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UNIVERSALITY OF GRAPHS WITH FEW TRIANGLES AND

ANTI-TRIANGLES

DAN HEFETZ AND MYKHAYLO TYOMKYN

Abstract. We study 3-random-like graphs, that is, sequences of graphs in which the densities
of triangles and anti-triangles converge to 1/8. Since the random graph Gn,1/2 is, in particular,
3-random-like, this can be viewed as a weak version of quasirandomness. We first show that
3-random-like graphs are 4-universal, that is, they contain induced copies of all 4-vertex graphs.
This settles a question of Linial and Morgenstern [9]. We then show that for larger subgraphs,
3-random-like sequences demonstrate a completely different behaviour. We prove that for every
graph H on n ≥ R(10, 10) vertices there exist 3-random-like graphs without an induced copy
of H . Moreover, we prove that for every ℓ there are 3-random-like graphs which are ℓ-universal
but not m-universal when m is sufficiently large compared to ℓ.

1. Introduction

A graph is called ℓ-universal if it contains every ℓ-vertex graph as an induced subgraph.
Universality is a well-studied graph property, for instance, the famous Erdős-Hajnal conjecture
[6] can be formulated in the following form.

Conjecture 1.1 (Erdős-Hajnal). For every integer ℓ there exists an ε > 0 such that every

n-vertex graph G with no clique or independent set of size nε is ℓ-universal.

Recently Linial and Morgenstern [9] asked a question of a similar flavour. Instead of forbid-
ding large cliques and independent sets (anti-cliques) they asked, what happens if the graph G
contains only few cliques and anticliques of a certain order m. The present paper addresses this
question.

First, let us introduce some useful notation and terminology, most of which is standard (see
e.g. [3]). For a graph G write V (G) and E(G) for its sets of vertices and edges, respectively. Let
|G| = |V (G)| denote the order of G and let e(G) = |E(G)| denote its size. The complement of G
is denoted by G. For a set S ⊆ V (G) put G[S] for the subgraph of G induced on the set S. For
a set S ⊆ V (G) and a vertex u ∈ V (G), let NG(u, S) = {w ∈ S : uw ∈ E(G)} denote the set of
neighbours of u in S and let dG(u, S) = |NG(u, S)| denote the degree of u into S. We abbreviate
NG(u, V (G)) to NG(u) and dG(u, V (G)) to dG(u). The former is referred to as the neighbourhood
of u in G and the latter as its degree. We use dG(u, v) to denote the co-degree of u and v, that is,
|NG(u) ∩NG(v)| and the somewhat less standard dG(u,−v) to denote |NG(u) \NG(v)|. Often,
when there is no risk of confusion, we omit the subscript G from the notation above.

For graphs G and H, put DH(G) for the number of induced copies of H in G and pH(G) for
the corresponding density:

pH(G) =

(

n

|H|

)−1

·DH(G) .

The quantity pH(G) can be also interpreted as the probability that a randomly picked set of
|H| vertices of G induces a copy of H.

For H = K2, a single edge, DH(G) is simply e(G) and thus we write pe(G) for pK2
(G),

the edge density of G. For graphs of order 3, since they are determined up to isomorphism
by their size, we write Di(G) for DH(G) and pi(G) for pH(G), where i = e(H). The vector
(p0(G), . . . , p3(G)) is called the 3-local profile of G.

Let G = (Gk)
∞
k=1 be a sequence of graphs, where Gk = (Vk, Ek) is of order nk := |Vk| and nk

tends to infinity with k. If for some graph parameter λ the limit limk→∞ λ(Gk) exists, we denote

Research supported by EPSRC grant EP/K033379/1.

1

http://arxiv.org/abs/1401.5735v1


2 DAN HEFETZ AND MYKHAYLO TYOMKYN

it by λ(G). A sequence G is said to be ℓ-universal if Gk is ℓ-universal for every sufficiently large
k.

Linial and Morgenstern proved in [9] that there exists a constant ρ = 0.159181 . . . such that
every G with p0(G), p3(G) < ρ is 3-universal and asked whether an analogous result holds for
higher universalities.

Question 1.2 ([9]). Given ℓ ≥ 4, is there some ε > 0 such that every graph sequence G with

p0(G), p3(G) < 1
8 + ε is ℓ-universal?

Note that our definition of ℓ-universal sequences is slightly different from the one given in [9].
The latter required additionally that pGk

(H) be bounded away from 0 for each H of order ℓ.
However for our purposes (i.e. answering Question 1.2) these definitions are equivalent due to
the induced graph removal lemma of Alon, Fischer, Krivelevich and Szegedy [1].

It was pointed out by the second author that for every ℓ ≥ 5 the answer to Question 1.2 is
negative. Though his counterexample has already appeared in [9], for the sake of completeness
we will repeat it in the next section of the present paper.

This leaves ℓ = 4 as the only remaining open case of Question 1.2. Our first main result in
this paper, Theorem 1.3, answers it in the affirmative, thereby settling Question 1.2 in full.

Let us define a sequence of graphs G to be t-random-like, or tRL for brevity, if pKt(G) =

pKt
(G) = 2−(

t
2
). Our choice of terminology stems from the fact that such a sequence has

approximately the same number of t-cliques and t-anticliques, that is, independent sets of size
t, as the random graph Gn,1/2. Note that for G to be 2RL it is sufficient to have pe(G) = 1/2.
We will be mostly interested in 3RL sequences; in our terminology G is 3RL if and only if
p0(G) = p3(G) = 1/8.

A standard diagonalisation argument shows that in order to answer Question 1.2 for ℓ = 4
affirmatively, it suffices to prove the following assertion.

Theorem 1.3. Every 3RL sequence is 4-universal.

