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Abstrat. A univariate polynomial f over a �eld is deomposable if it is

the omposition f = g ◦h of two polynomials g and h whose degree is at

least 2. We determine an approximation to the number of deomposables

over a �nite �eld. The tame ase, where the �eld harateristi p does not

divide the degree n of f , is reasonably well understood, and we obtain

exponentially dereasing relative error bounds. The wild ase, where p

divides n, is more hallenging and our error bounds are weaker.

Keywords. omputer algebra, polynomial deomposition, multivariate

polynomials, �nite �elds, ombinatoris on polynomials

Subjet lassi�ation. AMS lassi�ation: 68W30, 11T06, 12E10.

1. Introdution

It is intuitively lear that the deomposable polynomials form a small minority

among all polynomials (univariate over a �eld). The goal in this work is to give

a quantitative version of this intuition.

Our question has two faets: in the geometri view, we want to determine

the dimension of the algebrai set of deomposable polynomials, say over an

algebraially losed �eld. The ombinatorial task is to approximate the number

of deomposables over a �nite �eld, together with a good relative error bound.

The �rst task is easy. For the seond task, one readily obtains an upper

bound. The hallenge then is to �nd an essentially mathing lower bound.

Von zur Gathen (1990a,b) introdued the notion of tame for the ase where the

�eld harateristi does not divide the degree of the left omponent, and wild for

the omplementary ase. (Shinzel (2000), � 1.5, uses tame in a di�erent sense.)

Algorithmially, the tame ase is well understood sine the breakthrough result

of Kozen & Landau (1986); see also von zur Gathen, Kozen & Landau (1987);

Kozen & Landau (1989); Kozen, Landau & Zippel (1996); Gutierrez & Sevilla
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(2006), and the survey artiles of von zur Gathen (2002) and Gutierrez & Kozen

(2003) with further referenes. This leads to good estimates of the number of

deomposable polynomials, provided that we an also apply a entral tool in

this area, namely Ritt's Seond Theorem. This provision is satis�ed if the

square of the smallest prime divisor ℓ of the degree n does not divide n.

In the wild ase, the methods from the literature do not yield a satisfatory

lower bound. We present in Setion 3 a deomposition �algorithm� whih fails

on some inputs but works on su�iently many ones. The algorithm is a en-

terpiee of this paper and yields lower bounds on the number of deomposable

polynomials in the wild ase.

An important tool for estimating the number of �ollisions�, where di�erent

pairs of omponents yield the same omposition, is Ritt's Seond Theorem. Ritt

worked with F = C and used analyti methods. Subsequently, his approah was

replaed by algebrai methods, in the work of Levi (1942) and Dorey &Whaples

(1974), and Shinzel (1982) presented an elementary but long and involved

argument. Thus Ritt's Seond Theorem was also shown to hold in positive

harateristi p. The original versions of this required p > deg(g ◦ h). Zannier
(1993) redued this to the milder and more natural requirement g′(g∗)′ 6= 0.
His proof works over an algebrai losed �eld, and Shinzel's 2000 monograph

adapts it to �nite �elds. In Setion 4, we provide a preise quantitative version

of this Theorem, by determining exatly the number of suh ollisions in the

tame ase, assuming that p ∤ n/ℓ. This is based on a unique normal form for

the polynomials ourring in the Theorem. Furthermore, we give (less preise)

substitutes in those ases where the Theorem is not appliable.

A uniqueness property in Ritt's Seond Theorem is not obvious, and indeed

Beardon & Ng (2000) are puzzled by its absene. On their page 128, they write,

translated to the present notation, �Now these rules are a little less transparent,

and a little less independent, than may appear at �rst sight. First, we note

that [the First Case℄, whih is stated in its onventional form, is rather loosely

de�ned, for the k and w are not uniquely determined by the form xkw(xℓ);
for instane, if w(0) = 0, we an equally well write this expression in the

form xk+ℓw̃(xℓ), where w̃ = w/x. Next, T2(x, 1) = x2 − 2 di�ers by a linear

omponent from x2
, so that in some irumstanes it is possible to apply [the

Seond Case℄ to T2(x, 1), then [a linear omposition℄, and then (on what is

essentially the same fator) [the Seond Case℄. These observations perhaps

show why it is di�ult to use Ritt's result.� These well-motivated onerns are

settled by the result of the present paper.

Setion 5 presents the resulting estimates in the tame ase. Setion 6 puts

together all our bounds in the general ase, resulting in a veritable jungle of
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ase distintions. It is not lear whether this is the nature of the problem

or an artifat of our approah. The following is proved at the very end of

the paper and provides a préis of our results�by neessity less preise than

the individual bounds, in partiular when q ≤ 4 or n is (lose to) ℓ2. The

basi statement is that αn is an approximation to the number of deomposable

polynomials of degree n, with relative error bounds of varying quality.

Main Theorem. Let Fq be a �nite �eld with q elements and harateristi p,
let ℓ be the smallest prime divisor of the omposite integer n ≥ 2, Dn the set

of deomposable polynomials in Fq[x] of degree n, and

αn =

{
2qℓ+n/ℓ(1− q−1) if n 6= ℓ2,

q2ℓ(1− q−1) if n = ℓ2.

Then the following hold.

(i) q2
√
n/2 ≤ αn < 2qn/2+2.

(ii) αn/2 ≤ #Dn ≤ αn(1 + q−n/3ℓ2) < 2αn < 4qn/2+2
.

(iii) If n 6= p2 and q > 5, then #Dn ≥ (3− 2q−1)αn/4 ≥ q2
√
n/2.

(iv) Unless p = ℓ and p divides n exatly twie, we have #Dn ≥ αn(1−2q−1).

(v) If p ∤ n, then |#Dn − αn| ≤ αn · q−n/3ℓ2
.

The upper and lower bounds in (ii) and (v) di�er by a fator of 1 + ǫ, with
ǫ exponentially dereasing in the input size n log q, in the tame ase and for

growing n/3ℓ2. When the �eld harateristi is the smallest prime divisor of n
and divides n exatly twie, then we have a fator of about 2, provided that

the ondition in (iii) is satis�ed. In all other ases, the fator is 1+O(q−1) over
Fq. It remains a hallenge whether these gaps an be redued.

Giesbreht (1988) was the �rst to onsider our ounting problem. He showed

that the deomposable polynomials form an exponentially small fration of all

univariate polynomials. My interest, dating bak to the supervision of this

thesis, was rekindled by a study of similar (but multivariate) ounting problems

(von zur Gathen 2008b) and during a visit to Pierre Dèbes' group at Lille, where

I reeived a preliminary version of Bodin, Dèbes & Najib (2009). Multivariate

deomposable polynomials are ounted in von zur Gathen (2008a).

We use the methods from von zur Gathen (2008b), where the orrespond-

ing ounting task was solved for reduible, squareful, relatively irreduible,
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and singular bivariate polynomials. Von zur Gathen, Viola & Ziegler (2009)

extends those results to multivariate polynomials. Reently, Zieve & Müller

(2008) found interesting haraterizations of omplete deompositions, where

all omponents are indeomposable.

2. Deompositions

A nonzero polynomial f ∈ F [x] over a �eld F is moni if its leading oe�ient

l(f) equals 1. We all f original if its graph ontains the origin, that is,

f(0) = 0.

Definition 2.1. For g, h ∈ F [x],

f = g ◦ h = g(h) ∈ F [x]

is their omposition. If deg g, deg h ≥ 2, then (g, h) is a deomposition of f . A
polynomial f ∈ F [x] is deomposable if there exist suh g and h, otherwise f is

indeomposable. The deomposition (g, h) is normal if h is moni and original.

Remark 2.2. Multipliation by a unit or addition of a onstant does not

hange deomposability, sine

f = g ◦ h ⇐⇒ af + b = (ag + b) ◦ h

for all f , g, h as above and a, b ∈ F with a 6= 0. In other words, the set of

deomposable polynomials is invariant under this ation of F× × F on F [x].
Furthermore, any deomposition (g, h) an be normalized by this ation, by

taking a = l(h)−1 ∈ F×
, b = −a · h(0) ∈ F , g∗ = g((x − b)a−1) ∈ F [x], and

h∗ = ah+ b. Then g ◦ h = g∗ ◦ h∗
and (g∗, h∗) is normal.

We �x some notation for the remainder of this paper. For n ≥ 0, we write

Pn = {f ∈ F [x] : deg f ≤ n}

for the vetor spae of polynomials of degree at most n, of dimension n + 1.
Furthermore, we onsider the subsets

P=
n = {f ∈ Pn : deg f = n},
P 0
n = {f ∈ P=

n : f moni and original}.

Over an in�nite �eld, the �rst of these is the Zariski-open subset Pn rPn−1

of Pn, and thus irreduible, taking P−1 = {0}. The seond one is obtained by
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further imposing one equation and working modulo multipliation by units, so

that

dimP=
n = n + 1,

dimP 0
n = n− 1,

with P 0
0 = ∅. For any divisor e of n, we have the normal omposition map

γn,e :
P=
e × P 0

n/e −→ P=
n ,

(g, h) 7−→ g ◦ h,

orresponding to De�nition 2.1, and set

(2.3) Dn,e = imγn,e.

The set Dn of all deomposable polynomials in P=
n satis�es

(2.4) Dn =
⋃

e|n
1<e<n

Dn,e.

In partiular, Dn = ∅ if n is prime. We also let In = P=
n r Dn be the set of

indeomposable polynomials. Over a �nite �eld Fq with q elements, we have

#P=
n = qn+1(1− q−1),

#P 0
n = qn−1,

#Dn,e ≤ qe+n/e(1− q−1).

Remark 2.5. By Remark 2.2, over an algebraially losed �eld, the odimen-

sion of Dn in P=
n equals that of Dn ∩ P 0

n in P 0
n . The same holds for In, and

over a �nite �eld for the orresponding frations:

#Dn

#P=
n

=
#(Dn ∩ P 0

n)

#P 0
n

.
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Example 2.6. We look at normal deompositions (g, h) of univariate quarti
polynomials f , so that n = 4. By Remark 2.2, we may assume f ∈ P 0

4 , and

then also g is moni with onstant oe�ient 0. Thus the general ase is

(x2 + ax) ◦ (x2 + bx) = x4 + ux3 + vx2 + wx ∈ F [x],

with a, b, u, v, w ∈ F . We �nd that with a = 2w/u and b = u/2 (assuming

2u 6= 0), the ubi and linear oe�ients math, and the whole deomposition

does if and only if

u3 − 4uv + 8w = 0.

This is a de�ning equation for the hypersurfae of deomposable polynomials

in P 0
4 (if harF 6= 2). Translating bak to P=

4 , we have

dimD4 = 4 < 5 = dimP=
4 .

This example is also in Barton & Zippel (1985, 1976). ♦

3. Equal-degree ollisions

A deomposition (g, h) of f = g ◦ h over a �eld of harateristi p is alled

tame if p ∤ deg g, and wild otherwise, in analogy with rami�ation indies. The

polynomial f itself is tame if p ∤ deg f , and wild otherwise. The tame ase is

well understood, both theoretially and algorithmially. The wild ase is more

di�ult and less well understood; there are polynomials with superpolynomially

many �inequivalent� deompositions (Giesbreht 1988).

For u, v ∈ F [x] and j ∈ N, we write

u = v +O(xj)

if deg(u − v) ≤ j. We start with two fats from the literature onerning the

injetivity of the omposition map. When p | n, a polynomial f = xn + fix
i +

O(xi−1) with fi 6= 0 is alled simple if p ∤ i or i < n− p.

Fat 3.1. Let F be a �eld of harateristi p, and e a divisor of n ≥ 2.

(i) If p does not divide e, then γn,e is injetive, and

#Dn,e = qe+n/e(1− q−1).

(ii) If p divides n exatly d times and f ∈ F [x] is simple, then f has at most

s < 2pd ≤ 2n normal deompositions, where s = (pd+1 − 1)/(p − 1) =
1 + p+ · · ·+ pd.
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Proof. The uniqueness in (i) is well-known, see e.g., von zur Gathen (1990a)

and the referenes therein. (ii) follows from von zur Gathen (1990b), where the

above notion of a simple polynomial is de�ned, and (the proof of) Corollary

3.6 of that paper shows that there are at most s suh deompositions of f . �

The paper ited for (ii) also gives an algorithm to deide deomposability and,

in that ase, to ompute all suh deompositions. This only applies to �sim-

ple� polynomials, and no nontrivial general upper bound on the number of

deompositions seems to be known.

Algorithm 3.14 below uses a similar approah. On the one hand, it applies

to more restrited inputs. On the other hand, it is faster (roughly, n2
vs. n4

),

more transparent and hene easier to analyze, and yields a lower bound on the

number of deomposables at �xed omponent degrees.

In Setion 5, we �nd an upper bound αn on #Dn, up to some small relative

error. When the exat size of the error term is not a onern, then this is quite

easy. Furthermore, Fat 3.1 immediately yields a lower bound of αn/2 if p is

not the smallest prime divisor ℓ of n, and of about αn/4n in general, sine

�most� polynomials are simple.

Our goal in this paper is to improve these estimates. For this purpose, we

have to address the uniqueness (or lak thereof) of normal ompositions

(3.2) g ◦ h = g∗ ◦ h∗

in two situations. We all {(g, h), (g∗, h∗)} satisfying (3.2) with h 6= h∗
an equal-

degree ollision if deg g = deg g∗ (and hene deg h = deg h∗
), and a distint-

degree ollision if deg g = deg h∗ 6= deg h (and hene deg h = deg g∗). The

present setion deals with equal-degree ollisions, and Setion 4 with distint-

degree ollisions.

By Fat 3.1(i), there are no equal-degree ollisions when p ∤ deg g. In the

more interesting ase p | deg g, ollisions are well-known to exist; Example 3.46

exhibits all ollisions over F3 at degree 9. Our goal, then, is to show that there

are few of them, so that the deomposable polynomials are still numerous.

Algorithm 3.14 provides a onstrutive proof of this. For many, but not all,

(g, h) it reonstruts (g, h) from g ◦ h. To quantify the bene�t provided by the

algorithm, we rely on a result by Antonia Bluher (2004).

Distint-degree ollisions are lassially taken are of by Ritt's Seond The-

orem. Some versions put a restrition on p that would make our task di�ult,

but Umberto Zannier (1993) has ut this restrition down to the bare minimum.

The additional ommon restrition that gcd(deg g, deg h) = 1 has essentially

been removed by Tortrat (1988), but only if p does not divide the degree. If,
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in addition, the omposition is wild, then a look at derivatives provides a rea-

sonable bound. It is useful to single out a speial ase of wild ompositions.

Definition 3.3. We all Frobenius omposition any f ∈ F [xp], sine then

f = xp ◦ h∗
for some h∗ ∈ P=

n/p, and any deomposition (g, h) of f = g ◦ h is a

Frobenius deomposition. A Frobenius ollision is the following example of a

ollision (3.2). For any integer j, we denote by ϕj : F −→ F the jth power of

the Frobenius automorphism over a �eld F of harateristi p, with ϕj(a) = ap
j

for all a ∈ F , and extend it to an Fp-linear isomorphism ϕj : F [x] −→ F [x] with
ϕj(x) = x. Then if h ∈ F [x], we have

(3.4) xpj ◦ h = ϕj(h) ◦ xpj .

Thus any Frobenius omposition exept xp2
is the result of a ollision. Over

F = Fq, there are qp
j−1 − 1 many h ∈ P 0

pj with h 6= xpj
and for m 6= pj , this

produes qm−1
ollisions with h ∈ P 0

m. By omposing with a linear funtion,

we obtain qp
j+1(1− q−1)(1− q−pj+1) and qm+1(1− q−1) Frobenius ollisions for

m = pj and m 6= pj, respetively. This example is noted in Shinzel (1982),

Setion I.5, page 39.

The Frobenius ompositions from De�nition 3.3 are easily desribed and

ounted. It is useful to separate them from the others. If p | n and ℓ is a

proper divisor of n, we set

Dϕ
n = Dn ∩ F [xp],

D+
n = Dn rDϕ

n ,

D+
n,ℓ = Dn,ℓ ∩D+

n ,

(3.5)

so that Dϕ
n omprises exatly the Frobenius ompositions of degree n.

Von zur Gathen (1990b) presents an algorithm for ertain �wild� deompo-

sitions f = g ◦ h with

deg f = n = k ·m = deg g · deg h

and p | k. It �rst makes oe�ient omparisons to ompute h, and then a Taylor
expansion to �nd g. We now take a simpli�ed version of that method. It does

not work for all inputs, but for su�iently many for our ounting purpose. In

general, deomposing a polynomial an be done by solving the orresponding

system of equations in the oe�ients of the unknown omponents, say, using

Gröbner bases.



Counting deomposable univariate polynomials 9

To �x some notation, we have integers

(3.6) d ≥ 1, r = pd, k = ar, m ≥ 2, n = km, κ with 0 ≤ κ < k and p ∤ aκ,

and polynomials

(3.7)

g = xk +
∑

1≤i≤κ

gix
i,

h =
∑

1≤i≤m

hix
i,

f = g ◦ h = hk +
∑

1≤i≤κ

gih
i,

with hm = 1, hm−1 6= 0, and either gκ 6= 0 or g = xk
; the latter ase orresponds

to κ = 0. The idea is to ompute hi for i = m−1, m−2, . . ., 1 by omparing the

known oe�ients of f to the unknown ones of hk
and gκh

κ
. Speial situations

arise when the latter two polynomials both ontribute to a oe�ient. We

denote by

h(i) =
∑

i<b<m

hbx
b

the top part of h, so that h(m−1) = 0. Furthermore, we write oe�(v, j) for the
oe�ient of xj

in a polynomial v, and

ci,j(v) = oe�(v ◦ (h− h(i)), j).

Thus cm−1,j(x
k) = oe�(hk, j), and in partiular, we have cm−1,j(g) = fj for

all j. To illustrate the usage of these cij , we onsider E1 below. At some

point in the algorithm, we have determined gκ, hm, . . . , hi+1. The appropriate

cij exhibits hi in a simple fashion, meaning that we an ompute it from fj and
h(i)

. Lastly we de�ne the rational number

(3.8) i0 = m(
κ− a

r − 1
− a+ 1) =

κm− n

r − 1
+m;

thus i0 < m, and i0 is an integer if and only if

r − 1 | (κ− a)m.
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Lemma 3.9. For 1 ≤ i ≤ m and 0 ≤ j ≤ n, we have the following.

E1: If i < m, then

(3.10) ci,(κ−1)m+i(gκx
κ) = κgκhi,

and cm−1,κm(gκx
κ) = gκ.

E2: If i < m, then

(3.11) ci,n−r(m−i)(x
k) = ahr

i .

If r ∤ j, then oe�(hk, j) = 0.

E3: If i0 ∈ N, then

(3.12) ci0,(κ−1)m+i0(x
k + gκx

κ) = ahr
i0
+ κgκhi0 .

E4: If m = r and κ = k − 1, then

(3.13)

cm−1,κm(x
k + gκx

κ) = ahr
m−1 + gκ,

cm−1,κm−1(x
k + gκx

κ) = −gκhm−1.

Proof. For E1, we have to onsider

gκ(x
m + hix

i +O(xi−1))κ = gκx
κa + κ

′

gκhix
(κ−1)m+i +O(x(κ−1)m+i−1),

furthermore

ci,(κ−1)m+i(gκx
κ) = gκ · κhi,

cm,κm(gκx
κ) = oe�(gκh

κ, κm) = gκ,

and E1 follows. For E2, we have

ha = xam + ahm−1x
am−1 +O(xam−2).

When i < m, then in the oe�ient of x(a−1)m+i
, we have the ontribution ahi,

whih omes from taking in the expansion of ha
the fator xm

exatly a − 1
times and the fator hix

i
exatly one; there are a ways to make these hoies.

The largest degree to whih a summand hjx
j
ontributes in ha

is (a− 1)m+ j,
so that those with j < i do not appear in the oe�ient under onsideration,

and ci,(a−1)m+i(x
a) = ahi. Raising ha

to the rth power yields

ci,((a−1)m+i)r(x
k) = ci,((a−1)m+i)r((x

a)r) = arhr
i = ahr

i
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and proves E2, sine ((a− 1)m+ i)r = n− r(m− i).
For E3, we have

(κ− 1)m+ i0 = n− r(m− i0),

ci0,(κ−1)m+i0(x
k + gκx

κ) = ci0,n−r(m−i0)(x
k) + ci0,(κ−1)m+i0(gκx

κ)

= ahr
i0
+ κgκhi0 .

For E4, we have κm = n−m and from E1 and E2

cm−1,κm(x
k + gκx

κ) = cm−1,n−m(x
k) + cm−1,κm(gκx

κ) = ahr
m−1 + gκ,

cm−1,κm−1(x
k + gκx

κ) = oe�(hk, κm− 1) + cm−1,κm−1(gκx
κ)

= 0 + κgκhm−1 = −gκhm−1. �

In the following algorithm, the instrution �determine hi (or gκ) by Eµ (at

xj
)�, for 1 ≤ µ ≤ 4, means that the property Eµ involves some quantity cij(·)

whih is a summand in oe�(g ◦ h, j) = fj , the other summands are already

known, and we an solve for hi (or gκ). When we use E2, we �rst ompute

y = hr
i and then hi by extrating the rth root of y. Over a �nite �eld, this

always yields a unique answer, sine r is a power of p. But in general, y might

not have an rth root. We say �ompute hr
i by E2, then hi if possible� to mean

that �rst y is determined, then hi as its rth root; if y does not have an rth
root, then the empty set is returned.

The main e�ort in the orretness proof is to show that all data required are

available at that point in the algorithm, and that the equation an indeed be

solved. The algorithm's basi struture is driven by the relationship between

the degrees κm of gκh
κ
and n− r of hk − xn

.

Algorithm 3.14. Wild deomposition.

Input: f ∈ F [x] moni and original of degree n = km, where F is a �eld of

harateristi p ≥ 2, d ≥ 1, r = pd, and k = ar with p ∤ a.
Output: Either a set of at most r + 1 pairs (g, h) with g, h ∈ F [x] moni and

original of degrees k and m, respetively, and f = g ◦ h, or �failure�.
1. Let j be the largest integer for whih fj 6= 0 and p ∤ j. If no suh j

exists then if d ≥ 2 all Algorithm 3.14 reursively and else all a tame

deomposition algorithm, in either ase with input f ∗ = f 1/p
and k∗ = k/p.

If a set of (g∗, h∗) is output by the all, then return the set of all Frobenius

ompositions (xp ◦ g∗, h∗).
2. If p ∤ m then if m ∤ j then return �failure� else set κ = j/m. If p | m then if

m ∤ j + 1 then return �failure� else set κ = (j + 1)/m. If p | κ, then return

�failure�. Calulate i0 = (κm− n)/(r − 1) +m.
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3. If κm ≥ n− r + 2 then do the following.

a. Set gκ = fκm.

b. Determine hi for i = m− 1, . . . , 1 by E1.

4. If κm = n− r + 1 then do the following.

a. Set gκ = fκm.

b. Determine hm−1 by E3. If (3.12) does not have a unique solution, then

return �failure�.

. Determine hi for i = m− 2, . . . , 1 by E1.

5. If κm = n− r then do the following.

a. Determine hm−1 by E4, in the following way. Compute the set S of

all nonzero s ∈ Fq with

(3.15) asr+1 − fκms− fκm−1 = 0.

If S = ∅ then return the empty set, else do steps 5.b and 5. for all

s ∈ S, setting hm−1 = s.

b. Determine gκ by E1 and E2 at x
κm

, from fκm = ahr
m−1 + gκ.

. For i = m− 2, . . . , 1 determine hi by E1.

6. If κm < n− r then do the following.

a. Determine hr
m−1 by E2, then hm−1 if possible.

b. If r ∤ m then determine gκ by E1 at x
κm

(as gκ = fκm), else by E1 at

xκm−1
(via κgκhm−1 = fκm−1).

. Determine hr
i by E2, then hi if possible, for dereasing i with m−2 ≥

i > i0.

d. If i0 is a positive integer, then determine hi0 by E3. If E3 does not

yield a unique solution, then return �failure�.

e. Determine hi for dereasing i with i0 > i ≥ 1 by E1.

7. [We now know h.℄ Compute the remaining oe�ients g1, . . . , gκ−1 as the

�Taylor oe�ients� of f in base h.
8. Return the set of all (g, h) for whih g ◦ h = f . If there are none, then

return the empty set.

