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Abstract. We consider “unconstrained” random k-XORSAT, which is
a uniformly random system of m linear non-homogeneous equations in
F2 over n variables, each equation containing k ≥ 3 variables, and also
consider a “constrained” model where every variable appears in at least
two equations. Dubois and Mandler proved that m/n = 1 is a sharp
threshold for satisfiability of constrained 3-XORSAT, and analyzed the
2-core of a random 3-uniform hypergraph to extend this result to find
the threshold for unconstrained 3-XORSAT.

We show that m/n = 1 remains a sharp threshold for satisfiability
of constrained k-XORSAT for every k ≥ 3, and we use standard results
on the 2-core of a random k-uniform hypergraph to extend this result
to find the threshold for unconstrained k-XORSAT. For constrained k-
XORSAT we narrow the phase transition window, showing that m−n→
−∞ implies almost-sure satisfiability, while m−n→ +∞ implies almost-
sure unsatisfiability.

1. Introduction

An instance of k-XORSAT is given by a set of m linear equations in F2,
over n variables, each equation involving k variables and a right hand side
which is either 0 or 1. Equivalently, it is a linear system Ax = b modulo 2
in which A is an m× n 0–1 matrix each of whose row sums is k, and b is an
arbitrary 0–1 vector.

Random instances of many problems of this sort undergo phase transi-
tions around some critical ratio c∗ of m/n, meaning that for m,n→∞ with
limm/n < c∗, the probability that a random instance Fn,m is satisfiable
(or possesses some similar property) approaches 1, while if limm/n > c∗ the
probability approaches 0. (There is no loss of generality in hypothesizing the
existence of a limit since, in a broad context, a result as stated implies the
same with the weaker hypotheses lim inf m/n > c∗ and lim supm/n < c∗.)
Friedgut [19] proved that a wide range of problems have such sharp thresh-
olds, but with the possibility that the threshold c∗ = c∗(n) does not tend
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to a constant. The relatively few cases in which c∗ is known to be a con-
stant include 2-SAT, by Chvátal and Reed [6], Goerdt [20], and Fernan-
dez de la Vega [18] (with the scaling window detailed by Bollobás, Borgs,
Chayes, Kim, and Wilson, [5]), an extension to Max 2-SAT, by Copper-
smith, Gamarnik, Hajiaghayi, and Sorkin [9], and the pure-literal threshold
for a k-SAT formula, by Molloy [25].

The most natural random model of the k-XORSAT problem is the “un-
constrained” model in which each of the m equations’ k variables are drawn
uniformly (without replacement) from the set of all n variables, and the
right hand side values are uniformly 0 or 1; equivalently a random instance
Ax = b is given by a matrix A ∈ {0, 1}m×n drawn uniformly at random from
the set of all such matrices with each row sum equal to k, and b ∈ {0, 1}m
chosen uniformly at random.

The case k = 2 has been extensively studied. As shown by Kolchin [22]
and Creignon and Daudé [10], the random instance has a solution with
limiting probability p(2m/n)+o(1), where p(x) ∈ (0, 1) for x < 1, p(1−) = 0,
and p(x) ≡ 0 for x > 1. Daudé and Ravelomanana [12], and Pittel and
Yeum [30], analyzed the near-critical behavior of the solvability probability

for 2m/n = 1 + ε, ε = o(n−1/4).
For k > 2, Kolchin [22] analyzed the expected number of nonempty “crit-

ical row sets” (nonempty collections of rows whose sum is all-even), whose
presence is necessary and sufficient for the (Boolean) rank of A to be less
than m. He determined the thresholds ck such that the expected num-
ber of nonempty critical sets goes to 0 if limm/n < ck and to infinity if
limm/n > ck; in particular, c3 = 0.8894 . . . . Thus, for limm/n < ck, with
high probability A is of full rank, so Ax = b is solvable. It follows that the
satisfiability threshold c∗k is at least ck. It is an easy observation (see Re-
mark 3) that c∗k ≤ 1. However, Kolchin could not resolve the precise value,
or even the existence, of the satisfiability threshold.

Dubois and Mandler [16] (see also [17]) introduced a “constrained” ran-
dom k-XORSAT model, where b is still uniformly random, but A is uniformly
random over the subset of matrices in which each column sum is at least 2.
For k = 3 (3-XORSAT) they showed that its threshold for m/n is 1. This
is of interest because from the threshold for the constrained model, they
were able to derive that for the unconstrained model. Dubois and Mandler
suggested that their methods could be extended to the general constrained
k-XORSAT, k ≥ 3. However, their approach — the second-moment method
for the number of solutions — requires solving a hard maximization problem
with Θ(k) variables, a genuinely daunting task.

Our main result is that 1 continues to be the threshold for all k > 3.

Theorem 1. Let Ax = b be a uniformly random constrained k-XORSAT
instance with m equations and n variables. Suppose k ≥ 4. If m,n → ∞
with limm/n ∈ (2/k, 1) then Ax = b is asymptotically almost surely (a.a.s.)

satisfiable, with satisfiability probability 1−O(m−(k−2)), while if m,n→∞
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with limm/n > 1 then Ax = b is a.a.s. unsatisfiable, with satisfiability

probability O(2−(m−n)).

We treat k as fixed, and the constants implicit in the O()̇ notation may
depend on k. We are also able to treat the case when the gap between m
and n is not linear but arbitrarily slowly growing, obtaining the following
stronger theorem.

Theorem 2. Let Ax = b be a uniformly random constrained k-XORSAT
instance with m equations and n variables, with k ≥ 3 and m,n → ∞ with
lim inf m/n > 2/k. Then, for any w(n) → +∞, if m ≤ n − w(n) then

Ax = b is a.a.s. satisfiable, with satisfiability probability 1 − O(m−(k−2) +
exp(−0.69w(n))), while if m ≥ n+w(n) then Ax = b is a.a.s. unsatisfiable,

with satisfiability probability O(2−w(n)).

Rather than using the second-moment method on the number of solutions,
as Dubois and Mandler do, we use the critical-set approach of Kolchin.
Remark 5 shows that the two methods are equivalent, but Kolchin’s leads
us to more tractable calculations, specifically, to a maximization problem
with a number of variables that is fixed, independent of k. Using Kolchin’s
approach, but in the constrained model, we will establish that c∗k ≥ 1. In
the constrained and unconstrained models, a simple argument shows that
c∗k ≤ 1 (again see Remark 3). Thus, for the constrained model (unlike the
constrained one), the two bounds coincide, establishing the threshold.

Dubois and Mandler extended the threshold for the constrained 3-XORSAT
model to that for the unconstrained model by observing that, in an uncon-
strained instance, any variable appearing in just one clause (or none), can
be deleted along with that clause (if any), to give an equivalent instance,
and this process can be repeated. The key observation is that a uniformly
random unconstrained instance reduces to a uniformly random constrained
instance with a predictable edge density; the threshold for the unconstrained
model is the value for which the corresponding constrained instance has den-
sity 1. The same approach works for any k, and we capitalize on existing
analyses of the 2-core of a random k-uniform hypergraph to establish the
unconstrained k-XORSAT threshold in Theorem 16.

Other related work. Work on the rank of random matrices over finite
fields is not as extensive as that on real random matrices, but nonetheless
a survey is beyond our scope. In addition to the work already described,
we note that the rank of matrices with independent random 0–1 entries was
explored over a decade ago by Blömer, Karp and Welzl [4], and Cooper [7],
among others.

In 2003, the k-XORSAT phase transition was determined by Mézard,
Ricci-Tersenghi, and Zecchina [23], by the non-rigorous “replica” method of
statistical physics and also by a second-moment calculation, with the pur-
pose of showing that the replica method is correct in this instance. The cal-
culational details were omitted from the paper, and the authors acknowledge
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[24] that they did not rigorously prove negativity of the function playing the
role of our Hk (see (24)) nor did they treat the polynomial terms in the sum
corresponding to our (23) (which are of concern for small and large values
of `). Concurrently with and independently from our work, the k-XORSAT
phase transition was also analyzed by Dietzfelbinger, Goerdt, Mitzenmacher,
Montanari, Pagh, and Rink as part of a study of cuckoo hashing [14, 15]. We
remark that where we work with critical row sets (see Section 2), counting
vectors y for which yA = 0, both Mézard et al. and Dietzfelbinger et al. use
the second-moment method on the number of solutions, counting vectors x
for which Ax = 0.

Recently, Darling, Penrose, Wade and Zabell [11] have explored a ran-
dom XORSAT model replacing the constant k with a distribution, but the
satisfiability threshold has not yet been determined for this generalization.

To translate our result for the constrained model to the unconstrained
one, we exploit results on the core of a random hypergraph. For usual
graphs, the threshold for the appearance of an r-core was first obtained by
Pittel, Spencer, and Wormald [29]. For k-uniform hypergraphs, the r-core
thresholds were obtained roughly concurrently by Cooper [8], Kim [21], and
Molloy [25]. Two aspects of Cooper’s treatment are noteworthy. First, he
works with a degree-sequence hypergraph model; taking Poisson-distributed
degrees reproduces the results for a simple random hypergraph. Also, he
observes [8, Section 5.2] that the point at which a random k-uniform hyper-
graph’s core has a (typical) edges-to-vertices ratio of 1 is an upper bound on
the satisfiability threshold of unconstrained k-XORSAT; proving that this
is the true threshold is the main subject of the present paper.

Outline. The remainder of the paper is organized as follows. Section 2
formalizes our introductory observations about the first- and second-moment
methods, the number of solutions, and the number of critical sets. Section 3
shows that for the constrained model, instead of considering random 0–1
matrices A, it is asymptotically equivalent to consider random nonnegative
integer matrices A subject to the same constraints on row sums (equal to
k) and column sums (at least 2). Section 4, using generating functions and
Chernoff’s method, obtains an exponential bound for the expected number
of critical sets of any given cardinality. Section 5 uses this bound to show
that, for limm/n ∈ (2/k, 1) and k > 3, the expected number of nonempty

critical sets is O(m−(k−2)). Hence, with high probability, there is no such
set, A is of full rank, and the instance is satisfiable. We conclude that 1 is
a sharp threshold for satisfiability of Ax = b in the constrained case for all
k ≥ 3.

