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A Hitting Time Formula for the Discrete Green’s Function

Andrew Beveridge∗

Abstract

The discrete Green’s function (without boundary) G is a pseudo-inverse of the combina-

torial Laplace operator of a graph G = (V,E). We reveal the intimate connection between

Green’s function and the theory of exact stopping rules for random walks on graphs. We

give an elementary formula for Green’s function in terms of state-to-state hitting times of

the underlying graph. Namely,

G(i, j) = πj

(

∑

k∈V

πkH(k, j) −H(i, j)

)

where πi is the stationary distribution at vertex i and H(i, j) is the expected hitting time

for a random walk starting from vertex i to first reach vertex j. This formula also holds for

the digraph Laplace operator.

The most important characteristics of a stopping rule are its exit frequencies, which are

the expected number of exits of a given vertex before the rule halts the walk. We show

that Green’s function is, in fact, a matrix of exit frequencies plus a rank one matrix. In

the undirected case, we derive spectral formulas for Green’s function and for some mixing

measures arising from stopping rules. Finally, we further explore the exit frequency matrix

point-of-view, and discuss a natural generalization of Green’s function for any distribution

τ defined on the vertex set of the graph.

AMS MSC 05C81

1 Introduction

Let G = (V,E) be a simple undirected graph on vertices V = {1, 2, . . . , n}. (For notational

convenience, we identify a vertex with its label.) We define the volume of G to be vol(G) =

∗Department of Mathematics, Statistics and Computer Science, Macalester College, St Paul, MN 55105.

abeverid@macalester.edu

1

http://arxiv.org/abs/1505.06989v1


∑

k∈V deg(k). Let A be the adjacency matrix of G and let D = diag(deg(1), . . . ,deg(n)) be the

diagonal matrix of degrees. The discrete Laplace operator (cf. [8]) is the n× n matrix

∆ = I −D−1A.

We can view ∆ as a linear transformation ∆ : V ∗ → V ∗ where V ∗ denotes the vector space of all

real functions on V . The Laplace operator is a variant of the graph Laplacian L = D∆ = D−A

and the normalized graph Laplacian L = D1/2∆D−1/2 = I −D−1/2AD−1/2.

The Laplace operator is directly related to random walks on G. The matrix P = D−1A is

the transition matrix for a simple random walk on G since Pij = 1/deg(i) when ij ∈ E and 0

otherwise. The matrices ∆ = I − P and P share the same eigenvectors, where the eigenvalue

λk of ∆ corresponds to the eigenvalue λ′
k = 1 − λk of P . The Laplace operator ∆ has rank

n− 1: the vector π = (π1, . . . , πn) where πi = deg(i)/vol(G) is a left eigenvector for eigenvalue

λ0 = 0, and the all-ones vector is a right eigenvector. With respect to P , these are eigenvectors

for eigenvalue λ′
0 = 1, with the following interpretations. Having 1 as a right eigenvector for

λ′
0 = 1 captures the fact that the transition probabilities from state i sum to one. Having π as

a left eigenvector means that π is the stationary distribution for random walks on G.

The discrete Green’s function G was introduced by Chung and Yau [9]. This n× n matrix

is the pseudo-inverse of ∆ given by

G∆ = I − 1π⊤,

G1 = 0.
(1)

The second constraint guarantees the uniqueness of G. Green’s function has been computed

for some special families of graphs, including the path, the hypercube [9], products of cycles

[11], the complete graph and trees [20]. Many of these values have been computed via spectral

formulas. Recently, Xu and Yau [20] developed a formula using two counting invariants of

graphs that involve sums and products over spanning linear subgraphs of G.

We give a very simple formula for Green’s function in terms of hitting times for random

walks on G. This formula is more tractable and versatile than the results described above. Our

formula also holds for weighted, directed graphs (or digraphs, for short), so we introduce some

digraph definitions before stating our main theorem.

Let G = (V,E,W ) be a weighted digraph on vertices V = {1, 2, · · · , n}, directed edge set E

and non-negative edge weights W = {wij | 1 ≤ i, j ≤ n}, where wij = 0 whenever ij /∈ E. The
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corresponding transition probability matrix P has entries

Pij =
wij

∑

k∈V wik
.

This definition is a natural generalization of the undirected case: when G is an undirected graph

whose edges have unit weight, this formula becomes P = D−1A. For a strongly connected, ape-

riodic digraph G, the Perron-Frobenius theorem guarantees that eigenvalue λ = 1 has a unique

unit left eigenvector π with π(i) > 0 for all i ∈ V . This vector π is the stationary distribu-

tion for the random walk corresponding transition matrix P . Li and Zhang [12] introduce the

normalized digraph Laplacian L = Π1/2(I − P )Π−1/2, where Π is the diagonal matrix with

Πii = π(i). The corresponding digraph Laplace operator is ∆ = I − P. As in the undirected

case, Green’s function G is the matrix satisfying G∆ = I − 1π⊤ and G1 = 0.

From here forward, we assume that G = (V,E) is a strongly connected digraph, where we

break periodicity by considering a lazy random walk, if necessary. Given i, j ∈ V , the hitting

time H(i, j) is the expected number of steps before a random walk started at i first reaches j.