The Taylor expansion method determines for given f and h the unique g
(if one exists) so that f = g ◦ h; see von zur Gathen (1990a).

We �rst illustrate the algorithm in some examples.



Counting deomposable univariate polynomials 13

Example 3.16. We let p = 5, n = 50, and k = r = 5, so that a = d = 1 and

m = 10, and start with κ = 4 = r − 1. We assume f39 = g4h9 6= 0. Then

h5 + g4h
4 = x50 + h5

9x
45 + (h5

8 + g4)x
40 + 4g4h9x

39 + g4(4h8 + h2
9)x

38

+x36 · O(x) + (h5
7 + g4(4h5 + h9h6 + h8h7 + h2

9h7 + h9h
2
8 + h3

9h8))x
35 +O(x34).

Step 1 determines j = 39, and step 2 �nds κ = (39+1)/10 and i0 = 15/2 6∈
N. Sine κm = 40 < 45 = n − r, we go to step 6. Step 6.a omputes h9 at

x45
, step 6.b yields g4 at x39

, step 6. determines h8 at x40
by E2, step 6.d is

skipped, and then step 6.e yields h7, ..., h1 at x
37, ..., x31, respetively, all using

E1. Step 7 determines g1, g2, g3, and step 8 heks whether indeed f = g ◦ h,
and if so, returns (g, h).

With the same values, exept that κ = 3, we have

h5 + g3h
3 = x50 + h5

9x
45 + h5

8x
40 + h5

7x
35

+ (h5
6 + g3)x

30 + 3g3h9x
29 + g3(3h

2
9 + 3h8)x

28 + x26 · O(x)

+ (h5
5 + g3(3h5 + 3h9h6 + 3h8h7 + 3h2

9h7 + 3h9h
2
8))x

25 +O(x24).

Assuming that f29 = 3g3h9 6= 0, the algorithm omputes j = 29, κ =
(29 + 1)/10, i0 = 5 ∈ N, goes to step 6, determines h9 at x

45
, g3 at x

29
, h8, h7,

h6 aording to E2, then h5 at x
25
via the known value for h5

5+3g3h5 in step 6.d

with E3. Condition (3.18) below requires that (−3g3)
(q−1)/4 6= 1 and guarantees

that h5 is uniquely determined, as shown in the proof of Theorem 3.17 below.

Finally h4, ..., h1 and g1, g2 are omputed.

As a last example, we take p = 5, n = 25, k = r = m = 5 and κ = 4, so
that a = 1 and

h5 + g4h
4 = x25 + (h5

4 + g4)x
20 + 4g4h4x

19 +O(x18).

Again we assume f19 = 4g4h4 6= 0. Then steps 1 and 2 determine j = 19,
κ = 4, and i0 = 15/4 6∈ N. We have κm = 20 = n − r, so that we go to step

5. In step 5.a, we have to solve (3.15). The number of solutions is disussed

starting with Fat 3.25 below. We onsider two speial ases, namely q = 5
and q = 125. For q = 5, we have 25 pairs (v, w) = (f20, f19) ∈ F2

5 to onsider,

with w 6= 0. When v 6= 0, then the number of solutions is





2 if wv−2 ∈ {2, 0},
1 if wv−2 = 1,

0 otherwise,
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and when v = 0:
{
2 for the squares w = 1, 4,

0 otherwise.

Over F125, we have the following numbers of nonzero solutions s when v 6= 0:





6 for 1 · 124 values (v, w),

2 for 47 · 124 values (v, w),

1 for 25 · 124 values (v, w),

0 for 52 · 124 values (v, w),

and when v = 0:

{
2 for 62 values of w, namely the squares,

0 for 62 values of w.

These numbers are explained below. We run the remaining steps in parallel for

eah value h4 = s with s ∈ S. This yields g4 in step 5.b, h3, h2, h1 in step 5.,

and g1, g2, g3 in step 7. ♦

We denote by M(n) a multipliation time, so that polynomials of degree

at most n an be multiplied with M(n) operations in F . Then M(n) is in

O(n logn loglogn); see von zur Gathen & Gerhard (2003), Chapter 8, and

Fürer (2007) for an improvement.

For an input f , we set σ(f) = #S if the preondition of step 5 is satis�ed

and S omputed there, and otherwise σ(f) = 1.

Theorem 3.17. Let f be an input polynomial with parameters n, p, q = pe,
d, r, a, k, m as spei�ed, g, h, κ, i0 as in (3.7) and (3.8), so that f = g ◦ h, set
c = gcd(d, e) and suppose further that

(3.18) if i0 ∈ N and 1 ≤ i0 < m, then (−κgκ/a)
(q−1)/(pc−1) 6= 1.

On input f , Algorithm 3.14 returns either �failure� or a set of at most σ(f) nor-
mal deompositions (g∗, h∗) of f , and (g, h) is one of them. Exept if returned

in step 1, none of them is a Frobenius deomposition. If F = Fq is �nite, then

the algorithm uses

O
(
M(n) logk (m+ log(kq))

)

or O∼(n(m+ log q)) operations in Fq.
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Proof. Sine r = pd | k, we have oe�(hk, j) = 0 unless r | j. Furthermore

gκh
κ = gκx

κm + κgκhm−1x
κm−1 + O(xκm−2) and κgκhm−1 6= 0, so that j from

step 1 equals κm (if p ∤ m) or κm−1 (if p | m). Thus κ is orretly determined

in step 2. In partiular, f is not a Frobenius omposition.

We denote by G the set of (g, h) allowed in the theorem. We laim that the

equations used in the algorithm involve only oe�ients of f and previously

omputed values, and usually have a unique solution. It follows that most

f ∈ γn,k(G) are orretly and uniquely deomposed by the algorithm. The

only exeption to the uniqueness ours in (3.15).

In the remaining steps, we use various oe�ients fj for j = (κ − 1)m + i
with 1 ≤ i ≤ m or j = n− r(m − i) with i0 ≤ i < m. The value i0 is de�ned

so that n− r(m− i0) = (κ− 1)m+ i0, and thus

(3.19) n− r(m− i) ≥ (κ− 1)m+ i if and only if i ≥ i0,

sine the �rst linear funtion in i has the slope r > 1, greater than for the seond
one. Sine i ≥ 1, it follows that j > (κ−1)m for all j under onsideration. For
the low-degree part of g we have

deg((g − (xk + gκx
κ)) ◦ h) ≤ (κ− 1)m < j,

so that

fj = oe�(g ◦ h, j) = oe�((xk + gκx
κ) ◦ h, j) = oe�(hk + gκh

κ, j)

for all j in the algorithm.

We have to see that the appliation of E3 in steps 4.b (where i0 = m − 1)
and 6.d (where m− 2 ≥ i0 ≥ 1) always has a unique solution. The right hand

side of (3.12), say asr + κgκs, is an Fp-linear funtion of s. The equation has

a unique solution if and only if its kernel is {0}. (Segre 1964, Teil 1, ï¾

1
2
3,

and Wan 1990 provide an expliit solution in this ase.) But when s ∈ Fq is

nonzero with asr + κgκs = 0, then −κgκ/a = sr−1
. Writing z = pc, so that

z − 1 = gd(q − 1, r − 1), we have

(−κgκ/a)
(q−1)/(z−1) = (sr−1)(q−1)/(z−1) = (s(r−1)/(z−1))q−1 = 1,

ontraditing the ondition (3.18).

For the orretness it is su�ient to show that all required quantities are

known, in partiular ci,j(gκx
κ) in E1 and ci,j(x

k) in E2, and that the equations

determine the oe�ient to be omputed. We have

(3.20) deg(hk − xn) = deg((ha − xam)r) ≤ (am− 1)r = n− r,
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so that gκ = fκm in steps 3.a and 4.a.

The preondition of step 3 implies that for all i < m we have

(κ− 1)m ≥ n− r −m+ 2 > n−mr + (r − 1)(m− 1) ≥ n− rm+ (r − 1)i,

n− r(m− i) < (κ− 1)m+ i.

Thus from E1 we have with j = (κ− 1)m− i

f(κ−1)m+i = oe�(hk, j) + oe�(gκh
κ, j)

= oe�((h(i))k, j) + κgκhi

with κgκ 6= 0, so that hi an be omputed in step 3.b.

The preondition in step 4 implies that i0 = m − 1, and hene (r − 1) |
(a−κ)m. E3 says that fκm−1 = cm−1,κm−1(x

k + gκx
κ) = ahr

m−1+κgκhm−1. We

have seen above that under our assumptions the equation fκm−1 = asr + κgκs
has exatly one solution s. By an argument as for step 3.b, also step 4. works

orretly.

The only usage of E4 ours in step 5.a, where κ = (n− r)/m = k − r/m.
Sine p | k, r is a power of p, and p ∤ κ, this implies that r = m and κ = k− 1.
We have from E4

fκm = ahr
m−1 + gκ,

fκm−1 = −gκhm−1 = −(fκm − ahr
m−1)hm−1 = ahr+1

m−1 − fκmhm−1.

Thus hm−1 ∈ S as omputed in step 5.a and gκ is orretly determined in step

5.b. The preondition of step 5 implies that i0 = m−1−1/(r−1), whih is an

integer only for r = 2. In that ase, i0 = m−2 = 0 and no further hi is needed.

Otherwise, m− 2 < i0 < m− 1 and step 5. works orretly sine i < i0.
The preondition of step 6 implies that i0 < m − 1. If r ∤ m, then

oe�(hk, κm) = 0 by E2, and otherwise oe�(hk, κm − 1) = 0. Thus gκ is

orretly omputed in step 6.b. Corretness of the remaining steps follows as

above.

For the ost of the algorithm over F = Fq, two ontributions are from al-

ulating (h(j))κ for some j < m and the various rth roots. The �rst omes to

O(m · logκ · M(n)) and the seond one to O(m · logp q) operations in Fq. E3

and E4 are applied at most one. We then have to �nd all roots of a univariate

polynomial of degree at most r+1. This an be done with O(M(r) logr log rq)
operations (see von zur Gathen & Gerhard (2003), Corollary 14.16). The Tay-

lor oe�ients in step 7 an be alulated with O(M(n) logk) operations (see
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von zur Gathen & Gerhard (2003), Theorem 9.15). All other osts are domi-

nated by these ontributions, and we �nd the total ost as

O
(
M(n) logk · (m+ log(kq))

)
. �

A more diret way to ompute h (say, in step 3) is to onsider its reversal as

the κth root of the reversal of (f − hk)/gκ, feeding the ontribution of hk
into

the Newton iteration as in von zur Gathen (1990a). I have not analyzed this

proedure.

Our next task is to determine the number N of deomposable f obtained

as g ◦ h in Theorem 3.17. Sine (3.15) is an equation of degree r + 1, it has
at most r + 1 solutions, and σ(f) ≤ r + 1. N is at least the number of (g, h)
permitted by Theorem 3.17, divided by r + 1. The following onsiderations

lead to a muh better lower bound on N .

In the following we write, as usually, p = harFq, and also

(3.21) q = pe, r = pd, c = gcd(d, e), z = pc,

so that Fq ∩ Fr = Fz (assuming an embedding of Fq and Fr in a ommon

super�eld) and gcd(q − 1, r − 1) = z − 1 (see Lemma 3.29). We have to

understand the number of solutions s of (3.15), in other words, the size of

S(v, w) = {s ∈ F×
q : s

r+1 − vs− w = 0}

for v = fκm/a, w = fκm−1/a ∈ Fq. (3.15) is only used in step 5, where m = r,
as noted above. We have κ = (j + 1)/m in step 2 and hene fκm−1 6= 0 and

w 6= 0. Furthermore, we de�ne for u ∈ Fq

(3.22) T (u) = {t ∈ F×
q : t

r+1 − ut+ u = 0}.

In (3.15), we have w 6= 0, but v might be zero. In order to apply a result

from the literature, we �rst assume that also v is nonzero, make the invertible

substitution s = −v−1wt, and set u = vr+1(−w)−r = −vr+1w−r ∈ Fq. Then

u 6= 0 and

sr+1 − vs− w = (−v−1w)r+1(tr+1 − ut+ u),(3.23)

#S(v, w) = #T (u).

This redues the study of S(v, w), with two parameters, to the one-parameter

problem T (u). The polynomial tr+1 − ut + u has appeared in other ontexts

suh as the inverse Galois problem, di�erene sets, and Müller-Cohen-Matthews
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polynomials. Bluher (2004) has determined the ombinatorial properties that

we need here; see her paper also for further referenes. Bluher allows an in�nite

ground �eld F , but we only use her results for F = Fq.

For i ≥ 0, let

(3.24)

Ci = #{u ∈ F×
q : #T (u) = i},

ci = #Ci.

Then Ci = ∅ for i > r + 1. Bluher (2004) ompletely determines these ci, as
follows.

Fat 3.25. With the notations (3.21) and (3.24), let I = {0, 1, 2, z+1}. Then

(3.26)

c1 =
q

z
− γ,

ci = 0 unless i ∈ I,

cz+1 =

⌊
q

z3 − z

⌋
,

where

(3.27) γ =

{
1 if q is even and e/c is odd ,

0 otherwise,

and furthermore

(3.28) q = 1 +
∑

i∈I
ci = 2 +

∑

i∈I
ici.

Proof. The laims are shown in Bluher (2004), Theorem 5.6. Her statement

assumes tu 6= 0, whih is equivalent to our assumption t 6= 0. (3.28) orresponds
to the fat that the numbers ci form the preimage statisti of the map from

Fq r {0, 1} to Fq r {0} given by the rational funtion xr+1/(x− 1). �

(3.26) and (3.28) also determine the remaining two values c0 and c2, namely

c2 =
1
2
(q − 2− c1 − (z + 1)cz+1) and c0 = 1 + c2 + zcz+1. For large z, we have

c2 ≈
q

2
(1− 1

z
− z + 1

z3 − z
) =

q

2
(1− 1

z − 1
) ≈ q

2
.

Thus xr+1/(x − 1) behaves a bit like squaring: about half the elements have

two preimages, and about half have none.

For the ase v = 0, we have the following fats, whih are presumably well-

known. For an integer m, we let the integer ν(m) be the multipliity of 2 in

m, so that m = 2ν(m)m∗
with an odd integer m∗

.
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Lemma 3.29. Let Fq have harateristi p with q = pe, r = pd with d ≥ 1,
b = gcd(q − 1, r + 1) and w ∈ F×

q . Then the following hold.

(i)

#S(0, w) =

{
b if w(q−1)/b = 1,

0 otherwise.

(ii) We let c = gcd(d, e), z = pc, δ = ν(d), ǫ = ν(e), α = ν(r2 − 1), β =
ν(q − 1),

λ =

{
2 if δ < ǫ,

1 if δ ≥ ǫ,

µ =

{
1 if α > β,

0 if α ≤ β.

Then gcd(r − 1, q − 1) = z − 1 and

b =
(zλ − 1) · 2µ

z − 1
=





2(z + 1) if δ < ǫ and α > β,

z + 1 if δ < ǫ and α ≤ β,

2 if δ ≥ ǫ and α > β,

1 if δ ≥ ǫ and α ≤ β.

(iii) If p is odd, then α > β if and only if e/c is odd.

Proof. (i) The power funtion y 7→ yr+1
from F×

q to F×
q maps b elements to

one, and its image onsists of the u ∈ Fq with u(q−1)/b = 1.
(ii) For the �rst laim that

(3.30) gcd(q − 1, r − 1) = z − 1,

we may assume, by symmetry, that d > e and let d = ie + j be the division

with remainder of d by e, with 0 ≤ j < e. Then for

a =
xj(xd−j − 1)

xe − 1
= xj · x

ie − 1

xe − 1
∈ Z[x],

we have

xd − 1 = a · (xe − 1) + (xj − 1).
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By indution along the Extended Eulidean Algorithm for (d, e) it follows that
all quotients in the Eulidean Algorithm for (xd−1, xe−1) in Q[x] are, in fat,

in Z[x], hene also the Bézout oe�ients, and that all remainders are of the

form xy − 1, where y is some remainder for d and e. For c = gcd(d, e), there
exist u, v, s, t ∈ Z[x] so that

u · (xc − 1) = xd − 1,

v · (xc − 1) = xe − 1,

s · (xd − 1) + t · (xe − 1) = xc − 1.

Substituting any integer q for x into these equations shows the laim (3.30).

We note that gcd(2d, e) = λc and

gcd(pd − 1, pd + 1) =

{
2 if p is odd,

1 if p is even.

When p is even, then applying (3.30) to q = pe and r2 = p2d, we �nd

pλc − 1 = gcd((pd − 1)(pd + 1), pe − 1)

= gcd(pd − 1, pe − 1) · gcd(pd + 1, pe − 1)

= (pc − 1) · b,

b =
pλc − 1

pc − 1
=

{
z + 1 if δ < ǫ,

1 if δ ≥ ǫ.

For odd p, the seond equation above is still almost orret, exept possibly

for fators whih are powers of 2. We note that exatly one of ν(pd − 1) and
ν(pd + 1) equals 1, and

pλc − 1 = gcd((pd − 1)(pd + 1), pe − 1)

= gcd(pd − 1, pe − 1) · gcd(pd + 1, pe − 1) · 2−µ

= (pc − 1) · b · 2−µ,

b =
(pλc − 1) · 2µ

pc − 1
.

(iii) We de�ne the integers kq and kr by

q − 1

z − 1
=

ze/c − 1

z − 1
= ze/c−1 + · · ·+ 1 = kq,

r2 − 1

z − 1
=

(r + 1)(zd/c − 1)

z − 1
= (r + 1)(zd/c−1 + · · ·+ 1) = (r + 1)kr.
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Now r + 1 is even and z is odd. If e/c is odd, then kq is odd and hene

α > β. Now assume that e/c is even. Then d/c is odd, and so is kr. Hene

ν(r−1) = ν(z−1), and we denote this integer by γ. If γ ≥ 2, then ν(r+1) = 1
and α = ν(r + 1) + γ ≤ ν(kq) + γ = β.

Now suppose that γ = 1, and let τ = ν(z + 1) and m = (z + 1) · 2−τ
. Then

τ ≥ 2, m is an odd integer, and

z2 = (m2τ − 1)2 ≡ −2 · 2τ + 1 ≡ 2τ+1 + 1 mod 2τ+2,

r2 = (z2)d/c = (2τ+1 + 1)d/c ≡ 2τ+1 + 1 mod 2τ+2,

q = (z2)e/2c ≡ (2τ+1 + 1)e/2c mod 2τ+2.

The last value equals 2τ+1 + 1 or 1 modulo 2τ+2
if e/2c is odd or even, respe-

tively. In either ase, it follows that α = ν(r2 − 1) = τ + 1 ≤ ν(q − 1) = β. �

Theorem 3.31. Let Fq have harateristi p with q = pe, and take integers

d ≥ 1, r = pd, k = ar with p ∤ a, m ≥ 2, n = km, c = gcd(d, e), z = pc, µ =
gcd(r−1, m), r∗ = (r−1)/µ, and let G onsist of the (g, h) as in Theorem 3.17.

Then we have the following lower bounds on the ardinality of γn,k(G).

(i) If r 6= m and µ = 1:

qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k),

(ii) If r 6= m:

qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

−q−k−r∗−c/e+2 (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)
(1 + q−r∗(p−2))

)
.

(iii) If r = m:

qk+m−2(1− q−1)(
1

2
+

1 + q−1

2z + 2
+

q−1

2
− q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
).

Proof. We have seen at the beginning of the proof of Theorem 3.17 that

steps 1 and 2 determine j and κ. We also know that, given gκ and hm−1, the

remaining oe�ients of g and h are uniquely determined by those of f .
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We ount the number of ompositions g ◦ h aording to the four mutually

exlusive onditions in steps 3 through 6, for a �xed κ. The admissible κ are

those with 1 ≤ κ < k and p ∤ κ. E3 or E4 are used if and only if either i0 ∈ N
or κm = n− r, respetively. If neither happens, then the number of (g, h) is

(3.32) qκ(1− q−1) · qm−1(1− q−1) = qκ+m−1(1− q−1)2.

E3 is used if and only if κ ∈ K, where

K = {κ ∈ N : 1 ≤ κ < k, p ∤ κ, i0 ∈ N, 1 ≤ i0 < m},

whih orresponds to steps 4.b (where i0 = m−1) and 6.d (where i0 ∈ N and 1 ≤
i0 ≤ m−2). For κ ∈ K, we have the ondition (3.18) that (−κgκ/a)

(q−1)/(z−1) 6=
1. The exponent is a divisor of q − 1, and there are exatly (q − 1)/(z − 1)
values of gκ that violate (3.18). Thus for κ ∈ K the number of (g, h) equals

(3.33) (q − 1− q − 1

z − 1
)qκ−1 · qm−1(1− q−1) = qκ+m−1(1− 1

z − 1
)(1− q−1)2.

The only usage of E4 ours in step 5.a, where κ = (n−r)/m = k−r/m. We

have seen in the proof of Theorem 3.17 that this implies r = m and κ = k− 1.
We split G aording to whether κ = k − 1 or κ < k − 1, setting

G∗ = {(g, h) ∈ G : κ = k − 1 in (3.7)}.

We de�ne three summands S12, S3, and S4 aording to whether only E1

and E2, or also E3, or E4 are used, respetively:

S12 =
∑

1≤κ<k
p∤κ

qκ+m−1(1− q−1)2,

S3 =
∑

κ∈K
(qκ+m−1(1− q−1)2 − qκ+m−1(1− q−1)2(1− 1

z − 1
)),

S4 = qk+m−2(1− q−1)2 −#γn,k(G
∗).

We will see below that K = ∅ if r = m. Thus

#γn,k(G) ≥





S12 if r 6= m and K = ∅,

S12 − S3 if r 6= m,

S12 − S4 if r = m.
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The subtration of S3 orresponds to replaing the summand (3.32) by (3.33)

for κ ∈ K. Similarly, S4 replaes (3.32) for κ = k− 1 by the orret value if E4

is applied.

Sine p | k, the �rst sum equals

S12 = qm−1(1− q−1)2(
∑

1≤κ<k

qκ −
∑

1≤κ<k
p|κ

qκ)

= qm−1(1− q−1)2(
qk − 1

q − 1
− 1− (qp)k/p − 1

qp − 1
+ 1)

= qk+m−2(1− q−1)(1− q−k)
1− q−p+1

1− q−p

= qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k).

For S3, we desribe K more transparently. From (3.8) we �nd

(3.34)

1 ≤ i0 =
κm− n

r − 1
+m ≤ m− 1

⇐⇒ k − (r − 1) +
r − 1

m
≤ κ ≤ k − r − 1

m
,

i0 ∈ Z ⇐⇒ (r − 1) | (κ− a)m.(3.35)

We have µ = gcd(r − 1, m) and r∗ = (r − 1)/µ, and set m∗ = m/µ, so that

gcd(r∗, m∗) = 1 and

(3.34) ⇐⇒ k − (r − 1) +
r∗

m∗ ≤ κ ≤ k − r∗

m∗ ,

(3.35) ⇐⇒ r∗ | (κ− a)m∗ ⇐⇒ r∗ | (κ− a).

Sine r∗ | k − a = a(r − 1), we have

(3.35) ⇐⇒ ∃j ∈ Z κ = k − (r − 1) + jr∗,(3.36)

(3.34) ⇐⇒ 1

m∗ ≤ j ≤ r − 1

r∗
− 1

m∗ ⇐⇒ 1 ≤ j ≤ µ− 1.(3.37)

Sine µ | (r − 1) and r = pd, we have p ∤ µ. Thus

p | κ ⇐⇒ 1− j

µ
≡ 1 +

j(r − 1)

µ
≡ k − (r − 1) + jr∗ = κ ≡ 0 mod p(3.38)

⇐⇒ j ≡ µ mod p ⇐⇒ ∃i ∈ Z j = µ− ip,

(3.34) ⇐⇒ 1 ≤ j = µ− ip ≤ µ− 1 ⇐⇒ 1 ≤ i ≤ ⌊µ− 1

p
⌋.
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Abbreviating µ∗ = ⌊(µ− 1)/p⌋, it follows that

K = {k − (r − 1) + jr∗ : 1 ≤ j ≤ µ− 1}r {k − ipr∗ : 1 ≤ i ≤ µ∗}.

In partiular, we have K = ∅ if µ = 1. Assuming µ ≥ 2 and using

z = pc = qc/e, we an evaluate S3 as follows.

