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PROBABILISTIC DIVIDE-AND-CONQUER: A NEW EXACT
SIMULATION METHOD, WITH INTEGER PARTITIONS AS AN

EXAMPLE

RICHARD ARRATIA AND STEPHEN DESALVO

Abstract. We propose a new method, probabilistic divide-and-conquer, for improving the
success probability in rejection sampling. For the example of integer partitions, there is
an ideal recursive scheme which improves the rejection cost from asymptotically order n3/4

to a constant. We show other examples for which a non-recursive, one-time application
of probabilistic divide-and-conquer removes a substantial fraction of the rejection sampling
cost.

We also present a variation of probabilistic divide-and-conquer for generating i.i.d. sam-
ples that exploits features of the coupon collector’s problem, in order to obtain a cost that
is sublinear in the number of samples.
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1. Introduction.

1.1. Exact simulation. The task of simulation is to provide one or more samples from
a set according to some given probability distribution. For many combinatorial problems,
the given distribution is the uniform choice over all possibilities of a fixed size. A host of
combinatorial objects, including assemblies, multisets, and selections, may be expressed, see
[7], in terms of a process of independent random variables, conditional on a weighted sum
— the object size — equalling a given target.

The “Boltzmann sampler,” see [18], samples this independent process once and is content
with an object size that is close to the given target. The rejection sampling algorithm, on
the other hand, samples this independent process repeatedly until the condition is satisfied.
The main measure of the efficiency of such a rejection sampling algorithm is the expected
number of times the independent process must be sampled before the condition is satisfied.

The essence of probabilistic divide-and-conquer — PDC — is random sampling of condi-
tional distributions, which, when appropriately pieced together, represent a sample from the
target distribution. We assume throughout that the target object S may be expressed as a
pair (A,B), where

(1) A ∈ A, B ∈ B have given distributions,

(2) A,B are independent,

(3) h : A× B → {0, 1}
satisfies p := Eh(A,B) ∈ (0, 1], 1

where, of course, we also assume that h is measurable, and

(4) S ∈ A× B has distribution L(S) = L( (A,B) | h(A,B) = 1),

i.e., the law of S is the law of the independent pair (A,B) conditional on having h(A,B) = 1.
Then rejection sampling may be viewed as sampling (A1, B1), (A2, B2), . . . from the law of

(A,B) until h(Ai, Bi) = 1. PDC can be described as sampling from the law of (A | h(A,B) =
1) first, say with observation x, and then sampling from the law of (B | h(x,B) = 1). A simple
comparison of algorithms is below.

Algorithm 1 Rejection Sampling

1. Generate sample from L(A), call it a.
2. Generate sample from L(B), call it b.
3. Check if h(a, b) = 1; if so, return (a, b), otherwise restart.

Algorithm 2 Probabilistic Divide-and-Conquer

1. Generate sample from L(A | h(A,B) = 1), call it x.
2. Generate sample from L(B | h(x,B) = 1), call it y.
3. Return (x, y).

1 The requirement that p > 0 is a choice we make here, for the sake of simpler exposition; there are p = 0
examples where divide-and-conquer is useful, see [14]. In cases where p = 0, the conditional distribution,
apparently specified by (4), needs further specification — this is known as Borel’s paradox.
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Our main tool is von Neumann’s acceptance/rejection method, which is not necessary for
PDC, but which provides a simple and effective means for sampling from the conditional
distributions in Algorithm 2. We review this method in Section 2.2. Our primary application
of Algorithm 2 with von Neumann’s rejection method is Algorithm 3, where the rejection
cost is split between Step 2 for sampling A, and Step 3 for sampling B. Furthemore, Step 3
in Algorithm 3 can be performed either directly or recursively; we give examples of each in
Section 3.

Algorithm 3 Probabilistic Divide-and-Conquer via von Neumann

1. Generate sample from L(A), call it a.
2. Accept a with probability t(a), where t(a) is a function of L(B)

and h; otherwise, restart.
3. Generate sample from L(B | h(a, B) = 1), call it y.
4. Return (a, y).

A key class of examples is discussed in Section 3.3, where the calculation for t(a) is very
simple, and the speedup is order of

√
n for the specific examples relating to k-cores and set

partitions, and of order n1/3 for the specific example relating to plane partitions. In these
examples, the PDC is not recursive and the programming is very easy. At the opposite
extreme, when B can be made into a scaled replica of the original problem, and calculation
of t(a) is still easy enough — as in the example of ordinary integer partitions, thanks to
results of Hardy and Ramanujan [22], Rademacher [39] and Lehmer [27, 28] — a recursive,
self-similar PDC is available, and although the algorithm is more involved, this gives the
fastest method for large n.

One progenitor to PDC is by McKay and Wormald [31], where the ability to calculate
likelihood ratios is combined with acceptance/rejection sampling to reduce the number of
loops and double edges implied by a random configuration; the luck required to get a simple
graph is spread over several stages. Another progenitor to PDC, this time in the recursive,
self-similar case, is by Alonso [3] on sampling of Motzkin words. In that case, the rejec-
tion probabilities of partially completed Motzkin words are given explicitly by quotients of
binomial coefficients.