Section 6 builds on the earlier results to treat the case limm/n = 1 and
prove Theorem 2. Section 7 derives the unconstrained k-XORSAT threshold
from the constrained one, using standard results on the 2-core of a random
hypergraph.
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2. Proof background

Let N be the number of solutions to the system of equations Ax = b.

Remark 3. For an arbitrarily distributed A ∈ {0, 1}m×n, with b independent
and uniformly distributed over {0, 1}n, E[N ] = 2n−m, and the satisfiability
threshold is at most 1.

Proof. Given A, there are 2m systems given by (A, b), and in all they have
2n solutions since any x uniquely determines b = Ax. So E [N | A] = 2n−m,
and E [N ] = 2n−m. By the first-moment method, P(Ax = b is satisfiable) =
P(N > 0) ≤ E[N ] = 2n−m, which tends to 0 if limm/n > 1. �

Definition 4. Given a matrix, a critical set is a collection of rows whose
sum is all-even (i.e., the sum is the 0 vector in F2).

Note that the collection of critical sets is sandwiched between the minimal
linearly dependent sets of rows, and all linearly dependent sets of rows. It is
useful because the minimal sets are hard to characterize, while the collection
of all linearly dependent row sets is too large (as it includes all sets containing
any linearly dependent sets); the critical sets are a happy medium.

Let X be the number of nonempty critical row subsets of a matrix A.
Where the first-moment method establishes the probable absence of so-
lutions, their probable presence can be established in this setting either
by the second-moment method on the number of solutions, showing that
E
[
N2
]
/E [N ]2 → 1, or by the first moment method on the number of non-

empty critical row sets, showing that E [X] → 0. We will use the second
approach (Kolchin’s). The two approaches suggest different calculations,
but as the following remark shows, they are equivalent.

Remark 5. Let a distribution on A ∈ {0, 1}m×n be given, and let b be inde-
pendent of A and uniformly distributed over {0, 1}n. Then E[N2]

/
E[N ]2 =

E[X] + 1.

Proof. Consider any fixed A, having rank r(A) over F2. By elementary

linear algebra, for each of the 2r(A) values of b in {Ax : x ∈ {0, 1}n}, Ax = b

has 2n−r(A) solutions, giving 22n−2 r(A) ordered pairs of solutions in each
such case. For the remaining values of b there are no solutions, so in all
there are 22n−r(A) ordered pairs of solutions. Taking the expectation over b
uniformly distributed over its 2m possibilities, E[N2 | A] = E[22n−r(A)−m],

thus E[N2] = E[22n−r(A)−m]. Since E [N ] = 2n−m (see Remark 3),

E[N2]/E[N ]2 = E[22n−r(A)−m]/(2n−m)2 = E[2m−r(A)] = E[2n(AT)],

where n(AT) denotes the nullity of the transpose of A.
On the other hand, a critical row set is precisely one given by an indi-

cator vector y ∈ {0, 1}m for which yTA = 0. For a given A the number of

critical sets is thus 2n(AT), and the expected number of non-empty critical

row subsets is E[X] = E
[
2n(AT)

]
− 1. �
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In fact, ifm ≤ n and E[X]→ 0, then with high probabilityN = 2n−m (not
merely N/2n−m → 1 in probability as given by the second-moment method).
This follows because X = 0 implies r(A) = m, in which case N = 2n−m for
every b. Thus, P(N = 2n−m) ≥ P(X = 0) = 1− P(X > 0) ≥ 1− E [X]→ 1.

The work in Sections 3–5 is to count the critical row subsets. We will
show that indeed E[X] → 0 for the constrained random model with k ≥ 4
and m,n→∞ with limm/n ∈ (2/k, 1).

3. Probability spaces

This section will establish Corollary 8, showing that the uniform distri-
bution over constrained k-XORSAT matrices A ∈ Am,n (see below) is for
our purposes equivalent to a model C ∈ Cm,n allowing a variable to appear
more than once within an equation.

Let Am,n denote the set of all m× n matrices with 0–1 entries, such that
all m row sums are k, and all n column sums are at least 2. For Am,n to be
nonempty it is necessary that km ≥ 2n, and we will assume that m,n→∞
with limm/n ∈ (2/k, 1).

A matrix A ∈ Am,n may be interpreted as an outcome of the following
allocation scheme. We have an m× n array of cells with k indistinguishable
chips assigned to each of the m rows. For each row, the k chips are put in k
distinct cells (so there is at most one chip per cell), subject to the constraint
that each column gets at least two chips.

Let us consider an alternative model, with the same constraints but where
the chips in each row are distinguishable, giving allocations B ∈ Bm,n. Then
each allocation in Am,n is obtained from (k!)m allocations in Bm,n, and the
uniform distribution on Am,n is equivalent to that on Bm,n.

Let Cm,n be a relaxed version of Bm,n, without the requirement that each
of the mn cells gets at most one chip. Let B and C be distributed uniformly
on Bm,n and Cm,n, respectively. Crucially, and obviously, B is equal in
distribution to C, conditioned on C ∈ Bm,n.

To state a key lemma on |Am,n|, |Bm,n|, and |Cm,n| we need some notation,
much of which will recur throughout the paper.

Introduce

f(x) =
∑
j≥2

xj

j!
= ex − 1− x, ψ(x) =

xf ′(x)

f(x)
,(1)

with ψ(0) = 2 defined by continuity, and the truncated Poisson random
variable Z = Z(λ),

P(Z(λ) = j) =
λj/j!

f(λ)
, j ≥ 2.(2)

Then,

E [Z(λ)] =
∑
j

j · λj/j!
f(λ)

=
λf ′(λ)

f(λ)
= ψ(λ),(3)
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Also, E [Z(λ)(Z(λ)− 1)] = λ2f ′′(λ)/f(λ), leading to

Var[Z(λ)] = E [Z(Z − 1)] + E [Z]− (E [Z])2

= λ2f ′′(λ)/f(λ) + ψ(λ)− (ψ(λ))2 = λψ′(λ).(4)

(With ψ = xf ′(x)/f(x), (3) and (4) hold for f and Z defined by any series
ajx

j , not just xj/j!, assuming convergence.)
From (4) it is immediate that ψ′(λ) > 0 for any λ > 0. (See also a general

formulation in [31, Chapter 4, problem 6, p. 77].) The next claim shows
that ψ is convex as well as increasing, and establishes both facts for all λ
(though we only require them for positive λ).

Claim 6. ψ(x) is strictly increasing, and convex.

Proof. We begin with convexity. Differentiating (1) shows that ψ′′ = g/f3,
where

(5) g = 2f2 − 4xf ′f − x2f ′′f + 2x2(f ′)2.

Write g(x) =
∑

j≥0 gjx
j . Expanding (5) as a sum of terms xaebx =

∑
j≥0

bjxa+j

j! ,

and collecting like terms, we find that gj = 0 for j ≤ 5, while for all j ≥ 6,

gj =
j − 1

j!

[
2j−2(j − 8) + j2 − j + 4

]
> 0.

Positivity is trivial for j ≥ 8 and easily checked for j = 6 and 7. This
establishes that g(x) > 0 for x > 0. Substituting x = −y in g(x), writing
g(x) = e−2y

∑
j≥0 g

′
jy
j , and using the same method yields g′j = 0 for j ≤ 5,

while for j ≥ 6, g′j = 1
j!(2

j+1 − j3 + 4j2 − 7j − 4) > 0. This establishes that

g(x) > 0 for x < 0. Finally, ψ′′(0) = 1/9. Therefore ψ′′(x) > 0 for all x.
That ψ′(x) > 0 follows from limx→−∞ ψ

′(x) = 0 and ψ′′ > 0. �

Under our assumption that m/n > 2/k, the equation ψ(x) = km/n has
a unique root, and it is positive. This follows from the facts that ψ(x) is
strictly increasing (see Claim 6), ψ(0) = 2, and ψ(x) → ∞ as x → ∞.
Henceforth, let

λ = λ(km/n) := ψ−1(km/n)(6)

be this root. Since by Claim 6 ψ is strictly increasing, so is λ = ψ−1.
From (3) and (6),

E [Z(λ)] = ψ(λ) =
km

n
.(7)

From Claim 6, for λ > 0, ψ′(λ) lies between ψ′(0) = 1/3 and limx→∞ ψ
′(x) =

1, and thus

Var[Z(λ)] = λψ′(λ) = Θ(λ).(8)

With these preliminaries done, we focus on asymptotics of |Am,n|, |Bm,n|
and |Cm,n|.



8 BORIS PITTEL AND GREGORY B. SORKIN

Lemma 7. Suppose m,n → ∞ with limm/n ∈ (2/k,∞). Then, with λ as
in (6),

|Cm,n| =
1 +O(n−1)√
2πnVar[Z(λ)]

(km)!
f(λ)n

λkm
,(9)

|Bm,n|
|Cm,n|

= exp

(
−k − 1

2

λeλ

eλ − 1

)
+ o(1),(10)

so that the fraction |Bm,n| / |Cm,n| is bounded away from zero. Consequently

|Am,n| =
|Bm,n|
(k!)m

=
1 + o(1)√

2πnVar[Z(λ)]

(km)!

(k!)m
f(λ)n

λkm
exp

(
−k − 1

2

λeλ

eλ − 1

)
.

(11)

Corollary 8. Under the hypotheses of Lemma 7, uniformly for all non-
negative, matrix-dependent functions r,

E[r(A)] = E[r(B)] = O(E[r(C)]).

Proof. The first equality is trivial. To show the second, for any S ⊆ Bm,n,

P(B ∈ S) = P(C ∈ S | C ∈ Bm,n)

=
P(C ∈ S, C ∈ Bm,n)

|Bm,n| / |Cm,n|
≤ |Cm,n|
|Bm,n|

P(C ∈ S) = O(1)P(C ∈ S)(12)

by (10). �

Proof of Lemma 7. Equation (11) is immediate from (9) and (10). Proving
(9) and (10) will occupy the rest of this section.

We first prove (9). To determine |Cm,n|, recall that each row i ∈ m is
given its own k, mutually distinguishable, chips. We can get an allocation
C ∈ Cm,n by permuting all the chips and allocating the first j1 ≥ 2 chips
to column 1, the next j2 ≥ 2 chips to column 2, etc.; each chip goes to its
predetermined row and its random column. Up to the irrelevant permutation
of chips within the first j1, the next j2, etc., an allocation C ∈ Cm,n is
uniquely determined by such a scheme.