We choose to define H(i, i) = 0 and let the return time Ret(i) denote the expected number of

steps before a random walk started at i first returns to i. We also define

H(π, j) =
∑

i∈V

πiH(i, j)

to be the expected number of steps it takes for a walk starting from a random initial vertex to

reach j. We are now ready to state our main result.

Theorem 1 Let G be a strongly connected digraph on vertices V = {1, 2, . . . , n}. Green’s

function G for G is the n× n matrix given by

G(i, j) = πj(H(π, j) −H(i, j)). (2)

We give two proofs of this result. In Section 2, we give a proof for undirected graphs that uses

two well known hitting time identities. This argument has the advantage of being short and

self-contained. However, this proof does not shed much light on why this formula is correct.

We remedy this situation in Section 3, where we give a second proof of Theorem 1 that

places the result in a much richer context. This argument holds for strongly connected directed

graphs. Formula (2) is a manifestation of the deep connection between Green’s function and

the theory of optimal stopping rules for random walks on G, introduced by Lovász and Winkler
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[15, 16]. Given a starting distribution σ and a target distribution τ , a stopping rule Γ(σ, τ)

halts a random walk whose initial vertex is drawn from σ so that the final state is governed

by τ . In particular, we are naturally interested in optimal mixing rules Γ(i, π) where σ = i

is a singleton distribution and π is the stationary distribution. In Section 3, we review the

basics about stopping rules on graphs. We then show that the matrix G is an expression of the

vertex-wise characteristics of the family of optimal mixing rules {Γ(i, π)}1≤i≤n. In particular,

we prove that G is a slight alteration of Xπ, the exit frequency matrix for π, introduced in [4].

In Section 4, we use equation (2) to calculate G for some families of undirected graphs. In

Section 5, we develop spectral formulas for Green’s function and for the following three exact

mixing measures. Let H(i, π) denote the expected length of an optimal stopping rule from i to

π. The mixing time for a graph G is

Tmix(G) = max
i∈V

H(i, π).

In other words, Tmix(G) is the expected length of an optimal stopping rule to π when we start

from the worst possible initial vertex. The reset time is the average mixing time:

Treset(G) =
∑

i∈V

πiH(i, π).

Finally, the hit time is the expected hitting time between two states drawn from the stationary

distribution

Thit(G) =
∑

i,k∈V

πiπkH(i, k) =
∑

k∈V

πkH(π, k).

The random target identity [1] captures the very useful phenomenon

∑

k∈V

πkH(i, k) = Thit(G) for all i ∈ V. (3)

In our context, this means that the expected length of the naive rule “draw a target vertex k

accord to distribution π, then perform a random walk until reaching k” is independent of the

starting vertex. The relationships between Tmix, Treset, Thit and other mixing measures of a

graph are thoroughly explored in [2]. Our spectral formulas are most conveniently stated using

the eigenvectors for the matrix L = D−1/2LD1/2 = D−1LD.

Theorem 2 Let G be an undirected graph. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 be the eigenvalues

for L = D−1/2LD1/2 with corresponding orthonormal eigenvectors φ0, φ1, . . . , φn−1. Then we
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have the following spectral formulas:

G(i, j) =

√

deg(j)

deg(i)

n−1
∑

k=1

1

λk
φkiφkj, (4)

Tmix = max
i∈V

− vol(G)
√

deg(i) deg(i′)

n−1
∑

k=1

1

λk
φkiφki′ , (5)

Treset = −
∑

i∈V

√

deg(i)

deg(i′)

n−1
∑

k=1

1

λk
φkiφki′ , (6)

Thit =

n−1
∑

k=1

1

λk
, (7)

where i′ ∈ V is a vertex satisfying H(i′, i) = maxj∈V H(j, i).

The spectral formula (7) for Thit is well known, but we include it here for comparison. Ellis [11]

gives an formula analogous to equation (4) for the normalized Green’s function G = D1/2
GD−1/2

in terms of the eigensystem for the normalized Laplacian L.

Finally, in Section 6, we generalize Green’s function, based on the exit frequency matrix

results in [4]. Green’s function is intimately related to optimal stopping rules from singleton

distributions to the stationary distribution π. We can replace π with any distribution τ to

define a comparable matrix Gτ for that target distribution. We describe some duality results

for these matrices that suggest some future research directions.

2 Proof for undirected graphs via cycle reversing

We give a direct proof of Theorem 1 for an undirected graph G = (V,E) that uses some

fundamental identities for hitting times on undirected graphs. These identities will be helpful

when we calculate examples in Section 4. First, we need the cycle reversing identity [10]: for

all i, j, k ∈ V , we have

H(i, j) + H(j, k) + H(k, i) = H(j, i) + H(i, k) + H(k, j). (8)

We get another identity by multiplying equation (8) by πk, summing over 1 ≤ k ≤ n and using

the random target identity (3):

H(π, i) + H(i, j) = H(π, j) + H(j, i). (9)
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Finally, it is well known that the return time to j satisfies

Ret(j) =
1

πj
=

vol(G)

deg(j)
. (10)

We can now give the first proof of our main result.

