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ANALYSIS OF THE BINARY ASYMMETRIC JOINT SPARSE FORM

CLEMENS HEUBERGER AND SARA KROPF

ABsTrRACT. We consider redundant binary joint digital expansions of integer vectors. The
redundancy is used to minimize the Hamming weight, i.e., the number of nonzero digit vectors.
This leads to efficient linear combination algorithms in abelian groups, which are for instance
used in elliptic curve cryptography.

If the digit set is a set of contiguous integers containing zero, a special syntactical condition
is known to minimize the weight. We analyze the optimal weight of all non-negative integer
vectors with maximum entry less than N. The expectation and the variance are given with a
main term and a periodic fluctuation in the second order term. Finally, we prove asymptotic
normality.

1. INTRODUCTION
We deal with integer representations of vectors of integers called joint representations.

Definition 1.1. For base 2, dimension d and a digit set D C Z, the dimension-d joint repre-
sentation of a vector n € Z% is a word (,...c¢) with ¢; € D? and n = value(ey, ...go) with

value(EL AN E()) = ZiL:O €i2i.

Such representations can be used for computing a linear combination m,P; + - - - + mgPy of
points P; of an elliptic curve, or more generally an abelian group (cf. [9]). For every nonzero digit
€i, an elliptic curve addition is performed. Since these are expensive, we want to minimize the
number of nonzero digits. On the other side, every nonzero column vector e € D? corresponds to
a precomputed point. The number of doublings corresponds to the length of the expansion. Each
g; in the expansion (e, ...gq) is called a column vector of the expansion.

Example 1.1. A dimension-3 digit expansion with digit set {0, 1,2} is

1011
0020
2001
It is a representation of (11,4,17)7, because
11 1011 1 0 1 1
4 | =value {0020 | = [0]2°+ 0|22+ [2|2'+[0]2°
17 2001 2 0 0 1

Definition 1.2. The Hamming weight h(ey ...e0) of a digit expansion (e, ...gg) is the number
of nonzero columns ; # 0.

Example 1.2. Continuing with Example we have the Hamming weight

1011
h {0020 | = 3.
2001
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The Hamming weight of an integer depends on the representation we use. For example, we
have two representations of 4 = value(12) = value(100) with Hamming weight h(12) = 2 and
h(100) = 1. But since we always use a specific digit expansion in this paper, we just write h(n)
for the Hamming weight of this digit expansion.

This specific digit expansion is the asymmetric joint sparse form (short AJSF) as presented by
Heuberger and Muir in [7]. The AJSF is the unique dimension-d joint integer representation in
base 2 with digit set D;, = {a € Z | Il < a < u} described in Theorem [2| (see [7, Theorem 6.1]).
There, Heuberger and Muir proved that the AJSF is colexicographically minimal and has minimal
Hamming weight among all representations with this digit set D; ,,.

The width-w nonadjacent form [, [I] and the simple joint sparse form [5] are special cases of
the asymmetric joint sparse form. For the width-w nonadjacent form, we use [ = —2¥~! 4+ 1,
u=2%"! —1 and dimension 1. The simple joint sparse form has digit set D_; ; and dimension 2.
The special case of Theorem (1| for the simple joint sparse form has been proved in [5]. For further
results on syntactically defined optimal digit expansions, we refer to [7] and the references therein.

We compute the expected value, the variance and the asymptotic distribution of the Hamming

weight of the AJSF. We obtain a main term plus a periodic fluctuation and an error term, similar
to the asymptotic estimates of digital sums in [3]. The definitions and algorithms of the AJSF are
recalled in Section[2] In Section [3] we construct a transducer from this algorithm. In Theorem [}
we explicitly describe this transducer to compute the Hamming weight. In Section @ we prove the
following Theorem [1| about the asymptotic normal distribution of the Hamming weight. We use
the discrete probability space {n € Z | 0 < n < N}¢ with uniform distribution as a probabilistic
model, in contrast to [7]. There, only residue classes modulo powers of 2 have been considered in
the “full-block-length” analysis.
Theorem 1. The Hamming weight h(my, ..., mgq) of the AJSF of an integer vector (my,...,mq)"
over the digit set Dy, in dimension d with equidistribution of all vectors (ml,...,md)T with
0 <m; < N for an integer N is asymptotically normally distributed. There exist constants e, 4,
Vu,d € R and 6 > 0, depending on u, | and d, such that the expected value is

elualogy N 4+ Wy (logy N) + O(N % log N)
and the variance is
VLu,a108y N — W3 (logy N) + Us(log, N) + O(N " log? N),

where W1 and Vo are continuous, 1-periodic functions on R. In particular, we have

h(my,...,mq) — €py.qlogy N /z —y2 < 1 )
P Qe <zl = e 2 dy+ 0| —
< Votalog, N T (Vi

for allx € R. For d=1, we have

1 (3 M)A

w,l = 1y d w,l = 7 1 \3»
Chul = 14y M et (w—14+X)3

where
2u—1+1)— (=1t = (=1)*
2’LU
and w is the unique integer such that 2¥~! < u—1+1 < 2%. Furthermore, for d = 1, the function

Uy (z) is nowhere differentiable. General formulas for e, q for d = 2 are given in [7, Table 3].
For d € {1,2,3,4}, general formulas for e .4 and v; 4 are given in [0].

)\:

For higher dimension or the variance, the question of non-differentiability of the periodic fluc-
tuations remains open.

In the last Section [f] we further investigate the error term of the expected value and the
variance of the Hamming weight in the case of the width-w nonadjacent form. In this case, we

have ¢ = log, (1 + :”wij) for sufficiently large w, see Theorem
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2. PRELIMINARIES
First, we define some properties of the digit set.

Definition 2.1. Let D, ={a € Z |l <a <u} forl <0 and u > 1 be the digit set. It contains
u—1+ 1 digits. We define w to be the unique integer s.t. 2V~ <u—1+1 < 2%,

Because 0,1 € D;,,, we have w > 2. The digit set contains at least a complete set of residues
modulo 2¥~!. However, some residues modulo 2% are not contained. Thus we define the following
sets:

Definition 2.2. Let
unique(Dyy) = {a € Dyy | u—2""  <a<l+2v" 1}

)

nonunique(D; ,,) = Dy, \ unique(D; ,,),

)

upper(Dy.) ={a € Dy, |u—2""" <a <u}.

The sets unique(Dy,,) and nonunique(D;,) contain the unique respectively non-unique residues
modulo 2°~1. The set upper(D; ) is a complete set of representatives modulo 2.

Without loss of generality, we can restrict [ to be greater than —2¥~!. Otherwise, we would
take the digit set D_,, _; where we have —2*~! < —y < —1. Then every representation of a vector
n of integers with digit set D;, would correspond to a representation of —n with digit set D_,, _;
by changing the sign of each digit. By this transformation, the weight of the representation does
not change.