Theorem 1.3 is related to the quasirandomness of graphs as well. This is a central notion
in extremal and probabilistic graph theory. It was introduced by Thomason in [13] and was
extensively studied in many subsequent papers. In particular, it was proved by Chung, Graham
and Wilson [4] (see also [2] for more details) that if pH(G) = pH(Gn,1/2) holds for every graph H
of order 4, then the same equality holds for every graph H of any fixed size. In the terminology
of [4] this fact is denoted by P1(4) ⇒ P1(s). On the other hand, it was pointed out in [4] that
the property P1(3), that is, containing the “correct” number of induced copies of every 3-vertex
graph, is not sufficient to ensure quasirandomness. As we shall see in Section 2, P1(3) is in fact
equivalent to 3RL. Thus, our results in this paper can be viewed as the study of P1(3). Under
this viewpoint Theorem 1.3 shows that, while 3RL graphs need not satisfy P1(4), they still must
contain a positive density of every possible induced 4-vertex graph.

Having resolved Question 1.2, we know that 3RL implies 4-universality, but is not enough
to ensure ℓ-universality for any larger ℓ. A natural follow up question to ask is, whether there
still exist infinite classes of graphs H that must be contained in every 3RL sequence G. Cliques,
paths, cycles and stars are natural candidates for such classes. We shall answer this question in
the negative by providing counterexamples for each of these classes. In fact, our second main
result, Theorem 1.4 provides, perhaps surprisingly, a counterexample for any single graph which
is not too small. Throughout this paper R(k, ℓ) will stand, as usual, for the corresponding
Ramsey number (see [3] for more background details).

Theorem 1.4. For every graph H of order at least R(10, 10) there exists a 3RL sequence G,
where no Gk ∈ G contains a copy of H as an induced subgraph.

According to [10], the best currently known bounds on R(10, 10) are 798 ≤ R(10, 10) ≤ 23556

(the standard upper bound for Ramsey numbers yields R(10, 10) ≤
(10+10−2

10−1

)

= 48620).

Theorem 1.4 combined with Theorem 1.3 and the induced graph removal lemma [1] immedi-
ately give the following corollary.



UNIVERSALITY OF GRAPHS WITH FEW TRIANGLES AND ANTI-TRIANGLES 3

Corollary 1.5. There exists an ε > 0 such that for every graph H of order at least R(10, 10)
there is a sequence G, where no Gk ∈ G contains an induced copy of H, but pJ(G) > ε for every

4-vertex graph J .

Theorem 1.4 and Corollary 1.5 show that, for sufficiently large values of ℓ, having either the
“correct” densities of triangles and anti-triangles or positive densities of every 4-vertex graph
is far from being enough to ensure ℓ-universality. This goes in stark contrast with G having
the “correct” densities of all induced 4-vertex graphs, which implies that G is quasirandom and
therefore ℓ-universal for every ℓ.

Having constructions of 3RL sequences which are only ℓ-universal for very small values of ℓ
on the one hand and the random graph Gn,1/2 (which is ℓ-universal for every fixed ℓ) on the
other hand, it is natural to ask, if for arbitrarily large ℓ there exists a 3RL sequence which is ℓ-
universal but not f(ℓ)-universal for some function f . This would show that no fixed universality
is sufficient to ensure all other universalities. Our third theorem shows that this is indeed the
case in the following strong sense.

Theorem 1.6. For every ℓ there exists a 3RL sequence Gℓ such that pH(Gℓ) > 0 for every graph

H of order 2ℓ, but Gℓ is not 24ℓ · 2ℓ-universal.
The rest of this paper is organised as follows. In the next section we establish some basic prop-

erties of 3RL sequences and recall the construction of a 3RL sequence which is not 5-universal.
In Section 3 we prove our first main result, Theorem 1.3, by considering each ‘forbidden’ 4-
vertex subgraph individually and applying different methods in different cases. In Section 4 we
prove our second main result, Theorem 1.4. This will be achieved through constructing a 3RL
sequence in which no graph contains a clique of size 10; we think that this construction is also of
independent interest. In Section 5 we prove Theorem 1.6 by adapting a construction of Chung,
Graham and Wilson from their seminal paper on quasirandomness [4]. Finally, in Section 6 we
state a number of open questions and outline some possible extensions of our results.

2. Preliminaries

Goodman’s Theorem [8] gives a formula for the number of triangles and anti-triangles in a
graph G = (V,E) of order n:

D0(G) +D3(G) =
1

2

[

−
(

n

3

)

+
∑

v∈V

[(

dG(v)

2

)

+

(

dG(v)

2

)]

]

. (1)

For densities this translates into

p0(G) + p3(G) =

∑

v∈V

[

(dG(v)
2

)

+
(dG(v)

2

)

]

2
(n
3

) − 1

2
.

Since dG(v) + dG(v) = n − 1 for every v, and due to the convexity of binomial coefficients, the
minimal value of D0 + D3 is achieved whenever the degree of each vertex v is as close to n/2
as possible, resulting in p0 + p3 being asymptotically 1/4. This is known as Goodman’s bound.
Consequently, let us call G a Goodman sequence if (p0+p3)(G) = 1/4; note that we do not require
the existence of the individual limits p0(G) and p3(G). Needless to say that 3RL sequences are
Goodman. Applying a common abuse of terminology, we will talk about Goodman and 3RL
graphs referring to respective sequences of graphs. Notice that, since DH(G) = DH(G), a graph

G is Goodman (respectively 3RL) if and only if G is Goodman (respectively 3RL).
A vertex v of a graph G on n vertices is said to be ε-ordinary if |dG(v) − n/2| < εn and

ε-exceptional otherwise. Occasionally we will suppress the ε in the above notation if there is no
ambiguity. The following fact is an immediate consequence of Goodman’s Theorem. It asserts
that a Goodman graph is essentially n/2-regular.

