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Abstract

In this paper we study the following problem:
Discrete partitioning problem (DPP): Let FqP

n denote the n-dimensional finite projective
space over Fq. For positive integer k ≤ n, let {Ai}Ni=1

be a partition of (FqP
n)k such that

1. for all i ≤ N , Ai =
∏k

j=1
Ai

j (partition into product sets),

2. for all i ≤ N , there is a (k − 1)-dimensional subspace Li ⊆ FqP
n such that Ai ⊆ (Li)k.

What is the minimum value of N as a function of q, n, k? We will be mainly interested in the
case k = n.

DPP arises in an approach that we propose for proving lower bounds for the query complexity
of generating random points from convex bodies. It is also related to other partitioning problems
in combinatorics and complexity theory. We conjecture an asymptotically optimal partition for
DPP and show that it is optimal in two cases: When the dimension is low (k = n = 2) and when
the factors of the parts are structured, namely factors of a part are close to being a subspace.
These structured partitions arise naturally as partitions induced by query algorithms. Our
problem does not seem to be directly amenable to previous techniques for partitioning lower
bounds such as rank arguments, although rank arguments do lie at the core of our techniques.

1 Introduction

In this paper we study the following problem:

Discrete partitioning problem (DPP). Let FqP
n denote the n-dimensional finite projective

space over Fq (see Sec. 2 for a quick introduction to finite projective spaces and some related
definitions). For positive integer k ≤ n, let {Ai}Ni=1 be a partition of (FqP

n)k such that

1. for all i ≤ N , Ai =
∏k

j=1A
i
j (partition into product sets),

2. for all i ≤ N , there is a (k − 1)-dimensional subspace Li ⊆ FqP
n such that Ai ⊆ (Li)k.
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What is the minimum value of N as a function of q, n, k? We will be mainly interested in the case
k = n.

DPP seems interesting in its own right and several related problems have been studied in the
past; we discuss these later. Before stating our results for DPP we discuss another motivation
for studying it. DPP arises in our approach for proving lower bounds for the query complexity of
random sampling from convex bodies. It is standard in this problem to give the convex body to
an algorithm as a membership oracle, that is, a black box that when queried with a point in Rn

answers YES if the point is in the body and answers NO if the point is outside the body (e.g.,
[12, 16]). Given a convex body K ∈ Rn via a membership oracle, by sampling from K we mean
generating a random point from K whose distribution is approximately uniform. Sampling is one of
the most useful primitives in the algorithmic theory of convex bodies (e.g., [16, 5]). The currently
best known algorithm [16] for sampling makes O(n4) membership oracle queries to generate one
random point. Improving this bound will directly improve the complexity of algorithms for volume
computation and convex optimization. On the other hand, the best known lower bound is just
Ω(n). Thus, understanding the query complexity of sampling is an important problem. Notice that
we are working with oracle algorithms, and so the lower bounds are on the query complexity and
not on the computational complexity of sampling.

In this paper, we propose an approach for proving an Ω(n2) lower bound on the query complexity
of sampling. The approach, discussed in Appendix A, involves proving a lower bound on the number
of queries for a problem that we call SPAN: Given n − 1 vectors in Rn via a natural oracle, find
a hyperplane close to all of them. The problem SPAN reduces efficiently to sampling from convex
bodies, so that a lower bound for SPAN implies a lower bound for sampling. Randomized oracle
algorithms can be interpreted as distributions over deterministic decision trees. As is standard
in lower bounds for randomized decision trees, it suffices to prove a lower bound on the size of a
partition of the input space induced at the leaves of any small-depth deterministic decision tree with
the following property: In most parts of this partition the value of the function being computed is
nearly constant. We call the problem of lower-bounding the size of this partition the continuous
partitioning problem (CPP). While we do not solve CPP, we get insights into it by formulating an
analogue of SPAN and its associated partitioning problem over finite fields and proving results in
this setting. The rest of the introduction is devoted to discussion of these discrete problems.

As the continuous problem SPAN only cares about the linear span of the input vectors, it is
more conveniently stated not in a vector space but in the corresponding projective space, the space
of all lines through the origin. The same can be said about the discrete analogue. Working over
projective space makes counting arguments simpler.

Discrete span problem (DSPAN). The input consists of n points v1, . . . , vn ∈ FqP
n, where

FqP
n is the finite projective space of dimension n over the finite field Fq. The input can only be

accessed via the following oracle: A query x is an (n − 1)-dimensional flat in FqP
n; if x contains

all the points then the oracle answers YES, else it gives the least index i such that vi does not
lie in x. The problem is to find an (n − 1)-flat (this is an abbreviation for (n − 1)-dimensional
subspace) containing all vi’s. The discrete SPAN problem is easily solved with O(qn2) queries
using a deterministic algorithm.

We interpret algorithms for such a problem as randomized decision trees, namely a distribution
on (deterministic) decision trees. The leaves of such a deterministic decision tree induce a partition
of (FqP

n)n, and the problem of lower-bounding the size of this partition is the discrete partitioning
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problem (DPP) stated at the beginning of this paper. The oracle described may seem a bit unnat-
ural at first. It is motivated by the continuous problem and is chosen to be a mild strengthening of
the “membership oracle” (which, in this case would just answer whether or not all vi’s lie in x). A
lower bound under the stronger oracle is also a valid lower bound for the weaker membership oracle
because the algorithm can always ignore the additional information provided by the stronger oracle.
At the same time, the strengthening adds the property that the parts of the induced partition are
product sets (see Appendix A for more details).1 Lower bounds for partitions with product parts
seem easier to prove than the general case and the product property is used crucially in our proofs.
Each such product is of the form A1 ×A2 × · · · ×An, such that there is an (n− 1)-flat F ⊂ FqP

n

with A1 × A2 × · · · × An ⊆ Fn. Moreover, each Ai is somewhat structured: It can be represented
as a flat minus a small number of other flats; thus each Ai is close to a flat. See Lemma 5.1 for a
precise statement.

There are a few ways of formally relating DPP and DSPAN that we will sketch now. A simple but
weak way is to consider DSPAN and use Yao’s minimax principle with cost giving the probability of
failure of the randomized algorithm [17, Section 2.2.2], reducing the lower bound problem to proving
a lower bound on the expected running time of a deterministic decision tree as in DSPAN (with the
input drawn from a probability distribution) that is allowed to err with a small probability. This
leads to a variation of DPP with condition (2) relaxed so that each part is not necessarily fully
contained in the power of a (k−1)-flat, but only mostly contained in such a flat. In this paper we do
not address this harder version of DPP. A stronger connection is given by first observing that the
correctness of a solution to DSPAN can be verified efficiently by querying the conjectured solution:
The solution is correct iff the oracle answers YES. Thus, the worst-case expected2 running time of
the best Las Vegas (i.e. always correct) algorithm is within a constant factor of the best Monte
Carlo (i.e. correct with some probability) algorithm [17, Exercise 1.3]. That is, it is enough to prove
a lower bound on the complexity of Las Vegas algorithms. The use of Yao’s minimax principle with
cost equal to the running time reduces the lower bound for DSPAN problem to proving a lower
bound on the average running time of deterministic algorithms against some input distribution
(uniform, in our case), that is, a lower bound on the average depth of leafs (according to the input
distribution). For clarity we focus on the number of leafs in the main statement, but we actually
prove that most (all but nearly a 1/q fraction) leafs are small (according to the input distribution),
see Lemma 6.5 and the proof of Theorem 1.3 for a precise statement, as well as Section 1.3 for an
overview of the argument.