Proof of Theorem 1 for an undirected graph: Define the n × n matrix B where Bij =

πj(H(π, j) −H(i, j)). We show that B satisfies the constraint equations (1). This will confirm

that G = B. We check the second condition first. We have

B1 =
∑

j

πj(H(π, j) −H(i, j)) =
∑

k

πk
∑

j

πjH(k, j) −
∑

j

πjH(i, j) = 0

by the random target identity (3). As for the first constraint, we have

(B∆)ij = (B −BD−1A)ij

= Bij −
∑

k∼j

1

deg(k)
Bik

= πj(H(π, j) −H(i, j)) −
∑

k∼j

1

deg(k)
πk(H(π, k) −H(i, k))

=
1

vol(G)





∑

k∼j

(H(π, j) −H(π, k)) −
∑

k∼j

(H(i, j) −H(i, k))





=
1

vol(G)





∑

k∼j

(H(k, j) −H(j, k)) −
∑

k∼j

(H(i, j) −H(i, k))





=
1

vol(G)

∑

k∼j

(H(k, i) −H(j, i))

= πj





∑

k∼j

1

deg(j)
H(k, i) −H(j, i)





=







−πj j 6= i

πj(Ret(j) − 1) j = i

=







−πj j 6= i

1 − πj j = i

where the fifth, sixth and ninth equalities follows from equations (9), (8) and (10), respectively.

This entrywise formula is equivalent to our first constraint G∆ = I − 1π⊤. �

We close this section by verifying that our formula is consistent with some facts established in

[9] about Green’s function for an undirected graph. First, the matrix D1/2
GD−1/2 is symmetric,
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or equivalently: πiG(i, j) = πjG(j, i) for all i, j. Using our formula, indeed we have

πiG(i, j) = πiπj(H(π, j) −H(i, j)) = πiπj(H(π, i) −H(j, i)) = πjG(j, i) (11)

by equation (9). Second, we have

H(i, j) =
vol(G)

deg(j)
G(j, j) − vol(G)

deg(j)
G(i, j) =

1

πj
(G(j, j) −G(i, j)).

Note that the equation above corrects a typo in the formulation (Theorem 8) in [9], where

the coefficient for G(i, j) is written as vol(G)/deg(i) rather than vol(G)/deg(j). (This typo

originates with a variation of this minor error in their equation (23).) Using our equation for

G(i, j), we have 1
πj

(G(j, j) −G(i, j)) = H(π, j) − (H(π, j) −H(i, j)) = H(i, j).

3 Proof for directed graphs via exit frequencies

In this section, we give a second proof of Theorem 1 that reveals the connections between G

and the theory of exact stopping rules for random walks on graphs. Our main contribution is in

recognizing the deep relationship between these two lines of research. Once we have developed

the proper context, our proof of Theorem 1 will be quite short. We start with an overview of

the results in Lovász and Winkler [16].

Let G be a digraph with transition matrix P , so that ∆ = I − P . Given any starting

distribution σ and any target distribution τ , there exist one or more stopping rules Γ : σ → τ

that generate a sample from τ when started from a vertex drawn from σ. Such a rule Γ is

optimal when it minimizes the expected length of the rule E(Γ) among all (σ, τ)-rules. The

access time H(σ, τ) is the expected length of an optimal (σ, τ)-rule,

H(σ, τ) = min
Γ:σ→τ

E(Γ).

For example, when σ = i and τ = j are singleton distributions, the access time equals the

hitting time H(i, j).

The key to understanding an access time is to partition this expected length by the vertices

of the graph. Let Γ be an optimal (σ, τ)-rule. We define the kth exit frequency xk(σ, τ) to be

the expected number of exits from vertex k when following rule Γ. The conservation equation

[18] states that for all j ∈ V ,

∑

i∈V

pijxi(σ, τ) − xj(σ, τ) = τj − σj . (12)
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Intuitively, this says that the expected difference between the number of entrances and exits

at j must be τj − σj . All optimal (σ, τ)-rules have the same exit frequencies (even though the

rules themselves may have very different execution). Moreover, we have the following simple

test for optimality:

Γ is an optimal stopping rule ⇐⇒ ∃k ∈ V, xk(Γ) = 0.

Such a vertex k with xk(σ, τ) = 0 is called a (σ, τ)-halting state. This simple criterion makes it

easy to determine whether a stopping rule is optimal: we must simply check whether there is a

vertex that is never exited. For example, when our target is a singleton τ = j, the rule “walk

until you reach j” is an optimal rule (since j is a halting state), so the access time from σ to j

is H(σ, j) =
∑

i∈V σiH(i, j).

For our final result from [15], we have a formula for optimal exit frequencies in terms of

access times:

xj(σ, τ) = πj(H(σ, τ) + H(τ, j) −H(σ, j)).

In other words, the jth exit frequency measures the expected penalty for obtaining a sample

from τ along the way during a stopping rule from σ to j. Herein, we focus on stopping rules

that start from a singleton distribution σ = i, in which case our formula is

xj(i, τ) = πj(H(i, τ) + H(τ, j) −H(i, j)). (13)

Next, we adopt the matrix viewpoint introduced in [4]. Fixing the target distribution τ , we

consider the family of stopping rules from singletons to τ as an ensemble. We create an n × n

matrix Xτ whose ith row contains the exit frequencies for an optimal (i, τ)-stopping rule. This

gives us the exit frequency matrix whose ijth entry is

(Xτ )ij = xj(i, τ).