Proposition 2.1. For every ε > 0 and every Goodman sequence G = (Gk)
∞
k=1 there exists an

integer k0(ε,G) such that for every k ≥ k0 at most εnk vertices of Gk are ε-exceptional.
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Note that, in particular, Goodman graphs are 2RL, thus “Goodman” can be considered an
intermediate level between 2RL and 3RL. This was already pointed out by Chung, Graham and
Wilson [4] (“P1(3) ⇒ P0 ⇒ P1(2)” in their terminology; Corollary 2.3 below states that P1(3)
and 3RL are equivalent).

Proof. Consider a graph G of order n in which at least εn vertices are ε-exceptional. Due to the
convexity of binomial coefficients, each exceptional vertex v contributes to the right hand side
of (1) at least

(

dG(v)

2

)

+

(

dG(v)

2

)

≥
(

(1/2 − ε)n

2

)

+

(

(1/2 + ε)n

2

)

+O(n)

=
(

1 + 4ε2
)

[(

n/2

2

)

+

(

n/2

2

)]

+O(n) .

If this happens εn times, then (D0 + D3)(G) exceeds its minimum possible value by at least
cε3n3 for some constant c > 0. Therefore (p0 + p3)(G) > 1/4 + c′ε3 + o(1) for some absolute
constant c′ > 0. This can only happen finitely many times in a Goodman sequence. �

Conversely, it is easy to see that every G satisfying the above is Goodman. In other words,
Proposition 2.1 gives an alternative characterisation of Goodman sequences.

The next lemma and its corollary can be viewed as a strengthening of the 3-universality
result from [9] (although, unlike Linial and Morgenstern, we do not optimise the error term ε).
It provides additional information about the 3-local profile of Goodman graphs, asserting that
it is determined completely by p0 (and, equivalently, by p3).

Lemma 2.2. If G is Goodman then (p1 − 3p3)(G) = (p2 − 3p0)(G) = 0.

Proof. Counting vertex-edge pairs (v, e) of G ∈ G, where v /∈ e in two different ways, we obtain

3D3(G) + 2D2(G) +D1(G) = (n − 2)e(G) . (2)

Similarly, counting such vertex-edge pairs in G, we obtain

3D0(G) + 2D1(G) +D2(G) = 3D3(G) + 2D2(G) +D1(G) = (n− 2)e(G) . (3)

Since, by Proposition 2.1, |e(H) − e(H)| = o(|H|2) holds for every Goodman graph H, we
obtain asymptotic equality between the left hand sides of (2) and (3). Passing to densities, this
translates into

3p3 + p2 = 3p0 + p1 =
1

2
(3p3 + p2 + p1 + 3p0) =

1

2
[(p0 + p1 + p2 + p3) + 2(p0 + p3)] =

3

4
,

hence

p1 =
3

4
− 3p0 = 3p3 .

Similarly, p2 = 3p0. �

As an immediate consequence, we determine the 3-local profile of 3RL graphs.

Corollary 2.3. If G is 3RL then p1(G) = p2(G) = 3/8.

In other words, the 3-local profile of a 3RL graph mirrors that of the random graph Gn,1/2,
justifying our choice of terminology.

The following construction from [9] is known as the iterated blow-up (see e.g. [7]) and demon-
strates that 3RL graphs need not be 5-universal. Let G1

∼= C5 be a 5-cycle. Given Gk, construct
Gk+1 as follows. Take a 5-blow-up of Gk (that is, replace every vertex v of Gk by 5 new vertices
v1, . . . , v5 and draw an edge between ui and vj if and only if there was an edge between u and v),
and add a 5-cycle within each set v1, . . . , v5. Alternatively, Gk+1 can be constructed by taking
a 5k-blow-up of C5 and adding a copy of Gk on each partition class. It is not hard to check
that no Gk contains an induced path on 5 vertices. In order to see that G is 3RL one can either
calculate the densities directly (as in [9]) or observe that G is a sequence of self-complementary
⌊n/2⌋-regular graphs, which by Goodman’s Theorem yields p0(G) = p3(G) = 1/8.



UNIVERSALITY OF GRAPHS WITH FEW TRIANGLES AND ANTI-TRIANGLES 5

Note that this construction also shows that for every ℓ ≥ 5 and every r ≥ 6 there exist
arbitrarily large 3RL graphs which do not contain the path Pℓ of length ℓ− 1 or the cycle Cr as
induced subgraphs. This is because any graph which contains an induced Pℓ for some ℓ ≥ 5 or
an induced Cr for some r ≥ 6 contains an induced P5. The case of the 5-cycle remains open.

3. Proof of Theorem 1.3

We have to show that a sufficiently large 3RL graph G contains each graph of order 4 as an
induced subgraph. Note that, in contrast to Corollary 2.3, we cannot expect the density of H in
G to be random-like for every graph H on 4 vertices. Indeed, it is well-known (see e.g. Theorem
9.3.1 in [2]) that such graphs are quasirandom and thus, in particular, ℓ-universal for any fixed
ℓ.

Since G is 3RL if and only if G is, and the induced subgraphs of the latter are precisely
the complements of induced subgraphs of the former, it suffices to split all 4-vertex graphs into
complementary pairs (the graph P4, the path of length three, is self complementary) and prove
containment for one graph H from each pair. Thus we need only consider the following 6 cases:

• H = K4, the complete 4-vertex graph
• H = K−

4 , the complete graph with one edge missing
• H = C4, the 4-cycle
• H = T+, a triangle with a pendant edge
• H = K1,3, the star (also known as the claw)
• H = P4, the path of length 3

While the graphs above are listed in order of decreasing number of edges, we will consider
them in a different order, starting from what we believe is the simplest case and finishing with
the most difficult. In each of the cases the containment ofH is proved by contradiction, assuming
initially that G is 3RL and H-free (remember that we are always looking for an induced copy of
H).