Theorem 2 ([7]). Let D, be a digit set and n € Z% (with n > 0 if | = 0). Then there erists
exactly one representation (er, ...e9) (up to leading 0’s) of n, such that the following conditions
are satisfied:
(1) Each column ¢; is O or contains an odd digit.
(2) Ife; # 0 for some j, then €j4p—2 =---=¢cj41 = 0.
(3) If e; # 0 and €j4—1 # 0 for some j, then
(a) there is ani € {1,...,d} such that €j44—1, is odd and €;,; € unique(Dy ),
(b) if €j; € nonunique(Dy ), then €j4w—1, #u+1 mod 271,
(c) if €j; € upper(Dy ) N nonunique(Dy ), then €j4y—1,; =u mod 2¥~ L.

Definition 2.3. The digit exzpansion described in Theorem [ is called asymmetric joint sparse
form (short AJSF) of n with digit set Dy,,.

Example 2.1. The AJSF of (7,11)7 with digit set D_5 3 is

1001
1003 /)’
where 1 is the digit —1. Thus its Hamming weight is h(7,11) = 2.

We also consider the width-w nonadjacent form (cf. [8, ]).

Definition 2.4. The width-w nonadjacent form (short w-NAF) of an integer n is a radiz-2
representation (cr, ...€q) of n with the digit set D,, := {0, £1,43,... £(2¥v~1 - 3),£(2v~1 - 1)}
and the following property:

IfEZ' # 0, then i+l =+ = Ejdw—1 = 0.

The AJSF is a generalization of the w-NAF. In the 1-dimensional case, only odd digits and 0
are used in the AJSF due to Theorem 2] After a nonzero digit, there are w — 1 zeros. Thus, for
l=—-2%"141and u=2"""!—1, we obtain the w-NAF.

It is known that the w-NAF representation exists and is unique for every integer (cf. [§]).

In [7], Heuberger and Muir introduce the AJSF, provide an algorithm to compute it, and prove
its minimality with respect to the Hamming weight.
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Theorem 3 ([7]). The AJSF has minimal Hamming weight among all digit expansions of an
integer vector n with digit set Dy,,. Algorithm 3 in [7] computes the AJSF in dimension d for an
integer vector n.

We present a slightly modified version of Algorithm 3 in [7] as Algorithm |1] The modification
takes into account that we are only interested in the weight. Furthermore, those iterations of the
while loop where the output is already predetermined are skipped.

For simplicity, we write n + a, for a vector n and an integer a, to denote that we add a to every
coordinate of the vector n.

Algorithm 1 Algorithm to compute the weight of the AJSF with digit set D, ,,

Input: A vector of integers n € Z%, integers [ <0, u>0,n>0ifl =0
Output: Weight h(n)

1: h=0

2: while n # 0 do

3: if n =0 mod 2 then

4: a=0,h=h+0

5: m = %

6: else

7: a=1+ ((n—1) mod 2v™1)

8: h=h+1

9: m = ;w_,al

10: Linique = {j € {1,2,...,d} | a; € unique(Dy )}
11: Tonunique = {7 € {1,2,...,d} | a; € nonunique(D; ,)}
12: if m; =0 mod 2 for all j € Iynique then

13: for j € I onunique such that m; is odd do
14: aj; = a; =+ 2w—1

15: mj; = mj; — 1

16: end for

17: else

18: for j € Ihonunique such that m; =u +1 mod 2v=1 do
19: aj; = a; =+ 2w—1

20: mj; = mj; — 1

21: end for

22: end if

23: end if

24: n=m

25: end while
26: return h

The if branch in line [3] of Algorithm [T] makes the digit at the current position a zero column
if possible. If this is not possible, the else branch in line [6] chooses the smallest digit in each
component which is congruent to the input. In the inner if and else branches, the algorithm
checks if we should change any non-unique digits. In the if statement in line[I2] we check whether
we can make the (w — 1)-st digit after the current digit 0. Otherwise, in the else statement in
line we check whether we can increase the redundancy at the (w — 1)-st digit after the current
digit by changing any non-unique digits at the current position.

In the 1-dimensional case, we can further simplify Algorithm[I} If Zunique 7 0, then Inonunique = 0.
Thus the else branch in line [[7] will not be processed. Algorithm [2]is the simplified version for
the 1-dimensional case.

3. CONSTRUCTION OF THE TRANSDUCERS

In this section, we describe the construction of the transducers for the computation of the
Hamming weight. We start with the easiest case, the w-NAF. We will then modify the ideas
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Algorithm 2 Algorithm to compute the weight of the 1-dimensional AJSF with digit set D; ,,

Input: Integers n, [ <0, u>0,n>0ifl=0
Output: h(n)

1: h=0

2: while n # 0 do

3 if n =0 mod 2 then

4 a=0

5 h=h+0

6: m = %

7 else

8 a=1+ ((n—1) mod2v™1)
9: h=h+1

10: m = 5ot

11: if m=1 mod 2 and (n — ) mod 2¥~! <u —1—2%"! then
12: a=a+2%"1

13: m=m—1

14: end if

15: end if

16: n=m

17: end while
18: return h

FIGURE 1. Transducer to compute the Hamming weight of a w-NAF representation.

to deal with the asymmetric case of D; ,-expansions in dimension 1. We finally generalize the
approach to the d-dimensional D, ,-expansions.

All transducers and automata take a (joint) binary expansion as input and read from right to
left. The output of the transducers is a sequence of 0’s and 1’s. Then the computed Hamming
weight is the number of 1’s in this output.

Lemma 1. Let w > 2. The transducer in Figure calculates the weight h(n) of the w-NAF of an
integer n.

Proof. Let n = value(ng, ...ng) with n; € {0,1} be the standard binary expansion of n and
(ex ...€0) be the w-NAF representation of n. If n = 0 mod 2, then g = 0 and we stay in the
initial state. Otherwise, we have gy # 0 and the weight is h(gg) = 1. Since we have a w-NAF
representation, the next w — 1 digits fulfill e = e3 = ... = 4,1 = 0, no matter what the
corresponding nj, 7 = 1,...,w — 1 are. The sign of the digit ¢y depends on n,_; mod 2. If
ny—1 = 0 mod 2, then g5 > 0 and we go to state w with the next input 222 with carry 0. If

2‘“!
nyw—1 = 1 mod 2, then €y < 0 and we therefore have a carry of 1 and go to state w + 1. There,
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reading an input of 1 and having a carry of 1 results in the same outcome as reading 0, but the
carry remains 1. Reading an input 0 with carry 1 is equivalent to reading an input 1 with a carry
0, so we are in state 1 again. O

In the next step, we construct a transducer for the Hamming weight of the 1-dimensional AJSF.
Therefore, we need the following automaton to compare integers.