S3 =
∑

κ∈K

qκ+m−1

z − 1
(1− q−1)2

=
qm−1(1− q−1)2

z − 1

∑

κ∈K
qκ

=
qm−1(1− q−1)2

z − 1
(qk−(r−1)+r∗ (q

r∗)µ−1 − 1

qr∗ − 1
− qk−pr∗ (q

−pr∗)µ
∗ − 1

q−pr∗ − 1
)

= qk+m−1−r∗−c/e (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)

· (1− q−r∗(p−1) (1− q−r∗)(1− q−pr∗µ∗

)

(1− q−r∗(µ−1))(1− q−pr∗)
)

≤ qk+m−1−r∗−c/e (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)
.

In order to evaluate S4, we �rst reall from the above that we have κm =
n − r, κ = k − 1, m = r, and any (g, h) ∈ G∗

is uniquely determined by

f = g ◦ h, gk−1, and hm−1. To any (g, h) ∈ G∗
, we assoiate the �eld elements

(3.39)

V (g, h) = hr
m−1 + gk−1/a,

W (g, h) = −gk−1hm−1/a,

U(g, h) = −V (g, h)r+1W (g, h)−r.

Then if f = g ◦ h, we have aV (g, h) = fn−r, aW (g, h) = fn−r−1 6= 0, and for

nonzero s ∈ Fq and t = −V (g, h) ·W (g, h)−1s, (3.23) says that

(3.15) holds ⇐⇒ s ∈ S(V (g, h),W (g, h)) ⇐⇒ t ∈ T (U(g, h)).

We reall the sets Ci from (3.24) and for i ∈ {1, 2, z + 1}, we set

Gi = {(g, h) ∈ G : V (g, h) 6= 0, U(g, h) ∈ Ci},
G0 = {(g, h) ∈ G : V (g, h) = 0}.

Now let v ∈ F×
q , i ∈ {1, 2, z + 1}, u ∈ Ci, and gk−2, . . ., g1, hm−2, . . .,

h1 ∈ Fq. From these data, we onstrut (g, h) ∈ Gi with g =
∑

1≤i≤k gix
i
and
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h =
∑

1≤i≤m hix
i
and gk = hm = 1, so that only gk−1 and hm−1 still need to

be determined. Furthermore, if f = g ◦ h, we show that di�erent data lead to

di�erent f . This will prove that

(3.40) γn,k(Gi) ≥ (q − 1)ci · qk+m−4.

By assumption, we have u 6= 0 and #T (u) = i ≥ 1. We hoose some t ∈ T (u)
and de�ne w, s ∈ F×

q by

wr = −vr+1u−1,

s = −v−1wt.

Then s ∈ S(v, w) by (3.23). We set hm−1 = s and gk−1 = av− asr. Now g and

h are determined, and E1 and E2 imply that

fn−r = ahr
m−1 + gκ = aV (g, h) = av,

fn−r−1 = −gκhm−1 = aW (g, h) = −a(v − sr)s = a(sr+1 − vs) = aw,

U(g, h) = −vr+1w−r = −vr+1(−vr+1u−1)−1 = u.

Suppose that (u, v) and (ũ, ṽ) lead to (fn−r, fn−r−1) = (av, aw) and (f̃n−r, f̃n−r−1) =
(aṽ, aw̃), and that the latter pairs are equal. Then v = ṽ and u = −vr+1w−r =
−ṽr+1w̃−r = ũ. This onludes the proof of (3.40).

A similar argument works for G0. We let b = gcd(q− 1, r+1), take w ∈ Fq

with w(q−1)/b = 1, and some s ∈ Fq with sr+1 = w. There are (q− 1)/b suh w,
and aording to Lemma 3.29(i), b suh values s for eah w. We set hm−1 = s
and gk−1 = −ahr

m−1 and, as above, omplete them with arbitrary oe�ients

to (g, h) ∈ G0. When f = g ◦ h, then fn−r = 0 and fn−r−1 = −gk−1hm−1 =
ahr+1

m−1 = aw = aW (g, h), and di�erent w lead to di�erent f . It follows that

γn,k(G0) ≥
q − 1

b
.(3.41)

The images of G1, G2, Gz+1, and G0 under γn,k are pairwise disjoint, sine

the map V ×W ×U :
⋃

i=0,1,2,z+1Gi −→ F3
q is injetive, and its value together

with the lower oe�ients of g and h determines f , again injetively. It follows

that

∑

i=0,1,2,z+1

#γn,k(Gi) ≥
∑

i=1,2,z+1

(q − 1)ci · qk+m−4 +
q − 1

b
· qk+m−4

(3.42)

= (q − 1)qk+m−4(
∑

i=1,2,z+1

ci +
1

b
).
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We write q = pe and set

z∗ =

{
z if e/c is odd,

z2 if e/c is even.

Fat 3.25 yields

cz+1 =

⌊
q

z3 − z

⌋
=

q − z∗

z3 − z
,

2
∑

i=1,2,z+1

ci = 2c1 + (q − 2− c1 − (z + 1)cz+1) + 2cz+1

= q − 2 +
q

z
− γ − (z − 1)

q − z∗

z3 − z

= q − 2 +
q

z
− γ − q − z∗

z2 + z
,

#γn,k(G
∗) ≥ qk+m−3(1− q−1)(

1

2
(q − 2 +

q

z
− γ − q − z∗

z2 + z
) +

1

b
).

We all the last fator B. If e/c is odd, then, in the notation of Lemma 3.29,

δ = ν(d) ≥ ν(e) = ǫ, so that b ∈ {1, 2}, and

b =

{
2 if p is odd,

1 if p = 2.

If p is odd, then γ = 0 and 2/b − γ = 1. If p = 2, then γ = 1 and again

2/b− γ = 2− 1 = 1. It follows that

2B = q − 2 +
q

z
− q − z

z2 + z
+

2

b
− γ = q(1 +

1

z + 1
(1− z

q
)).

If e/c is even, then γ = 0, b = z + 1 and

2B = q − 2 +
q

z
− q − z2

z2 + z
+

2

z + 1
= q(1 +

1

z + 1
(1− z

q
)).

It follows that in all ases

#γn,k(G
∗) ≥ 1

2
qk+m−2(1− q−1)(1 +

1

z + 1
(1− z

q
)),

S4 ≤ qk+m−2(1− q−1)(1− q−1 − 1

2
(1 +

1

z + 1
(1− z

q
)))

= qk+m−2(1− q−1)(
1

2
− q−1 − 1

2z + 2
(1− z

q
)).
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Together we have found the following lower bounds on #γn,k(G). If r 6= m
and µ = 1, then

#γn,k(G) ≥ S12 = qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k).

If r 6= m, then

#γn,k(G) ≥ S12 − S3 ≥ qk+m−2(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− qk+m−k−2r∗−c/e (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)
(1 + q−r∗(p−2))

= qk+m−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−k−r∗−c/e+2 (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)
(1 + q−r∗(p−2))

)
.

If r = m, then

#γn,k(G) ≥ S12 − S4 ≥ qk+m−2(1− q−1)(1− q−k)
1− q−p+1

1− q−p

− qk+m−2(1− q−1)(
1

2
− q−1 − 1

2z + 2
(1− z

q
))

= qk+m−2(1− q−1)(
1

2
+

1 + q−1

2z + 2
+

q−1

2

− q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
). �

Corollary 3.43. With the assumptions and notation of Theorem 3.31, the

set D+
n,k of non-Frobenius ompositions has at least the following size.

(i) If r 6= m and µ = 1:

qk+m(1− q−1)(1− q−k)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)).
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(ii) If r 6= m:

qk+m(1− q−1)
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−k−r∗−c/e+2 (1− q−1)2(1− q−r∗(µ−1))

(1− q−c/e)(1− q−r∗)
(1 + q−r∗(p−2))

)

≥ qk+m(1− q−1)
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−k)

− q−k−r∗+2 (1− q−1)2(1− q−r∗(µ−1))

1− q−r∗
(1 + q−r∗(p−2))

)
.

If furthermore r∗ ≥ 2 and p > µ, then the latter quantity is at least

qk+m(1− q−1)
(
(1− q−1(1+ q−p+2 (1− q−1)2

1− q−p
))(1− q−k)− 4

3
q−k(1− q−1)2

)
.

(iii) If r = m:

qk+m(1− q−1)2(
1

2
+

1 + q−1

2z + 2
+

q−1

2
− q−k 1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
).

Proof. All g and h onsidered in Theorem 3.31 are moni and original, and

so are their ompositions f . We may replae the left hand omponent g of any

(g, h) ∈ G by (ax+ b) ◦ g, where a, b ∈ Fq are arbitrary with a 6= 0. Hene

#D#
n,k ≥ q2(1− q−1) ·#γn,k(G),

and the laims follow from Theorem 3.31. For the �rst inequality in (ii), we

observe that c ≥ 1 and

q−c/e

1− q−c/e
=

p−c

1− p−c
≤ 1.(3.44)

For the last estimate, we have

q−r∗ ≤ 1/4,

q−r∗(p−2) ≤ q−r∗(µ−1),

(1− q−r∗(µ−1))(1 + q−r∗(p−2)) ≤ 4

3
(1− q−r∗). �
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The algorithm works over any �eld of harateristi p where eah element

has a pth root; in Fq, this is just the (q/p)th power. It even works over an

arbitrary extension of Fp, rather than just the separable ones, provided we

have a subroutine that tests whether a �eld element is a pth power, and if so,

returns a pth root. Then where a pth root is requested in the algorithm (steps

3a, 6a, and 6), we either return �no deomposition� or the root, depending on

the outome of the test.

Example 3.45. When n = p2, then we have k = r = m = p in Corol-

lary 3.43(iii), and inluding the Frobenius ompositions (Lemma 4.32(ii)), we

obtain

#Dn ≥ 1

2
q2p(1− q−1)2(1 +

1 + q−1

p+ 1
+ q−1 − 2q−p+1) + qp+1(1− q−1)

= αn ·
(1
2
(1 +

1

p+ 1
)(1− q−2) + q−p

)
.

In harateristi 2, the estimate is exat, sine we have aounted for all

ompositions and a moni original polynomial of degree 2 is determined by its

linear oe�ient. Thus

#D4 = α4 · (
2

3
· (1− q−2) + q−2) = α4 ·

2 + q−2

3
,

#D4 =
3

4
α4 over F2,

#D4 =
11

16
α4 over F4.

Over an algebraially losed �eld, a quarti polynomial is deomposable if

and only if its ubi oe�ient vanishes; ompare to Example 2.6. For p = 3,
we �nd

#D9 ≥ α9 · (
5

8
(1− q−2) + q−3) = α9 · (

5

8
− q−2(

5

8
− q−1)),

#D9 ≥
16

27
· α9 > 0.59259α9 over F3,

#D9 ≥
451

36
· α9 > 0.61065α9 over F9.

Table 6.3 shows that these are serious underestimates of the atual ratios

≈ 0.8518 and 0.9542. In the same vein we �nd, when p = k and n = ap2 > p2

with p ∤ a, that

#Dn,n/p ≥
αn

2
· (1
2
(1 +

1

p+ 1
)(1− q−2) + q−p). ♦
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Example 3.46. In F3[x], we have, besides the eight Frobenius ollisions a-

ording to De�nition 3.3, four two-way ollisions of degree 9:

(x3 + x) ◦ (x3 − x) = (x3 − x) ◦ (x3 + x) = x9 − x,

(x3 + x2) ◦ (x3 − x2 − x) = (x3 − x2 + x) ◦ (x3 + x2) = x9 + x5 − x4 + x3 + x2,

(x3 + x2 + x) ◦ (x3 − x2) = (x3 − x2) ◦ (x3 + x2 − x) = x9 + x5 + x4 + x3 − x2,

(x3 + x2 + x) ◦ (x3 − x2 + x) = (x3 − x2 + x) ◦ (x3 + x2 + x) = x9 + x5 + x.

Our general bounds of Theorem 5.2(i), Corollary 3.43, and Example 3.45

say that

18 · 16 = 288 < 18 · 17 = 306 < #D9 = 414 = 18 · 23 < 486 = 18 · 27 = α9. ♦

4. Distint-degree ollisions of ompositions

In this setion, we turn to the last preparatory task. Namely, for a lower

bound on Dn we have to understand Dn,ℓ ∩Dn,n/ℓ, that is, the distint-degree

ollisions (3.2) when deg g∗ = deg h = ℓ. In our appliation, ℓ is the smallest

prime divisor of n.
The following is an example of a ollision:

xkwℓ ◦ xℓ = xkℓwℓ(xℓ) = xℓ ◦ xkw(xℓ),

for any polynomial w ∈ F [x, y], where F is a �eld (or even a ring). We de�ne

the (bivariate) Dikson polynomials of the �rst kind Tm ∈ F [x, y] by T0 = 2,
T1 = x, and

(4.1) Tm = xTm−1 − yTm−2 for m ≥ 2.

The monograph of Lidl et al. (1993) provides extensive information about these

polynomials. We have Tm(x, 0) = xm
, and Tm(x, 1) is losely related to the

Chebyshev polynomial Cn = cos(n arccosx), as Tn(2x, 1) = 2Cn(x). Tm is

moni (for m ≥ 1) of degree m, and

Tm =
∑

0≤i≤m/2

m

m− i

(
m− i

i

)
(−y)ixm−2i ∈ F [x, y].

Furthermore,

(4.2) Tm(x, y
ℓ) ◦ Tℓ(x, y) = Tℓm(x, y) = Tℓ(x, y

m) ◦ Tm(x, y),
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and if ℓ 6= m, then substituting any z ∈ F for y yields a ollision.

Ritt's Seond Theorem is the entral tool for understanding distint-degree

ollisions, and the following notions enter the sene. The funtional inverse

v−1
of a linear polynomial v = ax + b with a, b ∈ F and a 6= 0 is de�ned as

v−1 = (x − b)/a. Then v−1 ◦ v = v ◦ v−1 = x. Two pairs (g, h) and (g∗, h∗) of
polynomials are alled equivalent if there exists a linear polynomial v suh that

g∗ = g ◦ v, h∗ = v−1 ◦ h.

Then g ◦ h = g∗ ◦ h∗
, and we write (g, h) ∼ (g∗, h∗). The following result

says that, under ertain onditions, the examples above are essentially the only

distint-degree ollisions. It was �rst proved by Ritt (1922) for F = C. We use

the strong version of Zannier (1993), adapted to �nite �leds. The adaption uses

Shinzel (2000), Setion 1.4, Lemma 2, and leads to his Theorem 8. Further

referenes an be found in this monograph as well.

Fat 4.3. (Ritt's Seond Theorem) Let ℓ and m be integers, F a �eld, and g,
h, g∗, h∗ ∈ F [x] with

(4.4) m > ℓ ≥ 2, gcd(ℓ,m) = 1, deg g = deg h∗ = m, deg h = deg g∗ = ℓ,

(4.5) g′(g∗)′ 6= 0,

where g′ = ∂g/∂x is the derivative of g. Then

(4.6) g ◦ h = g∗ ◦ h∗

if and only if

∃k ∈ N, v1, v2 ∈ F [x] linear, w ∈ F [x] with k + ℓ degw = m, z ∈ F×,

so that either

First Case

{
(v1 ◦ g, h ◦ v2) ∼ (xkwℓ, xℓ),

(v1 ◦ g∗, h∗ ◦ v2) ∼ (xℓ, xkw(xℓ)),

or

Seond Case

{
(v1 ◦ g, h ◦ v2) ∼ (Tm(x, z

ℓ), Tℓ(x, z)),

(v1 ◦ g∗, h∗ ◦ v2) ∼ (Tℓ(x, z
m), Tm(x, z)).
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In priniple, one also has to onsider the First Case with (g, h,m) and

(g∗, h∗, ℓ) interhanged; see Zannier (1993), Main Theorem (ii). Then k +
m degw = ℓ and hene deg w = 0. But this situation is overed by the First

Case in Fat 4.3, with k = m. We note that the onlusion of the First Case is

asymmetri in ℓ and m, but in the Seond Case it is symmetri, so that there

the assumption m > ℓ does not intervene.
Aording to Remark 2.2, we may assume h and h∗

to be moni and original.

If one of g or g∗ is also moni and original, then so is the other one, and also

the omposition (4.6). It is onvenient to add this ondition:

(4.7) f = g ◦ h, and g, h, g∗, h∗
are moni and original.

The transition between the general and this speial ase is by left omposition

with a linear polynomial.

The following lemma about Dikson polynomials will be useful for deter-

mining the number of ollisions exatly. We write T ′
n(x, y) = ∂Tn(x, y)/∂x for

the derivative with respet to x.

Lemma 4.8. Let F be a �eld of harateristi p ≥ 0, n ≥ 1, and z ∈ F×
.

(i) If p = 0, or p ≥ 3 and gcd(n, p) = 1, then the derivative T ′
n(x, z) is

squarefree in F [x].

(ii) If p = 0 or gcd(n, p) = 1, and n is odd, then there exists some moni

squarefree u ∈ F [x] of degree (n− 1)/2 so that Tn(x, z
2) = (x− 2z) ·u2+

2zn.

(iii) Let γ = (−y)⌊n/2⌋. Tn is an odd or even polynomial in x if n is odd or

even, respetively. It has the form

Tn =

{
xn − nyxn−2 +− · · ·+ γx if n is odd,

xn − nyxn−2 +− · · ·+ 2γ if n is even.

(iv) If p ≥ 2, then Tpj = xpj
for j ≥ 0.

(v) If p ≥ 2 and p | n, then T ′
n = 0.

(vi) For a new indeterminate t, we have tnTn(x, y) = Tn(tx, t
2y).

(vii) Tn(2z, z
2) = 2zn.



Counting deomposable univariate polynomials 33

Proof. (i) Williams (1971) and Corollary 3.14 of Lidl et al. (1993) show

that if F ontains a primitive nth root of unity ρ, then T ′
n(x, z)/nc fators

over F ompletely into a produt of quadrati polynomials (x2 − α2
kz), where

1 ≤ k < n/2, the αk = ρk + ρ−k
are Gauÿ periods derived from ρ, and the

α2
k are pairwise distint, with c = 1 if n is odd and c = x otherwise. We

note that αk = αn−k. We take an extension E of F that ontains a primitive

nth root of unity and a square root z0 of z. This is possible sine p = 0
or gcd(n, p) = 1. Thus x2 − α2

kz = (x − αkz0)(x + αkz0), and the ±αkz0 for

1 ≤ k < n/2 are pairwise distint, using that p 6= 2. It follows that T ′
n(x, z)

is squarefree over E. Sine squarefreeness is a rational ondition, equivalent to

the nonvanishing of the disriminant, T ′
n(x, z) is also squarefree over F .

For (ii), we take a Galois extension �eld E of F that ontains a primitive

nth root of unity ρ, and set αk = ρk + ρ−k
and βk = ρk − ρ−k

for all k ∈ Z.
We have Tn(2z, z

2) = 2zn by (vii), proven below, and Theorem 3.12(i) of Lidl

& Mullen (1993) states that

Tn(x, z
2)− 2zn = (x− 2z)

∏

1≤k<n/2

(x2 − 2αkzx + 4z2 + β2
kz

2);

see also Turnwald (1995), Proposition 1.7. Now −α2
k+4+β2

k = −(ρk+ρ−k)2+
(ρk − ρ−k)2 + 4 = 0, so that x2 − 2αkzx + 4z2 + β2

kz
2 = (x − αkz)

2
. We set

u =
∏

1≤k<n/2(x − αkz) ∈ E[x]. Then Tn(x, z
2) − 2zn = (x − 2z)u2

, and u is

squarefree. It remains to show that u ∈ F [x]. We take some σ ∈ Gal(E : F ).
Then σ(ρ) is also a primitive nth root of unity, say σ(ρ) = ρi with 1 ≤ i < n
and gd(i, n) = 1. We take some k with 1 ≤ k < n/2, and j with ik ≡ j mod n
and 0 < |j| < n/2. Then σ(αk) = α|j|. Hene, σ indues a permutation on{
α1, . . . , α(n−1)/2

}
. It follows that

u =
∏

1≤k<n/2

(x− αkz) =
∏

1≤k<n/2

(x− σ(αkz)) = σu.

Sine this holds for all σ, we have u ∈ F [x].

(iii) follows from the reursion (4.1), and (iv) from Lidl et al. (1993), Lemma

2.6(iii). (v) follows from (4.2) and (iv). The laim in (vi) is Lemma 2.6(ii) of

Lidl et al. (1993). It also follows indutively from (4.1), as does (vii). �

In the following, we present several pairs of results. In eah pair, the �rst item

is a theorem, valid over fairly general �elds, that desribes the struture of

distint-degree ollisions. The seond one is a orollary, valid over �nite �elds,

giving bounds on the number of suh ollisions. We start with the following
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normal form for the deompositions in Ritt's Seond Theorem. The uniqueness

result is not obvious, as witnessed by the quotes in the Introdution.

Theorem 4.9. Let F be a �eld of harateristi p, let m > ℓ ≥ 2 be inte-

gers, and n = ℓm. Furthermore, we have moni original f, g, h, g∗, h∗ ∈ F [x]
satisfying (4.4) through (4.7). Then either (i) or (ii) hold, and (iii) is also valid.

(i) (First Case) There exists a moni polynomial w ∈ F [x] of degree s and

c ∈ F so that

(4.10) f = (x− akℓwℓ(aℓ)) ◦ xkℓwℓ(xℓ) ◦ (x+ a),

wherem = sℓ+k is the division with remainder ofm by ℓ, with 1 ≤ k < ℓ.
Furthermore

kw + ℓxw′ 6= 0 and p ∤ ℓ,(4.11)

g = (x− akℓwℓ(aℓ)) ◦ xkwℓ ◦ (x+ aℓ),

h = (x− aℓ) ◦ xℓ ◦ (x+ a),

g∗ = (x− akℓwℓ(aℓ)) ◦ xℓ ◦ (x+ akw(aℓ)),

h∗ = (x− akw(aℓ)) ◦ xkw(xℓ) ◦ (x+ a).

Conversely, any (w, a) as above for whih (4.11) holds yields a ollision

satisfying (4.4) through (4.7), via the above formulas. If p ∤ m, then

(w, a) is uniquely determined by f and ℓ.

(ii) (Seond Case) There exist z, a ∈ F with z 6= 0 so that

f = (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a).(4.12)

Now (z, a) is uniquely determined by f . Furthermore we have

p ∤ n,(4.13)

g = (x− Tn(a, z)) ◦ Tm(x, z
ℓ) ◦ (x+ Tℓ(a, z)),

h = (x− Tℓ(a, z)) ◦ Tℓ(x, z) ◦ (x+ a),

g∗ = (x− Tn(a, z)) ◦ Tℓ(x, z
m) ◦ (x+ Tm(a, z)),

h∗ = (x− Tm(a, z)) ◦ Tm(x, z) ◦ (x+ a).

Conversely, if (4.13) holds, then any (z, a) as above yields a ollision

satisfying (4.4) through (4.7), via the above formulas.
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(iii) When ℓ ≥ 3, the First and Seond Cases are mutually exlusive. For

ℓ = 2, the Seond Case is inluded in the First Case.

Proof. By assumption, either the First or the Seond Case of Ritt's Seond

Theorem (Fat 4.3) applies.

(i) From the First Case in Fat 4.3, we have a positive integer K, linear

polynomials v1, v2, v3, v4 and a nonzero polynomial W with d = degW =
(m−K)/ℓ and (renaming v2 as v

−1
2 )

xKW ℓ = v1 ◦ g ◦ v3,
xℓ = v−1

3 ◦ h ◦ v−1
2 ,

xℓ = v1 ◦ g∗ ◦ v4,
xKW (xℓ) = v−1

4 ◦ h∗ ◦ v−1
2 .

We abbreviate r = l(W ), so that r 6= 0, and write vi = aix + bi for 1 ≤ i ≤ 4
with all ai, bi ∈ F and ai 6= 0, and �rst express v3, v4, and v1 in terms of v2.
We have

h = v3 ◦ xℓ ◦ v2 = a3(a2x+ b2)
ℓ + b3,

h∗ = v4 ◦ xKW (xℓ) ◦ v2 = a4(a2x+ b2)
K ·W ((a2x+ b2)

ℓ) + b4.

Sine h and h∗
are moni and original and K + ℓd = m, it follows that

a3 = a−ℓ
2 , b3 = −a−ℓ

2 bℓ2, a4 = a−m
2 r−1, b4 = −a−m

2 bK2 r
−1W (bℓ2).