We can then write the conservation equation (12) for this ensemble of optimal rules in matrix

form:

Xτ∆ = Xτ (I − P ) = I − 1τ⊤. (14)

We are now ready for the second proof of our main result.

Proof of Theorem 1: Consider the exit frequency matrix Xπ. By equation (14), we have

Xπ∆ = I−1π⊤. This is the first constraint of (1) for Green’s function. Since ∆ has rank n−1,
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and π is a left eigenvector of ∆ for eigenvalue 0, we have

G = Xπ − hπ⊤ (15)

where h is some constant vector. The second constraint in equation (1) requires that the rows

of G all sum to zero. Meanwhile, the ith row of Xπ sums to H(i, π): adding up all the expected

exits gives the expected length of the rule. Therefore hi = H(i, π), so that the ijth entry of

Green’s function is

G(i, j) = xj(i, π) − πjH(i, π) = πj(H(π, j) −H(i, j))

by equation (13) with target distribution τ = π. �

Equation (15) reveals that Green’s function is the exit frequency matrix Xπ plus a rank one

matrix. Further investigation of this exit frequency matrix can be found in [4]. We conclude

this section with some immediate consequences of equation (15). In Section 6, we pursue some

duality results for Green’s function, analogous to those found in [4].

First, we confirm that typically πiG(i, j) 6= πjG(j, i) because the cycle reversing identity (8)

does not hold for digraphs. Next, we give an alternative definition for the exit frequency matrix

Xπ that parallels the Green’s function constraints (1). As noted above, every optimal stopping

rule contains a halting state. Therefore Xπ is the unique matrix satisfying

Xπ∆ = I − 1π⊤,

minj∈V (Xπ)ij = 0 1 ≤ i ≤ n.
(16)

The second constraint for Xπ requires that all entries are nonnegative, and at least one entry

in each row is zero. As noted above, this is equivalent to saying that the entries in the ith row

are the exit frequencies for an optimal stopping rule from i to π. The second constraint (1) on

G makes sense from a linear algebraic perspective, while the second constraint (16) on Xπ is

fundamental to the stopping rule point of view.

Finally, we make some additional connections between Green’s function and the theory of

stopping rules. First, it is clear that for all j ∈ V , we have

H(π, j) =
1

πj
G(j, j)

and that Thit = Tr(G). The latter observation is also a manifestation of the spectral identity

Thit =
∑n

k=1 1/λk listed in Theorem 2. Second, for every row i, we have

∑

j∈V

G(i, j) = −H(i, π).

9



Therefore we can obtain the reset time by taking the weighted sum of these row sums:

Treset = −
∑

i∈V

∑

j∈V

πiG(i, j).

Third, we can also recover the mixing time starting from i as follows:

H(i, π) = max
j

− 1

πj
G(i, j). (17)

Equivalently, H(i, π) is the largest entry in the ith row of the matrix product −GΠ−1 where

Π−1 = diag(π−1
1 , π−1

2 , . . . , π−1
n ). In other words,

H(i, π) = max
j∈V

−(GΠ−1)ij .

This brings us to our final observation: the mixing time Tmix is

Tmix = max
i∈V

max
j∈V

−(GΠ−1)ij . (18)

In summary, these quantities are easily accessible, once we have Green’s function. This under-

scores the deep connection between this pseudo-inverse of the Laplace operator and the theory

of exact stopping rules.

4 Examples

In this section, we calculate Green’s function for some families of undirected graphs. The

formulas for the complete bipartite graph and for general trees are new. The remaining formulas

have previously been determined via different methods, as noted below. Our calculations are

faster, and the connections to stopping rules provide new insight into many of these values.

Before getting to the examples, we must recount some results from Lovász and Winkler [17]

about optimal mixing rules. That paper considers directed graphs, but we only present the

simpler formulations for the undirected graph case.

Halting states for an optimal rule Γ(i, π) enjoy some additional structure. Given a target

vertex i, another vertex j is called i-pessimal if it achieves H(j, i) = maxk∈V H(k, i). We use i′

to denote an i-pessimal vertex. (There may be multiple i-pessimal vertices; in this case we take

i′ to be an arbitrarily chosen one.) For an undirected graph, we have two different formulas for

the mixing time:

H(i, π) = H(i, i′) −H(π, i′). (19)
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and

H(i, π) = H(i′, i) −H(π, i). (20)

Furthermore, i′ is a halting state for an optimal (i, π)-stopping rule. A vertex z such that

H(z, π) = Tmix is called mixing pessimal. We have the following useful equivalence for a vertex

z ∈ V on an undirected graph:

Tmix = H(z, π) ⇐⇒ H(z′, z) = max
i∈V

H(i′, i). (21)

For example, the endpoints of the path Pn are both mixing pessimal. More generally, if z is

mixing pessimal, then so is z′, meaning that H(z, π) = Tmix = H(z′, π). Moreover, z is a halting

state for an optimal (z′, π)-stopping rule.

