted diagonal lines are the edges in HU , and the
solid diagonal lines are the edges in HB . There exists a component in HB than spans from the left to right
boundary.

label thus need to be chosen together in the decomposition (i.e., all vertices in a connected component in H ′

appear in the same Vk in the decomposition).
Let HD be a class of graphs on vertex set VH with exactly one diagonal in every 2 × 2 square (and no

other edges). That is any graph HD = (VH , ED) from HD has for every (i, j) with 0 ≤ i, j ≤
√
n − 2

exactly one of the edges ((i, j), (i+ 1, j + 1)), ((i, j + 1), (i+ 1, j)) in ED and no other edges are in ED.
Note that H ′ ∈ HD. The following theorem shows that any graph HD ∈ HD has the property that there
is a connected component touching top and bottom or left and right (and therefore H ′ ∈ HD also has this
property). Note that (as mentioned before) every connected component in H ′ ∈ HD would have to be
chosen together in the decomposition implying that the width of the decomposition is Ω(

√
n).

Theorem 5.1. Consider any graph HD ∈ HD. There exists a connected component of HD that contains at
least one vertex from every row or at least one vertex from every column in the grid graph.

Proof. Assume HD does not have a connected component that contains a vertex of every row. Let HU =
(VU , EU ) be the subgraph of HD generated by all the vertices connected to the top row, i.e., HU is a collec-
tion of those connected components in HD that have at least one vertex from the top row. By assumption,
HU does not contain any vertices from the bottom row.

For every 2× 2 sub-grid with vertices a, c, b, d and edge (a, b) ∈ EH′ , we call (a, b) a boundary edge if
exactly one of c, d is in VU and neither of a or b are in VU . Let HB = (V −VU , EB) be the subgraph of HD

where EB is the set of boundary edges. We assign the color red to all the vertices in VU and color black to
all the vertices in V − VU . Over the following two claims we make some observations about the structure
of HB . For a vertex v, let C(v) indicate whether the vertex is colored red (r) or black (b).

Claim 5.2. There are no degree 3 vertices in HB , i.e., all vertices in HB have degree 0, 1, 2, or 4.

Proof. Assume to the contrary. Let u be a degree 3 black vertex. Let (u, v1), (u, v2), (u, v3) be the only
edges incident on u in HB .

By choice, C(u) = b, C(v1) = b, C(v2) = b, C(v3) = b. For the other vertices, there are only two
possibilities: (i) C(v4) = b, C(w1) = b, C(w2) = r, C(w3) = b, C(w4) = r and (ii) C(v4) = b, C(w1) =
r, C(w2) = b, C(w3) = r, C(w4) = b. As all the edges in HD are all either between two red vertices or two
black vertices and every 2 × 2 sub-grid has exactly one edge, v4 is black and there exists an edge between
(u, v4) in HB . Therefore, every vertex in HB has degree either 0, 1, 2, or 4. See Fig. 10.
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Figure 10: The solid lines are the edges in HB , whereas the dotted lines at the edges in the grid. If C(u) =
b, C(v1) = b, C(v2) = b, C(v3) = b, then the two possibilities of color assignments to other vertices are:
(i) C(v4) = b, C(w1) = b, C(w2) = r, C(w3) = b, C(w4) = r and (ii) C(v4) = b, C(w1) = r, C(w2) =
b, C(w3) = r, C(w4) = b.

As in the previous claim, by considering all possibilities for the neighbors of u being in VU or not,
one can conclude immediately that all vertices of degree 1 are on the left or right border and there are odd
numbers of degree 1 vertices on each border.

Claim 5.3. All the degree 1 vertices of HB are either on the left or the right border of the grid graph H .
Additionally, there is an odd number of degree 1 vertices of HB on the left and on the right border.

Every connected component in HB has an even number of degree 1 vertices. From Claim 5.3, we know
that degree 1 vertices only occur at the left and right boundary of HB and there are odd number of them
on both boundaries. Putting these two statements together implies that there exists a component in HB

(therefore, in HD) that connects the left and the right border. This finishes the proof of the Theorem 5.1.
See Fig. 9 for an illustration.

Corollary 5.4 (Negative Result). Every decomposition of a
√
n×
√
n grid graph H has a width of Ω(

√
n).

6 Conclusions and Open Problems

The natural question arising from this work is what other classes of graphs have an ordered bipartite de-
composition and more importantly which of them have one of bounded width. Other than the graph classes
mentioned above, the bounded-degree [C3, C5]-free Halin graphs [18] where degree two vertices are allowed
and hexagonal grid graphs are some other interesting graph classes which have bounded width decomposi-
tions. Most of the graph classes we considered appear to have small treewidth. So a natural question would
be to relate these two decomposition schemes. However, we show in Appendix B that the treewidth and the
width of an ordered bipartite decomposition are incomparable.