Let us make some easy observations about DPP. The kind of partitions we are looking for
always exist: Take any element (p1, . . . , pk) in (FqP

n)k, where each pi is a point in FqP
n. Together

p1, . . . , pk span a (k − 1)-flat. Thus the trivial partition in which each part is a singleton is a valid
partition, giving an upper bound on N of size ((qn+1 − 1)/(q − 1))k, the total number of elements
in (FqP

n)k. For q > k, this is at most eqkn.
A lower bound of Ω(qk(n−k+1)) (again assuming q > k) is obtained by a volume argument: The

1In other words: For the DSPAN problem with membership oracle, parts are not necessarily product sets; when
a membership query results in NO, we learn that some input vector vi is not in the queried hyperplane and the set
of tuples consistent with this is not a product, it is actually the complement of a product. After h queries, the part
is the intersection of some product sets, resulting from YES queries, minus the union of some other product sets,
resulting from NO queries. In particular, it is a product set minus the union of at most h product sets. It is easy to
show that any such set can be partitioned into nh product sets; the modified oracle is one way of showing this in our
case.

2Worst case over inputs of a given length, expected over the randomness of the algorithm.
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number of elements in (FqP
n)k, as we noted, is ((qn+1 − 1)/(q − 1))k. The maximum number of

elements in a part is ((qk − 1)/(q − 1))k ; this is because each factor is contained in a (k − 1)-flat

which has (qk − 1)/(q − 1) points. Thus N must be at least ( q
n+1

−1
q−1 )k · ( q−1

qk−1
)k. For q > k this

is at least qkn/eqk(k−1)) ≥ qk(n−k+1)/e. Note that if we just wanted to cover instead of partition,
then Θ(qk(n−k+1)) is the tight upper and lower bound (when q > k): The covering given by the kth
powers of all (k−1)-flats achieves the upper bound—it is well known that the number of (k−1)-flats

in FqP
n is (qn+1

−1)(qn+1
−q)···(qn+1

−qk−1)
(qk−1)(qk−q)···(qk−qk−1)

= eqk(n−k+1).

For the case k = n, the upper and lower bounds above become O(qn
2

) and Ω(qn).

1.1 Related work

Problems with similar flavor, namely finding a small partition of a product set into product sets with
certain properties, abound in communication complexity, and are also studied in combinatorics.
Many techniques used to prove such lower bounds actually prove lower bounds on the covering
number, with a few exceptions, such as the rank method [15] and certain lower bounds on the
non-negative rank [11, 6]; see also [14] for some more recent work on partition lower bounds. The
covering problem is easy in our setting but the smallest covering seems to be much smaller than
the smallest partition and thus does not provide insight into the size of the smallest partition. Our
problem does not seem to be directly amenable to rank arguments or other techniques, although
rank arguments do lie at the core of our techniques. We now discuss some specific results related
to our topic.

Alon et al. [2] consider the problem of partitioning a finite set A = A1×· · ·×An (where |Ai| ≥ 2
for all i) into parts of the form B1 × · · · × Bn, where ∅ 6= Bi ( Ai for i = 1, . . . , n. They show
that any such partition has size at least 2n. Our problem (DPP) is essentially a q-analogue of their
problem.

Razborov [19] considers a more general partitioning problem in the context of formula com-
plexity, albeit only for k = 2. Briefly, suppose we have a covering of a set U × V = ∪i C

i
1 × Ci

2.
We say that a partition {Ai

1 × Ai
2} of U × V (so ∪̇i A

i
1 × Ai

2 = U × V , where ∪̇ denotes disjoint
union) is a refinement of the covering {Ci

1 × Ci
2} if for each part Ai

1 × Ai
2 there is a j such that

Ai
1 × Ai

2 ⊆ Cj
1 × Cj

2 . Razborov considers the problem of proving a lower bound on the size of
partitions refining certain coverings. Clearly, our problem for k = 2 is such a problem, as our
partitions refine the covering of the kth powers of (k−1)-flats. Razborov gives a method of proving
lower bounds for the size of such partitions. This method seems to be specific to the k = 2 case; for
k = 2, specialized to our problem, this method does not seem to give a bound better than Ω(q2).

A lower bound for DPP would imply a lower bound for a deterministic number in hand multi-
party communication complexity problem (see [15] for an account of communication complexity):
There are k players; each player is given a private (unknown to other players) point from FqP

n.
The players want to determine a (k − 1)-flat containing the points of all the players. Notice that
the output of the communication problem is not unique, and thus here we are interested in the
communication complexity of a relation rather than that of a function.

Our problem fits into the category of problems where one obtains a discrete model of a problem
over the real field by changing the real field to a finite field. There are many examples of this
interaction between the continuous and the discrete: The Kakeya problem over finite fields is one
recent example with connections to the theory of computing; see, e.g., [9]. Here also the problem
becomes more tractable in the finite field setting.
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1.2 Our results

For k = n = 2, the upper and lower bounds in Sec. 1 for the general problem become O(q4) and
Ω(q2). The truth turns out to be Θ(q3):

Theorem 1.1. In the discrete partitioning problem for k = n = 2 the size of the smallest partition
satisfies N = Θ(q3).

For the general problem, we get an upper bound improving the trivial upper bound from Sec. 1,
and generalizing the upper bound in Theorem 1.1:

Theorem 1.2. The discrete partitioning problem for k = n and q ≥ 2n has a partition of size

q(
n+1

2 )(1 +O(n/q)).

In the previous theorem, the partition is made of parts whose factors are either a flat or a flat
minus a lower dimensional flat, what we call an almost-flat. For partitions of this kind we have
a lower bound that matches our upper bound up to a multiplicative constant for q ≥ n, and the
constant approaches 1 for large q:

Theorem 1.3 (partitioning lower bound for almost-flats). For the discrete partitioning problem,
if k = n and each factor of every part is an almost-flat, then the partition size satisfies

N ≥ qn(n+1)/2

(

1−
1

q

(

q + 1

q − 2

)n)

.

Another motivation for studying such structured partitions comes from the fact that the parti-
tions induced by decision trees for the DSPAN problem involve parts whose factors are flats minus
a small number of flats. This is shown in Section 5. Our proof of Theorem 1.3 does not seem to
immediately generalize to this case.

Our approach for DPP, namely the idea of using the fraction of dependent tuples as a parameter
of a part to lower bound the size of the partition in Theorem 1.3, suggests using a similar idea
for CPP, perhaps the density of “approximately dependent” tuples. While there remain technical
difficulties in carrying out this approach in the continuous setting, it appears promising, and is the
direct result of considering DPP.

1.3 Techniques

In the proof of Theorem 1.1 the key idea is that the partitioning problem can be decomposed into
smaller instances of simpler partitioning problems (Lemma 3.1). These smaller problems admit rank
arguments for their lower bounds and are thus easy. Our decomposition shows that on average each
of these smaller problems requires a large partition via a rank argument, giving us a good overall
bound. While the rank lower bounds are fairly standard, the decomposition idea seems to be new.