Observe that the probability generating function (p.g.f.) of the truncated
Poisson random variable Z(λ) defined in (2) is

E
[
zZ(λ)

]
=
f(zλ)

f(λ)
.(13)

Following the notational convention that for h(z) =
∑

j hjz
j , [zj ]h(z) := hj ,

we have

|Cm,n| =
∑

j1+···+jn=km
j1,...,jn≥2

(km)!

j1! · · · jn!
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= (km)! [zkm]

∑
j≥2

zj

j!

n

= (km)! [zkm]f(z)n(14)

= (km)!
f(λ)n

λkm
[zkm]

(
f(zλ)

f(λ)

)n
=(km)!

f(λ)n

λkm
[zkm]

(
E[zZ(λ)]

)n
(see (13))

= (km)!
f(λ)n

λkm
P

 n∑
j=1

Zj(λ) = km

 ,(15)

where Z1(λ), . . . , Zn(λ) are independent copies of Z(λ). Now, since Var[Z(λ)] =
Θ(λ) (by (8)) and lim inf λ > 0 (by λ = λ(km/n) and the hypothesis that
limm/n > 2/k), we have lim inf Var[Z(λ)] > 0. So, by a local limit theorem
(Aronson, Frieze and Pittel [2, equation (5)]),

P

 n∑
j=1

Zj(λ) = km

 = P

 n∑
j=1

Zj(λ) = nE[Z(λ)]

 =
1 +O(n−1)√
2πnVar[Z(λ)]

,

which proves (9).
We now prove (10). Let C = {ci,j} be distributed uniformly on Cm,n.

Let M denote the number of cells that house 2 or more chips, i.e., M =∣∣{(i, j) : ci,j ≥ 2}
∣∣. Let M be the number of pairs of chips hosted by the

same cell, i.e.,

M =
∑

(i,j) : ci,j≥2

(
ci,j
2

)
=
∑
(i,j)

(
ci,j
2

)
.

M = M iff there are no cells hosting more than 2 chips. Clearly

|Bm,n|
|Cm,n|

= P(C ∈ Bm,n) = P(M = 0).

Of course, P(M = 0) = P(M = 0), but, unlike M , M is amenable to moment
calculations.

Denoting the indicator of an event E by 1(E), we write

M =
∑

i∈[m], j∈[n]

∑
1≤u<v≤k

1
(
E(i, j;u, v)

)
,(16)

where E(i, j;u, v) is the event that, of the k chips owned by row i, at least

the two chips u and v were put into cell (i, j). Each of these mn
(
k
2

)
event

indicators has the same expected value,

(17) E[1(E(i, j;u, v))] = (km− 2)!
[xkm−2]f(x)n−1ex

|Cm,n|
.

To see why (17) is so, compare with (14) and note that once we have put
two selected chips into a cell (i, j) we allocate the remaining (km− 2) chips
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amongst n columns, at least two per column, with the exception (hence the
sole ex factor) that the jth column receives an unconstrained number of
additional chips (as it already has two). Arguing as for (15),

[xkm−2]f(x)n−1ex =
f(λ)n−1eλ

λkm−2
P

n−1∑
j=1

Zj(λ) +X(λ) = km− 2

 ,(18)

where X(λ) stands for an independent, usual (not truncated) Poisson(λ)
random variable. This last probability equals∑

r

[
P(Po(λ) = r) · P

( n−1∑
j=1

Zj(λ) = km− 2− r
)]
.

By the local limit theorem for
∑n−1

j=1 Zj(λ), for r ≤ lnn the second probabil-

ity in the rth term of the sum is again asymptotic to (2πnVar[Z(λ)])−1/2.
Then so is the probability in (18), since P(X(λ) > lnn) = O(n−K), for every
K > 0. From this, (16), (17), (18), and (9),

E[M ] = (1 + o(1))
mn
(
k
2

)
(km)2

λ2eλ

f(λ)

with the usual falling-factorial notation (a)b := a(a − 1) · · · (a − b + 1).
Recalling (6) and setting

(19) γ :=
k − 1

2

λeλ

eλ − 1

gives

E[M ] = γ + o(1).

More generally, we now show that for every fixed t ≥ 1 we have

(20) E[(M)t] = γt + o(1).

Let T be the set of all 4-tuples (i, j, u, v) as before, with i ∈ [m], j ∈ [n], and
1 ≤ u < v ≤ k. Now let (T )t denote the collection of t-tuples of such 4-tuples
with all the 4-tuples distinct. Where {(iτ , jτ , uτ , vτ )}tτ=1 ∈ (T )t, in a slight
abuse of notation we will write (i, j,u,v) ∈ (T )t, where i = (i1, . . . , it),
j = (j1, . . . , jt), u = (u1, . . . ut), v = (v1, . . . , vt). Then we have

(M)t =
∑

(i,j,u,v)∈(T )t

1

(
t⋂

s=1

E(it, jt;ut, vt)

)
,

hence

E[(M)t] =
∑

(i,j,u,v)∈(T )t

P

(
t⋂

s=1

E(it, jt;ut, vt)

)
.
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We break the sum into two parts, Σ1 and the remainder Σ2, where Σ1 is
the restriction to i and j each having all its components distinct. In Σ1 the

number of summands is (m)t(n)t
(
k
2

)t
, and each summand is

(km− 2t)!
[xkm−2t] f(x)n−t(ex)t

|Cm,n|
;

see the explanation following (17). Analogously to (18),

[xkm−2t]f(x)n−t(ex)t =
f(λ)n−t(eλ)t

λkm−2t
P

 n−t∑
j=1

Zj(λ) +
t∑

s=1

Xs(λ) = km− 2t

 ,

where the n truncated and ordinary Poisson random variables Zj(λ) and
Xs(λ) are mutually independent. Since t is fixed, the probability remains

asymptotic to
(
2πnVar[Z(λ)]

)−1/2
. So, using (9) and recalling (19), we have

Σ1 ∼
(m)t(n)t

(
k
2

)t
(km)2t

(
λ2eλ

f(λ)

)t
∼

[
mn
(
k
2

)
(km)2

λ2eλ

f(λ)

]t
→ γt.(21)

In the case of Σ2, letting I = {i1, . . . , it}, J = {j1, . . . , jt}, we have |I|+|J | ≤
2t − 1. So the number of attendant pairs (I, J) is at most (m + n)2t−1 =
O
(
m2t−1

)
. The number of pairs (i, j) inducing a given pair (I, J) is bounded

above by a constant s(t). For every one of those s(t) choices, we select pairs

of chips for each of the chosen t cells; there are at most
(
k
2

)t
ways of doing

so. Lastly, we allocate the remaining (km − 2t) chips in such a way that
every column j ∈ [n] \ J gets at least 2 chips. As in the case of Σ1, this can
be done in

(km− 2t)! [xkm−2t] f(x)n−|J |(ex)|J |

= (km− 2t)!
f(λ)n−|J |(eλ)|J |

λkm−2t
P

n−|J |∑
j=1

Zj(λ) +

|J |∑
s=1

Pos(λ) = km− 2t


ways. Again, the probability is asymptotic to

(
2πnVar[Z(λ)]

)−1/2
. So, as

eλ > f(λ), the sum Σ2 is of order

(22) m2t−1 (km− 2t)!

(km)!

(
eλλ2

f(λ)

)t
= O(m2t−1/m2t) = O(m−1).

Combining (21) and (22), and recalling (19), we conclude that for each fixed
t ≥ 1,

E[(M)t] = γt + o(1).
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Therefore M is asymptotic, with all its moments and in distribution, to
Po(γ). In particular,

P(M = 0) = P(Po(γ) = 0) + o(1) = e−γ + o(1).

This completes the proof of Lemma 7. �

4. Counting critical row subsets, and the main result

This section will prove Theorem 1. Remark 3 already dealt with the
case limm/n > 1. It suffices, then, to show that with limm/n ∈ (2/k, 1),
the expected number of nonempty critical row sets goes to 0: then with
high probability there is no such set, A is of full rank, and the instance is
satisfiable.

In the model Cm,n, Lemma 9 gives an upper bound on the expected num-
ber of critical row sets of each cardinality ` ∈ {1, . . . ,m} as a function of
c = m/n, k, n, and `, minimized over two additional variables ζ1 and ζ2.
Lemma 10 shows that, for c ∈ (2/k, 1), there exist values for ζ1 and ζ2 mak-
ing this bound small, in particular making its exponential dependence on
n decreasing rather than increasing. Corollary 11 uses Lemma 10 to show
that in the model Am,n the total expected number of nonempty critical row

sets is of order O
(
m−(k−2)

)
, proving Theorem 1.

Lemma 10 is established by several claims deferred to Section 5, and
Section 7 extends Theorem 1 to the unconstrained k-XORSAT model (The-
orem 16).

Lemma 9. Suppose k ≥ 3 and m,n → ∞ with limm/n ∈ (2/k,∞), and
let C be chosen uniformly at random from Cm,n. For ` ∈ {1, . . . ,m}, let

Y
(`)
m,n denote the number of critical row sets of C of cardinality `. Then,

with c = m/n, α = `/m, ᾱ = 1 − α, λ = λ(ck) as given by (6), and
ζ = (ζ1, ζ2) > 0,

(23) E
[
Y (`)
m,n

]
≤ O(1)

√
1
ζ2

exp
[
nHk(α, ζ; c)

]
, ∀ ζ > 0,

where

(24) Hk(α, ζ; c) = cH(α) + ckα ln(α/ζ1) + ckᾱ ln(ᾱ/ζ2)

+ ln
f(λ·(ζ2 + ζ1)) + f(λ·(ζ2 − ζ1))

2f(λ)
,

by continuity we define x lnx = 0 at x = 0, and H(α) is the usual entropy
function

H(α) := −α lnα− (1− α) ln(1− α).

Proof. By symmetry,

(25) E[Y (`)
m,n] =

(
m

`

)
P(D`); D` :=

n⋂
j=1

{∑̀
i=1

ci,j is even

}
.
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By symmetry again,

P(D`) =
n∑
ν=1

(
n

ν

)
P(D`,ν),(26)

where

D`,ν :=

ν⋂
j=1

{∑̀
i=1

ci,j is even, positive

}⋂ n⋂
j=ν+1

{∑̀
i=1

ci,j = 0

}
.(27)

Recalling that
∑

i∈[m] ci,j ≥ 2, we see that on the event D`,ν ,

(28)
∑
i≤`

ci,j =

{
even > 0, j ≤ ν,
0, j > ν;

∑
i>`

ci,j ≥
{

0, j ≤ ν,
2, j > ν.