Lemma 2. Automaton [§ in Figure [3 accepts the input of three integers a,b,c if and only if
a+b < c. The binary expansions of a,b and ¢ must have the same length where leading 0’s are
allowed.

Remark 3.1. Automaton [2| could be simplified by combining the input a + b and merging the
states (1,0) and (0,1). But since we use this automaton in Theorems [4| and [5| with the input of
the transducer as a and some fixed parameter as b, this would complicate the constructions in
Theorems [ and [l

Proof. The states are (s,t) with s, ¢ € {0,1}. The label s signifies the carry of the addition
a + b which still has to be processed. The label ¢ corresponds to the truth value of the expression
(a + b) mod 2¢ > ¢mod 2" where i is the number of read digits up to now. So the automaton
accepts the input if it stops in state (0,0) where there is no carry anymore and a + b > ¢ is false.
The initial state is (0,0).

Therefore, there is a path from (0,0) to (s,t) in Automaton [2| with input label

a;_1...0¢0
Bi—1---Bo
Yi—1---70

if and only if

o value(ai,l . 0[0) + value(ﬁi,l e Bo)
5= 5
and ¢ = [(value(ai—1 ... ag) + value(B;i_1 ... Bo)) mod 2¢ > value(y;—1 ...70)]. Here, we use Iver-
son’s notation, that is [expression] is 1 if expression is true and 0 otherwise. From this, the rules

T
for the transitions follow. There is a transition (s,t) {eb, (s',t') if and only if ' = [%MJ

and t' = [(a+ B+ s) mod 2 > v — .
O

Theorem 4. There exists a transducer with input and output alphabet {0,1}, having less than
4w — 2 states, where one state is initial and final, that computes the Hamming weight of the AJSF
from the binary expansion of an integer.

Proof. We construct a transducer performing the same calculation as Algorithm It will look
similar to the transducer in Figure[l} We start at state 0. Then there is a vertical block of states
with w — 1 rows having states (0, 0);, (1,0);, (0,1); and (1,1); in each row i = 1,...,w — 1. After
this block, we either go back to state 0, or to a similar state 1, or again to the block of states (see
Figure . We call the states 0 and 1 the looping states. Their labels signify the carry which is to
be processed. The state 0 is also the final state.

The block of states corresponds to the if statement in line [11]|in Algorithm [2| In this line, we
have to check the inequality (n—1) mod 2~ < u—1—2%~1. A first step to this aim is to compare
n+1<awithl:=—land @ :=u— [ — 2!, Therefore, we use Automaton

Next, we examine the binary expansions of @ and I. Since we have assumed that [ > —2%~1, we
know that the length of the binary expansion of [ is at most w — 1. Furthermore, —1 < @& < 2% 1,
In the case & = —1, the set nonunique(D,,,) is empty and we have no choices for the digits. We
will return to this case later. Then the length of the binary expansion of @ is at most w — 1. Let
(Ly—2 ... lo) and (uy—z ... ug) be the binary expansions of [ respectively .

Now we can verify n + [ mod 2! < @ by checking the label ¢ of the state (s,t) after reading
w — 1 digits from the binary expansion of (n,l,@)” in Automaton [2| If ¢ = 0, then the inequality
is true, otherwise it is false. Since the length of u is less than or equal to w — 1, there are no
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FIGURE 2. Automaton [2]to compare three integers a, b and ¢, accepts if a +b < c.

digits of @ left. Only a possible carry of the addition n + [ is left. This carry is the label s of
the current state (s,t). Therefore, we have checked n 4 I mod 2¥~! < @. To ensure that we read
exactly w— 1 digits, the transducer in Figure 3] has w — 1 copies of the four states of Automaton 2]
The transitions start in a state of the i-th copy and go to an appropriate state of the (i + 1)-th
copy while reading the i-th digit of the expansion.

In the if statement in line in Algorithm [2] we must also check the other condition m = 1
mod 2. Let (s,t),—1 be the current state at the end of the block of states. We know that
_ (n+l~)—(n2+wl~zlmod 2wt

m . Therefore, the least significant digit of m is simply the next digit of

the addition n + . Since there are no digits of the expansion of [ left, we only have to look at the
next digit € of n and consider the carry s. Thus we have m = s 4+ ¢ mod 2.

If the inequality of the if statement is satisfied, that is if ¢ = 0, then whatever digit ¢ we read
next, the transducer starts from a looping state again. If m is even, then the next written digit
is 0 anyway. If m is odd, we can change the digit in the representation (because it is non-unique)
and m becomes even too. We only have to remember the carry. If s =0 or s = 1 and we read
€ = 0, then there will be no carry propagation and we continue with state 0. If s = 1 and we read
€ = 1, then there is a carry propagation and we start at state 1.

If the inequality is not satisfied, that is if £ = 1, and m = s 4+ ¢ mod 2 is odd, then we have
to start with the w — 1 transitions of Automaton [2] immediately. If m is even however, then
the transducer starts from a looping state again. In both cases, we have to consider the carry
propagation as well.

At state s € {0,1}, we stay in state s as long as we read s. If we read 1 — s we start with the
w — 1 transitions of Automaton 2

In the case & = —1, the set nonunique(D,,,) is empty. Therefore, we have ¢ = 1 in each state,
and the initial state of Automaton 2 has to be (0,1). Let (uy_2...u9) = (0¥~1). Then we have
a transition from s to (s’,t’); with input label 1 — s if and only if there is a transition from (s, 1)
to (s',t') with input label (1 — s,lp,up)? in Automaton

To summarize, we have the following transitions in the transducer in Figure [3| for s, s', ¢, ¢/,
e€{0,1} and i € {1,...,w—2}:
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0[0

0[0 1[0

FIGURE 3. Transducer to compute the weight of the AJSF with digits in D; .
The transitions into and inside the block of states depend on [ and wu.

€l0 .
e s—sifs=¢

T
s (s',t')1 if s # € and (s,[a = —1]) (o), (s',t') is a transition in Automaton
diyui)T . e .
(s,t); <o, (8", t)ig1 if (s,1) (Bl (s',t') is a transition in Automaton
(8yt)w—1 O ift=0ore+s=0 mod 2, and s’ = [£$2]

(8, t)w—1 <, (s,t')1ift=1,e+s=1 mod 2 and (s,[a = —1])

transition in Automaton 21

(e,0,u0)”
Rl LN

(¢',t') is a

. . . . 11
We note that there is only one accessible state in the first row because the transitions 0 |—>

o[1 .
(s,t); and 1 o, (s,t)1 have both the same target state. This target state depends on [ and u.
Finally, we restrict the transducer to the states which are actually accessible from the initial
state. O

Now we can describe the last state of the path with input label (e, ...€), a binary expansion.
The following lemma can easily be proved by induction.