The Complete Graph. Green’s function for Kn was calculated by Xu and Yau [20].

We use equation (2) to find these values. It is easy to verify that H(i, j) = n − 1 for all i 6= j.

Therefore

G(i, j) = πj(H(π, j) −H(i, j)) =
1

n

(

n− 1

n
· (n− 1) −H(i, j)

)

=







−n−1
n2 i 6= j,

(

n−1
n

)2
i = j.

The Complete Bipartite Graph and the Star. Consider the complete bipartite

graph Kr,s where |U | = r and |W | = s are the partite sets. A simple calculation shows that for

ui, uj ∈ U and wk, wℓ ∈ W where i 6= j and k 6= ℓ,

H(ui, wk) = 2s− 1, H(wk, ui) = 2r − 1,

H(ui, uj) = 2r, H(wk, wℓ) = 2s.

As for access times from the stationary distribution, we have

H(π, u) = 2r − 3
2 , H(π,w) = 2s− 3

2 .

By equation (2), we have

G(ui, ui) = 1 − 3
4r ,

G(ui, uj) = − 3
4r ,

G(ui, wk) = − 1
4s ,

G(wk, wk) = 1 − 3
4s ,

G(wk, wℓ) = − 3
4s ,

G(wk, ui) = − 1
4r .

In the special case of the star K1,n−1 with center c and leaves v,w are leaves, we have

G(c, c) = 1
4 ,

G(c, v) = − 1
4(n−1) ,

G(v, v) = 1 − 3
4(n−1) ,

G(v, c) = −1
4 ,

G(v,w) = − 3
4(n−1) .

11



The Green’s function values for K1,n−1 were also calculated in [20].

The Path. Green’s function for the path Pn was calculated in [7] using a formula for

the normalized Green’s function for Pn from [9]. We derive the same formula, and provide

additional insight into its component terms. For 1 ≤ i ≤ j ≤ n, we have

G(i, j) = πj
(

H(π, j) −H(i, j)
)

= πj
(

(H(π, j) −H(i, j)) + (H(1, n) −H(π, n)) − (H(1, n) −H(π, n))
)

= πj
(

(H(π, j) −H(π, n)) + (H(1, i) + H(j, n)) − Tmix(Pn)
)

= πj
(

(H(n, j) −H(j, n)) + (H(1, i) + H(j, n)) − Tmix(Pn)
)

= πj
(

H(1, i) + H(n, j) − Tmix(Pn)
)

, (22)

where the third equality follows from equation (19) and the fourth follows from equation (9).

The value of Tmix(Pn) for the path was calculated in [5], and using this value we obtain

G(i, j) = πj

(

(i− 1)2 + (n− j)2 − 2n2 − 4n + 3

6

)

which matches the formula in [7]. Note that equation (22) tells a compelling story about what

the value of G(i, j) captures about the graph. It sums the hitting times from the ends of the

path to i and j, respectively, and then subtracts the mixing time.

Trees. The path formula (22) for Green’s function can be generalized to an arbitrary

tree G. Let z and z′ be vertices that achieve H(z′, z) = maxi H(i′, i). By equation (21), we

have H(z, π) = Tmix = H(z′, π). Let W = {z = w1, . . . , wk = z′} be the unique (z, z′)-path in

G. We now calculate G(i, j). Let i∗ = wr (resp. j∗ = ws) be the vertex in W that is closest

to i (resp. j). Without loss of generality, assume that r ≤ s. Figure 1 shows an example. We

manipulate G(i, j) as we did in the path example above to obtain

1

πj
G(i, j) = πj

(

H(π, j) −H(i, j)
)

= πj
(

(H(π, j) −H(i, j)) + (H(z, z′) −H(π, z′)) − (H(z, z′) −H(π, z′))
)

= πj
(

(H(π, j) −H(π, z′)) + (H(z, z′) −H(i, j)) − Tmix(G)
)

= πj
(

(H(z′, j) −H(j, z′)) + (H(z, z′) −H(i, j)) − Tmix(G)
)

= πj

(

(

H(z′, j∗) −H(j, j∗)
)

+
(

H(z, i∗) −H(i, i∗)
)

− Tmix(G)

)

where the last equality follows from expanding hitting times such as H(z′, j) = H(z′, j∗) +

H(j∗, j). In the case of the path, i∗ = i and j∗ = j while z = 1 and z′ = n, which gives us

12



z z′

i

i∗

j

j∗

Figure 1: A tree G with mixing pessimal vertices z and z′ where H(z′, z) = maxv∈V H(v, z).

The vertices i and j are such that the (i, z)-path intersects the (z, z′) path no further from z

than the (j, z)-path does.

the path formula above. Further investigation of exact stopping rules on trees can be found in

[3, 5, 6].

The Cycle. Ellis [11] contains a formula for Green’s function on the cycle. We give a

new derivation. We take our vertices to be {0, 1, . . . , n− 1} and calculate the values for vertex

0. It is well known (and easy to check) that H(0, j) = H(j, 0) = j(n − j). Therefore

H(π, 0) =
∑

j

j(n − j)

n
=

(n + 1)(n − 1)

6
.