Thus on D`,ν the column sums of the two complementary submatrices,
{ci,j}i≤`,j∈[n] and {ci,j}i>`,j∈[n], are subject to independent constraints.

Let Cm,n(`, ν) denote the set of all matrices C with row sums k which
meet the constraints (28). Then P(D`,ν) is given by

(29) p(`, ν) := P(D`,ν) =
|Cm,n(`, ν)|
|Cm,n|

.

By the independence of constraints on column sums for the upper and the
lower submatrices of the matrices C in question,

(30) |Cm,n(`, ν)| = a(`, ν) · b(m− `, ν),

where (paralleling our definition of Cm,n in Section 3) a(`, ν) is the number
of ways to assign k` chips among the first ν columns so that each of those
columns gets a positive even number of chips, and b(m− `, ν) is the number
of ways to assign k(m − `) chips among all n columns so that each of the
last (n− ν) columns gets at least 2 chips.

As in (15),

a(`, ν) =
∑

j1+···+jν=k`
js>0, even

(k`)!

j1! · · · jν !

= (k`)! [zk`]

 ∑
j>0, even

zj

j!

ν

= (k`)! [zk`](cosh z − 1)ν ,(31)

and

b(m− `, ν) =
∑

j1+···+jn=k(m−`)
j1,...,jν≥0; jν+1,...,jn≥2

(k(m− `))!
j1! · · · jn!

=(k(m− `))! [zk(m−`)](ez)νf(z)n−ν .(32)
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Since the coefficients of the Taylor expansion around z = 0 of ezνf(z)n−ν

are non-negative, we use these identities in a standard (Chernoff) way to
bound

(33) a(`, ν) ≤ (k`)!
(cosh z1 − 1)ν

zk`1

, ∀ z1 > 0.

We could control b(m−`, ν) similarly, but we need a stronger bound, namely

(34) b(m− `, ν) ≤ O(1) (nz2)−1/2(k(m− `))! (ez2)νf(z2)n−ν

z
k(m−`)
2

, ∀ z2 > 0.

The bound (34) follows from three components: the Cauchy integral formula

b(m− `, ν) =
(k(m− `))!

2π

∮
z=z2e

iθ :
θ∈(−π,π]

(ez)νf(z)n−ν

zk(m−`)+1
dz,

and (with z = z2e
iθ) the identity |ez| = ez2 exp

[
−z2(1− cos θ)

]
and the less

obvious inequality

|f(z)| ≤ |f(z2)| exp
[
−z2(1− cos θ)/3

]
.(35)

(See Pittel [26, Appendix] for the inequality, and Aronson, Frieze and Pit-
tel [2, inequality (A2)] for how it works in combination with the Cauchy
formula.)

Using (29), (30), (33), (34), with |Cm,n| from (9) and VarZ(λ) from (8),
we obtain that, ∀ z1, z2 > 0,

(36) p(`, ν) ≤ O(1)

√
λ

z2

(
km

k`

)−1 λkm

zk`1 z
k(m−`)
2

[ez2(cosh z1 − 1)]νf(z2)n−ν

f(λ)n
.

Now, it is immediate from (25), (26), and (29) that

E
[
Y (`)
m,n

]
=

(
m

`

) n∑
ν=1

(
n

ν

)
p(`, ν).(37)

If we restrict to z1 and z2 depending only on `, m and n (not on ν), then
on substituting (36) into (37) we may simplify the sum using the binomial
formula to obtain

E
[
Y (`)
m,n

]
≤ O(1)

√
λ

z2

(
m

`

)(
km

k`

)−1

λkm

× 1

zk`1 z
k(m−`)
2

(
f(z2) + ez2(cosh z1 − 1)

f(λ)

)n
, ∀ z1, z2 > 0.(38)

Observe that

f(z2) + ez2(cosh z1 − 1) =
f(z1 + z2) + f(z2 − z1)

2
.
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Inequality (23), and thus the lemma, are established by substituting this
and the Stirling-based approximation

(
n
pn

)
= O(1) 1√

np(1−p)
exp(nH(p)) into

(38), recalling that m = cn, α = `/m and ᾱ = 1− α, substituting z1 = ζ1λ

and z2 = ζ2λ, and observing that
√
k = O(1). For ` = m the Stirling-based

approximation is inapplicable but consistency of (23) with (38) is easily
checked. �

Recall the definition of Hk(α, ζ; c) from (24). Roughly speaking, the
following lemma establishes the existence of ζ making Hk(α, ζ; c) negative.
An intuitive description of the behavior of Hk(α, ζ; c) is given at the start
of the next section.

Lemma 10. Let

αk = ek−k/(k−2).(39)

For all k ≥ 4 and c ∈ (2/k, 1), there exist ε = ε(c, k) > 0 and ζ0 = ζ0(c, k) >
0, both functions continuous in c, such that(

∀α ∈ (0, αk]
)

(∃ζ) : Hk(α, ζ; c) ≤ (cα)(k2 − 1) ln(α/αk) and ζ2 ≥ ζ0(40) (
∀α ∈ [αk/3, 1]

)
(∃ζ) : Hk(α, ζ; c) ≤ −ε and ζ2 ≥ ζ0.(41)

Proof. The lemma follows immediately from Claims 12, 13 and 15, all stated
and proved in Section 5, respectively treating α in the ranges (0, 0.99αk],
[0.99αk, 1/2], and (1/2, 1]. A suitable function ζ is given explicitly in each
case. �

The lemma yields the following corollary.

Corollary 11. For k ≥ 4 and m,n→∞ with limm/n ∈ (2/k, 1),
m∑
`=2

E
[
Y (`)
m,n

]
= O

(
m−(k−2)

)
.

Proof. Since limm/n ∈ (2/k, 1), there exists a closed interval I ⊂ (2/k, 1)
such that, for all but finitely many cases, c = m/n ∈ I. Where ε(c, k) and
ζ0(c, k) satisfy the conditions of Lemma 10 define ε = ε(I) = min{ε(c, k) : c ∈
I}, and ζ0 = ζ0(I) likewise; the minima exist by continuity of ε and ζ0 in
c. Then, for all but finitely many pairs m,n, inequalities (40) and (41) hold
true.

Letting `k = αkm = Θ(n), for ` ≤ `k/2, recalling that αcn = αm = `,
(23) and (40) give

E
[
Y (`)
m,n

]
= O(1) exp

[
(k2 − 1)` ln(`/`k)

]
,(42)

where we have incorporated
√

1 /ζ0 in the leading O(1). By convexity of
` ln(`/`k), interpolating for ` ∈ [2, `k/2] from the endpoints of this interval,

` ln(`/`k) ≤ 2 ln(2/`k) +
`− 2

`k/2− 2
((`k/2) ln(1/2)− 2 ln(2/`k))

= 2 ln(2/`k) + (`− 2)(− ln 2 + o(1)),
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≤ 2 ln(2/`k)− 0.6(`− 2)

for n sufficiently large, where we have used that `k = Θ(n) and 0.6 < ln 2.
Thus, for ` ∈ [2, `k/2],

E
[
Y (`)
m,n

]
≤ O(1) exp

(
(k2 − 1)[2 ln(2/`k)− 0.6(`− 2)]

)
= O(1)m−(k−2) exp(−0.6(k2 − 1)(`− 2)),

where the last line incorporates (2/αk)
k−2 in the O(1). Given this upper

bound that is geometrically decreasing in `, summing gives

b(αk/2)mc∑
`=2

E
[
Y (`)
m,n

]
= O

(
m−(k−2)

)
.

For ` > (αk/2)m, by (41), E
[
Y

(`)
m,n

]
= O(1) exp(−εn), giving

m∑
`=d(αk/2)me

E
[
Y (`)
m,n

]
= O(m) exp(−εn) = exp(−Ω(n)).

Adding the two partial sums yields Corollary 11. �

Proof of Theorem 1. By the remarks at the start of this section, we need
only consider the case limm/n ∈ (2/k, 1). Under the hypotheses of Corol-
lary 11, let A ∈ Am,n and C ∈ Cm,n be uniformly random, and let Xm,n and
Ym,n denote the numbers of nonempty critical row sets of A and C respec-

tively, and X
(`)
m,n and Y

(`)
m,n those of cardinality `. X

(1)
m,n = 0 since every row

of A has k 1’s. (The bound on Y
(1)
m,n from (42) is O(m−(

k
2−1)), whose use

would weaken the Corollary’s conclusion. Y
(1)
m,n is not necessarily 0 since a

row of C can be 0, for example if all the 1’s in its defining configuration lie
in a single cell.) Then

E
[
Xm,n

]
= 0 +

m∑
`=2

E
[
X(`)
m,n

]
= O(1)

m∑
`=2

E
[
Y (`)
m,n

]
= O

(
m−(k−2)

)
,

the last two equalities coming from Corollary 11 and Corollary 8. Then
P(A is not of full rank) ≤ E [Xm,n] = O(m−(k−2)), so with probability 1 −
O(m−(k−2)), A is of full rank and any system Ax = b is satisfiable. �

5. Analysis of the function Hk(α, ζ; c) to prove Lemma 10

Recall the notation ᾱ = 1 − α and ζ = (ζ1, ζ2) as well as the defini-
tion of Hk(α, ζ; c) from (24). In this section we use an explicit function
ζ = ζ(c, k, α), taking different forms in different ranges of α, to establish
Claims 12, 13 and 15 and thus Lemma 10.

For intuition about Hk(α, ζ; c), the case k = 4 is indicative. Figure 1
shows a graph of the function value against α, for a few choices of c, with
ζ given by (43) for small α, and by ζ = (α, ᾱ) otherwise. Numerical ex-
periments suggest that the optimal choice of ζ leads to qualitatively similar
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results, though of course without the kinks where we change from one func-
tional form for ζ to another. As shown, Hk(α, ζ; c) tends to 0 at α = 0
(treated in Claim 12), but the dependence on c here is not critical: an ana-
log of the claim, with different parameters, could be obtained as long as c
is bounded away from 0 and infinity. At α = 1/2 (treated in Claim 13),
the function tends to 0 as c tends to 1, so this is where c < 1 is required.
Claim 13 also covers values of α between 0 and 1/2 but bounded away from
them; here the function value is bounded away from 0 (for c ≤ 1) and could
be dealt with by cruder means, such as that by interval arithmetic in [28].
Function values for α > 1/2 (treated in Claim 15) are dominated by their
symmetric counterparts at 1−α, except for some special treatment required
near 1.