The high level idea of the proof of Theorem 1.3 is the following: We classify parts into two types,
large and small (defined depending on the dimensions of its factors, later called “non-dominated”
and “dominated” parts), where small parts contain at most about qn

2/2 tuples each, while the total
number of tuples is about qn

2

. On the other hand, each large part contains at least roughly a
1/q fraction of dependent tuples (meaning that their span has dimension less than n − 1, Lemma
6.5); while the set to be partitioned, (FqP

n)n, contains only about a 1/q2 fraction of dependent
tuples, which implies that large parts can only cover about a 1/q fraction of all tuples. The rest
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must be covered by small parts, which by the previous discussion needs about qn
2/2 parts (proof of

Theorem 1.3). We remark that this high level idea has the flavor of the so-called corruption bound
in communication complexity (see [4]) and its subsequent generalizations (e.g. [7, 14]). Most of the
work in our proof is in the lower bound for the fraction of dependent tuples in large parts (Lemma
6.5), which is done by first partitioning any such part into parts having only 1-dimensional factors,
and then handling this case by induction (Lemma 6.3) with the aid of a Sylvester-Gallai type
property (Lemma 6.2).

1.4 Organization

The rest of the paper is organized as follows. Sec. 2 contains relevant definitions. Sec. 3 shows an
optimal lower bound (up to constant factors) for DPP when k = n = 2; in Sec. 4 we present a non-
trivial partition construction with structured parts; the next section shows that this construction is
essentially optimal for structured partitions. Appendix A gives more details about how a solution
to CPP would lead to a lower bound for sampling from convex bodies.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}.
We will work with projective spaces over finite fields. Projective spaces over finite fields are

basic and extensively studied objects; see, e.g., [3] for an introduction. Here we define projective
spaces and note their relevant properties. In this paragraph, we follow the exposition of [3] closely.
Consider the (n+1)-dimensional linear space W := Fn+1

q (where Fq is the finite field of cardinality q
and q is a prime power), and set W× := W \{0}. Points in the n-dimensional projective space FqP

n

over Fq correspond to lines in W through the origin. More precisely, for p ∈ W×, consider the sets
{ap | a ∈ Fq \ {0}}. Clearly, two such distinct sets are disjoint. These sets together give a partition
of W×. The projective space W consists of these sets as points. We define the dimension of W to
be n and denote this projective space by FqP

n. It is easy to see that |FqP
n| = (qn+1 − 1)/(q − 1);

in particular, the cardinality of the projective plane FqP
2 is (q3 − 1)/(q − 1) = q2 + q + 1. A flat

or subspace of W is a set of the form U for a subspace U of W . The dimension of U is defined to
be dim (U)− 1; thus dim(∅) = −1. We will often use the term k-flat for a k-dimensional flat. For
S ⊆ FqP

n, denote by span(S) the intersection of all flats containing S. For a tuple (p1, . . . , pk) of
k points in FqP

n, clearly dim span{p1, . . . , pk} ≤ k − 1. We say that (p1, . . . , pk) is dependent if
dim span{p1, . . . , pk} < k− 1. Clearly, if a sub-tuple of a tuple is dependent then the whole tuple is
dependent. A projective space of dimension 2 is called a projective plane, and flats of dimension 1
are called (projective) lines. Projective planes have nice combinatorial properties; e.g., each point
lies in exactly q + 1 lines, each line contains q + 1 points, every pair of points lies on a unique line,
and every pair of lines intersects in a unique point. Higher dimensional spaces also have similar
regularity properties.

Definition 2.1. We say that a subset of FqP
n is an almost-flat if it is either a flat or a k-flat

minus a flat of dimension at most k − 1. Let the dimension of an almost-flat be the dimension of
the minimal flat containing it. In particular, an almost-line is a line or a line minus a point.

We will need an appropriate counterpart for our setting (projective spaces over finite fields) of
the familiar notion of orthogonal projection in projective spaces over the reals. This requires care

6



because the notion of orthogonality can behave very differently over finite fields: In particular, a
point can be orthogonal to itself.

We define the projection using quotient by a flat. We will only use elementary properties of
quotients and our discussion here is mostly self-contained. See, e.g., [10] for a detailed treatment
of quotients. Let F and S be two flats in FqP

n. An equivalence relation on F \ S (an almost-flat)
is given by p ∼ q iff span((F ∩ S) ∪ {p}) = span((F ∩ S) ∪ {q}). The equivalence classes of ∼ are
of the form span((F ∩ S) ∪ {p}) \ S =: [p] for p ∈ F \ S. The set of equivalence classes of F \ S
given by ∼ is called the quotient set and is denoted F/S. Note that in our definition we did not
require that S ⊆ F . Quotient set F/S inherits the projective structure from F in the natural way:
For p, q ∈ F \ S with [p] 6= [q], the points are given by [p], the lines are given by

{[r] : r ∈ span((F ∩ S) ∪ {p} ∪ {q}) \ S},

and so on. Thus F/S is a projective space of dimension dim(F ) − dim(F ∩ S) − 1 living in
FqP

n−dim(S)−1 = FqP
n/S. Notice that when F ∩S = ∅, then dim(F/S) = dim(F ), as dim(∅) = −1

according to our convention.
For a flat F ′ ⊆ F , define F ′|F/S := {x ∈ F \ S : [x] ∈ [F ′]}, where [F ′] := {[x] : x ∈ F ′ \ S}. In

words, F ′|F/S is the union of equivalence classes in F \ S that intersect F ′.
We will use the following easy facts which we state without proof.
Invariance of dependence under quotient:

Claim 2.2. Consider a tuple t = (p1, . . . , pk), pi ∈ FqP
n, p1 /∈ {p2, . . . , pk} and let [p2], . . . , [pk] be

the images of p2, . . . , pk in the quotient of the space by p1. Then t is dependent iff ([p2], . . . , [pk]) is
dependent.

Intersection of sub-flats with equivalence classes behaves nicely:

Claim 2.3. For all equivalence classes C ∈ F/S with non-empty intersection with a given flat F ′,
the intersection size |C ∩ F ′| is the same.

Dependence is a property of the equivalence classes:

Claim 2.4. Let t = (p1, . . . , pk, qk+1, . . . , qj, . . . qm), where the pi’s and the qj’s are points in FqP
n.

Let t′ be obtained from t by replacing qj by q′j. Also assume that qj, q
′

j are in the same equivalence
class in the quotient of FqP

n by S = span(p1, . . . , pk), i.e. span(S ∪ {qi}) = span(S ∪ {q′i}). Then
either both t and t′ are dependent or both are independent.

3 The discrete partitioning problem for n = 2

In this section, instead of the projective space FqP
n, we restrict ourselves to the projective plane

FqP
2. Let us restate the problem for the projective plane. We want a partition of (FqP

2)2 of the
form

(FqP
2)2 =

·⋃N

i=1
Ai

1 ×Ai
2, (1)

such that for for all i we have Ai
1 ×Ai

2 ⊆ (Li)2, where Li is a line in FqP
2.