We then find that

G(0, j) =
1

n

(

(n + 1)(n − 1)

6
− j(n − j)

)

.

The Hypercube. Let Qd be the d-dimensional hypercube, where the vertices are labeled

by binary d-tuples v = (v1, v2, . . . , vd). Green’s function for the hypercube was calculated in

[9]. We provide a simpler formula, and make some further observations.

We start by finding hitting time formulas to vertex 0, originally calculated by Pomerance

and Winkler [19]. For 0 ≤ ℓ ≤ d, let Vk denote the kth level of Qd, consisting of all vertices

labelled with k ones. Let Tk denote the expected time for a random walk started at v ∈ Vk to

reach Vk−1. Clearly, T0 = 0 and the remaining level-wise hitting times satisfy the recurrence

Tk = 1 +
d− k

d
(Tk+1 + Tk), 1 ≤ k ≤ d.

It is easy to check that for 0 < k ≤ d, we have

Tk =

∑n
j=k

(d
j

)

(d−1
k−1

) .

Therefore the hitting time from a vertex v ∈ Vℓ to 0 is

H(v,0) =
ℓ
∑

k=1

Tk =
ℓ
∑

k=1

1
(

d−1
k−1

)

d
∑

j=k

(

d

j

)

= d
ℓ
∑

k=1

1

k

d
∑

j=k

(d
j

)

(

d
k

) .

13



The hypercube has a transitive automorphism group, so H(π, i) =
∑

j∈V πjH(j, i) =
∑

j∈V πjH(i, j) = Thit. Equation (5.68) in Aldous and Fill [1] states that

Thit =
d

2

d
∑

k=1

1

k

(

d

k

)

. (23)

Therefore, Green’s function for the hypercube is given by

G(0,v) =
1

2d





d

2

d
∑

k=1

1

k

(

d

k

)

− d

ℓ
∑

k=1

1

k

d
∑

j=k

(

d
j

)

(d
k

)





where v ∈ Vℓ.

We conclude this section by calculating Tmix(Qd) using formula (20). Equation (5.69) in

Aldous and Fill [1] gives an alternate formula for the pessimal hitting time:

H(1,0) = 2d−1
d−1
∑

k=0

1
(d−1

k

) .

We use induction to show that H(1,0) = d
2

∑d
k=1

2k

k . This holds for d = 1, and we have

2d
d
∑

k=0

1
(d
k

) = 2d · 1

2

(

2 +

d−1
∑

k=0

1
(d
k

) +
1

( d
k+1

)

)

= 2d + 2d−1

(

d + 1

d

d−1
∑

k=0

1
(d−1

k

)

)

= 2d +
d + 1

d
· d

2

d
∑

k=1

2k

k
=

d + 1

2

d+1
∑

k=1

2k

k
.

Next, a straight-forward inductive argument shows that

H(1,0) =
d

2

d
∑

k=1

2k

k
=

d

2

d
∑

k=1

1

k

(

1 +

(

d

k

))

Combining this final expression with equation (23), we find that

Tmix(Qd) = −2d G(1,0) = H(1,0) − Thit =
d

2

d
∑

k=1

1

k
≈ 1

2
d log d.

This result squares with the more traditional definitions of the (approximate) mixing time

(cf. [1]), which are known to be O(d log d). It is worth remarking that both Thit and H(1,0)

are O(2d + 1/d + O(1/d2)), while their difference is essentially 1
2d log d. More generally, it

is interesting to keep in mind that when a graph has a transitive automorphism group, the

difference between H(i′, i) and Thit is, in fact, the mixing time Tmix.

14



5 Spectral formulas

In this section, we explore Green’s function, hitting times, and exact mixing measures from the

spectral point of view. We prove Theorem 2 and apply these results to the family of toric grids

Cn1
× Cn2

× · · · × Cnd
.

Let L = D−1/2LD1/2 = D−1LD. The matrices L, L,L all share the same eigenvalues

0 = λ0 < λ1 ≤ · · · ≤ λn−1, though their eigenbases are different. Let φ0, φ1, . . . , φn−1 be the

corresponding orthonormal eigenbasis for the symmetric matrix L. We have L = I −N where

N = D1/2AD1/2 = D−1/2PD1/2, so we can reformulate Theorem 3.1 in [13] as

H(i, j) = vol(G)

n−1
∑

k=1

1

λk

(

φ2
kj

deg(j)
− φkiφkj
√

deg(j) deg(i)

)

. (24)

We use this spectral hitting time formula to find a corresponding formula for the access time

from π to a singleton distribution, and then prove Theorem 2.

Lemma 3 For j ∈ V , we have

H(π, j) =
vol(G)

deg(j)

n−1
∑

k=1

φ2
kj

λk
. (25)

Proof: Using equation (24), we obtain

∑

i∈V

πiH(i, j) =
∑

i∈V

n−1
∑

k=1

1

λk

(

deg(i)

deg(j)
φ2
kj −

√

deg(i)

deg(j)
φkiφkj

)

=
vol(G)

deg(t)

n−1
∑

k=1

φ2
kj

λk
−

n−1
∑

k=1

1

λk

∑

i∈V

(
√

deg(i)

deg(j)
φki

)

φkj

=
vol(G)

deg(j)

n−1
∑

k=1

φ2
kj

λk
.