Lemma 10 only considers k > 3. The lemma can be extended to k = 3,
but this case was already treated by [16] and the proof poses additional
difficulties for us; see further discussion after the proof of Claim 13, and in
Section 6, specifically at (76).

Figure 1. Plot of Hk(α, ζ; c) versus α, for k = 4 and c
values of 0.51, 1.0, 1.1 (from bottom to top). The kinks
occur at αk, where we switch functional forms for ζ(c, k, α).

Claim 12. For all k ≥ 3 and all c ∈ (2/k, 1], taking

ζ1 = (ck)−1/2α1/2, ζ2 = ᾱ(43)

yields Hk(α, ζ; c) ≤ (cα)(k2 − 1) ln(α/αk) for all α ∈ (0, αk). Also, for any
δ = δ(k) > 0 there exists ε = ε(k) > 0 such that Hk(α, ζ; c) < −ε for all
α ∈ [δ, 0.99αk]. In both cases, ζ2 ≥ ζ0(k) := 1− αk > 0.
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The first part of the claim establishes (40), and the second part, with
δ = αk/3, establishes (41) for α ∈ [αk/3, 0.99αk]. As both ε and ζ0 depend
only on k they are automatically continuous (constant) with respect to c,
thus satisfying the hypothesis of Lemma 10.

Proof. Trivially, ζ2 = ᾱ ≥ 1−αk > 0, since αk = ek−k/(k−2) < e/k < 1. The
issue in this range of α is to control the final logarithmic term of Hk(α, ζ; c)
when the two summands within the logarithm are nearly equal. Note that
ln f(x) is concave on either side of 0 (diverging to −∞ at 0, it is not concave
as a whole), as [

ln f(x)
]′′

=
ex(1− x− e−x)

f2(x)
< 0.(44)

Since d
d∆ ln f(λ(1 + ∆))

∣∣
∆=0

= λf ′(λ)
f(λ) , if λ and λ·(1+∆) are on the same side

of 0 (i.e., if 1+∆ ≥ 0) then concavity gives ln f(λ(1+∆)) ≤ ln f(λ)+∆λf ′(λ)
f(λ) .

Or, with ζ = 1 + ∆, if ζ ≥ 0 then

f(λζ)

f(λ)
≤ exp

(
(ζ − 1)

λf ′(λ)

f(λ)

)
= exp ((ζ − 1)ck) ,(45)

recalling from (6) that λf ′(λ)/f(λ) = ck. It is easily checked that (39) gives
αk < 0.2, hence from (43) ζ2 > 0.8 and ζ1 < 0.4, so ζ2−ζ1 ≥ 0 and of course
ζ2 + ζ1 ≥ 0. Thus for the final term of Hk(α, ζ; c), from (45) we have

ln
f(λ·(ζ2 + ζ1)) + f(λ·(ζ2 − ζ1))

2f(λ)

≤ ln

(
exp(ck(ζ2 + ζ1 − 1))

2
+

exp(ck(ζ2 − ζ1 − 1))

2

)
= ln

(
exp(ck(ζ2 − 1))

[
exp(ckζ1) + exp(−ckζ1)

2

])
= ck(ζ2 − 1) + ln cosh(ckζ1)

≤ ck(ζ2 − 1) + (ckζ1)2/2,

using the well known inequality coshx ≤ ex
2/2 Now also using −ᾱ ln ᾱ ≤ α

for all ᾱ ∈ [0, 1), substituting ζ from (43) into Hk(α, ζ; c),

Hk(α, ζ; c) ≤ −cα lnα+ cα+ ckα ln((ckα)1/2) + 0 + ck(−α) +
√
ckα

2
/2

= cα[(k2 − 1) lnα+ (1− k
2 ) + k

2 ln(ck)]

= (cα)(k2 − 1) ln[α 1
e (ck)k/(k−2)].

Pessimistically taking c = 1 within the logarithm and recalling αk from (39),

Hk(α, ζ; c) ≤ (cα)(k2 − 1) ln(α/αk).(46)

(A different upper bound for c would simply call for a different value for
αk.) This proves the first part of the claim.
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Clearly, for all α ∈ (0, αk), α ln(α/αk) is negative, so for any δ = δ(k) > 0,
over α ∈ [δ, 0.99αk] it is bounded away from 0. By hypothesis, c ≥ 2/k (any
positive constant would do), thus Hk(α, ζ; c) is also bounded away from 0,
i.e., there is some ε = ε(k) > 0 for which Hk(α, ζ; c) ≤ −ε. This proves the
second part of the claim. �

Claim 13. For all k ≥ 4 and all c ∈ (2/k, 1), there exists ε = ε(c, k) > 0,
with ε(c, k) continuous in c, such that for all α ∈ [0.99αk, 1/2], taking

ζ1 = α, ζ2 = ᾱ(47)

yields Hk(α, ζ; c) < −ε and (trivially) ζ2 ≥ ζ0 := 1/2.

Proof. Recall the definition of Hk(α, ζ; c) in (24), including its use of λ =
λ(kc) = ψ−1(kc), i.e., ψ(λ) = kc (see (6)). If we let

g(α;λ) :=
f(λ·(1− 2α))

f(λ)
(48)

then we have

Hk(α, ζ(α; c); c) = cH(α) + ln
f(λ) + f(λ·(1− 2α))

2f(λ)
(49)

=
ψ(λ)

k
H(α) + ln

1 + g(α;λ)

2
=: Hk(α;λ).(50)

The advantage of Hk(α;λ) over Hk(α, ζ; c) is that the former is an explicit
function of the “hidden” parameter λ = λ(ck), while the latter depends
on c both explicitly, and implicitly via λ(ck). (To put it another way, λ
appears repeatedly in Hk(α, ζ; c) and is only implicitly defined as ψ−1 (see
(6)), where ψ appears just once in Hk and is explicitly defined (see (1)).)

Since λ(·) is increasing (see after (6)) and c ∈ (2/k, 1),

λ := λ(ck) ∈ (λ(2), λ(ck)] ⊂ (0, λk), where λk := λ(k).(51)

We now argue that it suffices to consider only the largest possible value of
c, namely c = 1, or correspondingly of λ, namely λ = λk. Referring back to
the original question about the k-XORSAT phase transition, in the uncon-
strained model such a form of monotonicity is obvious: if random instances
of given density are a.a.s. satisfiable, the same is true of sparser instances,
as there is a coupling in which we simply eliminate some constraints. But
in the constrained model in which we are now working, monotonicity is not
obvious: it is not clear that sparser instances are more likely to be satisfiable
than denser ones. We attempted unsuccessfully to show this by converting
to and from the unconstrained model.

In the next part we prove a more limited form of monotonicity, in a short
following section we show as a consequence that it suffices to show that
Hk(α;λk) ≤ 0, and in a third part we do so.
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Monotonicity. For k ≥ 4, there exists a σk > 0 such that for all α ∈
[0.99αk, 1/2] and λ ∈ [0, λk],

if Hk(α;λ) ≥ 0 then
∂Hk(α;λ)

∂λ
≥ σk.(52)

In words, as a function of λ, Hk(α;λ) is strictly increasing when it is non-
negative.

By (50), the condition Hk(α;λ) ≥ 0 is equivalent to

(53) H(α) ≥ k

ψ(λ)
ln

2

1 + g(α;λ)
.

Also,

∂ ln g(α;λ)

∂λ
=
∂g(α;λ))/∂λ

g(α;λ)
=
∂ ln f(λ·(1− 2α))

∂λ
− ∂ ln f(λ)

∂λ

= (1− 2α)f ′(λ·(1− 2α))/f(λ·(1− 2α))− f ′(λ)/f(λ)

=
1

λ
ψ(λ·(1− 2α))− 1

λ
ψ(λ),

from which

∂g(α;λ))

∂λ
= λ−1g(α;λ)

[
ψ(λ·(1− 2α))− ψ(λ)

]
.(54)

Differentiating (50), under the assumption that Hk(α;λ) > 0 and using
(53) and (54) in the first inequality,

∂Hk(α;λ)

∂λ
= k−1ψ′(λ)H(α) +

∂g(α;λ)/∂λ

1 + g(α;λ)

≥ ψ′(λ)

ψ(λ)
ln

2

1 + g(α;λ)
+ λ−1 g(α;λ)

1 + g(α;λ)

[
ψ(λ(1− 2α))− ψ(λ)

]
≥ ψ′(λ)

ψ(λ)

[
ln

2

1 + g(α;λ)
− 2αψ(λ)

g(α;λ)

1 + g(α;λ)

]
,(55)

where the second inequality uses that ψ′(λ) > 0 and, by convexity of ψ (see
Claim 6 for both), that ψ(λ(1− 2α))− ψ(λ) ≥ −2λαψ′(λ).

Now, regarding g(α;λ) as an independent quantity, the RHS of (55) is
decreasing with g(α;λ), and for λ ≤ 1/2

g(α;λ) ≤ exp
[
−2αψ(λ)

]
(56)

since concavity of ln f(x) for x > 0 (see (44)) means that ln g(α;λ) ≤
−2αλ d

dλ(ln f(λ)) = −2αλf
′(λ)
f(λ) = −2αψ(λ). It follows then from (55) that

∂Hk(α;λ)

∂λ
≥ ψ′(λ)

ψ(λ)
F (2αψ(λ))(57)

where

F (x) := ln
2

1 + e−x
− xe−x

1 + e−x
.
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Using ln(x) ≤ x − 1 we can confirm that ln 2
1+e−x = − ln(1

2 + 1
2e
−x) ≥

−(1
2e
−x − 1

2) = sinh(x)
1+ex , from which

F (x) ≥ sinhx− x
1 + ex

≥ x3

6(1 + ex)
.(58)

By definition (see (6)), ψ(λ) = ck, and here, x = 2αψ(λ) = 2αck ≤ k. With
this, (57) and (58),

∂Hk(α;λ)

∂λ
≥ ψ′(λ)

ψ(λ)

(2αψ(λ))3

6(1 + ek)
=
ψ′(λ)(2α)3(ψ(λ))2

6(1 + ek)
> 1.7α3

k/(1 + ek).