Case 1: H = T+. It follows by Proposition 2.1 that, for every ε > 0 and sufficiently large n,
if G ∈ G is a graph on n vertices, then it contains at most εn exceptional vertices. The set of
all exceptional vertices of G can intersect at most εn3 triangles. Since G is 3RL, it contains
(1/48 + o(1))n3 triangles and so, for sufficiently large n, there must exist ε-ordinary vertices u,
v and w which form a triangle T in G.

Since G is T+-free, for any x ∈ V (G) \ {u, v, w} we must have dG(x, T ) ∈ {0, 2, 3}. We
partition the vertices of V (G)\{u, v, w} into two sets X = {x ∈ V (G)\{u, v, w} : dG(x, T ) = 0}
and Y = {x ∈ V (G) \ {u, v, w} : dG(x, T ) ∈ {2, 3}}. Since u, v and w are ordinary, on average,
a vertex x ∈ V (G) \ {u, v, w} will have 3/2 + o(1) neighbours in T . Therefore, we must have
n/4− o(n) ≤ |X| ≤ n/2 + o(n) and n/2− o(n) ≤ |Y | ≤ 3n/4 + o(n). Let x ∈ X and y ∈ Y be
arbitrary vertices. Assume without loss of generality that {u, v} ⊆ NG(y, T ). We conclude that
x and y are not adjacent in G as otherwise the vertices x, y, u and v would form an induced
copy of T+ in G.

Since x and y were arbitrary, it follows that there are no edges of G between X and Y . Since
|X| ≥ n/4 − o(n) and at most εn vertices of G are exceptional, there exists some ordinary
x ∈ X. Because of NG(x) ⊆ X, it follows that |X| = n/2 + o(n). Finally, since all but at most
εn vertices of X are ordinary and each of them has degree n/2 + o(n) in X, we conclude that

e(G[X]) ≥
(n/2

2

)

− o(n2).

A similar argument shows that |Y | = n/2+ o(n) and that e(G[Y ]) ≥
(

n/2
2

)

− o(n2). Counting

anti-triangles in G, it follows thatD0(G) = o(n3) and thus p0(G) = 0, contrary to our assumption
that G is 3RL.

Case 2: H = K−
4 . As in Case 1, consider a triangle T = {u, v, w} where u, v and w are ordinary

vertices. Since G is K−
4 -free, for any x ∈ V (G) \ {u, v, w} we must have dG(x, T ) ∈ {0, 1, 3}.

We partition the vertices of V (G) into two sets X = {x ∈ V (G) \ {u, v, w} : dG(x, T ) ∈ {0, 1}}
and Y = V (G) \X. Since u, v and w are ordinary, on average a vertex x ∈ V (G) \ {u, v, w} will
have 3/2 + o(1) neighbours in T . Therefore, we must have n/2− o(n) ≤ |X| ≤ 3n/4 + o(n) and
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n/4− o(n) ≤ |Y | ≤ n/2+ o(n). Considering u, v and arbitrary x, y ∈ Y \ {u, v}, we deduce that
x and y are adjacent in G, for otherwise u ,v, x and y would form an induced copy of K−

4 in G.
It follows that G[Y ] is a clique.

Let z ∈ X be an arbitrary vertex and assume without loss of generality that {z, u} /∈ E(G).
Let y1, y2 ∈ Y \ {u} be arbitrary vertices. If {z, y1} ∈ E(G) and {z, y2} ∈ E(G), then
G[{z, y1, y2, u}] is an induced copy of K−

4 in G. It follows that dG(x, Y ) ≤ 1 for every x ∈ X.
By Proposition 2.1 G is essentially n/2-regular and thus we must have n/2− o(n) ≤ |X|, |Y | ≤
n/2+ o(n) and e(G[X]) ≥

(n/2
2

)

− o(n2). Similarly to Case 1, it follows that p0(G) = 0, contrary
to our assumption that G is 3RL.

Case 3: H = K4. Let G′ be any Goodman (not necessarily 3RL) sequence of K4-free graphs.
Observe that G′ being K4-free is equivalent to NG′(v) being triangle-free for every v ∈ V (G′).
Therefore, by Mantel’s Theorem, e(G′[N(v)]) ≤ d(v)2/4 for every v ∈ V (G′). Since G′ is
Goodman, it follows by Proposition 2.1 that the neighbourhoods of all but o(n) vertices of
G′ ∈ G′, span at most (n/2 + o(n))2/4 = n2/16 + o(n2) edges. Since e(G′[NG′(v)]) is precisely
the number of triangles of G′ that include v, a double counting of the edges in all neighbourhoods
shows that

3D3 =
∑

v∈V (G′)

e(G′[N(v)]) ≤
∑

v∈V (G′)

d(v)2/4 = n · n
2

16
+ o(n3) =

(

3

8
+ o(1)

)(

n

3

)

.

Hence, for any K4-free Goodman sequence G′ the value p3(G′), if it exists, is at most 1/8,
with equality attained only when e(G′[N(v)]) = (1− o(1))d(v)2/4 holds for all but o(n) vertices
v ∈ V (G′). Conversely, G being 3RL implies that equality must be attained, whence we conclude
that e(G[N(v)]) = (1− o(1))d(v)2/4 holds for all but o(n) vertices v ∈ V (G).

Structural information on such ‘nearly extremal’ graphs is provided by the Erdős-Simonovits
stability Theorem [12] which, in this particular case and combined with the above, asserts
that there exists a set U ⊆ V (G) of order (1 − o(1))n such that for every v ∈ U we have
dG(v) = n/2 + o(n) and the neighbourhood N(v) admits a bipartition into parts N1(v) and
N2(v) such that |N1(v)|, |N2(v)| = n/4 + o(n), there are o(n2) edges within each partition class
and (1− o(1))n2/16 edges between the two classes.