Lemma 3. Let k;, s;, t; fori > 0 and a;, f; fori > 1 be sequences with sg = 0, tg = 1. The states
(8i,ti)w—1 are the states in the last row of the path. The integers k; count how often we circle in
a looping state after the state (s;,t;)w—1. The integers f; are the positions of the nonzeros in the
AJSF and a; is the digit at position f;. For @ > 0, these sequences satisfy the following recursions
fori>1:

max{k € N | (ef,4ktw-2---€f,1w-1) = (0*711) or (0¥)} ifs; =t; =0,
L max{k € N | (ef,4htw—2---Ef;+w_1) = (1%) or (0F)} ifsi=1,t=0,
' max{k € N| (64,4 ktw-2---Ef,tw—1) = (0%)} ifs;=0,t =1,
max{k € N| (ef4ktw-2---Ef;1w-1) = (1%)} if s; =t; = 1,

fi=kot - +kioi+(—1)(w-1),

value(ef, tw_a.-.5,411) +1
Si = 2w_1 Y

t; = (value(af,i+w_2 coef1l) + l~) mod 2V~ > a} ,
a; = —1 + (value(ef,,,—1...€f,411) + [ mod 2k tw=1y,
Then we have

vaIue(efi+u,_2 c €fi+11) =a; + 2w7151(1 — [57 =1At; =0A Efitw—1 = O])
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O O
110
O O
O O
01
0[0 110

FIGURE 4. Transducer to compute the weight of the AJSF with digits in D_3 5.
The non-accessible states are gray.

There is a path from 0 to (s,t); with input label (e, ...€0) if and only if j=L— f;+1, fy <L <
fit+tw—2 and
| value(er ...ef,411) + value(l;_1 ... 1o)
s = 57 ,
t = [(value(er ...cp,411) + value(lj_1 ...lo)) mod 27/ > value(u;_1 ... up)] .
There is a path from 0 to s with input label (ep, ...eq) if and only if fi +w—1<L < firg —1
and s =s; or s =0,8, =1 and (e, ... 4w—1) = (0F~fi7wH2),
For @ = —1 the only difference ist; =1 and t = 1.
Example 3.1. For [ = —3 and u = 11, we have w = 4, [ = (011)3 and @ = u — [ — 2*~! = (110),.
The transducer can be seen in Figure [@ where all non-accessible states are gray.

We recall that a reset sequence of a transducer is a sequence (ny, ...ng) such that there exists
a state s with the following property: For all states t, if the transducer is in state ¢t and the next
input is (ng, ...no), then the transducer is in state s.

Now we generalize this transducer to arbitrary dimension d.

Theorem 5. There exists a transducer to compute the Hamming weight of the AJSF for the joint
binary expansion of a d-dimensional vector of integers as input. It has one state which is initial
and final, input and output alphabet {0,1} and less than 8%w states.

The word 0% is a reset sequence of this transducer. It leads to the initial and final state of the
transducer.

Proof. We construct a transducer calculating the weight of AJSF. In order to explain the structure
of this transducer, we first consider a provisional transducer implementing a simpler version of the
Algorithm (1| which omits the else branch in line see also the algorithm on page 306 of [7]. The
resulting provisional transducer is similar to the transducer in Figure

For every vector s € {0,1}%, there is a state. These states are called looping states. The vector
s signifies the carry at each coordinate. The state (0,...,0)7 is the initial state. Furthermore,
there is a block of states. The states inside the block have the labels (s,t); where s, t € {0,1}¢,
and 7 is the row in the block. The coordinates of s and ¢ have the same meaning as in the proof
of Theorem |4} that is: s is the carry of the addition n + [ and ¢ signifies whether the digit is in
nonunique(D; ,,) or not.

If s € {0,1}% is a looping state, then there is a loop with label s | 0 at this state. Because if we
read € = s, then we have € + s =0 mod 2, the output is 0 and the carry propagates to the next
step. If we read € # s, then we start with the w—1 transitions of Automaton [2]in Figure [2]in each
coordinate. These w — 1 transitions are processed independently for every coordinate. Therefore,
we need 4¢ states in each row and w — 1 rows to process exactly w — 1 transitions of Automaton
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After the last row of the block of states, we either go back to a looping state or again start
with the block of states immediately. Let (s,t),,—1 be the current state in the last row and ¢ the
next input digit. As in the 1-dimensional case we have m = ¢+ s mod 2. If for every coordinate
j, t; =1 implies that m; is even, then we have to process the if branch in line We write this
condition as the scalar product ¢ - (s + € mod 2) = 0. In this case, the next output digit will be 0
and we go on to a looping state s’ where the new carry is s’ = [23=].

If t- (s + e mod 2) = 0 does not hold, then we would have to process the else branch in line
But since we skip this part for now, we simply have to restart the transducer with the input m
in the case t - (s + & mod 2) > 0. We know that m is the original next input ¢ plus the carry s.

In this case, s # €, otherwise ¢ - (s + & mod 2) > 0 would be false. Therefore, there is a transition

1 . . . . s
S i) (s',t)1 in this transducer. This ensures that, when restarting the transducer with input m,

. . s 1 .
we immediately go on to the state (s’,¢');. Hence, we have a transition (s,t),—1 SN (s/,t)1 in

the provisional transducer.
Altogether, for s, s', t, ¢ € {0,1}4, i € {1,...w -2}, j € {1...d} and € € {0,1}¢, we have the
following transitions in this provisional transducer:

€l0 .
e s—sife=s

louo)T . .. .
o s ()il e £ s and Vi (5,00 = 1) 5 (5,8) s a transition in
Automaton [2

(Ejali7ui)T ( /

€l0 . .
(s,t); — (st )iy it V5 : (Sjvtj) Sjo

(8, )w—1 O it g (s+emod2)=0and s’ = [££=]

($,t)w—1 LN (s',¢)1 if t-(s+emod2) >0 and s LN (s',¢')1 is a transition in this

transducer.

t.) is a transition in Automaton

This transducer does the same as Algorithm [I| without the else branch in line In the case
% = —1 we are finished because in the else branch nothing is done. Otherwise we must consider
the else statement.

Let (s,t)y—1 be the current state in the last row and ¢ be the next input digit. To process
the else branch, ¢ - (s + e mod 2) > 0 must hold in the state (s,t),—1. Otherwise, we would
process the if branch. First let us examine one coordinate j. If {; = 1, nothing is done in the
else branch because the digit at this coordinate is unique. If ¢; = 0, we have to decide whether
m; =u+1 mod 2~ Here, m; mod 2°~! corresponds to the next w — 1 input digits plus the
carry s; from the current state (s,t),—1. So we just have to compare the input letters plus the
carry with the binary expansion of u+ 1 mod 2*~! or, equivalently, we compare m; — [ mod 2*~!
with & = v — I + 1 mod 2¥~!. If they are not the same at some point, then we just go on like we
did in the provisional transducer.