Playing the same game with g, we �nd

g = v−1
1 ◦ xKW ℓ ◦ v−1

3 = a−1
1

(
(
x− b3
a3

)KW ℓ(
x− b3
a3

)− b1
)
,

a1 = an2r
ℓ,

b1 = bKℓ
2 W ℓ(bℓ2).

We note that then

g∗ = v−1
1 ◦ xℓ ◦ v−1

4 = a−1
1

(
(
x− b4
a4

)ℓ − b1
)

is automatially moni and original. Furthermore, we have d = (m −K)/ℓ ≤
⌊m/ℓ⌋ = s and

(4.14) f = v−1
1 ◦ (v1 ◦ g ◦ v3) ◦ (v−1

3 ◦ h ◦ v−1
2 ) ◦ v2 = v−1

1 ◦ xKℓ ·W ℓ(xℓ) ◦ v2.
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We set

a =
b2
a2

∈ F, u1 = x+
b1
a1

=
v1
a1

, u2 = x+ a =
v2
a2

,

w = r−1a−ℓd
2 xs−d ·W (aℓ2x) ∈ F [x].

Then b1/a1 = akℓwℓ(aℓ), w is moni of degree s, u−1
1 = x−b1/a1 = x−akℓwℓ(aℓ),

and

W (x) = l(W )aℓs2 x
−(s−d)w(a−ℓ

2 x).(4.15)

Noting that m = ℓd+K = ℓs+ k, the equation analogous to (4.14) reads

u−1
1 ◦ xkℓwℓ(xℓ) ◦ u2 = a1 · v−1

1 ◦ xkℓ · x
ℓ2(s−d)W ℓ(aℓ2x

ℓ)

adℓ
2

2 rℓ
◦ v2
a2

= v−1
1 ◦ an2rℓ ·

(v2
a2

)kℓ ·
(v2
a2

)ℓ2(s−d) · W
ℓ(vℓ2)

adℓ
2

2 rℓ

= v−1
1 ◦ xKℓ ·W ℓ(xℓ) ◦ v2 = f.(4.16)

This proves the existene of w and a, as laimed in (4.10).

In order to express the four omponents in the new parameters, we note
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that K = k + ℓ(s− d). Thus

g = v−1
1 ◦ xKW ℓ ◦ v−1

3

= (r−ℓa−n
2 x− akℓwℓ(aℓ)) ◦ (aℓ2(x+ aℓ))K ·W ℓ(aℓ2(x+ aℓ))

= r−ℓa−n
2

(
aKℓ
2 (x+ aℓ)K · rℓaℓ2s2 a

−ℓ2(s−d)
2 (x+ aℓ)−ℓ(s−d)wℓ(x+ aℓ)

)

− akℓwℓ(aℓ)

= a−n+Kℓ+ℓ2s−ℓ2s+ℓ2d
2 (x+ aℓ)K−ℓs+ℓdwℓ(x+ aℓ)− akℓwℓ(caℓ)

= (x+ aℓ)kwℓ(x+ aℓ)− akℓwℓ(aℓ)

=
(
x− akℓwℓ(aℓ)

)
◦ xkwℓ ◦ (x+ aℓ),

h = v3 ◦ xℓ ◦ v2 = a−ℓ
2 (a2x+ b2)

ℓ − a−ℓ
2 bℓ2

= (x− aℓ) ◦ xℓ ◦ (x+ a),

g∗ = v−1
1 ◦ xℓ ◦ v−1

4

= (r−ℓa−n
2 x− akℓwℓ(aℓ)) ◦

(
ram2 (x+ r−1a−m

2 bK2 ·W (bℓ2))
)ℓ

= (x+ r−1a−m
2 bK2 · raℓs2 b

−ℓ(s−d)
2 w(aℓ))ℓ − akℓwℓ(aℓ)

=
(
x+ a−k

2 bk2w(a
ℓ)
)ℓ − akℓwℓ(aℓ)

= (x− akℓwℓ(aℓ)) ◦ xℓ ◦ (x+ akw(aℓ)),

h∗ = v4 ◦ xKW (xℓ) ◦ v2
=
(
r−1a−m

2 (x− bK2 W (bℓ2))
)
◦ (a2(x+ a))KW (aℓ2(x+ a)ℓ)

= r−1a−m
2 · raℓs2 ·

(
(aK2 (x+ a)K(aℓ2(x+ a)ℓ))−(s−d)w((x+ a)ℓ)

− bK2 b
−ℓ(s−d)
2 w(aℓ)

)

= a−k
2

(
a
K−ℓ(s−d)
2 (x+ a)K−ℓ(s−d)w((x+ a)ℓ)− b

K−ℓ(s−d)
2 w(aℓ)

)

= (x+ a)kw((x+ a)ℓ)− akw(aℓ)

= (x− akw(aℓ)) ◦ xkw(xℓ) ◦ (x+ a).

(4.10) has been shown above. We note that in the right hand omponent x+a,
the onstant a is arbitrary. All other linear omponents follow automatially

from the required form of g, h, g∗, h∗
, namely, being moni and original, and

from the ondition that g and h (and g∗ and h∗
) have to math up with their

�middle� omponents. Furthermore, we have

0 = g′ = (xk−1wℓ−1(kw + ℓxw′)) ◦ (x+ aℓ) ⇐⇒ kw + ℓxw′ = 0,

0 = (g∗)′ = ℓxℓ−1 ◦ (x+ akw(aℓ)) ⇐⇒ p | ℓ.
(4.17)

Thus (4.11) follows from (4.5).
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In order to prove the uniqueness if p ∤ n, we take moni w, w̃ ∈ F [x] of
degree s, and a, ã ∈ F and the unique moni linear polynomials v and ṽ for

whih

f = v ◦ xkℓwℓ(xℓ) ◦ (x+ a) = ṽ ◦ xkℓw̃ℓ(xℓ) ◦ (x+ ã).(4.18)

By omposing on the left and right with ṽ−1
and (x + ã)−1

, respetively,

and abbreviating u = ṽ−1 ◦ v, we �nd
xkℓw̃ℓ(xℓ) = ṽ−1 ◦ v ◦ xkℓwℓ(xℓ) ◦ (x+ a) ◦ (x− ã)

= u ◦ xkℓwℓ(xℓ) ◦ (x+ a− ã).

Sine ℓ ≥ 2 and the left hand side is a polynomial in xℓ
, its seond highest

oe�ient (of xn−1
) vanishes. Equating this with the same oe�ient on the

right, and abbreviating a∗ = a− ã, we �nd

0 = kℓa∗ + sℓ2a∗ = na∗,

so that a∗ = 0, sine p ∤ n. Thus a = ã and

xkw̃ℓ ◦ xℓ = xkℓw̃ℓ(xℓ) = u ◦ xkℓwℓ(xℓ) = u ◦ xkwℓ ◦ xℓ,

xkw̃ℓ = u ◦ xkwℓ.

Now xkw̃ℓ
and xkwℓ

are moni and original, sine k ≥ 1. It follows that u = x
and wℓ = w̃ℓ

. Both polynomials are moni, so that w = w̃, as laimed. (The

equation for h in Theorem 4.9(i) determines a uniquely provided that p ∤ ℓ,
even if p | m. However, the value of h is not unique in this ase.)

Conversely, we take some (w, a) satisfying (4.11) and de�ne f , g, h, g∗, h∗

via the formulas in (i). Then (4.4), (4.6), and (4.7) hold. As to (4.5), we have

p ∤ ℓ from (4.11), and hene (g∗)′ 6= 0. Furthermore,

(xkwℓ)′ = xk−1wℓ−1 · (kw + ℓxw′) 6= 0,

so that also g′ 6= 0.
(ii) In the Seond Case, again renaming v2 as v

−1
2 , and also z as z2, we have

from Fat 4.3

Tm(x, z
ℓ
2) = v1 ◦ g ◦ v3,

Tℓ(x, z2) = v−1
3 ◦ h ◦ v−1

2 ,

Tℓ(x, z
m
2 ) = v1 ◦ g∗ ◦ v4,

Tm(x, z2) = v−1
4 ◦ h∗ ◦ v−1

2 ,

h = v3 ◦ Tℓ(x, z2) ◦ v2 = a3Tℓ(a2x+ b2, z2) + b3,

h∗ = v4 ◦ Tm(x, z2) ◦ v2 = a4Tm(a2x+ b2, z2) + b4.
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As before, it follows that

a3 = a−ℓ
2 , b3 = −a−ℓ

2 Tℓ(b2, z2), a4 = a−m
2 , b4 = −a−m

2 Tm(b2, z2).

Furthermore, we have

g = v−1
1 ◦ Tm(x, z

ℓ
2) ◦ v−1

3 = a−1
1 (Tm(a

−1
3 (x− b3), z

ℓ
2)− b1),

a1 = an2 ,

b1 = Tm(Tℓ(b2, z2), z
ℓ
2) = Tn(b2, z2),

f =
(
a−n
2 (x− Tn(b2, z2))

)
◦ Tn(x, z2) ◦ (a2x+ b2).

We now set a = b2/a2 and z = z2/a
2
2 and show that the preeding equation

holds with (1, a, z) for (a2, b2, z2). Lemma 4.8(vi) with t = a−1
2 says that

a−n
2 Tn(a2x+ b2, z2) = Tn(x+ a, z),

a−n
2 Tn(b2, z2) = Tn(a, z),

f = (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a).

Thus the �rst laim in (ii) holds with these values. In the same vein, applying

Lemma 4.8(vi) with t equal to a−1
2 , a−ℓ

2 , a−m
2 , a−1

2 , respetively, yields

a−ℓ
2 Tℓ(a2x+ b2, z2) = Tℓ(x+ a, z),

a−n
2 Tm(a

ℓ
2x+ Tℓ(b2, z2), z

ℓ
2) = Tm(x+ a−ℓ

2 Tℓ(b2, z2), z
ℓ)

= Tm(x+ Tℓ(a, z), z
ℓ),

a−n
2 Tℓ(a

m
2 x+ Tm(b2, z2), z

m
2 ) = Tℓ(x+ a−m

2 Tm(b2, z2), z
m)

= Tℓ(x+ Tm(a, z), z
m),

a−m
2 Tm(a2x+ b2, z2) = Tm(x+ a, z).
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For the four omponents, we have

g = v−1
1 ◦ Tm(x, z

ℓ
2) ◦ v−1

3

= a−n
2 (x− Tn(b2, z2)) ◦ Tm(x, z

ℓ
2) ◦ (aℓ2x+ Tℓ(b2, z2))

= a−n
2 Tm(a

ℓ
2x+ Tℓ(b2, z2), z

ℓ
2)− a−n

2 Tm(Tℓ(b2, z2), z
ℓ
2)

= Tm(x+ Tℓ(a, z), z
ℓ)− Tn(a, z)

= (x− Tn(a, z)) ◦ Tm(x, z
ℓ) ◦ (x+ Tℓ(a, z)),

h = v3 ◦ Tℓ(x, z2) ◦ v2 = a−ℓ
2 Tℓ(a2x+ b2, z2)− a−ℓ

2 Tℓ(b2, z2)

= a−ℓ
2 (x− Tℓ(b2, z2)) ◦ Tℓ(x, z2) ◦ (a2x+ b2)

= Tℓ(x+ a, z)− Tℓ(a, z)

= (x− Tℓ(a, z)) ◦ Tℓ(x, z) ◦ (x+ a),

g∗ = v−1
1 ◦ Tℓ(x, z

m
2 ) ◦ v−1

4

= a−n
2 (x− Tn(b2, z2)) ◦ Tℓ(x, z

m
2 ) ◦ (am2 x+ Tm(b2, z2))

= a−n
2 Tℓ(a

m
2 x+ Tm(b2, z2), z

m
2 )− a−n

2 Tn(b2, z2)

= Tℓ(x+ Tm(a, z), z
m)− Tn(a, z)

= (x− Tn(a, z)) ◦ Tℓ(a, z
m) ◦ (x+ Tm(a, z)),

h∗ = v4 ◦ Tm(x, z2) ◦ v2
= a−m

2 (x− Tm(b2, z2)) ◦ Tm(x, z2) ◦ (a2x+ b2)

= a−m
2 Tm(a2x+ b2, z2)− a−m

2 Tm(b2, z2)

= Tm(x+ a, z)− Tm(a, z)

= (x− Tm(a, z)) ◦ Tm(x, z) ◦ (x+ a).

Sine

0 6= g′ = T ′
m(x, z

ℓ) ◦ (x+ Tℓ(a, z)),

Lemma 4.8(v) implies that p ∤ m. Similarly, the non-vanishing of (g∗)′ implies

that p ∤ ℓ, and (4.13) follows.

Next we laim that the representation of f is unique. So we take some

(z, a), (z∗, a∗) ∈ F 2
with zz∗ 6= 0 and

(x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a) = (x− Tn(a
∗, z∗)) ◦ Tn(x, z

∗) ◦ (x+ a∗).
(4.19)

Comparing the oe�ients of xn−1
in (4.19) and using Lemma 4.8(iii) yields

na = na∗, hene a = a∗, sine p ∤ n. We now ompose (4.19) with x− a on the

right and �nd

(x− Tn(a, z)) ◦ Tn(x, z) = (x− Tn(a, z
∗)) ◦ Tn(x, z

∗).
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Now the oe�ients of xn−2
yield −nz = −nz∗, so that z = z∗.

The onverse laim that any (z, a) with z 6= 0 and (4.13) yields a ollision as

presribed follows sine (4.13) and Lemma 4.8(v) imply that T ′
m(x, z

ℓ)T ′
ℓ(x, z

m) 6=
0.

(iii) We �rst assume ℓ ≥ 3 and show that the First and Seond Cases are

mutually exlusive. Assume, to the ontrary, that in our usual notation we

have

(4.20) f = v1 ◦ xkℓwℓ(xℓ) ◦ (x+ a) = v2 ◦ Tn(x, z) ◦ (x+ a∗),

where v1 and v2 are the unique linear polynomials that make the omposition

moni and original, as spei�ed in (i) and (ii). Then

f = (v1 ◦ xkwℓ ◦ (x+ aℓ)) ◦ ((x+ a)ℓ − aℓ)

=
(
v2 ◦ Tm(x+ Tℓ(a

∗, z), zℓ)
)
◦ (Tℓ(x+ a∗, z)− Tℓ(a

∗, z)).

These are two normal deompositions of f , and sine p ∤ m by (4.13), the

uniqueness of Fat 3.1(i) implies that

h = (x+ a)ℓ − aℓ = Tℓ(x+ a∗, z)− Tℓ(a
∗, z),(4.21)

h′ = ℓ(x+ a)ℓ−1 = T ′
ℓ(x+ a∗, z).

If p = 0 or p ≥ 3, then aording to Lemma 4.8(i), T ′
ℓ(x, z) is squarefree,

while (x+ a)ℓ−1
is not, sine ℓ ≥ 3. This ontradition refutes the assumption

(4.20).

If p = 2, then ℓ is odd by (4.13). After adjoining a square root z0 of z to F
(if neessary), Lemma 4.8(ii) implies that T ′

ℓ(x, z) = ((x− 2z0)u
2 + 2zn0 )

′ = u2

has (ℓ−1)/2 distint roots in an algebrai losure of F , while (x+a)ℓ−1
has only

one. This ontradition is su�ient for ℓ ≥ 5. For ℓ = 3, we have T3 = x3−3yx
and there are no a, a∗, z ∈ F with z 6= 0 so that

x3 + ax2 + a2x = (x+ a)3 − a3 = (x+ a∗)3 − 3z(x+ a∗)− ((a∗)3 − 3za∗)

= x3 + a∗x2 + ((a∗)2 + z)x.

Again, (4.20) is refuted.

For ℓ = 2, we laim that any omposition

f = v1 ◦ Tm(x, z
2) ◦ T2(x, z) ◦ v2

of the Seond Case already ours in the First Case. We have T2 = x2 − 2y.
Sine m is odd by (4.4) and p ∤ m by (4.13), Lemma 4.8(ii) guarantees a
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moni u ∈ F [x] of degree d = (m − 1)/2 with Tm(x, z
2) = Tm(x, (−z)2) =

(x+ 2z)u2 − 2zm. Then for ũ = u ◦ (x− 2z) we have

f = v1 ◦ ((x+ 2z)u2 − 2zm) ◦ (x2 − 2z) ◦ v2 = (v1 − 2zm) ◦ x2ũ2(x2) ◦ v2,

whih is of the form (4.10), with k = m− 2d = 1. �

Remark 4.22. Other parametrizations are possible. As an example, in the

Seond Case, for odd q = p, one an hoose a nonsquare z0 ∈ F = Fq and

B = {1, . . . , (q − 1)/2}. Then all f in (4.12) an also be written as

f = b−n(x− Tn(a, z)) ◦ Tn(x, z) ◦ (bx+ a)

with unique (z, a, b) ∈ {1, z0} × F × B = Z. To wit, let z, a ∈ F with z 6= 0.
Take the unique (z∗, a∗, b) ∈ Z, so that z∗ = b2z and a∗ = ab. Then z∗

is determined by the quadrati harater of z, and b by the fat that every

square in F×
has a unique square root in A; the other one is −b ∈ F× \ A.

Lemma 4.8(vi) says that

bnTn(x, z) = Tn(bx, z
∗),

(x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a) = b−n(x− Tn(a
∗, z∗)) ◦ Tn(bx, z

∗) ◦ (x+ a)

= b−n(x− Tn(a
∗, z∗)) ◦ Tn(x, z

∗) ◦ (bx+ a∗),

as laimed. If F is algebraially losed, as in Zannier (1993), we an take

z = 1. The redution from �nite �elds to this ase is provided by Shinzel

(2000), Setion 1.4, Lemma 2.

Remark 4.23. Given just f ∈ F [x], how an we determine whether Ritt's

Seond Theorem applies to it, and if so, ompute (w, a) or (z, a), as appropri-
ate? We may assume f to be moni and original of degree n. The divisor ℓ of
n might be given as a further input, or we perform the following for all divisors

ℓ of n with 2 ≤ ℓ ≤ √
n and gcd(ℓ, n/ℓ) = 1. If p ∤ n, the task is easy. We

ompute deompositions

f = g ◦ h = g∗ ◦ h∗

with deg h = deg g∗ = ℓ and all omponents moni and original. If one of

these deompositions does not exist, Ritt's Seond Theorem does not apply;
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otherwise the omponents are uniquely determined. If hℓ−1 is the oe�ient of

xℓ−1
in h, then a = hℓ−1/ℓ in (4.10). Furthermore,

g(−aℓ) = −akℓwℓ(aℓ),

g ◦ (x− aℓ)− g(−aℓ) = xkwℓ,

from whih w is easily determined via an x-adi Newton iteration for extrating

an ℓth root of the reversal of the left hand side, divided by xk
. Atually only

a single Newton step is required to ompute the root modulo x2
.

If the Seond Case applies, then by Lemma 4.8(iii) the three highest oef-

�ients in f are

f = xn + fn−1x
n−1 + fn−2x

n−2 +O(xn−3)

= (x+ a)n − nz(x + a)n−2 +O(xn−4)

= xn + naxn−1 +
(n(n− 1)

2
a2 − nz

)
xn−2 +O(xn−3);

this determines a and z.

Remark 4.24. If p ∤ n, then we an get rid of the right hand omponent

x + a by a further normalization. Namely, when f = xn +
∑

0≤i<n fix
i, then

f ◦ (x + a) = xn + (na + fn−1)x
n−1 + O(xn−2). We all f seond-normalized

if fn−1 = 0. (This has been used at least sine the times of Cardano and

Tartaglia.) For any f, the omposition f ◦ (x − fn−1/n) is seond-normalized,

and if

deg g = m and f = g ◦ h = xn +mhn/m−1x
n−1 +O(xn−2)(4.25)

is seond-normalized, then so is h (but not neessarily g).

Corollary 4.26. In Theorem 4.9, if p ∤ n and f is seond-normalized, then

all laims hold with a = 0.

Example 4.27. We note two instanes of misreading Ritt's Seond Theorem.

Bodin et al. (2009) laim in the proof of their Lemma 5.8 that t ≤ q5 in

the situation of Corollary 4.30(i). This ontradits the fat that the exponent

s + 3 of q is unbounded. A seond instane is in Corrales-Rodrigáñez (1990).

The author laims that his following example ontradits the Theorem. He

takes (in our language) positive integers b, c, d, t, sets m = bpc + d, and
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ℓ = pc +1, elements h0, . . . , ht ∈ F , where c < p and tℓ ≤ m and F is a �eld of

harateristi p > 0, and

h =
∑

0≤i≤t

hix
m−iℓ,

g∗ =
∑

o≤i,j≤t

hihjx
m−ipc−j .

Then

xℓ ◦ h = g∗ ◦ xℓ,

provided that all hi are in Fpn. If d > b, we have m = bℓ+(d− b), so that s = b
and k = d− b.

Applying Theorem 4.9, we �nd w =
∑

0≤i≤t hix
b−i

and a = 0. Then

h = x4w(xℓ),

g∗ = xkwℓ.

Thus the example falls well within Ritt's Seond Theorem. Zannier (1993)

points out that this was also remarked by A. Kondraki, a student of Andrzej

Shinzel. ♦

For the arguments below, it is onvenient to assume F to be perfet. Then

eah element of F has a pth root, where p ≥ 2 is the harateristi. Any �nite

�eld is perfet.

For the next result, we have to make the �rst ondition in (4.11) more

expliit.

Lemma 4.28. Let F be a perfet �eld, ℓ andm positive integers with gcd(ℓ,m) =
1, m = ℓs + k and s = tp + r divisions with remainder, so that 1 ≤ k < ℓ and
0 ≤ r < p, and w ∈ F [x] moni of degree s. Then

(4.29) p ∤ ℓ and kw+ℓxw′ = 0 ⇐⇒ p | m and ∃u ∈ F [x] w = xrup, u moni.

If the onditions in (4.29) are satis�ed, then u is uniquely determined.

Proof. For �=⇒�, we denote by w(i)
the ith derivative of w. By indution

on i ≥ 0, we �nd that

(k + iℓ)w(i) + ℓxw(i+1) = 0,

(k + iℓ)w(i)(0) = 0.
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Now p ∤ s− i for 0 ≤ i < r, p | m = k + ℓs = l(kw + ℓxw′), and p ∤ ℓ. Thus

p ∤ m− (s− i)ℓ = k + ℓs− ℓs+ iℓ = k + iℓ

for 0 ≤ i < r, and hene w(i)(0) = 0 for these i. Sine r < p, this implies that

the lowest r oe�ients of w vanish, so that xr | w and v = x−rw ∈ F [x]. Then

ℓv′ = ℓ(−rx−r−1w + x−rw′) = x−r−1(−ℓrw − kw)

= −x−r−1w · (ℓr + k) = −x−r−1w · (m− ℓ(s− r)) = 0.

This implies that v′ = 0 and v = up
for some u ∈ F [x], sine F is perfet.

For �⇐=�, p ∤ ℓ follows from gcd(ℓ,m) = 1, and we verify

kw + ℓxw′ = kxrup + ℓx · rxr−1up = xrup(k + ℓr)

= w · (m− ℓ(s− r)) = 0.

The uniqueness of u is immediate, sine xrup = xrũp
implies u = ũ. �

We an now estimate the number of distint-degree ollisions. If p ∤ m, the

bound is exat. We use Kroneker's δ in the statement.

Corollary 4.30. Let Fq be a �nite �eld of harateristi p, let ℓ and m
be integers with m > ℓ ≥ 2 and gcd(ℓ,m) = 1, n = ℓm, s = ⌊m/ℓ⌋, and
t = #(Dn,ℓ ∩Dn,m ∩D+

n ). Then the following hold.

(i) If p ∤ n, then

t = (qs+3 + (1− δℓ,2)(q
4 − q3))(1− q−1),

qs+3(1− q−1) ≤ t ≤ (qs+3 + q4)(1− q−1).

(ii) If p | ℓ, then t = 0.

(iii) If p | m, then

t ≤ (qs+3 − q⌊s/p⌋+3)(1− q−1).

Proof. (i) The moni original polynomials f ∈ Dn,ℓ ∩ Dn,m ∩ D+
n = T fall

either into the First or the Seond Case of Ritt's Seond Theorem. In the

First Case, suh f are injetively parametrized by (w, a) in Theorem 4.9(i).

Condition (4.11) is satis�ed, sine p ∤ m = k + ℓs = l(kw + ℓxw′). Thus there
are qs+1

suh pairs. Allowing omposition by an arbitrary linear polynomial on

the left, we get qs+3(1− q−1) elements of T . In the Seond Case, we have the
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parameters (z, a), q2(1−q−1) in number, from Theorem 4.9(ii). Composing with

a linear polynomial yields a total of q4(1−q−1)2. Furthermore, Theorem 4.9(iii)

says that t equals the sum of the two ontributions if ℓ ≥ 3, and it equals the

�rst summand for ℓ = 2; in the letter ase, we have p 6= 2. Both laims in (i)

follow.