Let v ∈ U be an arbitrary vertex. It follows by the above that there exists a vertex u ∈
U ∩ N1(v) such that dG(u,N2(v)) = n/4 + o(n) and dG(u,N1(v)) = o(n) (recall that almost
every vertex has these properties). Let B = NG(u) \NG(v); note that |B| = n/4 + o(n). Since
u ∈ U , its neighbourhood NG(u) must induce an essentially complete bipartite graph with both
parts of order n/4 + o(n). Since N2(u) := N2(v) ∩ NG(u) is of order n/4 + o(n) and contains
o(n2) edges, up to o(n) changes, the only way to achieve this is by taking the bipartition to be
NG(u) = B ∪N2(u). Let w ∈ U ∩N2(u) be a vertex such that dG(w,N1(v)) = n/4 + o(n) and
dG(w,B) = n/4 + o(n); by the above, almost every vertex of U ∩ N2(u) has these properties.
Since w ∈ U , its neighbourhood NG(w) must induce an essentially complete bipartite graph
with both parts of order n/4 + o(n). Up to o(n) changes, the only way to achieve this is by
taking the bipartition to be NG(w) = B ∪N1(v). We conclude that the sets N1(v), N2(u) and
B are of size n/4 + o(n) each and G[N1(v) ∪N2(u) ∪ B] is essentially an n/2-regular tripartite
graph.

Let X = N1(v) ∪N2(u) ∪B and let Y = U \X. On the one hand, |Y | = n/4 + o(n) and the
degree of every vertex in Y is n/2+ o(n) entailing that there are Ω(n2) edges between X and Y .
On the other hand, all but o(n) vertices of X have degree n/2+ o(n) in G and in G[X] entailing
that there are o(n2) edges between X and Y . This is clearly a contradiction.

Case 4: H = K1,3. Let G′ be a Goodman sequence of K1,3-free graphs. Note that G′ being
K1,3-free is equivalent to NG′(v) being anti-triangle-free for every v ∈ V (G′), that is, the non-
edges in NG′(v) must not form a triangle. Similarly to Case 3, it follows from Mantel’s Theorem
and Proposition 2.1 that the neighbourhoods of all but o(n) vertices of G′, span at most (n/2+
o(n))2/4 = n2/16 + o(n2) non-edges. Double counting of the non-edges in all neighbourhoods
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shows that

D2 =
∑

v∈V (G′)

e(G′[NG′(v)]) = n ·
(

n2/16 + o(n2)
)

=

(

3

8
+ o(1)

)(

n

3

)

.

Hence, for any Goodman sequence G′, the value p2(G′), if it exists, is at most 3/8, where by the
Erdős-Simonovits stability Theorem, equality is attained only when almost all neighbourhoods
are close to being disjoint unions of two complete graphs of order n/4 each. Since G is 3RL, it
follows by Corollary 2.3 that this must indeed be the case.

Let U ⊆ V (G) be a set of order (1 − o(1))n such that for every v ∈ U we have dG(v) =
n/2 + o(n) and the neighbourhood N(v) admits a bipartition into parts N1(v) and N2(v) such
that |N1(v)|, |N2(v)| = n/4 + o(n), there are (1 − o(1))n2/32 edges within each partition class
and o(n2) edges between the two classes.

Let v ∈ U be an arbitrary vertex. It follows by the above that there exists a vertex u ∈ A(u) :=
U ∩ N1(v) such that |A(u)| = n/4 + o(n), dG(u,A(u)) = n/4 + o(n) and dG(u,N2(v)) = o(n).
Let B = NG(u) \ NG(v); note that |B| = n/4 + o(n). Since u ∈ U , its neighbourhood NG(u)
must be close to a union of two complete graphs of order n/4 each. Since G[A(u)] is essentially
a complete graph on n/4 + o(n) vertices, it follows that G[B] is essentially a complete graph on
n/4 + o(n) vertices as well. Moreover, there are o(n2) edges of G between A(u) and N2(v) ∪B.

Let X = U \ (A(u)∪N2(v)∪B); note that |X| = n/4+ o(n). Since dG(w) = n/2+ o(n) holds
for every w ∈ A(u), it follows that {x, y} ∈ E(G) for all but o(n2) pairs (x, y) ∈ A(u)×X. Let
z ∈ A(u)\{u} be an arbitrary vertex. Up to o(n) vertices, its neighbourhood is A(u)∪X and so
is far from being the disjoint union of two cliques of order n/4 each, contrary to the definition
of U .

Case 5: H = P4. For graphs with no induced P4, also known as cographs, we have the following
structural characterisation due to Seinsche [11]: if G is induced P4-free then either G or G is
disconnected (the other one is thereby forced to be connected). Let W ⊆ V (G) be an arbitrary
set of order at least 2. Clearly G[W ] is induced P4-free and so, by the above characterisation,
either G[W ] or G[W ] is disconnected (note that it might be G[W ] for certain W ⊆ V (G) and
G[W ] for others).

Seinsche’s characterisation allows us to construct a sequence P0,P1, . . . of partitions of V (G)
as follows. P0 = {V (G)} and, for every i ≥ 0, Pi+1 is obtained through partitioning each W ∈ Pi

with |W | ≥ 2 into the connected components of either G[W ] or G[W ], depending which of the
two is disconnected. For every i ≥ 0, let Vi denote a largest set in Pi. For an arbitrarily small
ε > 0 and sufficiently large n let j ≥ 0 denote the smallest index for which |Vj+1| < (1 − ε)n;
clearly such an index j must exist. Since G is Goodman, it follows by Proposition 2.1 that at
most εn vertices of G are ε-exceptional. Since |Vj+1| < (1 − ε)n, the only way to ensure that
there will not be too many exceptional vertices in G is to split Vj in Pj+1 into two sets W1

and W2 of size n/2 − 2εn ≤ |W1|, |W2| ≤ n/2 + 2εn, and possibly some additional small sets.
Indeed, otherwise every vertex of V (G) \ Vj+1 would be exceptional. Assume first that G[Vj ] is
disconnected. Then there are at most 3εn2 pairs {x, y} ⊆ W1 and at most 3εn2 pairs {x, y} ⊆ W2

which are not adjacent in G. It follows that D0(G) ≤ cεn3 for some absolute constant c and thus
p0(G) = 0. Similarly, if G[Vj] is disconnected then p3(G) = 0. This contradicts our assumption
that G is 3RL.