We have |(FqP
2)2| = (q2 + q+1)2 ≈ q4. The upper and lower bounds we discussed in Section 1

for the general problem now become O(q4) and Ω(q2). However, it turns out that N = Θ(q3).
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The upper bound. First, note that for any point p ∈ FqP
2 there are q+1 lines Lp

1, L
p
2, . . . , L

p
q+1

through p. These lines only intersect in p and together they cover all of FqP
2. Thus Lp

1 and
Lp
2 \ {p}, Lp

3 \ {p}, . . . , Lp
q+1 \ {p} partition FqP

2. Now we can state our O(q3) size partition of

(FqP
2)2. Each part is of the form p × Lp

1 or p × (Lp
i \ {p}) for i ∈ {2, . . . q + 1} and p ∈ FqP

2.
Clearly these parts are mutually disjoint: For any two parts, either the first factors are different
and disjoint, or if they are the same, then the second factors are disjoint by our construction of the
partition of FqP

2. It is also clear that we cover all of (FqP
2)2 in this way. The size of this partition

is (q2 + q + 1)(q + 1) = O(q3).
We now show that the above upper bound is the best possible up to a constant: N = Ω(q3).

Theorem (1.1 restated). In the discrete partitioning problem for k = 2 = n the partition size
satisfies N = Θ(q3).

Proof. The key idea of the proof is that the partitioning problem can be decomposed into smaller
instances of simpler partitioning problems (Lemma 3.1 below). These smaller problems admit rank
arguments (similar to the one used in some proofs of a theorem by Graham and Pollak [13]) for their
lower bounds. Our decomposition shows that on average each of these smaller problems requires a
large partition, giving us a good overall bound.

It will be useful to work without loss of generality with what we will call canonical partitions,
as it is easier to prove a lower bound for this restricted kind of partition. We say that a partition
of (FqP

2)2 as in (1) is canonical if each of its parts is canonical. We say that a part A1 × A2 is
canonical if either A1 = A2 (square parts) or A1∩A2 = ∅ (non-square parts). In other words, either
the two factors are equal, or they are disjoint.

Given any partition {Ai
1 × Ai

2}, we can construct a canonical partition with at most 4 times
more number of parts as follows. For each part, decompose it into four canonical parts:

Ai
1 ×Ai

2 = [(Ai
1 ∩Ai

2)× (Ai
1 ∩Ai

2)]∪̇[(A
i
1 \ A

i
2)× (Ai

1 ∩Ai
2)]

∪̇[(Ai
1 ∩Ai

2)× (Ai
2 \ A

i
1)]∪̇[(A

i
1 \ A

i
2)× (Ai

2 \ A
i
1)].

Henceforth we assume that our partitions are canonical.
It will be helpful to think of (FqP

2)2 as a complete bipartite graph, with one copy of FqP
2 in the

product representing one side of vertices and the other copy representing the other side. Edges in
this graph are then the elements of (FqP

2)2. Each canonical part can be thought of as an induced
complete bipartite subgraph.

Clearly, the number of square parts in any canonical partition is at most q2 + q + 1 = O(q2).
We will show that the number of non-square parts is Ω(q3).

Notice that if {Si × Si | i ∈ [N ]} is the set of square parts, then {Si} form a partition of FqP
2.

Thus, {Si | i ∈ [N ]} also induce a partition of each line L; let φ(L) be the number of parts in such
a partition of L. Clearly φ(L) ≤ q + 1. The following lemma shows that on average φ(L) is almost
as large as q + 1.

Lemma 3.1.
∑

L φ(L) ≥ q(q2 + q + 1), where the summation is over all lines.

Proof. For any point a there is some square part Si×Si such that a ∈ Si. Now a lies in q+1 lines,
say, L1, . . . , Lq+1. Since our requirement on the partition is that Si should be completely in some
line, we have that for all but at most 1 of the q + 1 lines L ∈ {L1, . . . , Lq+1} we have |L ∩ Si| = 1.
Thus a appears as a singleton in the partitions (induced by the square parts) for at least q lines.
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So each of the q2 + q + 1 points contributes at least q to the sum, which gives the bound in the
lemma.

Remove the edges covered by square parts, then we are left with a bipartite graph whose edge
set is partitioned by non-square parts. In this graph, each line L induces a bipartite subgraph G(L)
defined as follows: G(L) is the bipartite subgraph induced by a copy of L in the left vertices and a
copy of L in the right vertices. In other words, the edges of G(L) are the edges in L×L not covered
by square parts. This implies that the edge set of each G(L) is covered by non-square parts. Also,
the edge sets of graphs {G(L)}L are disjoint by our construction. But a stronger property holds:
Each non-square part completely lies in one of the G(L)s. More precisely, if Ri

1×Ri
2 is a non-square

part such that Ri
1 ⊆ L and Ri

2 ⊆ L for some line L, then (Ri
1 × Ri

2) ∩ (L′ × L′) = ∅ for all lines
L′ 6= L.

We know that G(L) looks like this: Let L = S1∪̇ · · · ∪̇Sφ(L) be the partition of L induced by
square parts as above. Then G(L) has all the edges in sets Si × Sj for i, j ∈ [φ(L)], i 6= j. Now
an easy adaptation of the matrix proof of the Graham–Pollak theorem [13] (see Lemma 3.2 below)
gives that G(L) needs φ(L) non-square parts. To see this, choose one point pi from each Si, and
consider the subgraph of G(L) induced by the vertices in both color classes of G(L) corresponding
to points {p1, . . . , pφ(L)}. Applying Lemma 3.2 to this subgraph gives the required bound on the
number of non-square parts. Thus the total number of parts we need is

∑

L φ(L) ≥ q(q2 + q + 1)
by the lemma above.

We note that the proof did not make use of the algebraic structure of the projective plane, and
it holds for combinatorial projective planes as well.

Lemma 3.2. Let B = ((U, V ), E) be a bipartite graph with |U | = |V | = n, and E = {(ui, vj) | i, j ∈
[n] and i 6= j}. (In other words, B is a complete n× n bipartite graph minus a perfect matching.)
Any partition of E into complete bipartite graphs requires at least n graphs.

Proof. Consider the bipartite adjacency matrix A(B) of B (rows indexed by U and columns by V ,
and A(B)(u,v) = 1 if (u, v) ∈ E else A(B)(u,v) = 0). Let B1, . . . , Br be complete bipartite subgraphs
whose edges sets partition E. Then we can write

A(B) =
∑

i∈[r]

A(Bi). (2)

The algebra in the rest of the proof is over R. Now, notice that rank A(B) = n (this is because
A(B) = J−I, where J is the all ones matrix and I is the identity matrix, after a suitable reordering
of the vertices), but rank A(Bi) = 1 for i ∈ [r]. The subadditivity of rank implies that r ≥ n.

We remark that there are generalizations of the Graham–Pollak theorem for hypergraphs [1, 8]
and it is natural to try to use these to solve the partitioning problem for higher k. However, we
have not succeeded in this.