(ii) (4.11) and (4.13) are never satis�ed, so that t = 0.
(iii) We have essentially the same situation as in (i), with p ∤ ℓ and (w, a)

parametrizing our f in the First Case, albeit not injetively. Thus we only

obtain an upper bound. The �rst ondition in (4.11) holds if and only if w is

not of the form xrup
as in (4.29). We note that deg u = (s − r)/p = ⌊s/p⌋ in

(4.29), so that the number of (w, a) satisfying (4.11) equals qs+1−q⌊s/p⌋+1
. Sine

p | m | n, (4.13) does not hold, and there is no non-Frobenius deomposition

in the Seond Case. �

Example 4.31. We note two instanes of misreading Ritt's Seond Theorem.

Bodin et al. (2009) laim in the proof of their Lemma 5.8 that t ≤ q5 in the

situation of Corollary 4.30(i). This ontradits the orret statement, where the

exponent s+3 of q is unbounded. A seond instane is in Corrales-Rodrigáñez

(1990). The author laims that his following example ontradits the Theorem.

He takes (in our language) positive integers b, c, d, t and elements h0, . . . , ht ∈ F
and sets m = bpc + d and ℓ = pc + 1, where c < p, tℓ ≤ m, and F is a �eld of

harateristi p > 0. Then for

h =
∑

0≤i≤t

hix
m−iℓ,

g∗ =
∑

o≤i,j≤t

hihjx
m−ipc−j .

we have

xℓ ◦ h = g∗ ◦ xℓ,

provided that all hi are in Fpn. If d > b, we have m = bℓ+(d− b), so that s = b
and k = d − b. Applying Theorem 4.9, we �nd w =

∑
0≤i≤t hix

b−i
and a = 0.

Then

h = xkw(xℓ),

g∗ = xkwℓ.

Thus the example falls well within Ritt's Seond Theorem. Zannier (1993)

points out that this was also remarked by A. Kondraki, a student of Andrzej

Shinzel. ♦
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Lemma 4.32. Let F be a perfet �eld, let ℓ, m ≥ 2 be integers for whih p
divides n = ℓm, and let g and h in F [x] have degrees ℓ and m, respetively.

Then the following hold.

(i) g ◦ h ∈ Dϕ
n ⇐⇒ g′h′ = 0 ⇐⇒ g ∈ Dϕ

ℓ or h ∈ Dϕ
m,

(ii) #Dϕ
n = qn/p+1(1− q−1),

(iii)

#Dϕ
n,ℓ





= #Dn/p,ℓ if p ∤ ℓ,

= #Dn/p,ℓ/p if p ∤ m,

≤ #Dn/p,ℓ +#Dn/p,ℓ/p always.

Proof. i is lear. For (ii), all Frobenius ompositions are of the form g∗ ◦xp

with g∗ ∈ P=
n/p, and g∗ is uniquely determined by the omposition. In (iii), if

p ∤ ℓ, then p | m, and aording to (3.4), any g ◦ h ∈ Dϕ
n,ℓ an be uniquely

rewritten as g ◦ h∗ ◦ xp
, with h∗ ∈ P 0

m/p. If p ∤ m, then the orresponding

argument works. For the third line, we may assume that p divides ℓ and m,

and then have both possibilities above for Frobenius ompositions. �

A partiular strength of Zannier's and Shinzel's result in Fat 4.3 is that,

ontrary to earlier versions, the harateristi of F appears only very mildly,

namely in (4.5). We now eluidate the ase exluded by (4.5), namely g′(g∗)′ =
0, whih is mentioned in Zannier (1993), page 178. This ase an only our

when p ≥ 2. We reall the Frobenius power ϕj : F [x] → F [x] from De�ni-

tion 3.3.

Lemma 4.33. In the above notation, assume that (ℓ,m, g, h, g∗, h∗) and f sat-

isfy (4.4), (4.6), and (4.7), and that F is perfet.

(i) The following are equivalent:

(a) f is a Frobenius omposition,

(b) f ′ = 0,

() g′(g∗)′ = 0.
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(ii) If g′ = 0, then p ∤ ℓ and (g∗)′ 6= 0, and there exist positive integers j and

M , and moni original G, G∗
, H∗ ∈ F [x] so that

m = pjM, degG = degH∗ = M, degG∗ = ℓ,

g = xpj ◦G, g∗ ◦ xpj = xpj ◦G∗, h∗ = xpj ◦H∗,

G′(G∗)′ 6= 0, G ◦ h = G∗ ◦H∗,

f = xpj ◦G ◦ h = xpj ◦ (G∗ ◦H∗).

(4.34)

In partiular, (ℓ,M,G, h,G∗, H∗) satis�es (4.4) through (4.6) if M > ℓ,
and (M, ℓ,G∗, H∗, G, h) does if 2 ≤ M < ℓ. If M = 1, then G and H∗

are linear.

(iii) If (g∗)′ = 0, then p ∤ m and g′ 6= 0, and there exist positive integers d and

L, and moni original G,H,G∗ ∈ F [x] with

ℓ = pdL, p ∤ L, g = ϕd(G), h = xpd ◦H, g∗ = xpd ◦G∗,

G′(G∗)′ 6= 0,(4.35)

G ◦H = G∗ ◦ h∗, f = xpd ◦G ◦H.

with ϕd from De�nition 3.3. In partiular, (L,m,G,H,G∗, h∗) satis�es

(4.4) through (4.6) if L ≥ 2.

(iv) The data derived in (ii) and (iii) are uniquely determined. Conversely,

given suh data, the stated formulas yield (ℓ,m, g, h, g∗, h∗) and f that

satisfy (4.4), (4.6), and (4.7).

Proof. (i) If f = xp ◦G is a Frobenius omposition, then f ′ = 0. We have

(4.36) f ′ = (g′ ◦ h) · h′ = ((g∗)′ ◦ h∗) · (h∗)′.

If (b) holds, then p | deg f = n = ℓm, hene p | ℓ or p | m. In the ase

p | ℓ, (4.4) implies that p ∤ m and g′(h∗)′ 6= 0, hene h′ = (g∗)′ = 0 by (4.36).

Symmetrially, p | m implies that g′ = (h∗)′ = 0, so that () follows in both

ases.

If () holds, say g′ = 0, then the oe�ient of xi
in g is zero unless p | i.

Sine F is perfet, every element has a pth root, and it follows that g = xp ◦G
for some G ∈ F [x]. Thus g is a Frobenius omposition, and so is f = g ◦ h.

(ii) Let j ≥ 1 be the largest integer for whih there exists some G ∈ F [x]
with g = xpj ◦ G. Then j and G are uniquely determined, G is moni and
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original, G′ 6= 0, pj | m, degG = mp−j = M , and p ∤ ℓ by (4.4). Furthermore,

we have

(4.37) g∗ ◦ h∗ = g ◦ h = xpj ◦G ◦ h.

Writing h∗ =
∑

1≤i≤m h∗
ix

i
with h∗

m = 1, we let I = {i ≤ m : h∗
i 6= 0} be the

support of h∗
. Assume that there is some i ∈ I with pj ∤ i, and let k be the

largest suh i. Then k < m, m(ℓ−1)+k is not divisible by pj, the oe�ient of

xm(ℓ−1)+k
in (h∗)ℓ is ℓh∗

k, and in g∗◦h∗
it is l(g∗)·ℓh∗

k 6= 0; see E1 in Lemma 3.9.

This ontradits (4.37), so that the assumption is false and h∗ = (H∗)p
j

for a

unique moni original H∗ ∈ F [x], of degree M = mp−j
.

Setting G∗ = ϕ−1
j (g∗), we have degG∗ = deg g∗ = ℓ and hene (G∗)′ 6= 0,

xpj ◦G∗ = ϕj(G
∗) ◦ xpj

, and

xpj ◦G ◦ h = g ◦ h = f = g∗ ◦ h∗ = ϕj(G
∗) ◦ xpj ◦H∗ = xpj ◦G∗ ◦H∗,

G ◦ h = G∗ ◦H∗.

(iii) Sine p | ℓ = deg g∗, (4.4) implies that p ∤ m, g′ 6= 0, and g′ ◦ h 6= 0.
In (4.36), we have f ′ = 0 and hene h′ = 0. There exist moni original G1,

H1 ∈ F [x] with g∗ = xp ◦G1, h = xp ◦H1, and

xp ◦G1 ◦ h∗ = f = g ◦ xp ◦H1 = xp ◦ ϕ−1
1 (g) ◦H1,

G1 ◦ h∗ = ϕ−1
1 (g) ◦H1.

If G′
1 = 0, then H ′

1 = 0 and we an ontinue this transformation. Eventually we

�nd an integer j ≥ 1 and moni originalGj , Hj ∈ F [x] with pj | ℓ, g∗ = xpj ◦Gj ,

h = xpj ◦Hj, and G′
j 6= 0. We set G = ϕ−1

j (g), G∗ = Gj, and H = Hj. Then

G′(G∗)′ 6= 0, degG∗ = degH = L, degG = m. As above, we have

G∗ ◦ h∗ = Gj ◦ h∗ = ϕ−1
j (g) ◦Hj = G ◦H,

f = (xpd ◦G∗) ◦ h∗ = g ◦ (xpd ◦H) = xpd ◦G ◦H.

Aording to (iii), d is the multipliity of p in ℓ. We now show that j = d.
We set ℓ∗ = ℓp−j

. If ℓ∗ ≥ 2, then the above ollision satis�es the assumptions

(4.4) through (4.6), with ℓ∗ < m instead of ℓ. Thus Theorem 4.9 applies.

In the First Case, (4.11) shows that p ∤ ℓ∗. It follows that j = d and ℓ∗ = L.
In the Seond Case, we have p ∤ ℓ∗m = ℓp−jm by (4.10), so that again j = d
and ℓ∗ = L. In the remaining ase ℓ∗ = 1, we have L = 1 and G∗ = H = x.

(iv) The uniqueness of all quantities is lear. �

We need some simple properties of the Frobenius map ϕj from (3.4).
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Lemma 4.38. Let F be a �eld of harateristi p ≥ 2, f , g ∈ F [x], a ∈ F , let
i, j ≥ 1, and denote by f ′

the derivative of f . Then

(i) ϕj(fg) = ϕj(f)ϕj(g),

(ii) ϕj(f
i) = ϕj(f)

i
,

(iii) ϕj(f ◦ g) = ϕj(f) ◦ ϕj(g),

(iv) ϕj(f(a)) = ϕj(f)(a
pj),

(v) ϕj(f
′) = ϕj(f)

′
.

Proof. (i) is immediate, and (ii) follows. For (iii), we write f =
∑

fix
i
with

all fi ∈ F . Then

ϕj(f ◦ g) = ϕj(
∑

fig
i) =

∑
f pj

i ϕj(g
i) = ϕj(f) ◦ ϕj(g).

(iv) is a speial ase of (iii). For (v), we have

ϕj(f
′) = ϕj(

∑
ifix

i−1) =
∑

ip
j

f pj

i xi−1 =
∑

if pj

j xi−1 = ϕj(f)
′. �

Our next goal is to get rid of the assumption (4.5), namely that g′(g∗)′ 6= 0,
in Theorem 4.9. This is ahieved by the following result. Its statement is

lengthy, and the simple version is: if (4.5) is violated, remove the omponent

xp
from the ulprit as long as you an. Then Theorem 4.9 applies.

Theorem 4.39. Let F be a perfet �eld of harateristi p ≥ 0. Letm > ℓ ≥ 2
be integers with gcd(ℓ,m) = 1, set n = ℓm and let f, g, h, g∗, h∗ ∈ F [x] be moni

original of degrees n, m, ℓ, ℓ, m, respetively, with f = g ◦ h = g∗ ◦ h∗
. Then

the following hold.

(i) If g′ = 0, then there exists a uniquely determined positive integer j so

that pj divides m and either (a) or (b) hold; furthermore, () is true. We

set M = p−jm.

(a) (First Case)

(1) If M > ℓ, then there exist a moni W ∈ F [x] of degree S =
⌊M/ℓ⌋ and a ∈ F so that

KW + ℓxW ′ 6= 0
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for K = M − ℓ⌊M/ℓ⌋, and all onlusions of Theorem 4.9(i),

exept (4.11) and k < ℓ, hold for k = pjK, s = pjS, and

w = W pj
. Conversely, any W and a as above yield via these

formulas a ollision satisfying (4.4), (4.6) and (4.7), with g′ = 0.
If p ∤ M , then W and a are uniquely determined by f and ℓ.

(2) If M < ℓ, then there exist a moni W ∈ F [x] of degree S =
⌊ℓ/M⌋ and a ∈ F so that

f = (x− akMwM(aM)) ◦ xkMwM(xM) ◦ (x+ a),

KW + ℓxW ′ 6= 0

forK = ℓ−M⌊ℓ/M⌋, and all onlusions of Theorem 4.9(i), with

ℓ replaed by M and exepting (4.11) and the division with re-

mainder, hold for k = pjK, s = pjS, and w = W pj
. Conversely,

any W and a as above yield via these formulas a ollision satis-

fying (4.4), (4.6) and (4.7), with g′ = 0. Furthermore, W and a
are uniquely determined by f and ℓ.

(3) If m = pj, then g = h∗ = xpj
and g∗ = ϕj(h).

(b) (Seond Case) p ∤ M , and all onlusions of Theorem 4.9(ii) hold,

exept (4.13).

() Assume that M ≥ 2, and let f be a ollision of the Seond Case.

Then f belongs to the First Case if and only if min(ℓ,M) = 2.

(ii) If (g∗)′ = 0, then there exists a unique positive integer d suh that pd | ℓ,
p ∤ p−dℓ = L, and either (a) or (b) holds; furthermore, () is true.

(a) (First Case) There exist a moni w ∈ F [x] of degree ⌊m/L⌋ and

a ∈ F so that

f = (x− akℓwL(aℓ)) ◦ xkℓwL(xℓ) ◦ (x+ a),

g = (x− akℓwL(aℓ)) ◦ xkwL ◦ (x+ aℓ),

h = (x− aℓ) ◦ xℓ ◦ (x+ a),

g∗ = (x− akℓwL(aℓ)) ◦ xℓ ◦ (x+ akϕ−1
d (w)(aL)),

h∗ = (x− akϕ−1
d (w)(aL)) ◦ xkϕ−1

d (w)(xL) ◦ (x+ a),

where m = L⌊m/L⌋+k. The quantities w and a are uniquely deter-

mined by f and ℓ. Conversely, any w and a as above yield via these

formulas a ollision satisfying (4.4), (4.6), and (4.7). Furthermore,

kw + ℓxw′ 6= 0.
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(b) (Seond Case) There exist z, a ∈ F with z 6= 0 for whih all onlu-

sions of Theorem 4.9(ii) hold, exept (4.13). Conversely, any (z, a)
as above yields a ollision satisfying (4.4), (4.6) and (4.7).

() When L ≥ 3, then (a) and (b) are mutually exlusive. For L ≤ 2,
(b) is inluded in (a).

Proof. (i) We take the quantities j, M , G, G∗
, H∗

from Lemma 4.33(ii)

and apply Theorem 4.9 to the ollision G ◦ h = G∗ ◦ H∗
in (4.34). We start

with the First Case (Theorem 4.9(i)). If M > ℓ, it yields a moni W ∈ F [x] of
degree ⌊M/ℓ⌋ and a ∈ F with

G ◦ h = G∗ ◦ h∗ = (x− a∗) ◦ xKℓW ℓ(xℓ) ◦ (x+ a),

KW + ℓxW ′ 6= 0,(4.40)

where K = M − ℓ⌊M/ℓ⌋ and a∗ = aKℓW ℓ(aℓ). We set k = pjK and w = W pj
.

Then

f = g ◦ h = Gpj ◦ h = xpj ◦G ◦ h
= xpj ◦ (x− a∗) ◦ xKℓW ℓ(xℓ) ◦ (x+ a)

=
(
x− (a∗)p

j) ◦ xpjKℓ(W pj)ℓ(xℓ) ◦ (x+ a)

= (x− akℓwℓ(aℓ)) ◦ xkℓwℓ(aℓ) ◦ (x+ a).

Furthermore, we have

ℓs+ k = ℓpj⌊M/ℓ⌋ + pj(M − ℓ⌊M/ℓ⌋) = m.

If 2 ≤ M < ℓ, we have to reverse the roles of M and ℓ in the appliation

of Theorem 4.9(i). Thus we now �nd a moni W ∈ F [x] of degree ⌊ℓ/M⌋ and

a ∈ F with

G ◦ h = (x− a∗) ◦ xKMWM(xM) ◦ (x+ a),

with K = ℓ − M⌊ℓ/M⌋, a∗ = aKMWM(aM ), and KW + MxW ′ 6= 0. We set

k = pjK and w = W pj
. Then

f = xpj ◦G ◦ h = ϕj(x− a∗) ◦ xpj ◦ xKMWM(xM ) ◦ (x+ a)

= (x− akMwM(aM)) ◦ xkMwM(xM) ◦ (x+ a).

Furthermore we have

Ms+ k = Mpj⌊ℓ/M⌋ + pj(ℓ−M⌊ℓ/M⌋) = pjℓ.
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Sine p ∤ ℓ, W and a are uniquely determined.

If M = 1, then g = xpj
, f = xpj ◦ h = ϕj(h) ◦ xpj

, and g∗ = ϕj(h) by

Fat 3.1(i).

In the Seond Case of Theorem 4.9, we use Tpj = xpj
from Lemma 4.8(iv).

Now Theorem 4.9(ii) provides z, a ∈ F with z 6= 0 and

G ◦ h = G∗ ◦H∗ = (x− TℓM(a, z)) ◦ TℓM(x, z) ◦ (x+ a),

G = (x− TℓM(a, z)) ◦ TM(x, zℓ) ◦ (x+ Tℓ(a, z)).

Sine G′ 6= 0, we have p ∤ M , and hene p ∤ ℓM . Thus z and a are uniquely

determined. Furthermore

f = g ◦ h = xpj ◦G ◦ h
= (xpj − (TℓM(a, z))p

j

) ◦ TℓM(x, z) ◦ (x+ a)

= (x− Tn(a, z)) ◦ xpj ◦ TℓM(x, z) ◦ (x+ a)

= (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a).

In (i.), we have p ∤ ℓM = p−jn. By Theorem 4.9(iii), G ◦ h belongs to the

First Case if and only if min{ℓ,M} = 2.
(ii) We take d, L, G, H , G∗

from Lemma 4.33(iii), and apply Theorem 4.9

to the ollisionG◦H = G∗◦h∗
. In the First Case, this yields a moniW ∈ F [x]

of degree ⌊m/L⌋ and a ∈ F so that the onlusions of Theorem 4.9(i) hold for

these values, with k = m− L · ⌊m/L⌋. We set w = ϕd(W ). Then

degG = deg(xkWL) = (m− L · ⌊m/L⌋) + L · ⌊m/L⌋ = m,

g = ϕd(G) = ϕd

(
(x− akLWL(aL)) ◦ xkWL ◦ (x+ aL)

)

= ϕd(x− akLWL(aL)) ◦ ϕd(x
kWL) ◦ ϕd(x+ aL)

= (x− akℓwL(aℓ)) ◦ xkwL ◦ (x+ aℓ).

h = xpd ◦H = xpd ◦ (x− aL) ◦ xL ◦ (x+ a)

= (x− aℓ) ◦ xℓ ◦ (x+ a),

g∗ = xpd ◦G∗ = xpd ◦ (x− akLWL(aL)) ◦ xL ◦ (x+ akW (aL))

= (x− akℓW pdL(aL)) ◦ xℓ ◦ (x+ akW (aL))

= (x− akℓwL(aℓ)) ◦ xℓ ◦ (x+ akϕ−1
d (w)(aL)),

h∗ = (x− akW (aL)) ◦ xkW (xL) ◦ (x+ a)

= (x− akϕ−1
d (w)(aL)) ◦ xkϕ−1

d (w)(xL) ◦ (x+ a),

f = (x− akℓwL(aℓ)) ◦ xkℓwL(xℓ) ◦ (x+ a).
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Furthermore, Lemma 4.38 implies that

kw + ℓxw′ = kϕd(W ) + ℓxϕd(W )′ = ϕd(kW + ℓxW ′) 6= 0.

In the Seond Case, Theorem 4.9(ii) provides z, a ∈ F with z 6= 0 and

g = ϕd(G) = ϕd

(
(x− TmL(a, z)) ◦ Tm(x, z

L) ◦ (x+ TL(a, z))
)

=
(
x− ϕd(TmL(a, z))

)
◦ ϕd(Tm(x, z

L)) ◦
(
x+ ϕd(TL(a, z))

)

= (x− TmL(a, z)
pd) ◦ Tm(x, (z

L)p
d

) ◦ (x+ TL(a, z)
pd)

= (x− Tn(a, z)) ◦ Tm(x, z
ℓ) ◦ (x+ Tℓ(a, z)),

h = xpd ◦H = xpd ◦ (x− TL(a, z)) ◦ TL(x, z) ◦ (x+ a)

= (x− Tℓ(a, z)) ◦ Tℓ(x, z) ◦ (x+ a),

g∗ = xpd ◦G∗ = xpd ◦ (x− TLm(a, z)) ◦ TL(x, z
m) ◦ (x+ Tm(a, z))

= (x− Tn(a, z)) ◦ xpd ◦ TL(x, z
m) ◦ (x+ Tm(a, z))

= (x− Tn(a, z)) ◦ Tℓ(x, z
m) ◦ (x+ Tm(a, z)),

h∗ = (x− Tm(a, z)) ◦ Tm(x, z) ◦ (x+ a),

f = (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a).

(ii.) follows from Theorem 4.9(iii) for L ≥ 2. If L = 1, then ℓ = pd and

k = 0 in (ii.a). For any

f = (x− Tn(a, z)) ◦ Tn(x, z) ◦ (x+ a)

in (ii.b), we take w = Tm(x, z
pd). Then

Tn(x, z) = Tm(x, z
pd) ◦ Tpd(x, z) = w ◦ xpd,

f = (x− w(aℓ)) ◦ w(xℓ) ◦ (x+ a),

whih is an instane of (ii.a). �

If p ∤ n, then the ase where gcd(ℓ,m) 6= 1 is redued to the previous one by

the following result of Tortrat (1988). We will only use the speial ase where

ℓ = ℓ∗ and m = m∗
.

Fat 4.41. Suppose we have a �eld F of harateristi p ≥ 0, integers ℓ, ℓ∗, m,m∗

≥ 2 with p ∤ ℓm, moni original polynomials g, h, g∗, h∗ ∈ F [x] of degrees
m, ℓ, ℓ∗, m∗

, respetively, with g ◦ h = g∗ ◦ h∗
. Furthermore, let i = gcd(m, ℓ∗)

and j = gcd(ℓ,m∗). Then the following hold.
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(i) There exist moni original polynomials u, v, g̃, h̃, g̃∗, h̃∗ ∈ F [x] of degrees
i, j,m/i, ℓ/j, ℓ∗/i,m∗/j, respetively, so that

g = u ◦ g̃,
h = h̃ ◦ v,(4.42)

g∗ = u ◦ g̃∗,
h∗ = h̃∗ ◦ v.

(ii) Assume that ℓ = ℓ∗ < m = m∗
. Then i = j and m/i, ℓ/i, f̃ = g̃ ◦

h̃, g̃, h̃, g̃∗, h̃∗
satisfy the assumptions of Theorem 4.9.

Proof. (i) Tortrat (1988) proves the laim if F is algebraially losed, but

without the ondition of being moni original. Thus we have four deomposi-

tions (4.42) over an algebrai losure of F . We may hoose all six omponents

in (4.42) to be moni original. They are then uniquely determined. Sine p ∤ n,
deomposition is rational; see Shinzel (2000), I.3, Theorem 6, and Kozen &

Landau (1989) or von zur Gathen (1990a) for an algorithmi proof. It follows

that the six omponents are in F [x].
(ii) We have gcd(ℓ/i,m/i) = 1, and

f = (u ◦ g̃) ◦ (h̃ ◦ v) = (u ◦ g̃∗) ◦ (h̃∗ ◦ v).