Case 6: H = C4. Consider the expression
∑

{u,v}∈E(G)

(

dG(u, v)

2

)

.

On the one hand, it counts DK−

4

(G) + 2DC4
(G), and since, by assumption, DC4

= 0, it must

equal DK−

4

. Now, since by Corollary 2.3

∑

{u,v}∈E(G)

dG(u, v) = D2(G) =
3

8

(

n

3

)

+ o(n3) =
n3

16
+ o(n3) ,
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using the convexity of binomial coefficients we obtain

DK−

4

=
∑

{u,v}∈E(G)

(

dG(u, v)

2

)

≥ e(G)

( 1
e(G)

∑

{u,v}∈E(G) dG(u, v)

2

)

(4)

=
n2

4

(

n/4

2

)

+ o(n4) =
n4

128
+ o(n4) .

Thus

pK−

4

(G) ≥ 3/16 . (5)

Now consider the expression
∑

{u,v}∈E(G)

dG(u,−v) · dG(v,−u) .

On the one hand, it counts DP4
+ 4DC4

, which by assumption equals DP4
. On the other hand,

since G is Goodman, by Proposition 2.1 we have d(u) = d(v) + o(n) for all but at most o(n2)
pairs of vertices, hence, d(u,−v) = d(v,−u) + o(n) for almost all pairs. As a result, we obtain

∑

{u,v}∈E(G)

d(u,−v) · d(v,−u) =
1

4

∑

{u,v}∈E(G)

(d(u,−v) + d(v,−u))2 + o(n4) .

Now, since

∑

{u,v}∈E(G)

(d(u,−v) + d(v,−u)) = 2D2(G) =
3

4

(

n

3

)

+ o(n3) =
n3

8
+ o(n3) ,

the Cauchy-Schwarz inequality yields

DP4
=

1

4

∑

{u,v}∈E(G)

(d(u,−v) + d(v,−u))2 + o(n4) (6)

≥ 1

4
· e(G)





1

e(G)

∑

{u,v}∈E(G)

(d(u,−v) + d(v,−u))





2

+ o(n4)

=
1

4
· n

2

4
·
(n

2

)2
+ o(n4)

=
n4

64
+ o(n4) .

Thus

pP4
(G) ≥ 3/8 . (7)

Finally, double counting pairs of edges in G not sharing a vertex, we obtain

e(G)2

2
+ o(n4) =

(

n2/4

2

)

+ o(n4) = D2K2
+DP4

+DT+ + 2DC4
+ 2DK−

4

+ 3DK4
,

where 2K2 is the complement of C4. Thus

p2K2
+ pP4

+ pT+ + 2pK−

4

+ 3pK4
=

3

4
.

Since from (5) and (7) we know that 2pK−

4

(G) + pP4
(G) ≥ 3/4, we deduce that pT+(G) =

pK4
(G) = 0, pK−

4

(G) = 3/16, and pP4
(G) = 3/8. The last two identities can only hold if in (4)

and (6) we have equality up to o(n4). The former would imply that d(u, v) must be close to its
average n/4+o(n) for all but o(n2) pairs {u, v} ∈ E(G). Similarly, an equality up to o(n4) in (6)
implies that d(u,−v) = d(v,−u)+o(n) = n/4+o(n) for almost every pair {u, v} ∈ E(G), which,
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given Proposition 2.1, also means that d(u, v) = n/4 + o(n) for every such pair. In total, we
obtain that all but o(n2) pairs of vertices {u, v} have n/4+ o(n) joint neighbours, and therefore

∑

u,v∈V

∣

∣

∣
d(u, v) − n

4

∣

∣

∣
= o(n3) . (8)

However, equation (8) is one of several equivalent definitions of a quasirandom graph (see
e.g. Theorem 9.3.1 in [2]) and thus all induced densities in G are random-like. In particular,
contrary to our assumption, G cannot be induced C4-free.

With contradiction obtained for each 4-vertex graph H, the proof of Theorem 1.3 is concluded.

4. Large induced subgraphs

Our aim in this section is to prove Theorem 1.4. The main ingredient of our proof will be a
construction of a 3RL sequence with no cliques of order at least 10.

Given any graph G of order n, we construct an (n − 1)-regular graph H = f(G) of order
2n as follows. Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint copies of G = (V,E),
where V = {u1, . . . , un}, V1 = {v1, . . . , vn} and V2 = {v′1, . . . , v′n}. Set V (H) = V1 ∪ V2 and

E(H) = E1 ∪ E2 ∪ F , where F =
{

{vi, v′j} : 1 ≤ i 6= j ≤ n and {ui, uj} /∈ E
}

. That is, we take

two identical copies of G and connect two distinct vertices, one from each copy, by an edge of
H if and only if they are not adjacent in G.

The above construction is very similar to the tensor product of G and K2; the sole difference
is that we exclude the “vertical” edges, that is, edges between vi and v′i. Tensor products of
graphs were first defined by Thomason in [14]. See Section 6 for more details.

Note that for any sequence G = (Gk)
∞
k=1, the corresponding sequence f(G) = (f(Gk))

∞
k=1 is

automatically Goodman. The next question to ask is, under what conditions is f(G) 3RL.
Lemma 4.1. H = f(G) is 3RL if and only if (p0 + p2)(G) = (p1 + p3)(G) = 1/2.