For the final inequality, calling again on Claim 6, ψ′ is increasing, so ψ′(λ) ≥
ψ′(0) = 1/3. Here we in the range α ≥ 0.99αk, and again ψ(λ) = ck, which
by hypothesis is > 2. This establishes (52) with σk := 1.7α3

k/(1 + ek).

Application of monotonicity. For c ∈ (2/k, 1) as hypothesized in the
Claim, we will show that

mk(c) := sup{Hk(α;λ) : α ∈ [0.99αk, 1/2], λ ∈ [0, λ(ck)]} < 0.(59)

By continuity of Hk(α;λ), the supremum is attained at some (α̂, λ̂). Recall

from (51) that λ(ck) < λk. By (52), if Hk(α̂; λ̂) ≥ 0 then ∂Hk(α̂;λ)/∂λ ≥ σk
for all λ ∈ [λ̂, λk], implying that H(α̂, λk) > 0. In the next part we will show
that this is impossible — that H(α, λk) ≤ 0 — and thus that mk(c) < 0.
For Claim 13 we may thus take ε(c, k) = −mk(c). That this is continuous
in c is immediate from continuity of Hk(α;λ).

Analysis of the extreme case. The proof of the Claim is complete except
for treatment of the extreme case, c = 1 or equivalently λ = λk, namely
showing that

Hk(α) := Hk(α;λk) ≤ 0(60)

for all α ∈ [0.99αk, 1/2]. (Observe, e.g. from (61) below, that Hk(1/2) = 0.)
We begin with

Hk(α) = H(α) + ln
f(λk) + f(λk(1− 2α))

2f(λk)
(61)

= H(α)− ln 2 + ln

(
1 +

f(λk ·(1− 2α))

f(λk)

)
≤ − (1− 2α)2

2

(
1−

λ2
ke
λk(1−2α)

f(λk)

)
,(62)

where inequality (62) uses that, as H ′′(α) ≤ −4,

H(α)−H(1/2) ≤ −1
2(1− 2α)2,(63)

and that

ln(1 + x) ≤ x and f(x) =
x2

2

∑
j≥0

2xj

(j + 2)!
≤ x2ex

2
.(64)



22 BORIS PITTEL AND GREGORY B. SORKIN

Case α near 1/2. It is immediate from (62) that Hk(α) ≤ 0 for α suffi-
ciently close to 1/2, namely for α ∈ [α∗k, 1/2], where

α∗k :=
1

2

(
1− 1

λk
ln
f(λk)

λ2
k

)
.(65)

Let us confirm that α∗k ∈ (0, 1/2), i.e., that 1
λk

ln(f(λk)/λ
2
k) ∈ (0, 1). First,

we show that for all k ≥ 3, λk > k − 1. This is equivalent to k > ψ(k − 1),
or explicitly to ek−1 > 1 + k(k − 1), which follows for k ≥ 7 by use of
ex > 1 + 1

6x
3, and simply by checking for k < 7. Then, by definition,

k = ψ(λk) = λk + λ2
k/f(λk), so λk > k − 1 implies that λ2

k/f(λk) < 1,

giving 1
λk

ln(f(λk)/λ
2
k) > 0. Also, λk > k − 1 implies λk ≥ 1, from which

f(λk)/λ
2
k ≤ f(λk) < eλk , and 1

λk
ln(f(λk)/λ

2
k) < 1.

Case α away from 1/2. We now treat α ∈ [0.99αk, α
∗
k] through two

sub-cases.

Subcase k ≥ 7. Since f(λk·(1−2α))
f(λk) = g(α;λ) ≤ e−2αk (by (48) and (56), the

latter relying on α ≤ α∗k ≤ 1/2), we have from (61) that

(66) Hk(α) < H(α) + ln
1 + e−2·αk

2
≤ H(α∗k) + ln

1 + e−2·0.99αkk

2
.

Let us show that α∗k decreases with k, implying that H(α∗k) ≤ H(α∗7).

Since λ(·) is increasing (see after (6)), it suffices to show that 1
x ln(f(x)/x2)

increases with x for x ≥ λ3; we will show it for all x > 0. Differentiating,

d

dx

(
1

x
ln
f(x)

x2

)
= − 1

x2
G(x) where G(x) := ln

f(x)

x2
+ 2− xf ′(x)

f(x)
,

so we must show that G(x) < 0 for x > 0. Now, limx↓0G(x) = − ln 2 < 0, so
it suffices to show that G′(x) =

(
ψ(x)− 2− xψ′(x)

)
/x ≤ 0, or equivalently

ψ(x)−2−xψ′(x) ≤ 0. This is true, since this expression is 0 at x = 0 and its
derivative is simply −ψ′′(x), which is ≤ 0 by convexity of ψ (see Claim 6).

Also, recalling the definition of αk from (39), differentiation immediately

shows that αkk = ek−2/(k−1) increases with k, so that αkk ≥ 7α7.
So, for k ≥ 7 and α ∈ [0.99αk, α

∗
k], (66) yields the cruder bound

(67) Hk(α) < H(α∗7) + ln
1 + e−2·0.99·7α7

2
< −0.019.

Subcase k = 4, 5, 6. Notice that, for α ∈ [0, 1/2], the entropy term H(α)
in (61) for Hk(α) is increasing, while the logarithmic term is decreasing.
Consequently, if 0 < x < x′ ≤ 1/2 are such that

(68) H(x′) + ln
f(λk) + f(λk ·(1− 2x))

2f(λk)
< 0,

then Hk(α) < 0 for all α ∈ [x, x′]. A collection of such intervals [x, x′]
covering [0.99αk, α

∗
k] gives an “interval arithmetic” proof that Hk(α) ≤ 0 on

[0.99αk, α
∗
k], and there is an elegant iterative procedure for finding such a

cover.
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The LHS of (68) is equal to

Hk(x) +H(x′)−H(x) < Hk(x) + (x′ − x)H ′(x)(69)

by convexity of H. Thus, inequality (68) is satisfied if the RHS of (69) is 0,
i.e., if

x′ = x− Hk(x)

H ′(x)
(70)

(Note that Hk(x) < 0, so x′ > x.) We apply (70), reminiscent of Newton-
Raphson, as an iterative update rule, with xi = x and xi+1 = x′, to cover
the interval [0.99αk, α

∗
k].

For k = 6, taking x0 = x = 0.99αk ≈ 0.1831 gives x1 = x′ ≈ 0.2620,
showing that H6(α) ≤ 0 on [x0, x1]. Then, taking x = x1 gives x2 = x′ ≈
0.3421, showing that H6(α) ≤ 0 on [x1, x2]. Since α∗6 < 0.3024 < x2, for k =
6 these two intervals suffice to prove negativity of Hk(α) over [0.99αk, α

∗
k].

For k = 5, following the same procedure covers [0.99αk, α
∗
k] with 3 inter-

vals. Likewise, for k = 4, [0.99αk, α
∗
k] is covered with 8 intervals.

In fact, (67) and a check of the intervals for k = 4, 5, 6 yields that, for
k ≥ 4,

Hk(α) < −0.0012 (∀α ∈ [0.99αk, α
∗
k]).(71)

This completes the proof of Claim 13. �

We have not addressed k = 3, already treated by [17], and indeed with ζ
as above, H3(1

2 , ζ; 1) is positive. We remark that we can extend Claim 13 to
k = 3 by choosing ζ differently, notably as given by (76). The motivation
is that the equalities (76) hold for the optimal z = λζ at the stationary

points (α̂, k̂) of the function minzHk(α,z/λ;ψ−1(ck)), assuming (without
justification) that the implicit-differentiation rules apply. The monotonicity
condition (the equivalent of (52)) then applies for all α ∈ (0, 1/2]. For
details, see [27, Appendix (b)]. An interval arithmetic argument verifies
that this choice makes H3(α, ζ; 1) < 0 for α ∈ [0.99α3, α

∗
3], as we will show

after (76) where this is needed to treat the phase transition more precisely.
If we make this extension, Claim 15 also extends immediately to k = 3.

We also remark that if we alter the hypotheses of Claim 13 to exclude α
near 1/2 then we may allow c = 1, as formalized below (where the choice of
0.49 is arbitrary). This will be used when we narrow the phase transition
window in Section 6.

Remark 14. For all k ≥ 4 there exists ε = ε(k) > 0, such that for all
α ∈ [0.99αk, 0.49] and all c ∈ [2/k, 1], taking ζ1 = α, ζ2 = ᾱ yields
Hk(α, ζ; c) < −ε and (trivially) ζ2 ≥ ζ0 := 1/2.

Proof. The substitution gives Hk(α, ζ; c) = Hk(α;λ) (see (50)), the range
c ∈ [2/k, 1] corresponds to λ ∈ [0, λk], and it suffices to show that

sup{Hk(α;λ) : α ∈ [0.99αk, 0.49], λ ∈ [0, λk]} < 0.



24 BORIS PITTEL AND GREGORY B. SORKIN

In analogy with (59), by continuity, the supremum over this closed domain

is achieved at some (α̂, λ̂). We prove by contradiction that Hk(α̂, λ̂) < 0.

If not, Hk(α̂, λ̂) ≥ 0. If λ̂ < λk then as argued previously this implies

Hk(α̂, λk) = Hk(α̂) > 0, while if λ̂ = λk then, directly, Hk(α̂) ≥ 0. We
now show that Hk(α) < 0 for α ∈ [0.99αk, 0.49], by modifying the previous
argument that Hk(α) ≤ 0 for α ∈ [0.99αk, 1/2]. Referring to (65), for
any α+

k with α∗k < α+
k < 0.49, inequality (62) shows that Hk(α) < 0 for

α ∈ [α+
k , 0.49]. (Recall that α∗k is decreasing in k — see after (66) — so for

all k ≥ 3, α∗k ≤ α∗3 < 0.4630.) And from (67), continuity shows that for some

α+
7 slightly larger than α∗7 we have Hk(α) < −0.018 for all α ∈ [0.99αk, α

+
7 ]

and k ≥ 7. Likewise, for the numerically treated cases k = 4, 5, 6, (71)
extends by continuity to show that, for some α+

k slightly larger than α∗k,

Hk(α) < −0.0011 for all α ∈ [0.99αk, α
+
k ]. �

Claim 15. For all k ≥ 4 and all c ∈ (2/k, 1), there exist ε = ε(c, k) > 0
and ζ0 = ζ0(c, k) > 0, both functions continuous in c, such that for all
α ∈ (1/2, 1] there exists ζ for which Hk(α, ζ; c) < −ε and ζ2 ≥ ζ0.