The uniqueness of tame deompositions (Fat 3.1) implies that g̃ ◦ h̃ = g̃∗ ◦ h̃∗
.

The other requirements are immediate. �

Tortrat's result, together with the preeding material, determines Dn,ℓ ∩
Dn,m ompletely, if p ∤ n = ℓm.

Corollary 4.43. Let Fq be a �nite �eld of harateristi p, and let m >
ℓ ≥ 2 be integers with p ∤ n = ℓm, i = gcd(ℓ,m) and s = ⌊m/ℓ⌋. Let

t = #(Dn,ℓ ∩Dn,m). Then the following hold.

(i)

t =

{
q2ℓ+s−1(1− q−1) if ℓ | m,

q2i(qs+1 + (1− δℓ,2)(q
2 − q))(1− q−1) otherwise.

(ii)

t ≤ 2q2ℓ+s−1(1− q−1).



56 Joahim von zur Gathen

Proof. (i) Let T = Dn,ℓ ∩Dn,m ∩D0
n onsist of the moni original polyno-

mials in the intersetion, and similarly U = Dn/i2,ℓ/i ∩Dn/i2,m/i ∩D0
n/i2 . Then

Fat 4.41(ii) implies that T = P 0
i ◦U ◦P 0

i , using G◦H = {g ◦h : g ∈ G, h ∈ H}
for sets G,H ⊆ F [x]. Furthermore, the omposition maps involved are inje-

tive. Thus

#T = (#P 0
i )

2 ·#U = q2i−2 ·#U,

#(Dn,ℓ ∩Dn,m) = q2(1− q−1) · q2i−2 ·#U.

If ℓ ∤ m, then ℓ/i ≥ 2 and from Corollary 4.30(i) we have

#U =
q−2

1− q−1
· (qs+3 + (1− δℓ,2)(q

4 − q3))(1− q−1),

whih implies the laim in this ase. If ℓ | m, then ℓ/i = 1 and Corollary 4.30

is inappliable. Now

U = Dm/ℓ,1 ∩Dm/ℓ,m/ℓ ∩ P 0
m/ℓ = P 0

m/ℓ,

#U = #P 0
m/ℓ = qm/ℓ−1 = qs−1,

whih again shows the laim.

(ii) We have q2 ≤ qs+1
, and if ℓ ∤ m, then 2i ≤ ℓ ≤ 2ℓ− 2. �

This result shows that there are more polynomials in the intersetion when

ℓ2 | n than otherwise.

We now have determined the size of the intersetion if either p ∤ n or

gd(ℓ,m) = 1. It remains a hallenge to do this with the same preision when

both onditions are violated. The following approah yields a rougher estimate.

Theorem 4.44. Let F be a �eld of harateristi p ≥ 2, let ℓ,m, n ≥ 2 be

integers with p | n = ℓm, and set T = Dn,ℓ ∩ Dn,m ∩ D+
n . Then the following

hold.

(i) If p ∤ ℓ, then for any moni original f ∈ T there exist moni original

g∗ and h∗
in F [x] of degrees ℓ and m, respetively, with f = g∗ ◦ h∗

,

(g∗)′(h∗)′ 6= 0, and 0 ≤ deg(h∗)′ < m− ℓ.

(ii) If p | ℓ, then for any moni original f ∈ T there exist moni original

g and h ∈ F [x] of degrees m and ℓ, respetively, with f = g ◦ h and

deg g′ ≤ m− (m+ 1)/ℓ.
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Proof. We take a ollision (4.7) and its derivative (4.36). Sine f ∈ D+
n , we

have f ′ 6= 0.
(i) Sine p | m, we have deg g′ ≤ m−2, (h∗)′ 6= 0, and deg(h∗)′ ≥ 0, so that

n−m+ deg(h∗)′ = (ℓ− 1) ·m+ deg(h∗)′ = deg f ′

≤ (m− 2) · ℓ+ ℓ− 1 = n− ℓ− 1,

0 ≤ deg(h∗)′ < m− ℓ.

(ii) We have g′h′ 6= 0, deg(g∗)′ ≤ ℓ− 2, deg h′ ≥ 0, and

ℓ · deg g′ ≤ ℓ · deg g′ + deg h′ = deg f ′

≤ (ℓ− 2) ·m+m− 1 = ℓm−m− 1,

deg g′ ≤ m− m+ 1

ℓ
. �

We dedue the following upper bounds on #T .

Corollary 4.45. Let Fq be a �nite �eld of harateristi p, ℓ a prime number

dividing m > ℓ, assume that p | n = ℓm, and set t = #(Dn,ℓ ∩ Dn,m ∩ D+
n ).

Then the following hold.

(i) If p ∤ ℓ, then
t ≤ qm+⌈ℓ/p⌉(1− q−1).

(ii) If p | ℓ, we set c = ⌈(m− ℓ+ 1)/ℓ⌉. Then

t ≤ qm+ℓ−c+⌈c/p⌉(1− q−1).

If ℓ | m, then c = m/ℓ.

Proof. (i) Any h∗
permitted in Theorem 4.44(i) has nonzero oe�ients

only at xi
with p | i or i ≤ m − ℓ. Sine p | m, the number of suh i is

m − ℓ + ⌈ℓ/p⌉. Taking into aount that h∗
is moni, the number of g∗ ◦ h∗

,

omposed on the left with a linear polynomial, is at most

q2(1− q−1) · qℓ−1 · qm−ℓ+⌈ℓ/p⌉−1 = qm+⌈ℓ/p⌉(1− q−1).

(ii) The polynomials g permitted in Theorem 4.44(ii) are moni of degree

m and satisfy

deg g′ ≤ m− m+ 1

ℓ
,

deg g′ ≤ m− 2.



58 Joahim von zur Gathen

Thus p | m, and g has nonzero oe�ients only at xi
with i ≤ m and p | i or

1 ≤ i ≤ m− c. The number of suh i is m− c + ⌈c/p⌉. By omposing with a

linear polynomial on the left and by h on the right and using that g is moni,

we �nd

t ≤ q2(1− q−1) · qm−c+⌈c/p⌉−1 · qℓ−1 = qm+ℓ−c+⌈c/p⌉(1− q−1).

If ℓ | m, then c = m/ℓ− 1 + ⌈1/ℓ⌉ = m/ℓ. �

For perspetive, we also note the following lower bounds on #T . Unlike the

results up to Corollary 4.43, there is a substantial gap between the upper and

lower bounds.

Corollary 4.46. Let Fq be a �nite �eld of harateristi p, ℓ a prime number

dividing m > ℓ, assume that p | n = ℓm, and set t = #(Dn,ℓ ∩ Dn,m ∩ D+
n ).

Then the following hold.

(i) If p 6= ℓ divides m exatly d ≥ 1 times, then

q2ℓ+m/ℓ−1(1− q−1)(1− q−m/ℓ)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)) ≤ t

if ℓ ∤ pd − 1. Otherwise we set µ = gd(pd − 1, ℓ), r∗ = (pd − 1)/µ and

have

q2ℓ+m/ℓ−1(1− q−1)
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−m/ℓ)

− q−m/ℓ−r∗+2 (1− q−1)2(1− q−r∗(µ−1))

1− q−r∗
(1 + q−r∗(p−2))

)
≤ t.

(ii) If p = ℓ, p ∤ m/p, and m has no prime divisor smaller than p, then

q2p+m/p−1(1− q−1)2(1− q−p+1) ≤ t.

Proof. (i) For any moni original g, w, h ∈ Fq[x] of degrees ℓ,m/ℓ, ℓ, respe-
tively, we have g ◦ w ◦ h ∈ Dn,ℓ ∩Dn,m ∩D0

n. We now estimate the number of

suh ompositions.

Sine p ∤ ℓ = deg g, Fat 3.1(i) implies that the omposition map (g, w◦h) 7→
g ◦ w ◦ h is injetive. To estimate from below the number N of w ◦ h, we use

Theorem 3.31 with r = pd, a = m/ℓpd, k = m/ℓ, m̃ = ℓ 6= r, µ = gcd(r − 1, ℓ),
and r∗ = (r − 1)/µ. (Here m̃ is the value alled m in Theorem 3.31, whose

name on�its with the present value of m.)
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If µ = 1, we obtain from Theorem 3.31(i)

N ≥ qℓ+m/ℓ−2(1− q−m/ℓ)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)).

If µ 6= 1, Theorem 3.31(ii) says that

N ≥ qℓ+m/ℓ−2
(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−m/ℓ)

− q−m/ℓ−r∗+2 (1− q−1)2(1− q−r∗(µ−1))

1− q−r∗
(1 + q−r∗(p−2))

)
,

where we have used the simpli�ation of (3.44). (We note that Corollary 3.43

provides a simpli�ed bound if r∗ ≥ 2 and p > µ; when p > ℓ, then these two

inequalities hold unless ℓ = 2 and r = 3.)
We ompose these w ◦h with v ◦ g on the left, where v is linear and g moni

original of degree ℓ. This gives the lower bound

q2(1− q−1) · qℓ−1 ·N = qℓ+1(1− q−1)N

on t, as laimed.

Thus g has nonzero oe�ients only at xi
with p | i or i ≤ ap−a. It follows

that

t ≤ qa−1+ap−(a−⌊a/p⌋) · qp−1 = qap+p−a+⌊a/p⌋−2.

(ii) Clearly, t is at least the number of v ◦ g ◦ w ◦ h with v linear and

g, w, h ∈ F [x] moni original of degrees p, m/p, p, respetively.
We �rst bound the number t∗ of h∗ = w ◦ h with h∗

m−1 6= 0. We denote as

hp−1 the seond highest oe�ient of h. Then h∗
m−1 = m/p · hp−1, and h∗

m−1

vanishes if and only if hp−1 does. By Fat 3.1(i), γm,m/p is injetive, so that

t∗ = qm/p−1 · qp−1(1− q−1) = qm/p+p−2(1− q−1).

We now onsider g ◦ h∗
as input to Algorithm 3.14.

We have r = p 6= m and µ = gcd(p − 1, m) = 1. In the proofs of Theo-

rem 3.31(i) and Corollary 3.43(i), no speial properties of h are used, exept

(3.18). In the notation used there, we have i0 ∈ N if and only if p−1 | (κ−1)m.

Now κ < p and m has no divisors less than p, so that i0 /∈ N and (3.18) holds

vauously for all h. Thus the lower bound also applies when we replae the

number qm−1(1− q−1) of all possible seond omponents by t∗. Thus

t ≥ qp+m(1− q−1)(1− q−p)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)) · q

m/p+p−2(1− q−1)

qm−1(1− q−1)
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= q2p+m/p−1(1− q−1)(1− q−p)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))

= q2p+m/p−1(1− q−1)2(1− q−p+1). �

Example 4.47. We study the partiular example p = ℓ = 2 and m = 6,
so that n = 12. Let t1 = t · q−2(1 − q−1)−1

denote the number of moni

original polynomials in D12,2 ∩ D12,6 ∩ D+
12. Then Corollary 4.45(ii) says that

t1 ≤ q5. By oe�ient omparison, we now �nd a better bound. Namely,

we are looking for g ◦ h = g∗ ◦ h∗
with g, h, g∗, h∗ ∈ Fq[x] moni original of

degrees 2, 6, 6, 2, respetively. (We have reversed the usual degrees of g, h
and g∗, h∗

for notational onveniene.) We write h =
∑

i hix
i
, and similarly

for the other polynomials. Then we hoose any h2, h4, h5 ∈ Fq, and either

g1 arbitrary and h1 = uh5, or h1 arbitrary and g1 = h5(h1 + uhs), where
u = h4

5 + h2
5h4 + h2. Furthermore, we set h3 = h3

5 and h∗
1 = h5. Then the

oe�ients of g∗ are determined. If g′(g∗)′ 6= 0, then the above onstitute a

ollision, and by omparing oe�ients, one �nds that these are all. Their

number is at most 2q4, so that t1 ≤ 2q4 and t ≤ 2q6(1− q−1).
For an expliit desription of g, we set u2 = h4+h2

5. In the �rst ase, where

h1 = uh5, we have

g∗ = x6 + u2
2x

4 + g1x
3 + (u2 + u2g1)x

2 + g1ux.

In the seond ase, we have

g∗ = x6 + u2
2x

4 + h5(h1 + uh5)x
3 + (u2h1h5 + uh2)x

2 + h1(h1 + uh5)x.

In both ases, g1 = g′ 6= 0 implies that (g∗)′ 6= 0. ♦

Giesbreht (1988), Theorem 3.8, shows that there exist polynomials of de-

gree n over a �eld of harateristi p with super-polynomially many deompo-

sitions, namely at least nλ logn
many, where λ = (6 log p)−1

.

5. Counting tame deomposable polynomials

This setion estimates the dimension and number of deomposable univariate

polynomials. We start with the dimension of deomposables over an alge-

braially losed �eld. Over a �nite �eld, Theorem 5.2 below provides a general

upper bound on the number in (i), and an almost mathing lower bound. The

latter applies only to the tame ase, where p ∤ n, and both bounds arry a rel-

ative error term. Lower bounds in the more di�ult wild ase are the subjet

of Setion 6.
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Giesbreht (1988) was the �rst work on our ounting problem. He proves (in

his Setion 1.G and translated to our notation) an upper bound of d(n)q2+n/2

(1−q−1) on the number of deomposable polynomials, where d(n) is the number

of divisors of n. This is mildly larger than our bound of about 2qℓ+n/ℓ(1−q−1),
in Theorem 5.2(i), with its dependene on ℓ replaed by the �worst ase� ℓ = 2,
as in the Main Theorem (i). With the same replaement, Giesbreht's thesis

ontains the upper bound in the following result, whih is the geometri bound

for our urrent problem.

Theorem 5.1. Let F be an algebraially losed �eld, n ≥ 2, and ℓ the smallest

prime divisor of n. Then Dn = ∅ if n is prime, and otherwise

dim Dn = ℓ+ n/ℓ.

Proof. We may assume that n is omposite. By Fat 3.1, the �bers of γn,ℓ
are �nite, and hene

dimDn ≥ dimDn,ℓ = dim(P=
ℓ × P 0

n/ℓ) = ℓ+ n/ℓ.

Now Dn,n/ℓ has the same dimension, and Dn,e has smaller dimension for all

other divisors e of n. �

The argument for Corollary 4.30(i) shows that if n is omposite, p ∤ n, and
ℓ2 ∤ n, then dim(Dn,ℓ ∩ Dn,n/ℓ) ≤ ⌊n/ℓ2⌋ + 3 < ℓ + n/ℓ. Thus γn,ℓ and γn,n/ℓ
desribe two di�erent irreduible omponents of Dn, both of dimension ℓ+n/ℓ.

Zannier (2008) studies a di�erent but related question, namely ompositions

f = g ◦h in C[x] with a sparse polynomial f , having t terms. The degree is not

bounded. He gives bounds, depending only on t, on the degree of g and the

number of terms in h. Furthermore, he gives a parametrization of all suh f ,
g, h in terms of varieties (for the oe�ients) and latties (for the exponents).

We now present a generally valid upper bound on the number of deompos-

ables and a lower bound in the tame ase p ∤ n.

Theorem 5.2. Let Fq be a �eld of harateristi p and with q elements, and

n ≥ 2. Let ℓ and ℓ2 be the smallest and seond smallest nontrivial divisors of
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n, respetively (with ℓ2 = 1 if n = ℓ or n = ℓ2), s = ⌊n/ℓ2⌋, and

αn =





0 if n = ℓ,

q2ℓ(1− q−1) if n = ℓ2,

2qℓ+n/ℓ(1− q−1) otherwise,

(5.3)

c =
(n− ℓℓ2)(ℓ2 − ℓ)

ℓℓ2
,

βn =




0 if n ∈ {ℓ, ℓ2, ℓ3, ℓℓ2},
q−c

1− q−1
otherwise,

β∗
n = q−ℓ−n/ℓ+s+3,(5.4)

t =

{
0 if n ∈ {ℓ, ℓ2},
#(Dn,ℓ ∩Dn,n/ℓ) otherwise.

(5.5)

Then the following hold.

(i) #Dn ≤ αn(1 + βn). If n /∈ {ℓ2, ℓ3}, then #Dn ≤ αn(1− α−1
n t+ βn) .

(ii) #In ≥ #P=
n − 2αn.

(iii) If p ∤ n and ℓ2 ∤ n, then

αn(1− q−n/ℓ+ℓ+s−1) ≤ αn(1− β∗
n) ≤ #Dn ≤ αn(1−

β∗
n

2
+ βn).

(iv) If p ∤ n, then

αn(1− q−n/ℓ+ℓ+s−1) ≤ #Dn ≤ αn(1−
β∗
n

2
+ βn).

(v) If p 6= ℓ, then #Dℓ2 = αℓ2 and #Dℓ3 = αℓ3(1− q−(ℓ−1)2/2).

(vi) If p ∤ n 6= ℓ2 and n/ℓ is prime, then

#Dn = αn

(
1− 1

2
q−n/ℓ−ℓ+3(qs + (1− δℓ,2)(q − 1))

)
.

Proof. When n = ℓ is prime, then Dn = ∅ and all laims are lear (reading

α−1
n t as 0). We may now assume that n is omposite.
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(i) The laim for n ∈ {ℓ2, ℓ3} follows from (v), and we now exlude these

ases. We write u(e) = e + n/e for the exponent in Fat 3.1(i). We have the

two largest subsets Dn,ℓ and Dn,n/ℓ of Dn, both of size at most

(5.6)

αn

2
= qu(ℓ)(1− q−1) = qℓ+n/ℓ(1− q−1) = #(P=

ℓ × P 0
n/ℓ) = #(P=

n/ℓ × P 0
ℓ ).

Their joint ontribution to #Dn is at most

(5.7) αn − t.

Sine n is not ℓ or ℓ2, we have ℓ < ℓ2 ≤ n/ℓ, and ℓ2 is either ℓ2 or a prime

number larger than ℓ. The index set E in (2.4) onsists of all proper divisors

of n. If n = ℓℓ2, then E = {ℓ, ℓ2}, and from (5.7) we have

#Dn ≤ αn − t.

We may now assume that n 6= ℓℓ2. For any e ∈ E, we have u(e) = e+n/e =
u(n/e). Furthermore

(5.8) u(e)− u(e′) =
(n− ee′)(e′ − e)

ee′

holds for e, e′ ∈ E, and in partiular

(5.9) u(ℓ)− u(ℓ2) = (n− ℓℓ2)(ℓ2 − ℓ)/ℓℓ2 = c.

Considered as a funtion of a real variable e, u is onvex on the interval [1..n],
sine ∂2u/∂e2 = 2n/e3 > 0. Thus u(ℓ)−u(e) ≥ c for all e ∈ E2 = Er{ℓ, n/ℓ}.
Then

∑

e∈E2

qu(e)−u(ℓ) = q−c
∑

e∈E2

qu(e)−u(ℓ)+c

< q−c · 2
∑

i≥0

q−i =
2q−c

1− q−1
,

sine eah value u(e) is assumed at most twie, namely for e and n/e, aording
to (5.8). Using (5.7), it follows for n 6= ℓ2 that

(5.10)

#Dn + t ≤
∑

e∈E
#Dn,e ≤

∑

e∈E
qu(e)(1− q−1)

≤ qℓ+n/ℓ(1− q−1)(2 +
∑

e∈E2

qu(e)−u(ℓ))

≤ qℓ+n/ℓ(1− q−1)(2 +
2q−c

1− q−1
) = αn(1 + βn).
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This implies the laim in (i).

(ii) follows from βn ≤ 1.

For (iii), we have Dn,ℓ ∪Dn,n/ℓ ⊆ Dn. Sine p ∤ n, both γn,ℓ and γn,n/ℓ are
injetive, by Fat 3.1(i). From Corollary 4.30(i), we �nd

#Dn ≥ #Dn,ℓ +#Dn,n/ℓ −#(Dn,ℓ ∩Dn,n/ℓ)

≥ 2qℓ+n/ℓ(1− q−1)− (qs+3 + q4)(1− q−1)

= αn(1−
qs+3 + q4

2qℓ+n/ℓ
) ≥ αn(1−

qs+3

qℓ+n/ℓ
) = αn(1− β∗

n),

#Dn ≤ αn(1−
qs+3(1− q−1)

αn

+ βn) = αn(1−
β∗
n

2
+ βn).

Furthermore, we have 1 ≤ s ≤ n/ℓ2 (sine n is omposite), s+3 ≥ 4, ℓ ≥ 2,
and hene

−ℓ− n

ℓ
+ s + 3 ≤ −n

ℓ
+ ℓ+ s− 1.

It follows that

β∗ ≤ q−n/ℓ+ℓ+s−1.

(iv) For the lower bound if ℓ2 | n, we replae the upper bound from Corol-

lary 4.30(i) by the one from Corollary 4.43(ii).

In (v), for n = ℓ2, we have Dn = Dn,ℓ and

#Dn = qℓ+n/ℓ(1− q−1) = αn,

using the injetivity of γℓ2,ℓ (Fat 3.1(i)). When n = ℓ3, then Corollary 4.43

says that

t = q3ℓ−1(1− q−1),

#Dℓ3 = αℓ3(1−
t

αℓ3
) = αn(1−

q−(ℓ−1)2

2
).

This shows (v). For (vi), we replae the bound on #(Dn,ℓ∩Dn,n/ℓ) by its exat

value from Corollary 4.30(i). �

Bodin et al. (2009) state an upper bound as in Theorem 5.2(i), with an

error term whih is only O(n) worse than βn.
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Remark 5.11. How often does it happen that the smallest prime fator ℓ of
n atually divides n at least twie? The answer: almost a third of the time.

For a prime ℓ, let

Sℓ = {n ∈ N : ℓ2 | n, ∀ primes r < ℓ r ∤ n},

so that

⋃
ℓ Sℓ is the set in question. The union is disjoint, and its density is

σ =
∑

ℓ

1

ℓ2

∏

r<ℓ

(1− 1

r
) ≈ 0.330098.

If we take a prime p and further ask that p ∤ n, then we have the density

σp = σ − 1

p2

∏

r<p

(1− 1

r
)− 1

p

∑

ℓ<p

1

ℓ2

∏

r<ℓ

(1− 1

r
).

The orretion terms σ− σp are ≈ 0.25, 0.13889, 0.07444 for p = 2, 3, 5, respe-
tively.

The upper and lower bounds in Theorem 5.2(i) and (iii) have distint rela-

tive error estimates. We now ompare the two.

Proposition 5.12. In the notation of Theorem 5.2, assume that n 6= ℓ, ℓ2, ℓℓ2.

(i) If ℓ2 ≤ ℓ2, then βn > β∗
n. If furthermore ℓ2 ∤ n and p ∤ n, then

|#Dn − αn| ≤ αnβn.

(ii) If ℓ2 ≥ ℓ2 + ℓ, then βn ≤ β∗
n. If furthermore ℓ2 ∤ n and p ∤ n, then

|#Dn − αn| ≤ αnβ
∗
n.

Proof. We let µ = − logq(1 − q−1) and σ = n/ℓ2 − s, so that 0 < µ ≤ 1,
0 ≤ σ ≤ 1− 1/ℓ < 1, and

βn = q−c+µ,

β∗
n = q−ℓ−n/ℓ+n/ℓ2−σ+3.

Furthermore,

(5.13)

βn ≤ β∗
n ⇐⇒ ℓℓ2(ℓ+

n

ℓ
− n

ℓ2
+ σ + µ− 3) ≤ (n− ℓℓ2)(ℓ2 − ℓ)

⇐⇒ ℓℓ2(ℓ2 + σ + µ− 3) ≤ n

ℓ
(ℓ2 − ℓ2).
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We note that ℓ2 > ℓ2 + σ + µ − 3 > 0. If ℓ2 ≤ ℓ2, it follows that βn > β∗
n. If

ℓ2 ≥ ℓ2 + ℓ, then a = n/ℓℓ2 is a proper divisor of n, sine n 6= ℓℓ2. It follows

that a ≥ ℓ2, sine a = ℓ would mean that ℓ2 is a divisor of n with ℓ < ℓ2 < ℓ2,
ontraditing the minimality of ℓ2. Then

n

ℓ
(ℓ2 − ℓ2) ≥ ℓ22 · ℓ > ℓℓ2(ℓ2 + σ + µ− 3),

and βn ≤ β∗
n.

The laims about #Dn follow from Theorem 5.2. �

There remains the �gray area� of ℓ2 < ℓ2 < ℓ2 + ℓ, where (5.13) has to be

evaluated. The three equivalent properties in (5.13) hold when n has at least

four prime fators, and do not hold when n = ℓℓ2.
We an simplify the bounds of Theorem 5.2, at the prie of a slightly larger

relative error.