Proof. For every 0 ≤ i ≤ 3, let Ti denote the number of triangles of H with exactly i vertices in
V1. It is evident that D3(H) = T0 + T1 + T2 + T3 = 2(T0 + T1). Clearly T0 = D3(G). Moreover,
every triangle with exactly one vertex in V1 corresponds to three vertices which induce precisely
one edge in G and thus T1 = D1(G). It follows that D3(H) = 2(D3(G) +D1(G)) and thus

p3(H) =
1

4
[p1(G) + p3(G)] + o(1) .

We conclude that p3(H) = 1/8 if and only if (p1+ p3)(G) = 1/2. An analogous argument shows
that p0(H) = 1/8 if and only if (p0 + p2)(G) = 1/2. �

Given Lemma 4.1, our aim is to construct a sequence G with p1(G) + p3(G) = 1/2 such
that f(G) does not contain a clique of some fixed size. Given a positive integer k and a real
number r ≥ 2 that might depend on k, let Gr

k = (Vk, Ek), where Vk = {0, 1, . . . , k − 1} and
Ek = {{i, j} : i − j mod k > k/r and j − i mod k > k/r}; let G = (Gr

k)
∞
k=1. Since any ⌈r⌉

vertices of Vk must contain two whose distance in the cyclic group Ck is at most k/r, the largest
clique of Gr

k is of order at most ⌈r⌉ − 1. We claim that a similar statement holds in H.

Claim 4.2. For every r ≥ 5 and sufficiently large k, the largest clique in H = f(Gr
k) is of order

at most ⌈r⌉ − 1.

Proof. For the sake of clarity of presentation let us assume that r is an integer. Suppose for
a contradiction that φ is an embedding of Kr in H. Let J denote the resulting copy; let
U1 = V1 ∩ V (J) and U2 = V2 ∩ V (J). Since, as observed above, Gr

k does not contain Kr as a
subgraph, it follows that U1 6= ∅ and U2 6= ∅. Let t ≥ s ≥ 1 be integers such that s = |U1| and
t = |U2|; note that t ≥ ⌈r/2⌉ ≥ 3. Since every u ∈ U1 and every v ∈ U2 are joined by an edge of
H and yet {vi, v′i} /∈ E(H) for every 1 ≤ i ≤ n, it follows that Gr

k contains the complete bipartite
graph Ks,t as an induced subgraph. Let u ∈ U1 and let w1, w2 and w3 be three of its neighbours
in U2. These four vertices correspond to four vertices i and j1 < j2 < j3 of Vk such that j1, j2
and j3 are pairwise far in Ck but i is close to all of them. This is clearly impossible. �
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It remains to find a value of r for which (p1 + p3)f(G) = 1/2, where G = (Gr
k)

∞
k=1. Observe

that for r > k the graph Gr
k is a complete graph, whereas for r = 2 the graph Gr

k is empty.
Hence there must exist a real number r for which (p1+ p3)(G

r
k) = 1/2+ o(1). A straightforward

calculation shows that p3(G
r
k) =

(

r−3
r

)2
+o(1) and p1(G

r
k) =

3
r2 +o(1), whence the desired value

of r is achieved at 2
√
3 + 6 ≈ 9.46. For this value of r the sequence H = f(G) is 3RL but does

not contain a clique of order 10.

Theorem 1.4 is a simple corollary of the aforementioned result for cliques of order 10. Before
showing this, let us remark that, for every r ≥ 10, there exists a 3RL graph with no induced
copy of K1,r. This is simply because Kr is an induced subgraph of K1,r, so H, the sequence of
complements of the graphs f(Gr

k) we have just constructed, does not contain any star of order
11 or greater as an induced subgraph. Now let J be any graph of order n ≥ R(10, 10). By
Ramsey’s Theorem J must contain K10 or K10 as a subgraph. In the former case H is 3RL but
without J as an induced subgraph and in the latter case H is 3RL but without J as an induced
subgraph. This concludes the proof of Theorem 1.4.

5. A construction of high universality

In this section we prove Theorem 1.6, to which end we shall use the following construction.
Given vertex disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), where |V1| = |V2|, we construct

a graph H = G1 ⊕G2 by joining G1 and G2 via a random bipartite graph. Formally, V (H) =
V1∪V2 and E(H) = E1 ∪E2 ∪E3, where E3 is formed by joining independently at random each
pair (x, y) ∈ V1 × V2 with probability 1/2.

The special case of this construction in which G1 = Kn,n and G2 = Kn,n was used by Chung,
Graham andWilson [4] in order to demonstrate that a graphH that behaves random-like with re-
spect to all 3-vertex subgraphs, that is, when (p0(H), p1(H), p2(H), p3(H)) = (1/8, 3/8, 3/8, 1/8),
need not be quasirandom. Note that, due to Corollary 2.3, being random-like with respect to
all 3-vertex subgraphs is equivalent to being 3RL. The following two lemmas provide more
information on the 3-local profile of G1 ⊕G2.

Lemma 5.1. H = G1 ⊕G2 is a.a.s. Goodman if and only if G1 and G2 are Goodman.

Proof. For every 0 ≤ i ≤ 3 and sufficiently large n, the probabilities of a random vertex-triple
of V (H) having exactly i vertices in G1 are roughly binomially distributed. It thus follows by
the definition of G1 ⊕G2 and by standard bounds on the tails of the binomial distribution that
a.a.s.

p3(H) =
1

8
(p3(G1) + p3(G2)) +

3

8
·
(

1

2

)2

· (pe(G1) + pe(G2)) , (9)

and similarly a.a.s.

p0(H) =
1

8
(p0(G1) + p0(G2)) +

3

8
·
(

1

2

)2

·
(

pe(G1) + pe(G2)
)

. (10)

Since pe(G) + pe(G) = 1, adding the above equations we obtain

p0(H) + p3(H) =
1

8
[(p0(G1) + p3(G1)) + (p0(G2) + p3(G2))] +

3

16
,

which equals 1/4 if and only if

(p0(G1) + p3(G1)) + (p0(G2) + p3(G2)) =
1

2
. (11)

By Goodman’s bound, (11) can only hold when p0(G1)+ p3(G1) = p0(G2)+ p3(G2) =
1
4 , that

is, when both G1 and G2 are Goodman. �

Lemma 5.2. H = G1 ⊕G2 is a.a.s. 3RL if and only if G1 and G2 are Goodman and pi(G1) =
p3−i(G2) for all 0 ≤ i ≤ 3.
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Proof. If G1 and G2 satisfy the conditions of the lemma, then pe(G1) = pe(G2) = 1/2 and
p3(G1) + p3(G2) = p3(G1) + p0(G1) = 1/4. It follows from (9) that p3(H) = 1/8. Similarly, the
conditions of the lemma and (10) yield p0(H) = 1/8, whence we conclude that H is 3RL.