4 A small size partition

We construct a partition of (FqP
n)n with size O(q(

n+1

2 )), by generalizing our partition construction
for the product of two projective planes (Sec. 3). More generally, the same ideas give a partition of
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(FqP
n)k with size O(q(

k+1

2 )) (independent of n). Informally, for the product of two projective planes
the parts were of type (point × almost-line). For (FqP

n)n, parts are of type (point × almost-line
× almost-2-flat × · · · × almost-(n − 1)-flat), where an almost-r-flat is either an r-flat or an r-flat
minus an (r − 1)-subflat. We now describe our construction in detail.

Proof (of Theorem 1.2). Let 1 ≤ r < n. For an (r− 1)-flat F consider r-flats F1, F2, . . . containing
F . There are (qn+1 − qr)/(qk+1 − qr) such flats and any two of them intersect precisely in F . This
provides a partition of FqP

n into almost-r-flats with size (qn+1 − qr)(qk+1 − qr) : The first part is
F1 and other parts are F2 \ F,F3 \ F, . . . We call this partition a partition around F .

Now to construct a partition of (FqP
n)n, it will be convenient to index the n copies of FqP

n as
P1, . . . , Pn. So we are considering a partition of P1 × P2 × · · · × Pn. We start by partitioning P1.
Let P1 be the partition of P1 into singletons. For each S1 ∈ P1, consider a partition of P2 around
span(S1) = S1. Denote this by P2(S1). For S2 ∈ P2(S1) consider partition of P3 around span(S2),
and so on.

Our partition of (FqP
n)n is then made up of all the parts of the form S1×· · ·×Sn. The number

of choices for the first factor is |P1| = (qn+1 − 1)/(q − 1). Having fixed the first factor S1, the
number of choices for the second factor are |P2(S1)| = (qn+1 − q)/(q2 − q). And so on. So the total
number of choices is

qn+1 − 1

q − 1
·
qn+1 − q

q2 − q
·
qn+1 − q2

q3 − q2
· · ·

qn+1 − qn−1

qn − qn−1
=

qn+1 − 1

q − 1
·
qn − 1

q − 1
·
qn−1 − 1

q − 1
· · ·

q2 − 1

q − 1

≤
q(

n+1

2 )
(

1− 1
q

)n

≤
q(

n+1

2 )

1− n
q

.

For q ≥ 2n we have 1/(1 − n/q) ≤ 1 + 2n/q. The claim follows.

5 The structure of decision trees for DSPAN

In this section we prove the claim from the introduction on the structure of the partition induced
by a decision tree for the DSPAN problem: Each part is a product set, where each factor is a flat
minus a few flats.

Lemma 5.1. Consider a deterministic decision tree for DSPAN making at most h queries. Let A
be a part of the partition of (FqP

n)n induced by the leafs of the tree. Then

1. There is an (n− 1)-flat F ⊂ FqP
n with A ⊆ Fn.

2. We can write A = A1 ×A2 × · · · ×An where each Ai is of the form G \ (G1 ∪G2 ∪ · · · ∪Gh),
where G,G1, . . . , Gh are flats.

Proof. Part 1 must hold because the output of the tree is correct for DSPAN.
We prove the following strengthening of 2: That 2 holds for the set of tuples A associated to

any node of the decision tree with h equal to the depth of the node. By induction on h. It is
clearly true for h = 0 (no queries, the root) as in this case A = (FqP

n)n. For the inductive step, let
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A ⊆ (FqP
n)n be the part associated to a node of depth h. By the inductive hypothesis, its parent

part A′ is of the form A1 × A2 × · · · ×An, where each Ai is of the form G \ G1 ∪ G2 ∪ · · · ∪ Gh−1

where G,G1, . . . , Gh−1 are (possibly empty) flats. The query that restricts A′ to get A is some
(n − 1)-flat p ⊆ FqP

n. If the result of the query is YES, the interpretation of the query means
that the restriction is: Intersect each A1, . . . , An with p. If the result of the query is NO and index
i ∈ [n], the interpretation of the query means that the restriction is: Intersect each A1, . . . , Ai−1

with p, subtract p from Ai and leave Ai+1, . . . , An unchanged. The claimed structure holds in both
cases.

6 Lower bound for structured partitions

In this section we show a lower bound for the discrete partitioning problem when factors of each
part are almost-flats (Theorem 1.3, Def. 2.1). The outline of the proof in Sec. 1.3 will be useful for
reading the proof below.

Definition 6.1 (projective lines in general position). We say that a set of at most n+1 projective
lines in FqP

n is in general position if for any k ∈ [n−1] no k+1 of them are contained in a k-flat.

Lemma 6.2 (Sylvester-Gallai type property). Let L be a set of at most n + 1 projective lines in
FqP

n in general position (Definition 6.1). Then there exists a projective line l ∈ L that intersects
the other projective lines in L in at most 2 points, i.e. there are (at most) two points p, q ∈ l such
that l ∩ l′ ∈ {p, q} for all l′ ∈ L \ {l}.

Proof. By induction on n. It is true for n = 1. For general n, we will define a sequence l1, l2, . . .
of lines in L. We will add lines incrementally preserving the property that dim span{l1, . . . , li} = i.
Start by picking any line l1 ∈ L. Pick a line l2 ∈ L \ {l1} that intersects l1 (if there is no such line
then l1 is the desired line). In general, if there exists li ∈ L \ {l1, . . . , li−1} that intersects at least
one of l1, . . . , li−1, then we have dim span{l1, . . . , li} = dim span{l1, . . . , li−1} + 1 = i (li cannot be
contained in span{l1, . . . , li−1} if L is in general position). If no such li exists, then the inductive
hypothesis applied to {l1, . . . , li−1} gives the line desired in the statement. Suppose we pick all
lines in L in this way and the last line is lk. If k < n+1, then lk intersects the others in one point.
If k = n + 1, then the fact that L is in general position implies that lk intersects at most one of
l1, . . . , ln−1, and it can possibly intersect ln. Thus, lk is the desired line.

The previous lemma is tight in the following sense: For n = 2, the case of the projective plane,
any 3 lines in general position intersect pairwise.

Lemma 6.3 (fraction of dependent tuples in products of almost-lines). Let L = (li)
n+1
i=1 be a family

of almost-lines in FqP
n with q ≥ 3. Then the number of dependent tuples in T =

∏n+1
i=1 li is at least

(q − 2)n−1(q − 1).

Proof. By induction on n. For n = 1, we are in the projective line of cardinality q + 1, the two
lines in L coincide except for the missing points and the dependent tuples are pairs of equal points.
Thus, there are at least q − 1 dependent tuples.

For general n, if L is not in general position, use the inductive hypothesis on the subfamily
of k lines not in general position: The number of dependent tuples in that subset is at least
(q − 2)k−2(q − 1), any completion of such a dependent tuple to an (n+ 1)-tuple is also dependent
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and each can be completed in at least qn+1−k ways. Thus the number of dependent tuples in L is
at least qn−k+1(q − 2)k−2(q − 1).

Otherwise, consider the line in L given by Lemma 6.2 (applied to the completion of each almost-
line to a line), say this line is l1 and let p be a point in this line that is not missing from it and
such that no other line in L goes through it. Consider the quotient of the whole space by p. In the
quotient, the image of a point p′ 6= p is [p′], and the image of a line l not containing p is the union
of the images of the points in l. As the almost-lines in (li)

n+1
i=2 do not contain p, their images in the

quotient are also almost-lines. Thus the inductive hypothesis can be used on the quotient space of
dimension n−1 and the n quotient lines to conclude that the product of the quotient lines contains
at least (q − 2)n−2(q − 1) dependent tuples.