The final equality holds because the vector v with components vi =
√

deg(i)/deg(j) is an

eigenvector of L for eigenvalue λ0 = 0, and therefore v is orthogonal to φk for 1 ≤ k ≤ n − 1.

�

Proof of Theorem 2: First we consider Green’s function. Equation (4) arises by substituting

equations (24) and (25) into formula (2). Next, we give a spectral formula for H(i, π). By

equation (17), we have H(i, π) = maxj∈V − 1
πj
G(i, j) = maxj∈V (H(i, j)−H(π, j)). By equation

15



(20), this maximum is achieved precisely when j is an i-pessimal vertex. In other words,

H(i, π) = − vol(G)
√

deg(i) deg(i′)

n−1
∑

k=1

1

λk
φkiφki′

The formulas (5) and (6) for Tmix and Treset follow directly. �

As an application, we evaluate these spectral formulas for products of cycles. Ellis [11] gives

an alternate, recursive formula for Green’s function on this graph family that uses Chebyshev

polynomials. As a warm-up, we start with the cycle Cn, whose calculation also appears in

[11]. Let ǫ = e2πi/n. The eigenvalues of L are λ0, λ1, . . . , λn−1 where λk = 1 − 1
2 (ǫk + ǫ−k) =

1 − cos(2πk/n) with corresponding eigenvector φk whose ith component is φk(i) = ǫki/
√
n.

Therefore, Green’s function for Cn is given by

G(0, j) =
1

n

n−1
∑

k=1

ǫkj

1 − cos(2πk/n)
=

1

n

n−1
∑

k=1

cos(2πkj/n)

1 − cos(2πk/n)
.

Of course, we also have G(0, j) = 1
n ((n + 1)(n − 1)/6 − j(n − j)), as discussed in Section 4.

We now consider the product of cycles Cn1
× Cn2

× . . .× Cnd
, using x = (x1, x2, . . . , xd) to

denote a vertex. We will label the eigensystem using an analogous toric notation λr = λr1r2···rd .

The eigenvalues for this Cartesian product can be calculated using Exercise 11.7 in [14]. Let

ǫj = e2πi/nj for 1 ≤ j ≤ d, and let r = (r1, r2, . . . , rd) where 0 ≤ ri < ni and 1 ≤ i ≤ d. The

eigenvalues are

λr = 1 − 1

2d

d
∑

t=1

(ǫrtt + ǫ−rt
t ) = 1 − 1

d

d
∑

t=1

cos

(

2πrt
nt

)

.

A corresponding orthonormal eigenbasis for L consists of the vectors φr1r2···rd given by

φr1r2···rd(j1, j2, . . . , jd) =
1√
n
ǫr1j11 ǫr2j22 · · · ǫrdjdd

where n = n1n2 · · ·nd. By the symmetry of this toric grid, it is sufficient to calculate Green’s

function when the first vertex is 0 = (0, 0, . . . , 0). We have

G(0, j) =
1

n

∑

r 6=0

ǫr1j11 ǫr2j22 · · · ǫrkjdk

1 − d−1
∑d

t=1 cos(2πrt/nt)
=

1

n

∑

r 6=0

cos
(

2π
∑d

t=1 rtjt/nt

)

1 − d−1
∑d

t=1 cos(2πrt/nt)
.

Symmetry also tells us that H(π, 0) =
∑

j∈V πjH(j, 0) =
∑

j∈V πjH(0, j) = Thit. So we have

Thit = n · 1

n

∑

r 6=0

1

λr

=
∑

r 6=0

1

1 − d−1
∑d

t=1 cos(2πrt/nt)
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Since this toric grid has a transitive automorphism group, we have Tmix = Treset. The vertex

(⌈n1⌉, ⌈n2⌉, . . . , ⌈nk⌉) is a 0-pessimal vertex, so that

Treset = Tmix = −
∑

r 6=0

cos
(

π
∑d

t=1 rt + 2π
∑d

t=1
rt(nt mod 2)

nt

)

1 − d−1
∑d

t=1 cos(2πrt/nt)
.

In particular, this formula holds for the hypercube Qd (where each component is actually the

path P2). Simplifying yields the hypercube formulas as found in Section 4. We leave these

calculations to the interested reader.

6 A Generalized Green’s Function

Exit frequency matrices Xτ (for general target distributions τ) provide great insight into the

theory of exact stopping rules. For example, exit frequency matrices lead to natural proofs of two

non-trivial time reversal identities for exact mixing measures Tmix = T̂mix and Treset = T̂forget,

where the reverse forget time T̂forget is defined below [4]. In this final section, we define a

generalized Green’s function Gτ for a given target distribution τ , and we explore some duality

results corresponding to time reversal of random walks.

In Section 3, we showed that Green’s function is the exit frequency matrix Xπ altered so

that the row sums are zero. In other words, we can think of G as a signed exit frequency

matrix (where “negative exit frequencies” are allowed). From this vantage point, we define the

generalized Green’s function Gτ be the n× n matrix with entries

Gτ (i, j) = xj(i, τ) − πjH(i, τ) = πj(H(τ, j) −H(i, j)) = πj

(

∑

k

τkH(k, j) −H(i, j)

)

.