If they are the same, we have to process the else branch. There we would have taken m; — 1
as the next input of the algorithm instead of m;. Therefore we have to decide where we would be
in the provisional transducer, when starting in (s, t),,—1 and the input is the original input minus
1. This case only happens if originally the next nonzero digit is unique, but changing the current
digit ensures that the next nonzero digit is non-unique. Nevertheless, the next digit will not be 0,
since this is the case when the if branch is processed. Therefore we would start in (s,t),,—1 with
original input minus 1 and immediately go to the block of states again. Otherwise, the next digit
would be 0. Thus after w — 1 transitions, we are again in a state (s’,t),,—1 in the last row. Since
the next digit is non-unique, we have t; =0.

To determine the value of s;-, we have to decide whether there is a carry at position w —1 in the

addition of m; —1 and [. We have m; —1mod 21 = u+k2%~! for k € Z. Since 0 < u < 2% —1,
we have k € {0, —1}. Then the carry is

=1 d 2v=1 4+ [ mod 2v—1 [+ kw1
g = | =D mod 27+ Tmo Hw;_l J:Hk,
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because 21 <+ < 2. Therefore, we have

. o ifu>ow
S, =
1 ifu<2vl

As a result, the state (s’,t'),,—1 where we would be in the provisional transducer has
([u<2v71],0)

in the j-th coordinate.

To remember that we can change the j-th coordinate at the end of the block, we have to use
a second identical block {j}. Let @ be the first block, which already exists in the provisional
transducer. Let (s,t)¢ be a state in block C. At the end of block ), we go to block {j} if
t-(s+emod2) >0 andt; =0. Otherwise, we go to a looping state or to the block 0. If we find
out that m; Z u+1 mod 27! in block {j}, then we go back to the appropriate state in block 0.

At the end of block {j} in the state (s, t){j} we go to the same states as we would go from the

w—17
state with ([u < 2*~1],0)? _, in the j-th coordinate.

Up to now, we only considered one coordinate. Now we combine this approach for all coordi-
nates. Since for each coordinate, we have to remember whether we are allowed to change it or not,
we need one block for every subset of coordinates. Let block C' C {1,...,d} be the block where
we can change the coordinates in C. The states in block C are denoted by (s,#)¢. The block ) is
the block which already exists in the provisional transducer. The block {1, ..., d} is not accessible
since we need at least one unique coordinate and only non-unique coordinates can be changed.

If we are in block C' # () and we find out that not every coordinate j € C satisfies m; = u+ 1
mod 2“1, we go to the appropriate state in block ¢’ = C\ {j € {1,....d} | mj Z u+1
mod 2¥~1}. At the end of block C in state (s,t)$_;, we can change the coordinates in C' and
all other coordinates remain the same. Therefore, we go to the same states as we would go from
(5,1)% | where §; = [u <2¥7t], #; =0 for j € C and all other coordinates stay the same, that is
§j:Sj andsztj fOI'jQC

Let (vy_2...vp) be the binary expansion of . Further let s, s', t, ¢’ € {0,1}4, C, C' ¢
{1,....d}, 7 € {1...d}, i € {1,...,w — 2} and ¢ € {0,1}%. Then altogether there are the
following transitions in the final transducer:

€l0 .
e s—sifs=c¢

e[l . e[l . s . o
LN (s', )0 if s <, (s',t')1 is a transition in the provisional transducer

£|0 ro. |0 . .. . ..
(s,1)¢ o, (s, )50 if (s,1); =lo, (s',t');+1 is a transition in the provisional transducer

and C' =C\{j: sj+¢;+1; mod 2 # v}
(5,8)% | =10, o ift-(s+emod2)=0and s = |[5=|

[ ]
2
1 ’ 1
o (s5,0)? | N (s, if t- (s +emod2) >0, (5,t)w_1 LN (s',¢')1 is a transition in the
provisional transducer and C’ = {j : s; + ¢, + lo mod 2 = vy and t; = 0}
1 ’ ~ 1 ’
o (5,0)¢ LN (s', ") if C # P and (5,1)° | SN (s',#){" is a transition in this transducer
with §; = [u<2w_1],t~j:0f0rj€Cand§j:sj,t~j:tj for j & C
0 . x 0 . e . .
o (5,0)¢ SLNWETYe. # 0 and (5,8)° | % & is a transition in this transducer with

5; = [u<2w_1],fj:Oforj€Cand§jzsj,fj:tj for j & C.
Finally, we restrict the transducer to the states which are actually accessible from the initial
state.
Due to the construction of the transducer, the sequence 0** leads to the initial and final state
from any state.
It is possible to define similar sequences to those in Lemma[3] but since this requires more than
one page, we omit this here. O

Example 3.2. In Figure[5] there is a sketch of the transducer computing the weight of the AJSF
over D_s 3 in dimension 2. The labels of transitions are omitted in the figure and the transitions
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FIGURE 5. Transducer to compute the Hamming weight of the AJSF in dimen-
sion 2 over the digit set D_s 3.

going back at the end of a block or inside a block are gray. We have w = 3, @ = (01), I = (10)
and ¢ = (10).

{2} 01 0
has transitions to the same states as the state (10> since

For example, the state 01
11 5

2
w< 2wl

4. PROOF OF THEOREM [1I

This section contains the proof of Theorem (1| which is a generalization of Theorem 6 in [5].
With the transducer in Theorem [B] we can compute the asymptotic Hamming weight. Therefore,
we use the following lemma which can be proved by induction on L.

Lemma 4. Let Ay, Ay be matrices in C"*", H : N — C"*™ be any function and G : N — C"*"
be a function which satisfies the recurrence relation

G(2N +¢) = A.G(N)+cH(N)
for N >1 and e € {0,1}. Then

L L p—1 L
G (Z 6p2p> => &[4, | B D 27!
p=0 p=0 Jj=0

Jj=p+1
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where we additionally set H(0) = G(1).

We define f(mi,...,mq) := eith(mi,...ma) The matrices M., .. e, for e; € {0,1} are defined as
follows: The (7, k)—th entry of the matrix M., ., is €' if there is a transition from state j to
k with input label (g1,...,e4)7 and output label h. The entry is 0 if there is no transition from

state j to k with this input label. The ordering of states is considered to be fixed in such a way
that the initial state is the last state. Then we have

(1) foma, . oma) = 0" T M ..o, MG g0
p=0
for v = (0,...,0,1) and m; = Zﬁ:o m; p2P. The product describes all possible paths from any
state to any other state, using edges with input labels corresponding to the input (mq,...,mg).
The exponent of the entries of the matrix product is the sum of output labels on these paths.
Since we are interested in paths starting and ending in state (0,...,0)7, we multiply by v7 from
the left and v from the right. The factor Mg  is due to the reset sequence from Theorem 5| and
ensures that we stop at the final state.
We further define the following summatory functions

E(N)= > f(m,...,ma),

0<my,....,mg<N
F(N) = > M(my,...,mg),
0<my,....mqg<N
with

M(ml, e ,md) = H Mml,p’m}md,p.