Proof. For any x > 0, f(x) > f(−x); this follows from f(x) − f(−x) =
ex − e−x − 2x = 2(sinh(x) − x) > 0, the last inequality well known. This
gives

lim
α→1

Hk(α, (α, ᾱ); c) = ln
f(λ) + f(−λ)

2f(λ)
< 0,

the equality immediate from (49) and the inequality from ck > 2 and thus
λ = λ(ck) > 0. By continuity of Hk(α, (ζ1, ζ2); c) with respect to α, ζ1 and
ζ2, there exist functions δ = δ(c, k) > 0 and ε = ε(c, k) > 0, both continuous
in c, for which

(72) sup
α∈[1−δ,1]

Hk(α, (1− δ, δ); c) ≤ −ε.

This establishes the claim for α ∈ [1− δ, 1].
For α ∈ (1

2 , 1 − δ), let ζ = (ζ1, ζ2) be given by ζ1(α) = ζ2(ᾱ), the latter
determined by Claims 12–13, and likewise ζ2(α) = ζ1(ᾱ). Then,

Hk(α, ζ(α); c) = Hk(α, (ζ2(ᾱ), ζ1(ᾱ)); c)

≤ Hk(ᾱ, (ζ1(ᾱ), ζ2(ᾱ)); c) = Hk(ᾱ, ζ(ᾱ); c).

The inequality follows from (24): for the first three terms of its right hand
side by symmetry, and for its last term by applying the inequality f(x) ≥
f(−x), with x := ζ2(ᾱ)− ζ1(ᾱ) ≥ 0 (in the proofs of Claims 12–13, ζ2 ≥ ζ1).
It follows that

Hk(α, ζ(α); c) ≤ −ε,
where ε is chosen as the minimum of corresponding values in Claims 12–13.
(Actually, here we need the value of δ(c, k) chosen for (72) rather than the
δ(k) used in Claim 12. This goes through without difficulty since δ(c, k) is
continuous in c, and the corresponding ε(c, k) needed in the last paragraph
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of the proof of Claim 12 is continuous in δ, and has no dependence on c
other than through δ.)

Finally, for ζ0(c, k) > 0 suitably chosen, we have ζ2 ≥ ζ0(c, k) > 0. This
follows because for α ≥ 1− δ we have ζ2 = δ, while for α ∈ (1/2, 1− δ) we

have ζ2(α) = ζ1(ᾱ), which by Claims 12–13 is variously of order Θ(ᾱ1/2) or
Θ(ᾱ), and in either case bounded away from 0 since ᾱ ≥ δ. �

This completes the claims used in proving Lemma 10.

6. More precise threshold behavior

With relatively little additional work, we can prove the prove the finer-
grained threshold behavior given by Theorem 2.

Proof of Theorem 2. By a standard and general argument we may assume
that m/n has a limit. We reason contrapositively. If there is a sequence of m
and n for which the desired probability (of satisfiability or unsatisfiability as
the case may be) fails to approach 1 as claimed, then it has a subsequence
for which the probability approaches a value less than 1, it in turn has
a sub-subsequence for which limm/n exists, and by hypothesis it satisfies
2/k < limm/n ≤ ∞. That is, if there is a counterexample, then there is
one in which m/n has a limit. The case limm/n 6= 1 was already treated
by Theorem 1, so we assume henceforth that limm/n = 1.

The unsatisfiable part of the theorem is immediate from Remark 3.
For satisfiability, we have c = m/n < 1 and c→ 1. We follow the outline

of the proof of Theorem 1. Claim 12 already treats m/n = c in a closed
interval including 1 and all k ≥ 3. (As Dubois and Mandler did not derive
this sharper threshold, here we must treat k = 3.) So does Claim 15, in
its treatment of α near 1 and the symmetry argument elsewhere, contingent
upon Claim 13. That is, the previous analysis (encapsulated in the proof

of Corollary 11) continues to apply to all terms in the sum
∑m

`=2 E
[
Y

(`)
m,n

]
except those with `/m = α ∈ [α+

k , 1/2], so that, in the current setting,

m∑
`=2

E
[
Y (`)
m,n

]
= O

(
m−(k−2)

)
+ 2

m/2∑
`=0.99αkm

E
[
Y (`)
m,n

]
.

To prove Theorem 2 we split the final summand above into two ranges,
and will show that

0.4630m∑
`=0.99αkm

E
[
Y (`)
m,n

]
= O(n)e−Ω(n)(73)

(this will be immediate from (75)) and

m∑
`=0.4630m

E
[
Y (`)
m,n

]
= O(1) exp(−0.69 w(n))(74)
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(shown in (82)). Both of these require extending Claim 13 to the case
where c → 1 (no longer bounded away from 1), deriving fresh bounds for
α ∈ [0.99αk, 1/2], k ≥ 3. The second requires additionally an extension of
Lemma 9 through an improvement, for ζ1 bounded away from 0, to inequal-
ity (33) and in turn to (38) and (23).

The monotonicity approach used to prove Claim 13, allowing us to focus
on c = 1 (correspondingly, λ = λk) no longer applies because, with a vanish-
ingly small gap between λ and λk, the argument no longer bounds Hk(α;λ)
away from 0 (indeed we already remarked that Hk(1/2, λk) = 0). In lieu of
the use of monotonicity, though, as noted above we can assume that c is less
than but arbitrarily close to 1 (correspondingly, λ < λk is arbitrarily close
to λk). We now consider the two ranges of α corresponding to the sums in
(73) and (74).

Case α away from 1/2. We will show that, for k ≥ 3 and an appropriate
ζ = ζ(α; c), Hk(α, ζ; c) is bounded below 0 for c sufficiently close to 1 and
for α in a range extending above α∗k. Specifically, we will show that for all
k ≥ 3 there exist c− < 1 and ε(k) > 0 such that(

∀α ∈ [0.99αk, 0.4630]
) (
∀c ∈ [c−, 1]

)
: Hk(α, ζ; c) ≤ −ε(k).(75)

For k ≥ 4 this was established in Remark 14. For k = 3 we set

ζ1 = exp
(
−H(α)/k

)
α
k−1
k , ζ2 = exp

(
−H(α)/k

)
ᾱ
k−1
k .(76)

(For more on this choice see the discussion after (71).) We have 0.0990 <
0.99α3 and α∗3 < 0.4630, and using interval arithmetic we verify that for
subintervals on integral multiples of 0.0001, that is [0.0990, 0.0991], . . . ,
[0.4629, 0.4630], the value of Hk(α, ζ; 1) on each subinterval is < −0.0004.
The interval arithmetic verification consists of defining ζ according to the
interval’s first endpoint, then considering the extreme values of the possible
results in each monotone component calculation for Hk(α, ζ; 1) (see (24))
to get rigorous lower and upper bounds on the true value anywhere in the
interval. Continuity in c then gives (75) for some c− sufficiently close to 1.

Inequality (73) is immediate from (75) and (23).

Case α near 1/2. For the remaining interval [0.4630, 1/2], Hk(α, ζ; c) is
not bounded away from 0, but we will establish a sufficient bound. We again
take ζ = (α, ᾱ), so that Hk(α, ζ; c) = Hk(α;λ) (including for k = 3). Then,
for all k ≥ 3, for some c− < 1,

(77)
(
∀α ∈ [0.4630, 1/2]

) (
∀c ∈ [c−, 1]

)
:

Hk(α, ζ; c) = Hk(α;λ) ≤ (c− 1)H(0.4630)− 0.001(1− 2α)2.

To see this we follow the same reasoning as for (62), including use of (63)
and (64) for the first inequality below:

Hk(α;λ) = cH(α) + ln
f(λ) + f(λ(1− 2α))

2f(λ)
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= (c− 1)H(α) + (H(α)−H(1/2)) + ln

(
1 +

f(λ(1− 2α))

f(λ)

)
≤ (c− 1)H(0.4630)− (1− 2α)2

2

(
1− λ2eλ(1−2α)

f(λ)

)
.

Since the derivative of λ2eλ(1−2α)

f(λ) is bounded uniformly over α, and making

no presumption about the sign of the O(·) term, this is

= (c− 1)H(0.4630)− (1− 2α)2

2

(
1−

λ2
ke
λk(1−2α)

f(λk)
+O(λ− λk)

)
(78)

Now observe that for α ∈ [0.4630, 1/2], using the definition (65) of α∗k,

λ2
ke
λk(1−2α)

f(λk)
=
λ2
ke
λk(1−2α∗k)

f(λk)
e2λk(α∗k−α) = e2λk(α∗k−α)

≤ e2λ3(α∗3−0.4630) ≤ 0.9977.

This and (78) yield (77).

Improved bound on a(`, ν). We will need bounds on a(`, ν) and E[Y
(`)
m,n]

better than those in (33) and (38). Reasoning as for (34), from (31) we have

a(`, ν) =
(k`)!

2π

∮
z=z1e

iϑ :
ϑ∈(−π,π]

(cosh z − 1)ν

zk`+1
dz

≤ 2
(k`)!

2π zk`+1
1

∫ π/2

−π/2
exp

(
ν ln |cosh(z1e

iϑ)− 1|
)
dϑ

= O(1/
√
ν) (k`)!

(cosh z1 − 1)ν

zk`+1
1

.(79)

The final equality is by the Laplace method for integrals; see for example de
Bruijn [13]. Roughly, the Laplace method says that if f(x) is maximized on

[a, b] by x0 then, asymptotically in n,
∫ b
a e

nf(x)dx = (1+o(1))enf(x0)
√

2π
n(−f ′′(x0)) .