Another interesting problem would be to investigate the general complexity of the ordered bipartite
decomposition and possibly characterize its relation to other existing graph decomposition schemas. The
notion of bounded width decomposition is a natural sufficient condition for the class of algorithms based
on the principle of the Algorithm Count to give almost always an fpras. But the necessary condition for the
general approach to work is still unclear. Finally, a challenging open problem is to obtain any such general
result for counting in arbitrary dense graphs.
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A Extension to the Disjoint Triangle Case

For simplicity, we will discuss only the case where H is a union of n/3 vertex disjoint triangles (other cases
whereH is a union of fewer vertex disjoint triangles can be handled similarly). Even thoughH doesn’t have
a decomposition, there is a simple fpras for counting copies of H in random graphs. Let s1, . . . , sn be the
vertices in H , with every triplet s3i+1, s3i+2, s3i+3 forming a triangle in H (for i = 0, .., n/3− 1).

Let Z = X/aut(H) be the output of the Algorithm Embeddings for inputs H and G ∈ G(n, p =
constant), but where each Vi = {si} and ` = n (even though V1, . . . , V` is not an ordered bipartite decom-
position). As in Proposition 3.7, we will again investigate the ratio EG [EA[X2]]/EG [EA[X]]2 which equals
the critical ratio of averages.

The numerator,

EG [EA[X2]] = EG [EA[X2
1X

2
2 · · · · ·X2

n]] = EG [EA[X2
1X

2
2X

2
3 ]] · · · · · EG [EA[X2

n−2X
2
n−1X

2
n]].

The last equality follows because after embedding each triangle the subgraph of G into which nothing has
been embedded yet is random with the original edge probability p. Consider a representative term from this
product,

EG [EA[X2
3i+1X

2
3i+2X

2
3i+3]] = EG [EA[X2

3i+1]]EG [EA[X2
3i+2X

2
3i+3]] = (n− 3i)2EG [EA[X2

3i+2X
2
3i+3]].

Here, as earlier, we relied on the fact the graph into which we embed the vertex s3i+2 is random. Let
m = X3i+2 and m′ = X3i+3. Therefore, m denotes the number of ways of embedding the vertex s3i+2 and
m′ denotes the number of ways of embedding the vertex s3i+3. Since the number of edges incident on the
vertices in G is binomially distributed, EG [EA[X2

3i+1X
2
3i+2X

2
3i+3]] equals

(n− 3i)2
n−3i−1∑
m=0

m2

(
m−1∑
m′=0

m′2
(
m− 1

m′

)
pm
′
(1− p)m−1−m′

)(
n− 3i− 1

m

)
pm(1− p)n−3i−1−m.

Let Li denote the number of embeddings of a triangle in a random graph from G(n − 3i, p). Then, the
denominator

EG [EA[X]]2 = E[L0]
2 · · · · · E[Ln/3−1]

2.
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Note that E[Li] =
(
n−3i
3

)
3!p3. Using the above equalities, the critical ratio of averages can be bounded to

EG [EA[X2]]

EG [EA[X]]2
=

n/3−1∏
i=0

EG [EA[X2
3i+1X

2
3i+2X

2
3i+3]]

E[Li]2
≤

n/3−1∏
i=0

(
1 +

c

n− 3i

)
,

for a constant c. Again, we obtain a polynomial bound on the critical ratio of averages, which translates to
an fpras for counting copies of H in G ∈ G(n, p = constant).

B Ordered Bipartite Decomposition vs. Treewidth

In this section, we show that the treewidth and the width of an ordered bipartite decomposition are incom-
parable. In one direction, consider a star graph. Treewidth is 1, but no ordered bipartite decomposition of
width less than n/2 exists. For the other direction, we consider the 1-subdivision graph of a constant-degree
expander as explained below.

Let H be a constant-degree expander graph. Consider the 1-subdivision graph S(H) of H . From
Proposition 4.4, S(H) has an ordered bipartite decomposition of bounded width. So the only fact that
remains to be verified is that vertex expansion ratio of S(H) is a constant.

Lemma B.1. A 1-subdivision graph of a constant-degree expander is an expander.

Proof. Let A be a set of vertices in H . Let α (= constant) denote the vertex expansion ratio of H and 4
denote the maximum degree in H . Let S(H) denote the 1-subdivision graph of H . Let B be a subset of
vertices from NS(H)(A). We consider the vertex expansion ratios for two different scenarios of B.

• Case B = ∅. In this case, |NS(H)(A)| ≥ |NH(U)| ≥ α|A|.

• Case B 6= ∅. First assume that, B = NS(H)(A). Under this assumption, NS(H)(A ∪ B) = NH(A).
Say |NH(A)| = λ. Now even if B ⊂ NS(H)(A), |NS(H)(A ∪B)| is at least λ. Therefore,

|NS(H)(A ∪B)| = λ ≥ α|A| ≥ α

4+ 1
(|A|+ |B|).

The final case to consider involves a set of verticesC in S(H), which are not inH . In this case, |NS(H)(C)| ≥
|C|/4.

From the above case analysis it is clear that the vertex expansion ratio of S(H) is a constant, and the
proof follows.

S(H) has constant expansion which implies a treewidth Θ(n) [20], whereas S(H) has an ordered bi-
partite decomposition of bounded width. Therefore, treewidth and the width of an ordered bipartite decom-
position are incomparable.
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