Now, by the invariance of dependence (Claim 2.2), we have that there are at least (q−2)n−2(q−1)
dependent tuples in T whose first coordinate is p. Also, there are at least q − 2 choices of p, so
there are at least (q − 2)n−1(q − 1) dependent tuples overall.

Definition 6.4. For Q =
∏k

i=1Qi, a product of subsets of FqP
n, where each Qi is an almost-

flat, the dimension pattern of Q, denoted dimQ is the k-tuple of dimensions of the Qis sorted in
non-decreasing order. We will consider the partial order on dimension patterns: (s1, . . . , sk) �
(t1, . . . , tk) iff for all i we have si ≤ ti.

Lemma 6.5 (dependence of non-dominated almost-flats). Let Q =
∏n

i=1Qi be a product of subsets
of FqP

n−1, where each Qi is an almost-flat. Assume

dimQ � (0, 1, . . . , n− 1). (3)

Then the fraction of dependent tuples in Q is at least

1

q + 1

(

q − 2

q + 1

)n−1

.

Proof. The proof will reduce estimating the fraction in the general case to the case of lines, given
by Lemma 6.3. We will do this by first reducing to the case of partitions consisting of parts with
minimal dimension patterns satisfying (3) and then reducing to the case of product of lines.

The minimal dimension patterns satisfying (3) are the following n − 1 patterns: (1, 1, . . . , 1),
(0, 2, 2, . . . , 2), (0, 0, 3, . . . , 3), . . . , (0, . . . , 0, n − 1, n − 1). Formally, they are given by (s1, . . . , sn)
for j = 1, . . . , n− 1, where

si =

{

j i ≥ j,

0 i < j.

It suffices to prove the lemma for Q with minimal dimension patterns satisfying (3), because of
the following two facts:

• A Q with a non-minimal dimension pattern can be partitioned into parts with minimal
dimension patterns. This is shown in the next claim.

• The fraction of dependent tuples in Q is at least the minimum of such fractions for the parts
in a partition of Q.

Claim 6.6. Let Q =
∏n

i=1Qi be a product of subsets of FqP
n−1, where each Qi is an almost-flat;

and let Q satisfy (3). Then Q can be partitioned into parts with minimal dimension patterns and
satisfying the assumptions of Lemma 6.5.
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Proof. Let k + 1 be the least index i such that (dimQ)i ≥ i; such an i exists because of our
assumption that (3) is satisfied. Then we claim that we can partition Q into parts of the form

p1 × · · · × pk ×Rk+1 × · · · ×Rn, (4)

where pi ∈ Qi, for i ≤ k, are points, and Ri ⊆ Qi is an almost-flat of dimension k+1 for i > k. We
construct this partition by first partitioning individual factors in Q, and then the resulting (refined)
product partition of Q will be our desired partition.

Partitioning into flats of dimension 0 (points) is straightforward. For partitioning into higher
dimensional parts there are 3 cases depending on the factor being partitioned and the dimension
of the target parts.We will also assume that when we need to partition an almost flat it’s of type
Fd \ Fd′′ with Fd′′ ⊆ Fd. We have the following three cases.

• In the first case, we want to partition a d-flat Fd into almost-flats of dimension d′ for some
0 < d′ ≤ d. Fix a (d′ − 1)-flat Fd′ ⊆ Fd arbitrarily, and consider the d′-dimensional flats
F (p) := span({p}∪Fd′) for p ∈ Fd \Fd′ . For two such points p, p′ we either have F (p) = F (p′)
or F (p)∩F (p′) = Fd′ . Thus we can construct a partition of Fd with one flat of the form F (p)
and almost-flats of the form F (p) \ Fd′ . More precisely, fix any point p∗ ∈ Fd \ Fd′ , then the
partition is

{F (p∗)} ∪ {F (p) \ Fd′ : p ∈ Fd \ F (p∗)}.

• In the second case, we need to partition Fd \ Fd′′ , a d-flat minus a d′′-flat, into almost-flats
of dimension d′ for d > d′′ ≥ d′ > 0. This is a slight modification of the previous argument:
We fix a (d′ − 1)-flat Fd′ ⊆ Fd′′ arbitrarily and we can construct a partition of Fd \ Fd′′ with
almost-flats of the form F (p) \ Fd′ . The partition is

{F (p) \ Fd′ : p ∈ Fd \ Fd′′}.

• In the third case, we need to partition Fd \ Fd′′ , a d-flat minus a d′′-flat, into almost-flats of
dimension d′ for d > d′ > d′′ > 0. This is again a slight modification of the previous argument:
We arbitrarily fix a d′−1 dimensional flat Fd′ ⊆ Fd containing Fd′′ and we construct a partition
of Fd \Fd′′ with one almost-flat of the form F (p)\Fd′′ and almost-flats of the form F (p)\Fd′ .
More precisely, fix any point p∗ ∈ Fd \ Fd′ , the partition is

{F (p∗) \ Fd′′} ∪ {F (p) \ Fd′ : p ∈ Fd \ F (p∗)}.

Applying the above procedure to each factor Qi for i > k with d′ = k we get the desired
partition completing the proof of the claim.

To complete the proof of the lemma, we now reduce the case of minimal dimension patterns to
the case of lines, which is handled by Lemma 6.3. That lemma gives a lower bound for the fraction
of dependent tuples for the product of n+1 lines in FqP

n. At this point in the proof we are dealing
with parts as in (4), which have as factors k points and n− k almost-flats of dimension k + 1. We
could partition the almost-flats into lines to apply Lemma 6.3 and ignore the first k points of each
tuple, but then the lines would be living in FqP

n−1 with only n − k lines and Lemma 6.3 would
not apply for k ≥ 1. To fix this, we confine the almost-flats into a common (n− k− 1)-dimensional

13



space by “projecting them orthogonal to p1, . . . , pk”, or more precisely, by taking the quotient by
S = span(p1, . . . , pk) and then appropriately modifying the Ri’s. We now describe this procedure.

Let Q be as in (4). If (p1, . . . , pk) is dependent, there is nothing more to prove for this part as
the fraction of dependent tuples is 1.

Otherwise, we sequentially go over Rk+1, . . . , Rn and replace them by Pk+1, . . . , Pn as described
below. The new product set Q′ = p1 × · · · × pk × Pk+1 × · · · × Pn has the following properties: (1)
f(Q′) ≤ f(Q), where f(Q) is defined to be the fraction of dependent tuples in Q; (2) each Pi is an
almost-flat; (3) each Pi is the union of some of the equivalence classes induced by the quotient of
Ri by S. Thus, if we take the quotient, then each Pi can be identified with an almost-flat living
in a space isomorphic to FqP

n−k−1, and hence Lemma 6.3 is applicable after partitioning each Pi

into lines.
Now we explain the construction of the Pi’s which depends on two cases: (1) If Ri is a flat,

then set Pi := Ri \ S. (2) Suppose Ri is an almost-flat, i.e. Ri = Fi \ F
′

i , where Fi is a (k + 1)-flat
and F ′

i is a sub-flat of dimension at most k. Then set Pi to either Fi \ S or (Fi \ S) \ (F ′

i |Fi/S),
whichever makes the current density of dependent tuples smaller. If the second option is empty,
pick the first, which is never empty. (By the current density of dependent tuples we mean the
density of dependent tuples in p1 × · · · × pk × Pk+1 × · · · × Pi ×Ri+1 × · · · ×Rn.)