Corollary 5.14. We assume the notation of Theorem 5.2.

(i) If n is prime, then Dn = ∅.

(ii) For all n, we have

(5.15) #Dn ≤ αn(1 + q−n/3ℓ2).

(iii) If p ∤ n, then
|#Dn − αn| ≤ αn · q−n/3ℓ2 .

Proof. (i) follows from Theorem 5.2(i), sine αn = 0. For (ii), we laim

that βn ≤ q−n/3ℓ2
. The ases where n ∈ {ℓ, ℓ2, ℓℓ2} are trivial, and we may now

assume that a = n/ℓℓ2 ≥ 2. We set µ = − logq(1− q−1), so that 0 < µ ≤ 1 and

βn = q−c+µ
.

We have

3ℓ3 + 3ℓ

3ℓ− 2
≥ 3ℓ2

3ℓ− 1
.

If

(5.16) ℓ2 ≥
3ℓ2 + 3ℓ

3ℓ− 2
= ℓ+

5

3
+

10

9ℓ− 6
,

then ℓ2 − ℓ− ℓ2/3ℓ ≥ 0 and

a(ℓ2 − ℓ− ℓ2
3ℓ
) ≥ 2(ℓ2 − ℓ− ℓ2

3ℓ
) ≥ ℓ2 − ℓ+ 1,

(a− 1)(ℓ2 − ℓ)− 1 ≥ aℓ2
3ℓ

=
n

3ℓ2
,(5.17)
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from whih the laim follows. (5.16) is satis�ed exept when (ℓ, ℓ2) is (2, 3),
(2, 4) or (3, 5).

In the �rst ase, (5.17) is satis�ed for a ≥ 4, and in the other two for a ≥ 3.
The latter always holds in the ase (3, 5), and we are left with n ∈ {12, 16, 18}.
For these values of n, we use a diret bound on the sum in (5.10), namely

∑

e∈E2

qu(e)−u(ℓ) ≤ #E2 · q−c = 2ǫq−c,

where ǫ = #E2/2, so that

#Dn ≤ αn(1 + ǫq−c)− t.

The required values are given in Table 5.1. In all ases, we onlude from

Theorem 5.2(i) that #Dn ≤ αn(1 + q−n/3ℓ2).

n 12 16 18
ǫ 1 1/2 1
c 1 2 2
n/3ℓ2 1 4/3 3/2

Table 5.1: Parameters for three values of n.

(iii) Our laim is that q−n/ℓ+ℓ+s−1 ≤ q−n/3ℓ2
. Sine n ≥ ℓ2, we have

ℓ2(3ℓ− 3) ≤ ℓ2(3ℓ− 2) ≤ n(3ℓ− 2),

2n+ 3ℓ3 ≤ 3ℓn+ 3ℓ2,

n

3ℓ2
+ ℓ + s ≤ n

3ℓ2
+ ℓ+

n

ℓ2
=

2n

3ℓ2
+ ℓ ≤ n

ℓ
+ 1.

This proves the laim, and (iii) follows from (ii) and Theorem 5.2. �

6. Counting general deomposable polynomials

Theorem 5.2 provides a satisfatory result in the tame ase, where p ∤ n. Most

of the preparatory work in Setions 3 and 4 is geared towards the wild ase.

The upper bound of Theorem 5.2(i) still holds. We now present the resulting

lower bounds.

We have to deal with an annoyingly large jungle of ase distintions. To

keep an overview, we redue it to the single tree of Figure 6.1. Its branhes

orrespond to the various bounds on equal-degree ollisions (Corollary 3.43)
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b

I b

n = ℓ2

A b

p 6= ℓ

bB

p = ℓ

b II

n 6= ℓ2

A b

p ∤ n

b i

ℓ2 ∤ n

ii b

ℓ2 | n

b B

p | n

i b

ℓ2 ∤ n

a b

p 6= ℓ

bb

p = ℓ

b ii

ℓ2 | n

a b

p 6= ℓ

bb

p = ℓ

α b

p3 ∤ n

bβ

p3 | n

Figure 6.1: The tree of ase distintions for estimating #Dn.

and on distint-degree ollisions (Corollaries 4.30, 4.43, and 4.45). Sine at

eah internal vertex, the two branhes are omplementary, the leaves over all

possibilities. We use a top down numbering of the verties aording to the

branhes; as an example, II.B.ii.b.β is the rightmost leaf at the lowest level.

Furthermore, if a branhing is left out, as in II.B, then a bound at that vertex

holds for all desendants, whih omprise three internal verties and �ve leaves

in this example.

Theorem 6.1. Let Fq be a �nite �eld of harateristi p with q elements, and

ℓ the smallest prime divisor of the omposite integer n ≥ 2. Then we have the

following bounds on #Dn over Fq.

(i) If the �upper� olumn in Table 6.1 ontains a 1, then

#Dn ≤ αn.
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leaf in up-

Figure 6.1 lower bound on #Dn/αn per

I.A 1 1
I.B

1
2
(1 + 1

p+1
)(1− q−2) + q−p > 1/2 1

II.A.i 1− β∗
n ≥ 1− q−n/ℓ−ℓ+n/ℓ2+3

II.A.ii 1− q−n/ℓ+ℓ+n/ℓ2−1/2

II.B.i.a 1− (q−1 + q−p+1 + q−n/ℓ−ℓ+n/ℓ2+3)/2
II.B.i.b 1− (q−1 − q−p)/2 1
II.B.ii.a 1− (q−1 + q−p+1 − q−p + q−ℓ+1)/2

II.B.ii.b.α 1
2
(3
2
+ 1

2p+2
− q−1 − q−2

2
(1 + 1

p+1
)− q−p+1

1−q−p )

II.B.ii.b.β 1− q−1 − q−p+1 1

Table 6.1: The bounds at the leaves of Figure 6.1.

(ii) The lower bounds in Table 6.1 hold.

Proof. We reall Dn,e from (2.3) and αn from (5.3), the supersript + for

non-Frobenius from (3.5), and set at eah vertex

ν =
#Dn

αn
, ν0 =

#D+
n,ℓ

αn
, ν1 =

#D+
n,n/ℓ

αn
, ν2 =

#(D+
n,ℓ ∩D+

n,n/ℓ)

αn
, ν3 =

#Dϕ
n

αn
.

Then ν = ν0 + ν3 if n = ℓ2, and otherwise

(6.2) ν0 + ν1 − ν2 + ν3 ≤ ν ≤ 1 + βn − ν2 − ν3.

In the lower bound, ν0 + ν1 − ν2 ounts the non-Frobenius ompositions of the

dominant ontributions Dn,ℓ and Dn,n/ℓ, and ν3 adds the Frobenius omposi-

tions. In the upper bound, 1− ν2 bounds the two dominant ontributions from

above, βn aounts for the non-dominant ontributions. We may subtrat ν3
sine the Frobenius ompositions have been ounted twie, in Dn,p and Dn,n/p;

of ourse, ν3 is nonzero only if p | n.
The proof proeeds in two stages. In the �rst one, we indiate for some

verties V bounds λi(V ) with the following properties:

ν0 ≥ λ0, ν1 ≥ λ1, λ2 ≥ ν2 ≥ λ4.

Suh a bound at V applies to all desendants of V . The value λ4 only intervenes

in the upper bound on ν, and we sometimes forego its detailed alulation and
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simply use λ4 = 0. In the seond stage, we assemble those bounds for eah leaf,

aording to (6.2).

Throughout the proof, d ≥ 0 denotes the multipliity of p in n, and s =
⌊n/ℓ2⌋. In the �rst stage, we use Theorem 5.2(v) at I.A:

ν(I.A) = 1.

At I.B, we have from Example 3.45

λ0(I.B) ≥
1

2
(1 +

1

p+ 1
)(1− q−2) + q−p.

Furthermore,

(1 +
1

p+ 1
)(1− q−2) ≥ (1 +

1

p+ 1
)(1− p−2) = 1 +

p− 2

p2
≥ 1,

so that λ0(I.B) > 1/2. Lemma 4.32(ii) says that

λ3(I.B) = q−p+1.

From Fat 3.1(i), we have

λ0(II.A) = λ1(II.A) =
1

2
,

and sine p ∤ n,
ν3(II.A) = 0.

Vertex II.A.i has been dealt with in Corollary 4.30(i):

λ2(II.A.i) = β∗
n ≥ 1

2
q−n/ℓ−ℓ(qs+3 + q4),

λ4(II.A.i) =
1

2
q−n/ℓ−ℓ+s+3.

Sine ℓ | n/ℓ, Corollary 4.43 yields

λ2(II.A.ii) = λ4(II.A.ii) =
1

2
q−n/ℓ+ℓ+s−1.

Sine p | n at II.B, Lemma 4.32(ii) implies that

ν3(II.B) =
1

2
q−ℓ−n/ℓ+n/p+1.
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We now let V be one of II.B.i.a or II.B.ii.a. Then we have

λ0(V ) =
1

2
,

by Fat 3.1(i). Applying Corollary 3.43 to Dn,n/ℓ at V , we have d ≥ 1,r = pd 6=
ℓ = m, k = n/ℓ, and

(6.3) µ = gcd(pd − 1, ℓ) is either 1 or ℓ.

In the �rst ase, where µ = 1, we have

ν1(V ) ≥ 1

2
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))(1− q−n/ℓ)

from Corollary 3.43(i). In the seond ase, where µ = ℓ, we have p > ℓ = µ ≥ 2.
We �rst assume that r 6= 3. Then r − 1 = pd − 1 is not a prime number, and

r∗ = (r − 1)/ℓ ≥ 2, so that the last bound in Corollary 3.43(ii) applies and

ν1(V ) ≥ 1

2

(
(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)
)
(1− q−n/ℓ)− 2

3
q−n/ℓ(1− q−1)2.

If r = 3, then p = 3, µ = ℓ = 2, r∗ = 1, and aording to the seond bound in

Corollary 3.43(ii), we have to replae the last summand above by

−1

2
q−n/ℓ+1(1− q−1)2(1 + q−1).

Sine 2/3 ≤ q(1 + q−1)/2, the latter term dominates in absolute value the one

for r 6= 3. Its value is at least q−n/ℓ+1/2, and we �nd for µ = ℓ that

ν1(V ) ≥ 1

2
− q−1

2
(1 + q−p+2(1− q−1))

− q−n/ℓ

2
(1− q−1 − q−p+1 (1− q−1)2

1− q−p
+ q)

≥ 1

2
− q−1

2
(1 + q−p+2) +

q−p

2
− q−n/ℓ(q + 1)

2
.

Thus we may take the last value as λ1(II.B.i.a) and λ1(II.B.ii.a). Furthermore,

Corollary 4.30(iii) yields

λ2(II.B.i.a) =
1

2
q−n/ℓ−ℓ(qs+3 − q⌊s/p⌋+3).
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When V is II.B.i.b or II.B.ii.b, we have for λ0 in the notation of Corol-

lary 3.43 that k = r = p 6= n/p = m and µ = gcd(p − 1, n/p) = 1, sine all

proper divisors of n/p are at least ℓ = p. Thus we may apply Corollary 3.43(i)

to �nd

λ0(V ) =
1

2
(1− q−p)(1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
))

=
1

2
(1− q−1 − q−p+1 + q−p).

At II.B.i.b, we have p ∤ n/p, so that Fat 3.1(i) for Dn,n/p implies

λ1(II.B.i.b) =
1

2
,

and Corollary 4.30(ii) yields

λ2(II.B.i.b) = λ4(II.B.i.b) = 0.

At II.B.ii.a, we have ℓ < p, and Corollary 4.45(i) says that

λ2(II.B.ii.a) =
1

2
q−ℓ+⌈ℓ/p⌉ =

1

2
q−ℓ+1.

At II.B.ii.b.α, we have k = n/p and r = p = z = m in Corollary 3.43(iii)

for Dn,n/p, so that

λ1(II.B.ii.b.α) =
1

2
(1− q−1)(

1

2
+

1 + q−1

2p+ 2
+

q−1

2

− q−n/p1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
).

Furthermore, from Corollary 4.45(ii) we have

λ2(II.B.ii.b) =
1

2
q−n/p2+⌈n/p3⌉.

At II.B.ii.b.β, we have for Dn,n/p that k = n/p, r = pd−1 6= p = m, sine d ≥ 3,
and µ = gcd(r − 1, m) = gcd(pd−1 − 1, p) = 1, so that Corollary 3.43(i) yields

λ1(II.B.ii.b.β) =
1

2

(
1− q−1(1 + q−p+2 (1− q−1)2

1− q−p
)
)
(1− q−n/p)

=
(1− q−1)(1− q−p+1)(1− q−n/p)

2(1− q−p)
.
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Corollary 4.46(ii) says that

λ4(II.B.ii.b.α) =
1

2
q−n/p+p+n/p2−1(1− q−1)(1− q−p+1).

We �nd the following bounds on ν at the leaves.

I.A:

ν = λ0(I.A) = 1,

I.B: We have λ3(I.B) = q−p+1
, and all Frobenius ompositions exept xp◦xp

are ollisions. Thus

1− q−p+1(1− q−p+1) ≥ ν ≥ 1

2
(1 +

1

p + 1
)(1− q−2) + q−p > 1/2.

II.A.i:

ν ≤ 1 + βn − λ4(II.A.i) = 1 + βn −
1

2
q−n/ℓ−ℓ+s+3 ≤ 1 + βn,

ν ≥ λ0(II.A) + λ1(II.A)− λ2(II.A.i) = 1− β∗
n.

II.A.ii:

ν ≤ 1 + βn − λ4(II.A.ii) = 1 + βn −
1

2
q−n/ℓ+ℓ+n/ℓ2−1 ≤ 1 + βn,

ν ≥ λ0(II.A) + λ1(II.A)− λ2(II.A.ii)

=
1

2
+

1

2
− 1

2
q−n/ℓ+ℓ+s−1 = 1− 1

2
q−n/ℓ+ℓ+s−1.

II.B.i.a:

For the lower bound, we �nd

ν ≥ λ0(II.B.i.a) + λ1(II.B.i.a)− λ2(II.B.i.a) + ν3(II.B)

=
1

2
+

1

2
(1− q−1(1 + q−p+2) + q−p − q−n/ℓ(q + 1))

− 1

2
q−n/ℓ−ℓ(qs+3 − q⌊s/p⌋+3) +

1

2
q−ℓ−n/ℓ+n/p+1

≥ 1− 1

2
(q−1 + q−p+1) +

q−p

2
− q−n/ℓ

2
(q + 1 + qs−ℓ+3 − qn/p−ℓ+1).(6.4)

At the present leaf, we have n = aℓp with p > ℓ ≥ 2 and a ≥ 1. Thus
n/ℓ ≥ p and

q−p ≥ q−n/ℓ.
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Furthermore, n/p ≥ ℓ and

qn/p−ℓ+1 ≥ q.

It follows that

ν ≥ 1− 1

2
(q−1 + q−p+1 + q−n/ℓ−ℓ+s+3).(6.5)

II.B.i.b:

ν ≤ 1 + βn − λ4(II.B.i.b)− ν3(II.B) = 1 + βn − 0− 1

2
q−p+1.

We laim that βn ≤ 1
2
q−p+1

, so that ν ≤ 1. We may assume that n /∈
{ℓ2, ℓℓ2}, sine otherwise βn = 0. Setting µ = logq(2/(1 − q−1)), we have

0 < µ ≤ 2 and 2βn = q−c+µ ≤ q−c+2
, so that it su�es to show

ℓ− 1 = p− 1 ≤ c− 2 =
(n− ℓℓ2)(ℓ2 − ℓ)

ℓℓ2
− 2.

Abbreviating a = n/ℓℓ2, this is equivalent to

(6.6)

ℓ+ 1

ℓ2 − ℓ
+ 1 ≤ a.

Sine p = ℓ and p2 ∤ n, we have ℓ ∤ a and a ≥ ℓ2 > ℓ, by the minimality

onditions on ℓ and ℓ2. If ℓ2 ≥ ℓ+ 2, (6.6) holds. If ℓ2 = ℓ+ 1, then ℓ = 2 and

a ≥ 4 is required for (6.6). Sine 2 ∤ a, it remains the ase a = 3, orresponding
to n = 18 and p = 2. One heks that β18 ≤ 1

2
q−1

for q ≥ 4. For q = 2, we
have to go bak to (5.10) and hek that ν3 = q10(1− q−1) and

#D18 ≤ α18 − ν3 + 2q9(1− q−1) = α18.

For the lower bound, we have

ν ≥ λ0(II.B.i.b) + λ1(II.B.i.b)− λ2(II.B.i.b) + ν3(II.B)

=
1

2
(1− q−1 − q−p+1 + q−p) +

1

2
− 0 +

1

2
q−p+1

= 1− 1

2
(q−1 − q−p).
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At II.B.ii.a, we have

ν ≥ λ0

(
II.B.ii.a

)
+ λ1

(
II.B.ii.a

)
− λ2

(
II.B.ii.a

)
+ ν3

(
II.B

)

=
1

2
+

1

2
− q−1

2
(1 + q−p+2) +

q−p

2
− q−n/ℓ(q + 1)

2

− q−ℓ+1

2
+

q−ℓ−n/ℓ+n/p+1

2

= 1− 1

2
(q−1 + q−p+1) +

q−p

2
− q−ℓ+1

2
+

q−n/ℓ

2
(qn/p−ℓ+1 − q − 1).

Sine n = aℓ2p with a ≥ 1, we have n/p ≥ ℓ2 > ℓ + 1, and

qn/p−ℓ+1 > q2 > q + 1,

ν > 1− 1

2
(q−1 + q−p+1 − q−p + q−ℓ+1).

II.B.ii.b.α:

ν ≥ λ0(II.B.ii.b) + λ1(II.B.ii.b.α)− λ2(II.B.ii.b) + ν3(II.B)

=
1

2
(1− q−1 − q−p+1 + q−p) +

1

2
(1− q−1)(

1

2
+

1 + q−1

2p+ 2
+

q−1

2

− q−n/p1− q−p+1

1− q−p
− q−p+11− q−1

1− q−p
)− 1

2
q−n/p2+⌈n/p3⌉ +

1

2
q−p+1

=
1

2

(3
2
+

1

2p+ 2
− q−1 − q−2

2
(1 +

1

p+ 1
) +

q−p(2− q−1 − q−p)

1− q−p

− q−n/p2+⌈n/p3⌉ − q−n/p (1− q−1)(1− q−p+1)

1− q−p

)
.

(6.7)

We have n = ap2 with a > p and all prime divisors of a larger than p. If

p ≥ 3, then a ≥ p+ 2 and

a ≥ p+ 2 > p+ 1 +
1

p− 1
=

p2

p− 1
,

a ≥ p+
a

p
,

a ≥ p+

⌈
a

p

⌉
,

q−p ≥ q−n/p2+⌈n/p3⌉.(6.8)
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We may now assume that p = 2. If a ≥ 5, then

a− a

2
=

a

2
≥ 2 = p,

and (6.8) again holds. In the remaining ase p = 2 and a = 3, we have n = 12
and (6.8) is false. Furthermore, we have p < n/p and

q−p

1− q−p
> q−n/p (1− q−1)(1− q−p+1)

1− q−p
,

q−p+1(1− q−1)2 = q−p+1 − (2− q−1)q−p ≥ q−p+1 − 2q−p,

so that for n 6= 12 the following holds:

ν ≥ 1

2

(3
2
+

1

2p+ 2
− q−1 − q−2

2
(1 +

1

p+ 1
)− q−p+1

1− q−p

)
.

For n = 12, we have alulated in Example 4.47 that λ2(II.B.ii.b) = t/α12 ≤
q−2 = q−p

, and we may use this to the same anellation e�et as (6.8), so that

the last inequality also holds for n = 12.
II.B.ii.b.β:

ν ≥ λ0(II.B.ii.b) + λ1(II.B.ii.b.β)− λ2(II.B.ii.b) + ν3(II.B)

=
1

2
(1− q−1 − q−p+1 + q−p) +

1

2

(1− q−1)(1− q−p+1)(1− q−n/p)

1− q−p

− 1

2
q−n/p2+⌈n/p3⌉ + 1

2
q−p+1

= 1− q−1 − q−p+1

2
· (1− q−1)2

1− q−p
+

q−p

2
(6.9)

− q−n/p(1− q−1 − q−p+1 + q−p)

2(1− q−p)
− 1

2
q−n/p2+n/p3 .

Sine n ≥ p3, we have

n/p ≥ p2 > p,

q−p > q−n/p,

n(p− 1) ≥ p3(p− 1),

−p+ 1 ≥ − n

p2
+

n

p3
,

ν ≥ 1− q−1 − q−p+1

2
− 1

2
q−n/p2+n/p3 ≥ 1− q−1 − q−p+1.(6.10)

�
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Exept at I.B and II.B.ii.b.α, the lower bounds are of the satisfatory form

1 − O(q−1). The leaf I.B is disussed in Example 3.45. For small values of q,
the entry in Table 6.1 at II.B.ii.b.α provides the lower bounds in Table 6.2.

q #Dn/αn ≥
2 1/6 > 0.1666
3 259/468 > 0.5534
4 133/240 > 0.5541
5 106091/156200 > 0.6791
7 56824055/80707116 > 0.7040
8 2831/4032 > 0.7021
9 88087/117936 > 0.7469

Table 6.2: Lower bounds at the leaf II.B.ii.b.α, where ℓ2 = p2 ‖ n 6= p2.

The multitude of bounds, driven by the estimates of Setion 3 and 4, is

quite onfusing. The Main Theorem in the introdution provides simple and

universally appliable estimates. Before we ome to its proof, we note that

for speial values, in partiular for small ones, of our parameters one may �nd

better bounds in other parts of this paper.

Proof (Main Theorem). (i) follows from 2 ≤ ℓ ≤ √
n. The �rst upper bound

on #Dn in (ii) follows from Corollary 5.14(ii). It remains to dedue the lower

bounds. Starting with the last laim, we note that (v) is Corollary 5.14(iii). In

the assumption of (iv), the leaves I.B and II.B.ii.b.α are disallowed. We laim

that Theorem 6.1 implies

ν ≥ 1− 2q−1
(6.11)

at all leaves but these two. Leaf I.A is lear. At II.A.i, we have n = aℓ, where
a > ℓ and all prime fators of a are larger than ℓ. When a ≥ ℓ+ 2, then

n

ℓ
− n

ℓ2
= a(1− 1

ℓ
) ≥ (ℓ+ 2)(1− 1

ℓ
) = ℓ+ 1− 2

ℓ
≥ ℓ,

β∗
n ≤ q−n/ℓ−ℓ+n/ℓ2+3 ≤ q3−2ℓ ≤ q−1,

ν ≥ 1− β∗
n ≥ 1− q−1.

When a = ℓ + 1, then ℓ = 2, a = 3, n = 6, and by Theorem 5.2(iii) we have

again

#D6

α6
≥ 1− β∗

6 = 1− q−1.
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At II.A.ii, we have n = aℓ2 with a ≥ ℓ and

n

ℓ
− n

ℓ2
= a(ℓ− 1) ≥ ℓ(ℓ− 1) ≥ ℓ,

q−n/ℓ+ℓ+n/ℓ2−1 ≤ q−1,

ν ≥ 1− q−1/2.

At II.B.i.a, we onsider the inequality

−n

ℓ
− ℓ+ s+ 3 ≤ −1,(6.12)

with s = ⌊n/ℓ2⌋ ≤ n/ℓ2. It holds for ℓ ≥ 3. When ℓ = 2, it holds for n ≥ 8, and
one heks it for n = 6. Now n = 4 is ase II.B and exepted here. Thus (6.12)

holds in all ases at II.B.i.a, and (6.5) implies that ν ≥ 1− 3q−1/2 > 1− 2q−1
.

(6.11) is lear for II.B.i.b and II.B.ii.b.β. At II.B.ii.a, we have p > ℓ ≥ 2,
and (6.11) follows from Table 6.1. This onludes the proof of (iv).

In (iii), the seond inequality follows from (3 − 2q−1) · (1 − q−1)/4 > 1/2
when q ≥ 5. For the �rst inequality, we have 1 − 2q−1 ≥ (3 − 2q−1)/4 when

q > 5. Thus it remains to prove (iii) at II.B.ii.b.α. It is onvenient to show (ii)

and (iii) together at this leaf.