The maximum of
∣∣cosh(z1e

iϑ − 1
∣∣ occurs iff ϑ is a multiple of π, as is clear

from the Taylor series expansion cosh(z1e
iϑ− 1) =

∑∞
j=1

1
(2j)!z1

2jei·2jϑ. The

modulus of this expression is
∑∞

j=1
1

(2j)!z1
2j when ϑ is multiple of π, and

only then (for this to be the case all the arguments 2jϑ must be equal mod-
ulo 2π, requiring ϑ to be a multiple of π). In the range [−π, π], then, the
unique maximum is at ϑ = 0. Letting

s(ϑ) := ln |cosh(z1e
iϑ)− 1| = ln(cosh(z1 cosϑ)− cos(z1 sinϑ)),

the second derivative at the maximum is

d2s

dϑ2

∣∣∣∣
ϑ=0

= −z1(sinh(z1)− z1)

cosh(z1)− 1
= −Θ(1),
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since z1 = Θ(1).

Improved bound on E[Y (`)
m,n]. Note that the bound on a(`, ν) in (79) is

O(1/(ζ1
√
ν)) times the previous bound given by (33), since z1 = ζ1λ and

we presume throughout that λ is bounded away from 0, which represents
an improvement when ζ1 = Θ(1). It immediately gives a corresponding
improvement to the bound on p(`, ν) from (36): where T (ν) represents the
RHS of (36) (the notation focuses on the parameter of interest, but recall
that T (ν) also depends on z1, z2, λ, k, m and `), we now have

p(`, ν) = O(1/(ζ1

√
ν))T (ν).(80)

This improves the summands of (37), but the 1/
√
ν stops us from applying

the binomial theorem to obtain an analog (38); one additional step is needed.
As we did for (38), restrict z1 and z2 to depend only on `, m and n (not

on ν). Then the maximum of O(1/(ζ1
√
ν))T (ν) can be seen to occur where

the ratio of consecutive terms,

(1/
√
ν + 1)T (ν + 1)

(1/
√
ν)T (ν)

=

√
ν

ν + 1

n− ν
ν + 1

ez2(cosh z1 − 1)

f(z2)
,

is 1, which occurs at some ν0 = Θ(n). Terms before ν0/2 are exponentially
smaller than the maximum, while later terms are of order O(1/(ζ1

√
ν))T (ν)

= O(1/(ζ1
√
n))T (ν). Thus,

n∑
ν=1

(
n

ν

)
p(`, ν)

= O(1)

ν0/2∑
ν=1

(
n

ν

)
(1/(z1

√
ν))T (ν) +O(1)

n∑
ν=ν0/2

(
n

ν

)
(1/(z1

√
ν))T (ν)

= O(n) exp(−Θ(n))T (ν0) +O(1/(ζ1

√
n))

n∑
ν=1

(
n

ν

)
T (ν)

= O(1/(ζ1

√
n))

n∑
ν=1

(
n

ν

)
T (ν),

an analog of (37) but smaller by O(1/(ζ1
√
n)). To this we can apply the

binomial theorem, as we did to (37), giving a corresponding improvement
to (38) and in turn (23), namely

E
[
Y (`)
m,n

]
≤ O(1)

1

ζ1
√
n ζ2

exp
[
nHk(α, ζ; c)

]
, ∀ζ > 0.(81)

From (77) and (81),

m/2∑
`=0.4630m

E[Y (`)
m,n] ≤

m/2∑
`=0.4630m

O
( 1√

n

)
exp (nHk(α, ζ; c))
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≤ O
( 1√

n

) m/2∑
`=0.4630m

exp
(
(c− 1)nH(0.4630)− 0.001(1− 2`/m)2n

)
≤ O

( 1√
n

)
exp ((m− n)H(0.4630))

∞∑
x=0

exp
(
−0.001(x/m)2n

)
= O

( 1√
n

)
exp(−H(0.4630) w(n)) O(

√
n)

= O(1) exp(−0.69 w(n)).(82)

This establishes (74) and concludes the proof of Theorem 2. �

7. Satisfiability threshold for unconstrained k-XORSAT

If a variable appears in at most one equation, then deleting that vari-
able, along with the corresponding equation if any, yields a linear system
that, clearly, is solvable if and only if the original system was. Stop this
process when each variable appears in at least two equations, or when the
system is empty. Dubois and Mandler analyzed unconstrained 3-XORSAT
by analyzing this process, which ends with a (possibly empty) constrained
3-XORSAT instance.

Regarding each variable as a vertex and each equation as a hyperedge
on its k variables yields the k-uniform “constraint hypergraph” underlying
a k-XORSAT instance. The process described simply restricts the instance
to the 2-core of its hypergraph. The analysis by Dubois and Mandler for
3-XORSAT is easily generalized to k-XORSAT using the (later) analyses of
the 2-core of a random k-uniform hypergraph, and we take this approach.

Note that the our (unconstrained) k-XORSAT model really corresponds
to a random k-uniform multi -hypergraph. However, the probability that
a random matrix corresponds to a simple graph is

(
n
k

)
(m)

/
(
n
k

)m
= 1 −

O(n−(k−2)) = 1 − o(1). Thus any a.a.s. property of a simple random hy-
pergraph is also an a.a.s. property for random k-XORSAT, and we shall
proceed with the simple random hypergraph model.

It is well known that the 2-core of a uniformly random k-uniform hyper-
graph is, conditioned on its size and order, uniformly random among all
such k-uniform hypergraphs with minimum degree 2. (One short and sim-
ple proof is identical to that for conditioning on the core’s degree sequence
in [25, Claim 1].) Also, the “core” of a random k-XORSAT instance is an
instance uniformly random on its underlying hypergraph: the (uniform) hy-
pergraph core determines the core A matrix, while the core b is simply the
restriction of its uniformly random initial value to the surviving rows of A,
a process oblivious to b.

Thus, satisfiability of a random unconstrained instance hinges on the
edges-to-vertices ratio of the core of its constraint hypergraph.

Recall the definition of λ from (6).
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Theorem 16. Let Ax = b be a uniformly random unconstrained uniform
random k-XORSAT system with m equations and n variables. Suppose that
k ≥ 3 and m/n→∞ with limm/n = c. Define

gk(x) :=
x

k(1− e−x)k−1
.

With c∗k = gk(λ(k)), if c < c∗k then Ax = b is a.a.s. satisfiable, and if c > c∗k
then Ax = b is a.a.s. unsatisfiable.

Proof. We treat k as fixed. Restricting consideration to x > 0, from Molloy
[25, proof of Lemma 4], gk(x) has a unique minimum ĉ, with gk(x) = c
having no solutions for any c < ĉ, and two solutions for any c > ĉ. Simple
calculus confirms that for k ≥ 3, gk is unimodal (indeed, convex).

Let H be a random k-uniform hypergraph with m edges and n vertices.
Molloy [25, Theorem 1] shows that if limm/n < ĉ then the 2-core is a.a.s.
empty, while if limm/n = c > ĉ, then with µ the larger solution of gk(µ) = c,
the order N and size M of the 2-core a.a.s. satisfy

N = n
eµ − 1− µ

eµ
+ o(n), M = n

µ(eµ − 1)

keµ
+ o(n);

see also Achlioptas and Molloy [1, Proposition 30]. Actually, Molloy works
in the Bernoulli model where the number of edges of the hypergraph Hp is
Bin(

(
n
k

)
, p), but the result translates to the above by standard arguments.

Specifically, choose p so that the expected number of edges of Hp is m.
Generate a random H with exactly m edges as follows: generate Hp; if it has
m edges or more, which with constant probability it does, then randomly
subsample Hp to give H; otherwise repeat. The core of H is contained
in that of Hp, so M and N will not be larger than the bounds given for
the Bernoulli model, with failure probability a constant times the failure
probability of that for the Bernoulli model. Similarly, generating H by
randomly augmenting an Hp having m edges or fewer shows that M and N
will not be smaller than the bounds given.

It follows for the core that, a.a.s.,

M

N
=

µ(eµ − 1)

k(eµ − 1− µ)
+ o(1) =

1

k
ψ(µ) + o(1).(83)

Define µ∗ = λ(k) so that ψ(µ∗) = k; remember from (6) that for k > 2
this is well defined, with µ∗ > 0. We claim that µ∗ is the larger of the two
values of µ for which gk(µ) = gk(µ

∗). Given that gk is unimodal, this is true
iff g′k(µ

∗) > 0. Now,

g′k(µ
∗) =

1 + e−µ
∗
(µ∗ − µ∗k − 1)

k(1− e−µ∗)k
.
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Focusing on the numerator, multiplying through by eµ
∗
, and replacing k =

ψ(µ∗), this means showing that

eµ
∗

+ µ∗ − 1− µ∗
(
µ∗(eµ

∗ − 1− µ∗)
eµ∗ − 1

)
> 0.

Multiplying the expression by eµ
∗ − 1 gives

(eµ
∗

+ µ∗ − 1)(eµ
∗ − 1)− µ∗2(eµ

∗ − 1− µ∗)

= (eµ
∗ − 1− µ∗ − 1

2µ
∗2)2 + 3µ∗(eµ

∗ − 1− 1
3µ
∗ − 1

12µ
∗3) > 0

as desired. The inequality is immediate from the Taylor series for eµ
∗
, as

µ∗ > 0.
Let c∗k = gk(µ

∗). Because µ∗ is the larger of the two values µ for which
gk(µ) = gk(µ

∗), we may apply (83), concluding that a random k-uniform
hypergraph with limm/n = c∗k = gk(µ

∗) has a core where, a.a.s., M/N =
1
kψ(µ∗) + o(1) = 1 + o(1).

For any c > c∗k, the larger solution µ of gk(µ) = c has µ > µ∗ (by the
unimodality of gk), and ψ(µ) > ψ(µ∗) = k (by Claim 6). Thus, a random k-
uniform hypergraph with limm/n = c > c∗k has a core where, a.a.s., M/N =
1
kψ(µ) + o(1) > 1. By this section’s introductory remarks it follows that a
random k-XORSAT instance with limm/n = c > c∗k reduces to a random
constrained k-XORSAT instance with M/N converging in probability to a
value greater than 1, the reduced instance is a.a.s. unsatisfiable, and thus
so is the original instance.

By the same token, if c < c∗k then either gk(µ) = c has no solution (if
c < ĉ), or its larger solution has µ < µ∗ and ψ(µ) < ψ(µ∗) = k. Thus, a
random k-XORSAT instance with limm/n = c < c∗k reduces to a constrained
k-XORSAT instance that either is a.a.s. empty (and trivially satisfied), or
has M/N converging in probability to a value less then 1, and thus is a.a.s.
satisfiable by Theorem 1. Thus the original instance is a.a.s. satisfiable. �
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