We do not use the more natural choice of a straightforward quotient in the case of almost-flats
(that is, Pi = Ri/S), as in that case the fraction of dependent tuples may increase or decrease.
With our choice we will now show that the fraction of dependent tuples never increases.

Claim 6.7. The fraction of dependent tuples in Q is at least that in Q′.

Proof. We will see the effect on the fraction of dependent tuples in each step of our procedure of
replacing Ri by Pi as defined above. There will be several cases:

• If Ri is a (k+1)-flat, then we set Pi := Ri \S. This cannot increase the fraction of dependent
tuples because we removed S and the tuples involving points of S in the i’th position are all
dependent.

• If Ri = Fi \ F ′

i , with Fi ⊃ F ′

i , is an almost-flat, then we use a refinement of the previous
argument. First, we replace Ri by R′

i = (Fi \ F ′

i ) \ S = (Fi \ S) \ (F ′

i \ S); as before, this
cannot increase the fraction of dependent tuples. Now we have two cases depending on the
intersection pattern of F ′

i with the equivalence classes in Fi/S:

– Fi/S = [F ′

i ], that is, F
′

i intersects all equivalence classes of the quotient Fi/S, and in this
case each intersection is of the same cardinality by Claim 2.3. Therefore, by Claim 2.4
the fraction of dependent tuples does not change when we replace R′

i = (Fi \S)\ (F
′

i \S)
by Pi = Fi \ S.

– Fi/S ) [F ′

i ], that is, F
′

i does not intersect all equivalence classes of Fi/S. For U ⊆ R′

i,
define f(U) to be the fraction of dependent tuples in3

p1 × · · · × pk × Pk+1 × · · · × Pi−1 × U ×Ri+1 × · · · ×Rn.

Informally, we will either “remove the equivalence classes intersected by F ′

i” or “complete
them”, whichever does not increase f(·). More precisely, we will show that for one of the

3We are overloading the function f as it was used with a different type of argument (Q) earlier, but this should
not cause confusion.
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following choices of Pi we have f(Pi) ≤ f(R′

i): set Pi = (Fi \ S) \ (F
′

i |Fi/S) (“remove”);
or set Pi = Fi \ S (“complete”).

It remains to prove that one of these choices will not increase f(·). We need some
notation. Denote the equivalence classes in Fi/S by C1, . . . , Cr, Cr+1, . . . , Cr+s. Let
c := |C1| = |C2| = · · · = |Cr+s|. Of these, C1, . . . , Cr have nonempty intersection with
F ′

i . Let c := |C1| = |C2| = · · · = |Cr+s|. By Claim 2.3, |C1 ∩ F ′

i | = · · · = |Cr ∩ F ′

i | and
let us denote this common intersection size by c′. Let α be the fraction of dependent
tuples induced by C1 ∪ · · · ∪Cr = F ′

i |Fi/S , and let β be the fraction of dependent tuples
induced by Cr+1 ∪ . . . ∪ Cr+s. Then we have

f(R′

i) =
α(c − c′)r + βcs

(c− c′)r + cs
,

f(Fi \ S) =
αcr + βcs

cr + cs
,

f((Fi \ S) \ (F
′

i |Fi/S)) =
βcs

cs
= β.

From the above expressions we see that if β > α then f(Fi \ S) < f(R′

i); and if β < α
then f((Fi \ S) \ (F

′

i |Fi/S)) < f(R′

i); and if α = β then either choice works.

This completes the proof of the claim.

Let P = Pk+1 × · · · ×Pn. By our construction, the fraction of dependent tuples in Q′ is no less
than that in P . Define P/S := (Pk+1/S) × · · · × (Pn/S), the result of taking the quotient with
respect to S, where (Pj/S) ⊆ FqP

n−k−1 for k < j ≤ n. Note that Pj/S is an almost-flat. We have
f(P/S) = f(p1 × p2 × · · · × pk × P ).

Claim 6.7 with the fact just noted implies that a lower bounding of the fraction of dependent
tuples of Q is given by a lower bound of the fraction of dependent tuples of a part having all factors
of dimension 1 or more. Applying the partitioning argument from the first half of the proof once
more to such a part, it is enough to lower bound the fraction of dependent tuples for a part having
factors of dimension exactly 1 (minimal dimension pattern). The estimate in Lemma 6.3 gives that
each such part with n − k factors has at least (q − 2)n−k−2(q − 1) dependent tuples. A part like
that also has at most (q + 1)n−k tuples and therefore a fraction of at least

(q − 2)n−k−2(q − 1)

(q + 1)n−k

dependent tuples. As a function of k only, this fraction is smallest when k = 0, and thus it is at
least

(q − 2)n−1

(q + 1)n
.

We showed that this is a lower bound on the fraction of dependent tuples in Q. This completes the
proof of the lemma.

Proof (of Theorem 1.3). We will first estimate the fraction of dependent tuples in (FqP
n)n. Proba-

bilistic language is helpful here. We consider a random tuple T = (t1, . . . , tn) and we want an upper
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bound on the probability that it is dependent. Recall that the cardinality of an i-dimensional flat
is 1 + q + · · ·+ qi.

Pr(T is dependent) =

n
∑

i=2

Pr((t1, . . . , ti−1) is independent and (t1, . . . , ti) is dependent)

≤
n
∑

i=2

Pr((t1, . . . , ti) is dependent | (t1, . . . , ti−1) is independent)

=
n
∑

i=2

1 + q + · · · + qi−2

1 + q + · · ·+ qn

≤
n
∑

i=2

1

qn−i+2
≤

∞
∑

i=2

1

qi
=

1

q(q − 1)
.

Thus the fraction of dependent tuples in (FqP
n)n is at most 1/q(q−1).4 This and Lemma 6.5 imply

that parts whose dimension pattern is not less than or equal to (0, 1, . . . , n − 1) (non-dominated),
can cover at most a

1

q(q − 1)

(

1

q + 1

(

q − 2

q + 1

)n−1
)

−1

≤
1

q

(

q + 1

q − 2

)n

fraction of (FqP
n)n. The rest has to be covered with “dominated” parts, that is, parts whose

dimension pattern is less than or equal to (0, 1, . . . , n− 1). Any such part has cardinality at most
1(q + 1) · · · (qn−1 + · · · + 1). The total number of tuples to be covered by these parts is at least

(

1−
1

q

(

q + 1

q − 2

)n)

(qn + · · ·+ 1)n.