In other words this last equation says that the function M (mq,...,mq) is 2-multiplicative (cf.
2]). By (1)), we have
E(N) =v"F(N)Mg" v

To write down a recursion formula for F'(N), we need the following matrices

BC’,D = Z Z Z Mel,...,ed

si:O,l ai:0 Eizl
igCUD ieC ieD

for disjoint C, D C {1,...,d}. The first index C of B¢ p is the set of coordinates where the digit
is 0. The second index D is the set of coordinates where the digit is 1. All other coordinates in

(C'U D) can be any digit. By construction, we have ||M,,  .,|li = 1, where || --- |1 denotes
the row sum norm of a matrix. We conclude that ||Bc pll1 < 2¢71€1=1PI. As a special matrix we
define A = By y.

Furthermore we define the functions

Z Z (my,...,mgq)

0<m;<N m;=N
igC ieC

for every set C' C {1,...,d}.
Then we have F(N) = Gy(N), and the functions satisfy the following recursion formulas due
to 2-multiplicativity

Ge(2N)= > Y > > M@miten,. .., 2ma+eq)

£;=0,1€;=02m;+e;<2N 2m;+e;=2N
igC ieC igC i€C

= BcoGo(N),

Go(2N +1) = ZZ Z Z M(2my +¢1,...,2mq + 4)

e;=0,1¢;=1 2m1+6 <2N+12m;+e;=2N+1
igC ieC i¢C e



14 CLEMENS HEUBERGER AND SARA KROPF

= Z z ZZMel,...,Ed Z Z M(ma,...,mq)

DCCe ,=0,1 £;=0 ;=1 mi<N m;=N
i¢CUD i€D ieC igCUD i€CUD
= Y BpcGeun(N).
DCCe
From this recursion, we can determine G¢(N) inductively because all functions G required
for computing G¢ have C' D C. Therefore, we have the following recursion formula for F(N) =
Gp(N)
F(2N +¢)=AF(N)+eH(N)
for N >1,e€{0,1} and
H(N)= Y BpyGp(N).
0#£DC{1,...,d}
If we define H(0) = Gy(1), we can use Lemma [4] and get

L L L
(2) F (Z sp2p> = ZEPAPH Z g;207 Pt
p=0 p=0 Jj=p+1
Here, H(N) is considered to be a known function because it is a sum of functions G¢(N), which
are recursively known by Lemma [

From the definition of Go(N), we can derive the growth rates of the functions Go(N) and
H(N). We have |Go(N)||; = O(NIC) and ||[H(N)||; = O(N41).

Next, we investigate the eigenvalues of the matrix A. We first consider the case t = 0. In this
case, A is the adjacency matrix of the underlying graph of the transducer in Theorem[5] Therefore,
it has an eigenvalue 27 with eigenvector (1,...,1)7. By the theorem of Perron-Frobenius, there
is a unique dominant eigenvalue 1 (0) of A which is easily seen to be primitive as every state is
reachable from any other state in exactly 4w steps. As ||Al|; < 2¢ and the largest eigenvalue is
always at most || A1, 1£(0) = 2¢ is the largest eigenvalue. We denote the modulus of the second
largest eigenvalue by £(0). Since eigenvalues are continuous, for ¢ in a suitable neighborhood of 0,
A has a unique dominant eigenvalue u(t) and the modulus B(¢) of the second largest eigenvalue
fulfills B(t) < |wu(t)]-

Now we want to split up into two parts, one for the dominating eigenvalue and one for the re-
maining eigenvalues. Therefore, let J = T~1AT be a Jordan decomposition of A where .J has been
sorted such that it has p(t) in the upper left corner. We define A := T'diag(pu(t)~%,0,...,0)T*
and R := T(J — diag(u(t),0,...,0))T~t. Then AP = p“AL=P + RP holds for p < L. Further, we
define

[e’s} p—1
(3) A(zo, 21, ..) :prApH Zajﬂp_l_j
p=0 §=0

L L L
R (Z sp2P> =Y eRPH | > 277!
p=0 p=0

Jj=p+1
The function A is well defined on the infinite product space {0, 1} because it is dominated by a
geometric series. We extend A to a function on [1,2) by setting A (Z;io xp2_p> = A(zo, 21, .. .)
with the standard binary expansion and choosing the representation ending on 0“ in the case of
ambiguity.
Then we have

L
F (Z 5p2p> =ulAer,en_1,...,20,0°) + R(eg, . .., €0)
p=0

and

E(N) = u(t)°%2N¥(log, N, t) + R(N, t)
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with ¥(z,t) = u(t)*{z}vTA(ﬁx})Mgffwov and R(N,t) = v" R(N)Mg" yv. Furthermore, there is
a 0 € (0,1] such that log, 5(t) < d — § in a suitable neighborhood of 0. Then we have

|R(N, t)] = O(N*°).
So we have
(4) E(N) — Nd+a1t+a2t2+o(t3)\lf(log2 N, t) + O(Nd—é)

with a; and as depending on the Taylor expansion of log, u(t) at t = 0. If we insert ¢ = 0 in (4)),
we obtain 1y = ¥(logy, N,0) =1+ O (N79).

The function ¥(z,t) is periodic in z with period 1 and is well defined for all z € R*. To prove
continuity in z, we first note that continuity for € [0,1) with = log, ¥ where y is not a dyadic
rational follows from . To prove it for x = logy y with y = Z:O €p27P a dyadic rational with
er, = 1, we observe that the two one-sided limits exist due to (3). Next, we prove that they are

the same. Therefore, we look at the two sequences Nj, = y2-+* and N, = 4281+ — 1. Then

lim 2{10g2 Ne} = (EQ £ .. .€L_110w) and lim 2{10g2 Ni} = (60 W E1.. .EL_101“’).
k—o0 k—o0

If we insert these two sequences in , we get
O(N{™") = E(Ny) — E(Ni) = N{¥(logy Ny, t) — N W(log, N, t) + O(N{™°),

and hence limy_, o U({logy Ny}, t) = limy_, o U ({log, Nk},t). Therefore, ¥(x,t) is continuous in
x.

In ¢, U(z,t) is also continuous because the eigenvalues of a matrix are continuous. Furthermore,
the function ¥(z,t) is arbitrarily often differentiable in ¢ because it is dominated by a geometric
series. By the same argument as above, these derivatives are continuous in x.