We have for p ≥ 3 and q ≥ 5 that

1− q−3 ≥ q−2(3q + 4) > q−2(3p+ 4)− q−5(p+ 2)

= q−2(p+ 2)(1− q−3) + q−2(2p+ 2),

1

2p+ 2
>

q−2(p+ 2)

2p+ 2
+

q−2

1− q−3
≥ q−2

2
(1 +

1

p+ 1
) +

q−p+1

1− q−p
,

and from Table 6.1

ν ≥ 1

2
(
3

2
+

1

2p+ 2
− q−1 − q−2

2
(1 +

1

p+ 1
)− q−p+1

1− q−p
)(6.13)

>
3

4
− q−1

2
=

3− 2q−1

4
.

For the remaining ases q = 3 or p = 2, we use (6.7). At the urrent leaf,

we an write n = ap2 > p2 with all prime divisors of a greater than p, and split

the lower bound into two summands:

νq =
1

2

(3
2
+

1

2p+ 2
− q−1 − q−2

2
(1 +

1

p + 1
) +

q−p(2− q−1 − q−p)

1− q−p

)
,

ǫq,n =
1

2

(
q−a+⌈a/p⌉ + q−ap (1− q−1)(1− q−p+1)

1− q−p

)
,
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so that ν ≥ νq − ǫq,n, and ǫq,n is monotonially dereasing in a.
For q = 3, we have a ≥ 5,

ν3 =
203

27 · 13 > 0.5783,

ǫ3,n ≤ 1

2
(3−a+⌈a/3⌉ +

8

13
· 3−3a) ≤ ǫ3,45 =

1

2
(3−5+2 +

8

13
· 3−15)

=
1

54
+

4

13
· 3−15 < 0.0186,

ν ≥ ν3 − ǫ3,n > 0.5598 > 1/2.

For p = 2, we �nd

νq =
5

6
− q−1 +

q−2

6
,

ǫq,n =
1

2
(q−(a−1)/2 + q−2a · 1− q−1

1 + q−1
).

When q ≥ 8 and n ≥ 28, so that a ≥ 7, we have

q−2

6
≥ 1

2
(q−3 + q−14 · 1− q−1

1 + q−1
) = ǫq,28 ≥ ǫq,n,

ν ≥ νq − ǫq,n ≥ 5

6
− q−1 ≥ 3− 2q−1

4
.

For the remaining values q ∈ {2, 4} or n ∈ {12, 20}, we note the values

ν2 =
3

8
,

ν4 =
19

32
,

ǫq,12 =
1

2
(q−1 + q−6 · 1− q−1

1 + q−1
),

ǫq,20 =
1

2
(q−2 + q−10 · 1− q

−1

1 + q−1
).

We �nd that ν ≥ (3−2q−1)/4 for q ≥ 8 and n = 20, and for q ≥ 16 and n = 12.
Table 6.3 shows that this also holds for (q, n) = (8, 12). When q = 4, we have
ν ≥ 1/2 for n ≥ 20 by the above, and aording to Table 6.3 also for n = 12.

When q = 2, the values above only show that ν ≥ 1/4 for n ≥ 28. However,
a di�erent and simple approah gives a better bound for n = 4a with an odd
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q, n #Dn αn #Dn/αn ≥
2, 4 6 8 0.7500
2, 8 36 64 0.5625
2, 12 236 256 0.9218
2, 16 762 1 024 0.7441
2, 20 3 264 4 096 0.7968
2, 24 14 264 16 384 0.8706
2, 28 49 920 65 536 0.7617
2, 36 821 600 1 048 576 0.7835
4, 4 132 192 0.6875
4, 12 100 848 98 304 1.0258
8, 4 2 408 3 584 0.6718
8, 12 30 382 016 29 360 128 1.0348
16, 4 41 040 61 440 0.6679
32, 4 677 536 1 015 808 0.6669
64, 4 11 011 392 16 515 072 0.6667
128, 4 177 564 288 266 338 304 0.6666
256, 4 2 852 148 480 4 278 190 080 0.6666
3, 9 414 486 0.8518
9, 9 450 792 472 392 0.9542
5, 5 7 798 100 7 812 500 0.9981

Table 6.3: Deomposable polynomials of degree n over Fq.

a ≥ 3 over F2. We exploit the speial fat that x2 + x ∈ F2[x] is the only

quadrati original polynomial that is not a square.

Any g ∈ F2[x] is uniquely determined by f = g ◦ (x2 + x), due to the

uniqueness of the Taylor expansion. The number of original g of degree 2a
and that are not a square is 22a−1 − 2a−1

, and by omposing with a linear

polynomial on the left, we have #D+
n,n/2 = 22a − 2a = 2n/2 − 2n/4. Similary,

(x2 + x) ◦ h = (x2 + x) ◦ h∗
with h 6= h∗

implies that −1 = h∗ − h, so that

one of the two polynomials is not original. Thus γn,2 is also injetive on the

original polynomials, and #D+
n,2 = 2n/2− 2n/4. Furthermore, Corollary 4.45(ii)

says that

t = #(D+
n,2 ∩D+

n,n/2) ≤ 2n/4+⌈n/8⌉+1 = 23n/8+3/2.

The number of Frobenius ompositions (that is, squares) of degree n equals
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#Dϕ
n = 22a, and αn = 2n/2+2

. It follows that

#Dn ≥ #D+
n,2 +#D+

n,n/2 − t +#Dϕ
n

≥ 2 · 2n/2(1− 2−n/4)− 23n/8+3/2 + 2n/2

= (
3

4
− 2−n/8−1/2 − 2−n/4−1)αn,(6.14)

ν ≥ 3

4
− 2−5/2−1/2 − 2−5−1 =

39

64
> 0.6093 > 1/2

for n ≥ 20. Using Table 6.3 for n = 12, we �nd ν > 1/2 also for q = 2, and
hene for all values at leaf II.B.ii.b.α. Now it only remains to prove ν ≥ 1/2 in
(ii). The leaf II.B.ii.b.α has just been dealt with. Sine 1− q−1 ≥ 1/2 for all q,
the laim follows from the previous bounds at the leaves I.A, II.A.i, II.A.ii, and

II.B.i.b. At II.B.i.a, we have shown ν ≥ 1−3q−1/2 ≥ 1/2 for q ≥ 3; sine p 6= ℓ
and hene p ≥ 3 at this leaf, the laim follows. Similarly, we have at II.B.ii.a

that q ≥ p ≥ 3 and ν ≥ 1− 1
2
(q−1+ q−ℓ+1+ q−p+1−q−p) ≥ 1−q−1−q−2 ≥ 1/2.

Now remain the two leaves I.B and II.b.ii.b.β.
At leaf I.B, we have n = p2 and

q2 ≥ q + 2 ≥ p+ 2,

1

p+ 1
+ 2q−p > q−2(1 +

1

p+ 1
).

From Example 3.45 we �nd

ν ≥ 1

2
(1 +

1

p+ 1
)(1− q−2) + q−p ≥ 1

2
.

Table 6.3 gives the exat values of ν for p = 2 and q ≤ 256.
At the �nal leaf II.B.ii.b.β, we have ℓ = p and p3 | n. The lower bound in

Table 6.1 implies ν ≥ 1/2 for q ≥ 4. When q = 3, (6.10) yields

ν ≥ 1− 1

3
− 1

9
=

5

9
>

1

2
.

For q = 2, we have from (6.9)

ν ≥ 1

2
+

1

24
− 2−n/2−1

3
− 2−n/8−1.

When n ≥ 32, this shows ν ≥ 1/2. For the smaller values 8, 16, and 24 of n,
the data in Table 6.3 are su�ient. �
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Two features are worth noting. Firstly, our lower bounds are rather pessimisti

when q = 2, yielding for n = 12 that ν ≥ 47/384 > 0.1223 by (6.7), ν ≥ 3/16 =
0.1875 from the speial argument, ompared to ν = 59/64 > 0.9218 from our

experiments. Seondly, our lower bounds are stritly inreasing in n, while the
experiments show a derease in ν from n = 12 to n = 20. Both features show

that more work is needed to understand the ase p = ℓ and p2 ‖ n, where the
latter means that p2 | n and p3 ∤ n.

Muh e�ort has been spent here in arriving at preise bounds, without

asymptotis or unspei�ed onstants. We now derive some onlusions about

the asymptoti behavior. There are two parameters: the �eld size q and the

degree n. When n is prime, then #Dn = αn = 0, and prime values of n
are exepted in the following. We onsider the asymptotis in one parameter,

where the other one is �xed, and also the speial situations where gd(q, n) = 1.
Furthermore, we denote as �q, n −→ ∞� the set of all in�nite sequenes of

pairwise distint (q, n). The ases p2 ‖ n are the only ones where Table 6.1

does not show that ν −→ 1.

Theorem 6.15. Let νq,n = #Dn/αn over Fq. We only onsider omposite n.

(i) For any q, we have
lim sup
n→∞

νq,n = 1,

lim

n→∞
gcd(q,n)=1

νq,n = 1,

1

2
≤ νq,n for any n,

3− 2q−1

4
≤ νq,n for any n, if q ≥ 5.

(ii) Let n be a omposite integer and ℓ its smallest prime divisor. Then

lim sup
q→∞

νq,n = 1,

lim inf
q→∞

νq,n





≥ 1
2
(1 + 1

ℓ+1
) ≥ 2

3
if n = ℓ2,

≥ 1
4
(3 + 1

ℓ+1
) ≥ 5

6
if ℓ2 ‖ n and n 6= ℓ2,

= 1 otherwise,

lim

q→∞
gcd(q,n)=1

νq,n = 1.
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(iii) For any sequene q, n → ∞, we have

1

2
≤ lim inf

q,n→∞
νq,n ≤ lim sup

q,n→∞
νq,n = 1,

lim

q,n→∞
gcd(q,n)=1

νq,n = 1.

Proof. (i) We start with an upper bound. The onlusions of the Main

Theorem are too weak for our urrent purpose, and we have to resort to Theo-

rem 5.2. For the speial n whih are a square or a ube of primes, or a produt

of two distint primes, Theorem 5.2(i) says that νq,n ≤ 1. For the other values,
we set d = n/ℓℓ2, and the upper bound on the lim sup follows if we show that

c = (d − 1)(ℓ2 − ℓ) is unbounded as n grows, sine then βn = q−c/(1 − q−1)
tends to zero, and νq,n ≤ 1 + βn. Sine ℓ2 − ℓ ≥ 1, it is su�ient to show the

unboundedness of d. When n = ℓe is a power of a prime, we may assume by

the above that e ≥ 4. Then ℓ2 = ℓ2, ℓ ≤ n1/4
and d = ℓe−3 ≥ ℓe/4 = n1/4

is

unbounded.

If n = ℓeℓ
e+
+ has exatly two prime fators ℓ < ℓ+, we may assume that

e + e+ ≥ 3. If e = 1, then ℓ2 = ℓ+, e+ ≥ 2, and d = ℓ
e+−1
+ ≥ ℓ

(e++1)/3
+ > n1/3

.

We now assume that e ≥ 2. Then

ℓ2 =

{
ℓ2 if ℓ2 < ℓ+,

ℓ+ otherwise,

d =

{
n
ℓ3

if ℓ2 < ℓ+,
n
ℓℓ+

otherwise.

(6.16)

We �rst treat the ase where ℓ2 < ℓ+. If e = 2, then

d = ℓ
e+
+ /ℓ > ℓ

e+−1/2
+ ≥ ℓ

(1+e+)/4
+ > n1/4.

If e = 3, then

d = ℓ
e+
+ > ℓ

(e++3/2)/3
+ > (ℓ2)1/2ℓ

e+/3
+ = n1/3.

If e ≥ 4, then d = ℓe−3ℓ
e+
+ ≥ ℓe/4ℓ

e+
+ > n1/4

. Next we deal with ℓ+ > ℓ2. If

e = 1, we have e+ ≥ 2, and then

d = ℓ
e+−1
+ ≥ ℓ

(e++1)/3
+ > n1/3.
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If e+ = 1 we have e ≥ 2, and then

d = ℓe−1 ≥ ℓ(e+2)/4 > ℓe/4ℓ
1/4
+ = n1/4.

In the remaining ase, where e, e+ ≥ 2, we have

d = ℓe−1ℓ
e+−1
+ ≥ ℓe/2ℓ

e/2
+ = n1/2.

In the last ase, n = ℓeℓ
e+
+ ℓ

e++

++ · · · has at least three distint prime fators

ℓ < ℓ+ < ℓ++ < · · · , and

d =

{
n
ℓ3

if e ≥ 2 and ℓ2 < ℓ+,
n
ℓℓ+

otherwise.

If e = e+ = 1, then ℓℓ+ < n2/3
and d ≥ n1/3

. Otherwise, we apply the

previous argument to n∗ = ℓeℓe+e = n/m and d∗ = d/m, where m = ℓ
e++

++ · · · =
nℓ−eℓ

−e+
+ . Then d∗ equals the value d de�ned above for n∗

, and

d = d∗m ≥ (n∗)1/4m > n1/4.

In all ases, d is unbounded if n is. Thus lim supn→∞ νq,n ≤ 1, and Theo-

rem 5.2(v) for n = ℓ2 implies that lim supn→∞ ≥ 1.
If we only onsider n with gcd(q, n) = 1, then Theorem 5.2(vi) says that

νq,n ≥ 1− 2q−n/ℓ+ℓ+n/ℓ2−1 ≥ 1− q−n/ℓ+ℓ+n/ℓ2.

When n is the produt of two prime numbers, then νq,n tends to 1 for these

speial n. We may now assume that n has at least three prime fators. Then

n ≥ ℓ3, and

−n

ℓ
+ ℓ+

n

ℓ2
= −n

ℓ
(1− 1

ℓ
) + ℓ ≤ − n

2ℓ
+ ℓ ≤ − n

2n1/3
+ n1/3

= −n2/3

2
+ n1/3 ≤ −n1/2

for n ≥ 512, say. The seond laim in (i) follows. The other two inequalities

are in the Main Theorem.

(ii) The �rst laim follows from Corollary 5.14(ii), sine n ≥ ℓ2 and hene

νq,n ≤ 1+q−1/3
. For the other laims, we onsider two subsequenes of q: q = ℓe

with e → ∞, and q with gd(q, ℓ) = 1; we denote the latter as q′. For n = ℓ2,
the lower bound follows from the entry at I.B in Table 6.1, and for ℓ2 ‖ n 6= ℓ2
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from the entry at II.B.ii.b.α. In all other ases, the Main Theorem guarantees

that νℓe,n and νq′,n tend to 1; see also (6.11).

(iii) We take some in�nite sequene of (q, n) for whih νq,n tends to s =
lim sup. If all q ourring in the sequene are bounded, then (i) implies that

s ≤ 1. Otherwise, νq,n ≤ 1+q−1/3
is su�ient. The same ase distintion yields

the lower bound on the limit, using the Main Theorem (vi). The lower bound

on lim inf follows from (i). �

Example 6.17. Let p2 ‖ n and n 6= p2. We study Dn over Fq, using the

notation of (the proof of) Theorem 5.2. We have ℓ = p < ℓ2 ≤ p2,

c =
(n− ℓℓ2)(ℓ2 − ℓ)

ℓℓ2
≥ n− ℓ(ℓ+ 1)

ℓ(ℓ+ 1)
≥ n

2ℓ2
.

With

E2 = {e ∈ N : e | n, ℓ2 ≤ e ≤ n/ℓ2},
we have

∑

e∈E2

#Dn,e ≤
∑

e∈E2

qu(e)(1− q−1) ≤ qu(ℓ)(1− q−1)
2q−c

1− q−1

=
q−c

1− q−1
· αn ≤ 2q−n/2ℓ2 · αn.

We let

λq,n =
#D+

n,p +#D+
n,n/p

αn
,

t = #(D+
n,p ∩D+

n,n/p).

Then

νq,n =
#Dn

αn
≤ λq,n −

t

αn
+

#Dϕ
n

αn
+

∑
e∈E2

#Dn,e

αn

≤ λq,n +
qn/p+1(1− q−1)

αn
+ 2q−n/2ℓ2 = λq,n +

q−p+1

2
+ 2q−n/2p2.

On the other hand, Corollary 4.45(ii) says that

t ≦n/p+p−n/p2+⌊n/p3⌋+1 (1− q−1),

νq,n ≥ λq,n −
t

αn

+
#Dϕ

n

αn

≥ λq,n −
1

2
q−n/p2+⌊n/p3⌋+1 +

q−p+1

2
.
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For p ≥ 3 we have

− n

p2
+

n

p3
+ 1 ≤ − n

2p2
,

∣∣νq,n − (λq,n + q−p+1)
∣∣ ≤ 2q−n/2p2.

We have presented some bounds on λq,n, but they are not su�ient to determine

its value in general, not even asymptotially. However, for q = 2 we have from

(6.14)

λq,n =
2n/2+1(1− 2−n/4)

2 · 2n/2+2
=

1− 2−n/4

2
,

3

4
− 2−n/8−1/2 − 2n/4−1 ≤ ν2,n ≤ 3

4
+ 2−n/8+1 − 2−n/4−1.(6.18)

♦

We have seen that νq,n tends to 1 unless p2 ‖ n. Example 6.17 suggests to

use a orretion fator γ so that νq,n/γ tends to 1 also in those ases.

Conjeture 6.19. For any prime p and power q of p there exist γp, δq ∈ R
so that

lim

e−→∞
νpe,p2 = γp,

lim

n−→∞p2‖n
νq,n = δq.

If true, this would imply that #Dp2 ∼ γpαp2 over extensions Fq of Fp, and

#Dn ∼ δqαn for growing n with p2 ‖ n. Example 3.45 shows that the �rst part

is true for p = 2 and γ2 = 2/3, and (6.18) that the seond part holds for q = 2
and δ2 = 3/4.

Bodin et al. (2009) state without proof that #Dn ≈ 3
4
αn over F2 for even

n ≥ 6. Assuming a standard meaning of the ≈ symbol, this is false unless

4 ‖ n, in whih ase it is proven by (6.18).

Example 6.20. Theorem 6.1(i) exhibits several situations where #Dn ≤ αn.

One might wonder whether this always happens. We show that this is not

the ase. Table 6.3 gives an example. More generally, we take three primes

2 < ℓ1 < ℓ2 < ℓ3, n = ℓ1ℓ2ℓ3, and an odd q with gd(n, q) = 1. For i ≤ 3, we
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set

Bi = Dn,ℓi ∪Dn,n/ℓi,

Si =

⌊
n

ℓ2i

⌋
,

ti =
1

2
(2qsi+3 + q4 − q3)(1− q−1).

Then

Dn = B1 ∪B2 ∪ B3,

#Bi = 2qn/ℓi+ℓi(1− q−1)− ti.

For a permutation π ∈ S3, we set

Cπ = γπ(P
=
ℓπ1

× P 0
ℓπ2

× P 0
ℓπ3

),

C =
⋃

π∈S3

Cπ,

where γπ is the omposition map for three omponents. Then for any π ∈ S3

#Cπ = qℓ1+ℓ2+ℓ3−1(1− q−1).

Now let i 6= j and f = g ◦h = g∗ ◦h∗ ∈ Bi∩Bj , with {deg g, deg h} = {ℓi, n/ℓi}
and {deg g∗, deg h∗} = {ℓj , n/ℓj}. To simplify notation, suppose that i = 1 and
j = 2. We re�ne both deompositions into omplete ones. Then for g◦h, the set
of degrees is either {ℓ1, ℓ2ℓ3} or {ℓ1, ℓ2, ℓ3}, and for g∗ ◦ h∗

it is either {ℓ2, ℓ1ℓ3}
or {ℓ1, ℓ2, ℓ3}. This set of degrees is unique, so that it equals {ℓ1, ℓ2, ℓ3}. It

follows that f ∈ C and Bi ∩ Bj ⊆ C. Thus

#Dn ≥
∑

1≤i≤3

#Bi −#C

≥ (1− q−1)
∑

1≤i≤3

(
2qn/ℓi+ℓi − 1

2
(2qsi+3 + q4)

)
− 6qℓ1+ℓ2+ℓ3−1

= (1− q−1)

(
2
∑

1≤i≤3

qn/ℓi+ℓi −
∑

1≤i≤3

qsi+3 − 3

2
q4 − 6qℓ1+ℓ2+ℓ3−1

)
.(6.21)

Now suppose further that

ℓ3 ≤ 2 + (ℓ1 − 1)(ℓ2 − 1), 5 ≤ ℓ2 ≤ ℓ21, q ≥ 7.
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Then

ℓ1 + ℓ2 + ℓ3 − 1 ≤ ℓ1 + ℓ2 + 1 + (ℓ1 − 1)(ℓ2 − 1)

= ℓ1ℓ2 + 2,

6qℓ1+ℓ2+ℓ3−1 ≤ 6qℓ1ℓ2+2 ≤ qℓ1ℓ2+3,

4ℓ3 ≤ 10(ℓ3 − 1) ≤ ℓ1ℓ2(ℓ3 − 1),

ℓ1ℓ2
ℓ3

+ 4 ≤ ℓ1ℓ2 < ℓ1ℓ2 + ℓ3,

qℓ1ℓ2/ℓ3+3 +
3

2
q4 + 6qℓ1+ℓ2+ℓ3−1 < qℓ1ℓ2+ℓ3

(
q−1 +

3

2
q4−ℓ3 + q3−ℓ3

)

< 2qℓ1ℓ2+ℓ3,

ℓ2ℓ3
ℓ1

≤ ℓ1ℓ3,

ℓ1ℓ3
ℓ2

< ℓ1ℓ3,

qℓ2ℓ3/ℓ1+3 + qℓ1ℓ3/ℓ2+3 < (q3−ℓ2 + q3−ℓ2)qℓ1ℓ3+ℓ2 < qℓ1ℓ3+ℓ2 .

Finally, (6.21) implies that

#Dn

1− q−1
≥ αn

1− q−1
+ 2qℓ1ℓ3+ℓ2 + 2qℓ1ℓ2+ℓ3 −

∑

1≤i≤3

q⌊n/ℓ2i⌋+3 − 3

2
q4 − 6qℓ1+ℓ2+ℓ3−1

>
αn

1− q−1
.

As a small example, we take ℓ1 = 3, ℓ2 = 5, ℓ3 = 7, q = 11, so that n = 105
and α105 = 2q38(1− q−1). The lower bound in (6.21) evaluates to

#D105 ≥ α105 + (1− q−1)(2(q26 + q22)− (q14 + q7 + q5 +
3

2
q4 + 6q15))

> α105 + 2q26(1− q−1).

The general bounds of Theorem 5.2(i) and Corollary 4.30(i) speialize to

#D105 ≤ α105(1 +
q−12

1− q−1
) = α105 + 2q26.

The loseness of these two estimates indiates a ertain preision in our bounds.

♦
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Remark 6.22. We laim that if p ∤ n, then

#Dn ≥ αn(1− q−1).

By Corollary 5.14(iii), this is satis�ed if n ≥ 3ℓ2. So we now assume that

n < 3ℓ2. Then n/ℓ < 3ℓ, and all prime fators of n/ℓ are at least ℓ. It

follows that either n = 8 or n/ℓ = ℓ2 is prime. If ℓ2 = ℓ, then #Dn = αn, by

Theorem 5.2(v). Otherwise we have s = ⌊n/ℓ2⌋ = ⌊ℓ2/ℓ⌋ ≤ ⌊(3ℓ − 1)/ℓ⌋ ≤ 2
and from Theorem 5.2(iii) that

#Dn ≥ αn(1− β∗
n) ≥ αn(1− q−ℓ−ℓ2+5).

It is now su�ient to show

ℓ+ ℓ2 ≥ 6.

This holds unless n ∈ {4, 6, 9}, so that only n = 6 needs to be further onsid-

ered. We have β∗
6 = q−2−3(q1+3 + q4 − q3)/2 ≤ q−1

, and the laim follows from

Theorem 5.2(iii).

Open Question 6.23. ◦ Some polynomials have more than a polynomial

number of deompositions. Can we �nd them in time polynomial in the

output size? Or even a �desription� of them in time polynomial in the

input size? If not: prove (by a redution) that this is hard?

◦ In the ase where p = ℓ and p2 ‖ n, an one tighten the gap between

upper and lower bounds in the Main Theorem (ii), maybe to within a

fator 1 +O(q−1)?

◦ Can one simplify the arguments and redue the number of ases, yet

obtain results of a quality as in the Main Theorem? The bounds in

Theorem 3.31 are based on �low level� oe�ient omparisons. Can these

results be proved (or improved) by �higher level� methods?
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