This needs at least

qn(n+1)/2

(

1−
1

q

(

q + 1

q − 2

)n)

parts.
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4This estimate is not too far from the true value: By picking the points in the tuple in sequence and considering
the chance that the last point makes the tuple dependent (i.e. lies in a certain (n−2)-dimensional flat), we have that
the fraction of dependent tuples is at least

qn−1
− 1

qn+1 − 1
≥

1

q2
−

1

qn+1
.
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A From sampling lower bound to the continuous partitioning prob-

lem

A question that immediately arises when trying to prove a lower bound on sampling is that sampling
is not a computational task in the usual sense of having a definite output. A way to get around
this problem is to prove a lower bounds for a problem that can be solved using sampling. An
Ω(n) lower bound is easy: Consider the following set of n bodies in Rn. For i ∈ [n], define body
Bi = [0, 1]i−1 × [0, 2] × [0, 1]n−i. In other words, Bi is an axis-parallel cuboid with length 1 along
all but the i’th axis. Now consider a randomized algorithm that gets as input (via membership
oracle) a uniformly randomly chosen body from the set of bodies just defined and its output is the
index of the input body. A straightforward application of Yao’s min-max principle shows that any
such algorithm must make Ω(n) membership queries to achieve a constant probability of success.
On the other hand, if sampling can be done with q queries, then the body can be identified in O(q)
queries with constant probability of success: Suppose that the input body was Bi. Sample a point
by making q queries. With probability about 1/2 its i’th coordinate is greater than 1, thus telling
us that the body is Bi. We can improve the probability of success by repeating this. This gives
q = Ω(n).

For a quadratic lower bound as a function of the dimension, our candidate hard algorithmic
problem is the following. We are given a membership oracle for a convex body given by {x ∈
Rn | 〈x, vi〉 ≤ 1 for i ∈ [n − 1], 〈x, v〉 ≤ p(n)}, for n − 1 unit vectors v1, . . . , vn−1 ∈ Sn−1 (the unit
sphere in Rn) spanning a hyperplane, v a normal to that hyperplane and p(n) some fixed polynomial
in n. The problem is to find v approximately, or more precisely, a vector whose direction makes an
angle with v that is at most 1/poly(n). As usual in algorithmic convexity, the oracle complexity of
problems of this kind depends on the roundness of the input body [12] and our problem as stated
can have very high complexity as there is no a priori bound on the roundness of the input. For a
meaningful worst-case lower bound for randomized algorithms one needs to restrict the input body
so that it contains rBn and is contained in RBn for R/r = poly(n) (where Bn is the unit ball in Rn).
It’s easy to show algorithms solving the problem in this case with essentially quadratic number of
queries. Yao’s lemma implies that the probability of success of any randomized algorithm against
the worst such input is at least the probability of success of the best deterministic algorithm against
a distribution on inputs of our choice. Choosing vi uniformly and independently at random in Sn−1

and restricting the distribution to bodies satisfying the roundness condition is a natural option. But
it seems cleaner to just choose vi ∈ Sn−1 uniformly at random without any additional constraint,
prove a lower bound for deterministic algorithms against this distribution (say, an algorithm that
fails with probability at most p, needs to make q queries) and then argue that for a suitable choice
of r and R the fraction of the distribution that is not well-rounded is at most p/2. So any algorithm
when running on a distribution of well-rounded bodies needs to make at least q queries to fail with
probability at most p/2

1−(p/2) = p/(2−p). As before, it is easy to see that if we can sample with O(q)

queries then we can find a vector whose direction is within a 1/poly(n) angle of v in O(q polylog(n))
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queries with constant probability.
The next observation is that any deterministic algorithm against our distribution can be thought

of as a decision tree (if we only care about the number of queries and not the computational
complexity): Every node represents a query, the children of a node represent different choices
depending on the result of a query and on leafs the algorithm stops and has to output a candidate
vector. The leafs induce a partition of the support of the input distribution, which can be thought
to be (Sn−1)n−1. The algorithm succeeds with high probability if for most parts, most tuples of
n− 1 vectors in the part have their normal direction near a fixed vector that depends on the part
(“most” here according to the input distribution). It simplifies the problem somewhat to assume
that the oracle gives a bit more information than just YES or NO; instead, the modified oracle
answers YES when the query point is in the body (as usual), but when the query point x ∈ Rn

is not in the body it answers NO and gives the least index among violated constraints (that is,
min{i : |x · vi| > 1}). This idea was introduced in [18] and it has the following consequence (as
shown there): The partition induced by the corresponding decision tree is made of product sets,
namely, every part is of the form P1 × · · · × Pn−1 where Pi ⊆ Sn−1. Clearly a lower bound on the
number of queries for algorithms with the modified oracle is a valid lower bound for the original
oracle.

For any given part that is a product set, it can be shown that if the angle of localization of
the normals to its tuples is forced to be small enough (say, normal directions are within an angle
1/nO(1) of a given direction for a 1− α fraction of the part, for a small constant α), then most of
the part lies in a narrow “band”, that is, it satisfies the following “band condition”: For a set of
the form P1 × · · · × Pn−1 ⊆ (Sn−1)n−1, there is a vector v ∈ Sn−1 such that µ(Pi ∩ {x : |v · x| ≤
1/nO(1)}) ≥ (1− α)µ(Pi) for all i (where µ denotes surface area).

The previous discussion reduces the problem of proving a lower bound Ω(n2/ log n) for sampling
to the following partitioning problem:

Continuous partitioning problem (informal). Suppose that Q1, . . . , Qk is a partition of
(Sn−1)n−1 where each part is a product set and satisfies the above “band condition”. A lower
bound of k ≥ 2Ω(n2) would translate to a quadratic query lower bound for the sampling problem.
(The loss of a log factor is explained by the fact that the decision tree associated to the modified
oracle has fan-out Θ(n)).

A natural approach to solving the partitioning problem is to try to discretize the problem
perhaps by subdividing the sphere into sufficiently small cells, and then working with these cells
as atoms. However, we found the discretization considered in this paper cleaner and more useful
to work with. Although we do not have a formal connection between the two problems they have
very similar flavor and insights from the discrete version can be directly useful for the continuous
version; for example, the partition in the proof of Theorem 1.2 translates into a non-trivial partition
of (Sn−1)n−1 satisfying the band condition above. We now briefly describe the construction of
this partition. We first give an infinite size partition which is essentially the one in the proof
of Theorem 1.2 except that now we are working over the real field: The parts are of the form
P1 × P2 × · · · × Pn−1. The first factor P1 ⊂ Sn−1 is a point and its antipode in Sn−1 (this
corresponds to a single point in the projective space). The second factor P2 ⊂ Sn−1 is obtained
from a great circle C in Sn−1 containing P1; factor P2 is either C itself or C \P1 (this corresponds
to a line in the projective space). Factor P3 is obtained from the intersection of Sn−1 with a 3-
dimensional subspace of Rn containing P2 (this corresponds to a plane in the projective space), and
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so on. To turn this into a finite partition, we “fatten” each factor by 1/p′(n), where the polynomial
p′(n) is related to the precision with which we have to determine v, the normal to v1, . . . , vn−1. For
points, this fattening is achieved by subdividing Sn−1 into regions of diameter at most 1/p′(n). For
a given P1, the second factor P2 is obtained by similarly partitioning Sn−1 into a finite number of
regions such that for each region there is a great circle with every point in the region within distance
1/p′(n) from the great circle, and one of these regions contains P1 and the others are disjoint from
P1. We proceed similarly for higher dimensional factors.
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