The first and second derivative of F(N) with respect to ¢ at t = 0 imply that the expected
value of the Hamming weight is

1 _
(5) Na Z h(mi,...,mq) = epu.qlogy N 4+ ¥ (logy N) + O(N°log N)

m; <N

with ej 4.4 = —iaq log2 and U, (logy, N) = —i%lll(logz N, t)|t=0, and

1
Ni Z h%(my,...,maq) = viualogy N + eiu,d logs N + 2¢;.4.410gy N (logy N)

m; <N
+ Uy(logy N) + O(N°log® N)
with vy, = —2azlog2 and Us(log, N) = —g—;\lf(logQ N, t)|t=0. From that, we calculate the

variance which is

2
% Z h*(my,...,mq) — (;vd Z h(ml,...,md)> —

m;<N m; <N
U,u,qloge N — \Iff(log;2 N) + Uy(logy, N) + O(N*‘s 1og2 N).

We first compute the characteristic function gy (t) of the random variable

h(mai,...,mq) — ey aloge N

V Vlu,d 10g2 N ’

7 =
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which is

gN(t) — i Z eit Vi u,dlogz N

3 t
=e 2z 1+(9(>)1/} logg N, ————
( log®/2 N 27 Viualogy N
n %R N, t e—it \;%mogz N'
N v Ulu,d 10g2 N

Since gy (t) is a characteristic function, we have 1 = vy + ro for ro = ﬁR(N, 0) and ¥y =
U(log, N,0). We know that ﬁR(N, t) = O(N7%). Next, we can estimate the difference from

~ 2
gn(t) to the characteristic function f(t) = e~ = of the normal distribution with mean 0 and

variance 1, which is
5 (1+0(—L )} (w+o(———
log®/2 N 0 Vlog N

lgn (1) = f()] =
i Ui fiogy W) = (v + ro)e

1
+ —R

4
N, ————— | exp (—it
N ( V0lu.alog N) VUiud

-0 ()
for t = o(y/Iog N).

Therefore, the Berry-Esseen inequality (cf. [I1]) implies

xr
P UGGE "md)iel’u’dlog2N<x :—1 / eyjdy+0(4 ! >
Ui u,dlogy N V2T J o Vlog N
For a specific digit set and dimension, we can compute the constants e; ,, 4 and vy, 4 explicitly.

Example 4.1. We consider the digit set D_3 3 in dimension 2. See Example and Figure
for the transducer. The adjacency matrix A of the underlying graph of this transducer is given in
Table [1, where z = e,

The characteristic polynomial of A is

—(z =1z (2% — 22) (2 — 2 — 22 — 22’)2 (2% — 2* — T2z — 20272 + 6z2% — 2427) .
At t = 0, the dominating eigenvalue (0) = 4 is a root of the fourth factor. Therefore the Taylor
expansion of y(t) around t = 0 is

128i 673216

89 2114907

Hence the expected value of the Hamming weight is
32
89

p(t) =4+ 2+ 0(t?).

logy N + O(1)
and the variance is 63900
——log, N 1).

2112907 082V + O

In order to determine the constants e; 4 and v;,,q giving mean and variance in general, we
rephrase the results of the “full-block-length” analysis in [7] in a probability model which is easily
compared with our main results.

Lemma 5. Let k > w be a positive integer. Let Wk be the Hamming weight of the AJSF of a
random vector m = (my,...,mq)" with equidistribution of all vectors m = (m1,...,mq)T with
0<m; < 2k,
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vonwwoNWNewNorwnw foococooo

2z
2z
3z

TABLE 1. Adjacency matrix of the transducer in Example

N ON ODDODDDDDDODDODON OO0 OO
(=R I eNeoNeNeE e Ne e NoNoeNoeNoNoNoNo ool
O OO OO ON OO N OO N OO oo o oo
DO OODON ODOODDODNW DO OoON Do OO
O OO OO O OO OO0 oo oo ocoocoo -
OO DD DD DD DD IDODDODDODDODDODOODO OO
DO DD DD DD DDDODDDIDODDODOODDODDODDODO = O =
S OO ODDODDODDODODDODODOODOO OO - ==
OO OO OO OO OO0 oo oo oo ocococooo o
[eNeoNoNoNoloNoNoNeoleoBeoloBoBoRoNoNoNael =
[eNeoNeoNoNoloNoNeoNeNeNeoNoNoNoReoNae el S ==
O OO OO OO o0 oo oo o oo oo+ OoOo0o
(>l el en i el en B o B o B en B en B en B en B es B es B es M e B e Bl e B e B an)
DO DD DD DDDDDODDDOODOOODOOOO OO HOOO
SO DD DODDDDDDODIDODDOD OO R OO OO
O OO OO OO OO o0 oo oo oo+, OoOO0oo
OO HFOOHHOFRMFEFOFEFOODODODOoOOoO oo
OO RO PO FEF P OOFROHFEFOODOOOoOOo
O OO RO R OOREFHEFMFEFEPODODODODOOO
O OOk R MHEFPFPFOOOOFRRFMFEFRFEOOOOO

o
o
o
o
o
o
o
o
o
o
o
o
o

Then . .
EWy, = eju.ak + O1) and VW, = vy gk + O(VE)

for the constants given in Theorem [1]

Proof. For j < k, we denote the j-th digit of the AJSF of a random vector m = (my,...,mq)" by
)?j, where we assume equidistribution of all vectors m = (myq,...,mg)T with 0 < m; < 2%,

In [7, § 6.2], the random variables X; denoting the j-th digit of a random AJSF has been
considered, where the probability measure was defined to be the image of the Haar measure on
the space of d-tuples of 2-adic integers under the AJSF, i.e., equidistribution on all residue classes
modulo 2¢ for all [ has been assumed. Furthermore, W; was defined to be the weight of the first
j digits. B

From Algorithm |1} it is clear that X, only depends on m modulo 27, This implies that
X ; and X are identically distributed for j < k — w. Therefore Wj,_,, and Wk,w are identically

distributed, too. Furthermore, we always have |Wk - Wk_w| <w.
By [7, Theorem 6.7], we have

EWj—w = EWg_w = ek — w) + O(1) and VWy_y = VIWi_y = v.0.a(k — w) + O(1).
We conclude that
EWy = EWg_y + O(1) = EWj_y + O(1) = €140k + O(1),
VWi = ViWi—w + V(Wi = Wi—w) + 2 Cov(Wi—w, Wi — Wi—w) = VWi_y + O(VE),

where the Cauchy-Schwarz inequality has been used in the form

COV(kaw, Wk — kaw) S \/Vwkwa(Wk — kaw).
O

In the next lemma, we prove that the function ¥y (z) is non-differentiable at any real number in
the 1-dimensional case. The proof uses the method presented by Tenenbaum [10], see also Grabner
and Thuswaldner [4].
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Lemma 6. Let d = 1. Then the function ¥ (z) in Theorem is nowhere differentiable.

Proof. Let g(N) = L2’1*4U’Nﬁj be a positive integer valued function with ¢ € Z and ¢ > % - 1.
We have g(N) = o(N) and N'=%log N = o(g(N)).