Conversely, if H is 3RL, it is Goodman, so by Lemma 5.1 G1 and G2 must be Goodman as
well, in which case pe(G1) = pe(G2) = 1/2, and the identities (9) and (10) transform into

1

8
= p3(H) =

1

8
(p3(G1) + p3(G2)) +

3

32
and

1

8
= p0(H) =

1

8
(p0(G1) + p0(G2)) +

3

32
.

It follows that

p0(G1) + p0(G2) = p3(G1) + p3(G2) =
1

4
= p0(G1) + p3(G1) = p0(G2) + p3(G2).

Thus p0(G1) = p3(G2) and p3(G1) = p0(G2). By Lemma 2.2 we also have p1(G1) = p2(G2) and
p2(G1) = p1(G2). �

Since two 3RL graphs satisfy the conditions of Lemma 5.2, we obtain the following useful fact
as an immediate corollary.

Corollary 5.3. If G1 and G2 are 3RL then G1 ⊕G2 is a.a.s. 3RL.

Lemma 5.2 and Corollary 5.3 allow us to iterate the construction G1⊕G2, taking the aforemen-
tioned example of Chung, Graham and Wilson as our starting point. Define G1 := Kn,n ⊕Kn,n

and having constructed Gℓ, define Gℓ+1 := Gℓ ⊕ Gℓ. Let Gℓ = (Gℓ)
∞
n=1, that is, we fix the ℓ’s

iteration and let n go to infinity. By Lemma 5.2 the sequence G1 is a.a.s. 3RL and by Corollary
5.3 it follows inductively that for each ℓ > 1 the sequence Gℓ is a.a.s. 3RL.

Each graph Gℓ ∈ Gℓ consists of 2ℓ “deterministic” components, each of which is either a
copy of Kn,n or its complement. The edges connecting vertices from different components are
picked independently at random with probability 1/2 each. Now, if we select 2ℓ vertices from Gℓ

uniformly at random, the probability of choosing precisely one vertex from each deterministic
component is a positive function of ℓ. Since the obtained graph contains only randomly picked
edges, the expected proportion of induced copies of any graph H of order 2ℓ is also a positive
function of ℓ. Hence, for a fixed ℓ and n tending to infinity we will have pH(Gℓ) > 0 for each
such graph G.

On the other hand, any subgraph of Gℓ of order m = 24ℓ · 2ℓ, contains by the pigeonhole
principle either a clique or an independent set of size 12ℓ. So assuming that Hℓ is m-universal,
every graph of order m must contain such a set. However, the well-known lower bound on
Ramsey numbers (see e.g. [3]) states that there exist graphs on 212ℓ/2 > m vertices without
a clique or an independent set of size 12ℓ, a contradiction. Thus we conclude that Gℓ is not
m-universal, thereby completing the proof of Theorem 1.6.

Remark. The standard proof of the bound R(k, k) > 2k/2 has stronger consequences. Namely,
it shows that for n = 2k/2 with high probability a random graph on n vertices does not contain
an induced copy of Kk or Kk. Applying this fact to the proof of Theorem 1.6 shows that the
proportion of graphs of order m contained in Hℓ vanishes as ℓ tends to infinity. In other words,
not only is Hℓ not m-universal, it actually contains “very few” different induced subgraphs of
order m.

6. Discussion

There are many intriguing open problems regarding random-like sequences and universality.
Several of them, including some problems on universality of tournaments, can be found in [9].

It would be very interesting to generalise our results to m-random-like sequences, that is,

to study universalities of sequences whose densities of m-cliques and m-anticliques is 2−(
m
2 ).

However, this seems to be a much more difficult task, since for m > 3 we no longer have



12 DAN HEFETZ AND MYKHAYLO TYOMKYN

the analogue of Goodman’s Theorem. In fact, in our proof of Theorem 1.3 we made use of
the “lucky coincidence” that the random-like number of triangles and anti-triangles is also the
minimal possible. Disproving a conjecture of Erdős [5], it was shown by Thomason [14] that this
is no longer true for m ≥ 4. It would therefore also be interesting to investigate universalities of
graphs whose densities of cliques and anti-cliques are the smallest possible rather than random-
like.

Since 3RL is not enough to ensure 5-universality, one might ask which stronger random-like
properties suffice. We propose the following question.

Question 6.1. Is it true that every sequence G that is m-random-like for every m ≤ M is

M -universal?

By Theorem 1.3 the answer to Question 6.1 is affirmative for M ≤ 4, so M = 5 is the first
open case. Note that the iterated blow-up construction used to prove that 3RL sequences are
not necessarily 5-universal is not 4RL and thus does not provide a negative answer to Question
6.1.

Our proof of Theorem 1.3 established the existence of every possible 4-vertex induced subgraph
H in a 3RL sequence G. As noted in the Introduction, it follows from the induced graph removal
lemma that in fact the corresponding density pH(G) must be bounded away from 0. It would be
interesting to determine, for every 4-vertex graph H, the minimum density pH(G) over all 3RL
sequences G.
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