More compactly, Gτ = Xτ − hπ⊤ where hi = H(i, τ). Generalizing the discussion in Section 3,

this matrix satisfies

Gτ∆ = I − 1⊤τ,

Gτ1 = 0.

For example, when the target is the singleton distribution τ = k, we have

Gk(i, j) = πj(H(k, j) −H(i, j)).

The kth row of Gk is all-zero, while the kth column satisfies Gk(i, k) = −πiH(i, k).

17



Naturally, we are interested in finding Green’s function other useful target distributions.

Here, we discuss a pair of target distributions that are important for stopping rules: the reverse

forget distribution and the π-core distribution. These distributions are related to the stationary

distribution, and they enjoy a duality relationship, as described below.

For full generality, we consider the weighted digraph case, and we will talk about “the

Markov chain P” rather than “the random walk on weighted digraph G with transition matrix

P .” The Markov chain P has a corresponding dual chain

P̂ = Π−1P⊤Π.

Time reversal converts random walks governed by P into random walks governed by P̂ . We

continue to employ hatted notation to indicate quantities associated with the reverse chain P̂ .

For example, Ĥ(i, j) is the expected length of a random walk from i to j on the reverse chain,

and X̂π is the exit frequency matrix for optimal mixing rules on the reverse chain.

Next, we introduce another mixing measure. The forget time is defined as

Tforget = min
τ

max
i∈V

H(i, τ).

Lovász and Winkler [17] proved the remarkable equality Treset = T̂forget and that the reverse

forget time is achieved uniquely by the distribution µ̂ where

µ̂i = πi

(

1 +
∑

j∈V

pijH(j, π) −H(i, π)

)

.

The duality between π (on the forward chain) and µ̂ (on the reverse chain) was placed in a

broader framework in [4] via exit frequency matrices. The connection is summarized by the

matrix equation

X̂µ̂ = Π−1
(

Xπ − 1b⊤
)⊤

Π where bi = min
j∈V

xj(i, π).

The reverse forget distribution µ̂ is also called the π-contrast distribution π∗. The π-core π∗∗ is

the distribution whose (forward) exit frequency matrix is

Xπ∗∗ = Xπ − 1b⊤.

The π-core π∗∗ is fully dual to µ̂ = π∗: their exit frequency matrices satisfy

X̂µ = Π−1X⊤
π∗∗Π. (26)
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Furthermore, the formula for π∗∗ mirrors that of the forget distribution µ̂:

π∗∗
i = πi

(

1 +
∑

j∈V

p̂ijĤ(j, µ̂) − Ĥ(i, µ̂)

)

.

We now calculate Green’s function for µ̂ = π∗ and π∗∗ for the reverse chain and forward

chain, respectively. The Green’s functions for these distributions exhibit some nice duality

properties. First, we consider µ̂ on the reverse chain:

Ĝµ̂(i, j) = x̂j(i, µ̂) − πjĤ(i, µ̂) = πj(Ĥ(µ̂, j) − Ĥ(i, j)).

We can use equation (26) to get an alternative formula:

Ĝµ̂(i, j) = x̂j(i, µ̂) − πj
∑

k∈V

x̂k(i, µ̂) =
πj
πi

xi(j, π
∗∗) − πj

∑

k∈V

πk
πi

xi(k, π
∗∗)

= πj

(

H(j, π∗∗) + H(π∗∗, i) −H(j, i) −
∑

k∈V

πk(H(k, π∗∗) + H(π∗∗, i) −H(k, i))

)

= πj

(

H(π, i) −H(j, i) +

(

H(j, π∗∗) −
∑

k∈V

πkH(k, π∗∗)

))

.

=
πj
πi

G(j, i) + πj

(

H(j, π∗∗) −
∑

k∈V

πkH(k, π∗∗)

)

. (27)

In fact, the π-core has the nice property that H(i, π) = H(i, π∗∗) + H(π∗∗, π) for all i ∈ V (see

[4]), so we also have

Ĝµ̂(i, j) =
πj
πi

G(j, i) + πj

(

H(j, π) − Treset

)

.

This equality is reminiscent of the symmetry of equation (11) in the undirected case.

A similar argument for π∗∗ on the forward chain P gives

Gπ∗∗(i, j) = πj(H(π∗∗, j) −H(i, j))

= πj

(

Ĥ(π, i) − Ĥ(j, i) +

(

Ĥ(j, µ̂) −
∑

k∈V

πkĤ(k, µ̂)

))

=
πj
πi

Ĝ(j, i) + πj

(

Ĥ(j, µ̂) −
∑

k∈V

πkĤ(k, µ̂)

)

. (28)

Equations (27) and (28) relate these matrices to the standard Green’s functions on the forward

and reverse chains. We make two observations. First, the quantities on the right hand side

concern the dual chain, and the roles of i and j reversed. Second, the right hand side contains

a correction term that compares the length of rules to the dual distribution. These types of

duality relationships are characteristic for stopping rules on the forward and reverse chains. We

believe that this point of view will be useful in exploring further properties of Green’s function.
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