Assume ¥, is differentiable at z € [0,1). Let 2* = 372,277 be the standard binary digit
expansion choosing the representation ending on 0“ in the case of ambiguity. Further, let xx, yx
and Ny, be such that 27 = ZI;:() £,27P, Ny, = 2kt D42k ¢ 7 and 2k(etD+ue = Ny + g(Ny). Then
we have

x—xp = 0027F),

9(Nk) 1 g(Ny) g(Ny)?
—x =1 1 = 0
Yk — Tk ogg( + Nk) log2 Ny + Nz )
lim y, = x.
k—o0

Because of the choice of g(N), we have
g(Nk) < 2(:1@—471)7

(%)

Ny,

We have h(2PT4“n + m) = h(n) + h(m) for p > 0 and m < 2P because 0% is a reset sequence
leading to the initial state (see Theorem . Due to and the periodicity and continuity of ¥y,
we have

(6)

Q

=0(27%).

> h(n) = g(NWh(Ne) + > h(n)

N <n<Np+g(Ng) n<g(Ny)

— 9NN + 9N 08 9(N0) + g (V001 ( 2 ) + olg()

On the other hand, we have

(7)

> h(n) = e1,u,1(Nk + g(Nk)) loga (Ni, + g(Nk)) + (Ni + g(Ni)) ¥1(logy (Ni, + g(Nk)))
Ni<n<N+g(Ng)

— e1.u.1 Ny logy Ny — Ny Wy (log, Ny) + O(N} =% log Ny)
= e1u1 Ni(yr — 1) + Ne(P1(yr) — Yi(2x)) + e1,u,19(Ni) (k(c + 1) + y)
+ g(Nk)V1(yx) + o(g(Nk)).-
If we divide by g(Ny) in (6) and (7), then we obtain
Ny Ny

) = epu,1(Yr — xk)g(Nk) + 9(Vo) (V1 (yx) — Vi(zx))
+erui(k(c+1) +ye) + Pi(yr) +o(1).

Now we can write the difference of the ¥; on the right-hand side in terms of the derivative

Uy (yr) — Wilzy) = Wi (2) (g — 2x) + o(z — zx) + oJyr, — ),

h(N;, w1l N, N4
( k)—i—ez, 1 08y g(Ng) + 1(c+133

and we get

terun(k+ ——) + Wy (z) + o(1).

c €lu U (z
)= () S e

T
c+1 log 2 log 2
Next, we take the difference of two subsequent terms

(8) h(Ni+41) = h(Ng) = €ru,1 + 0(1),

where the left-hand side is an integer. We have e; ,,1 € Z because 0 < e;,,1 = < 1.

1
w—1+A
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Therefore the right-hand side of is not an integer for k large enough. This contradicts our
assumption that ¥, is differentiable in . O

5. ASYMPTOTIC DISTRIBUTION OF THE w-NAF
In this section, we specialize the result of Theorem [I] to the w-NAF.

Theorem 6. The weight h(n) of the w-NAF of the integer n with equidistribution on {n € Z |
0 <n < N} is asymptotically normally distributed. There exists a § > 0 such that the mean is

T los N+ ¥, (log, N) + O(N~°log N)

and the variance is
2
———logy N — ¥i(logy N) + ¥y (logy N) + O(N " log” N),
(w+1)
where ¥y and Vo are continuous, 1-periodic functions on R. If w is large enough, then § =

log, (1 + %) In particular, we have

h(n) — <2 1T e 1
Pl ————tl <y :—/ e_2dy+(’)<)
\ e log2 N V2m J oo Vlog N
for all x € R.
This follows from the following Lemma, [7] and Theorem

Lemma 7. The characteristic polynomial of the matrix A of the transducer in Figure (1| is (x —
1)(zv — av=t — 2w=Llef) The largest eigenvalue u(t) is unique around t = 0 and p(0) = 2.
Furthermore, for large enough w and t = 0, there is exactly one simple eigenvalue in Ty = {x €
C:|z| > ﬁ, largw — 2ET| < T} for each k = 0,...,w — 1. Additionally there is the obvious
etgenvalue x = 1. The eigenvalues with the second largest absolute value are in Ty and Ty_1. For
each eigenvalue at t = 0, an expansion in % can be computed with arbitrarily small error term.

Proof. The characteristic polynomial of A is obtained by Laplace expansion. With z = %, the
interesting factor of the characteristic polynomial is transformed into 2% + z —2 = 0. The smallest

root in absolute value of this polynomial is 1 because for |z| < 1 we have
|29+ 2| = |2] - [z 4+ 1] < 2J2] < 2.
We use the fixed point equation fi(z) = z with

2nik

1 2mik
fe(z)=(2—2)we

for k =0,...,w — 1. Here, we take the main branch of the w-th root. After the substitution, we

have T, ={z € C: |z] <1+ %, |arg z — 2]“7“| < 5}, which corresponds to T mod w- For w large

enough and |z| <1+ 2, we have

1 1
! — 2_ E_l
) = =2

1 3\ ! 1
(1-2) <
w w w—3

| £ ()] < | fr(2) = fre(D)] + | fe(1)]

IN

and

1 24 3 3
=1 +1< —2+1<1+—.
3 w—3 w

<

Furthermore, we have |arg fi(z) — 2’“7”| < 5. Thus, f1(Ts) C Ty, and f;, is a contraction on ij
with Lipschitz constant (w — 3)~! < 1. Therefore, there exists a unique fixed point of fj in T}
for each k. Because T} for £k = 0,...,w — 1 only intersect in 0, which is certainly no root of the
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polynomial, we found w distinct roots of the polynomial z* +z —2. Thus, we found all roots of this
polynomial. We only have to investigate 0 < k < % because the coefficients of the polynomial are
real. Let z € T}, be the fixed point of fz. For p = exp(2X), we have |z — p*| = O(Z). Therefore,
z=pF+0(1).

For k < w® with a fixed a € (3,1), we have

: 2
z—f(z)—1+27mk+(9(k2>.
w w

Iterating, we successively get

2 222 27 3
i1+ mik  2mk? 7T’Lk‘+0<ki) and

w w2 w2 w3
42k k3

ol =14 25 +0(4)-
w w

Therefore, for large w, only the fixed points for k = w—1,0,1 are in the disk {z € C : |z| < 1—|—12)—7§2

For k > w®, we have

1
2k 2 1
12— p"| = (5 —4cos (W>> > (5 —4cos (2w 7)) 2
w
=1 +47T2w2a72 4 O(w4a74),
2= 2 > |2 = p*| = |2 = p*|
=1 _|_47T2w2a—2 4 O(w4a—4 +w_1),

1
|fx(2)] = exp <w log |2 — z|) > 1+ 472w 3 + O(w?™ ™5 +w™?).

Thus for & > w®, the fixed point of f; is not in the disk {z € C: |z| <1+ 10”2} for large w. O

w3
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