A separate application of our divide-and-conquer paradigm, championed in Section 4, is
what we call mix-and-match. Our desire is to combine A1, A2, . . . , Am, i.i.d. samples from
L(A), and B1, B2, . . . , Bm, i.i.d. samples from L(B), with m2 chances to have h(Ai, Bj) = 1.
However, doing this blindly does not achieve the goal of exact sampling, although it does
yield a consistent estimator; see [13, Section 4.6]. A particularly practical variation, dubbed
deliberately missing data [13, Section 4.4.3], fixes some number v of samples in advance,
and samples A1, A2, . . . and B1, B2, . . . until exactly v matching pairs have been found; this
procedure is notably sublinear in v. Such a comparison of two lists has been exploited
previously, as in [17], the meet-in-the-middle attack, and as in biological sequence matching,
[8, 6], where for two independent sequences of i.i.d. letters, we are interested in finding
contiguous blocks of letters that appear in both sequences.

Finally, we present in Section 5 practical considerations when implementing PDC for
integer partitions on a computer.

1.2. An example: integer partitions. Our first example to illustrate the use of PDC is
uniform sampling of integer partitions of a given size n. Additional examples are given in
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Section 3.3.1. The starting point is a conditional distribution of the form(
(Z1, Z2, . . . , Zn)

∣∣∣∣
n∑

i=1

i Zi = n

)
,

where Z1, . . . , Zn are independent geometric distributions with respective parameters p1, . . . , pn,

with pi = 1−e−iπ/
√
6n, i = 1, . . . , n. The precise description of how they correspond to a ran-

dom integer partition is described in Section 3.2; for now, we simply wish to emphasize the
simple and explicit nature of the following algorithms, in a way accessible to the reader solely
interested in implementing such algorithms on a computer. Many combinatorial structures
follow a similar pattern; see [7].

We now summarize the relevant rejection sampling and PDC algorithms, and postpone
their full explanations until Section 3. One simple measure of an algorithm’s performance
is the asymptotically expected number of times the n–tuple (Z1, . . . , Zn) must be sampled
before the simulation terminates and returns a valid sample, which we call the asymptotic
# rejections in the table below. The following quantities are proved in Section 3.

Algorithm Asymptotic # rejections

Algorithm 4: Rejection Sampling 2 4
√
6n3/4

Algorithm 5: PDC Deterministic 2 π 4
√
6n1/4

Algorithm 6: Self–Similar PDC 2
√
2.

In what follows, U will denote a uniform random variable in the interval (0, 1), independent
of all other random variables, and for use in Algorithm 6 we define, via (11) and (15),

(5) fn(j) := Px(n)


∑

i≤n/2

2i Z2i = 2j


 .

Algorithm 4 Rejection Sampling of Integer Partitions

1. Generate sample from L(Z1, Z2, . . . , Zn), call it (z1, . . . , zn).
2. If

∑n
i=1 i zi = n, return (z1, . . . , zn); else restart.

Algorithm 5 Probabilistic Divide-and-Conquer Deterministic Second Half for Integer Par-
titions

1. Generate sample from L(Z2, . . . , Zn), call it (z2, . . . , zn).
Set k := n−∑n

i=2 i zi.

2. If k ≥ 0 and U < e−k π/
√
6n, return (k, z2, . . . , zn); else restart.

Remark 1.1. Note that while Algorithms 4 and 5 are entirely explicit, Algorithm 6 relies
on our ability to determine whether U < fn(k/2)/maxℓ fn(ℓ). This is not the same as being

able to compute fn(j) for various values of the parameters. The task in Algorithm 6 is
considerably easier, since we simply need to compare the leading bits of each quantity until
there is disagreement. In fact, on average we only need the leading 2 bits of each side of

the inequality in order to determine the rejection in Step 4 of Algorithm 6; see [25] and our
discussion in Section 5.2. There are also several other improvements to Algorithm 6 that
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Algorithm 6 Self–Similar Probabilistic Divide-and-Conquer for Integer Partitions

procedure SS PDC IP(n)
0. If n = 1, return 1; otherwise,
1. Generate sample from L(Z1, Z3, Z5, . . .), call it (z1, z3, z5, . . .).
2. Set k := n−∑i odd i zi.
3. If k < 0 or k is odd, restart.
4. If U < fn(k/2)/maxℓ fn(ℓ),

let (z2, z4, . . .) = SS PDC IP(k/2);
return (z1, z2, . . . , zn, 0, 0, . . .).

Else restart.
end procedure

can be applied at the expense of further complicating the algorithm; these are discussed in
Section 3.5.3.

On a personal computer, the RandomPartition function in Mathematica R©’s Combinatorica
package [29] appears to hit the wall at around n = 220. On the same computer, the recursive
divide and conquer algorithm in Algorithm 6 can handle n as large2 as 258. Relative to the
rejection sampling algorithm in Algorithm 4, analyzed in Section 3.2, the recursive divide-
and-conquer achieves more than a trillion-fold speedup at n = 258.

2. The basic lemma for exact sampling with divide-and-conquer

2.1. Statement of the PDC Lemma. The following lemma is a straightforward applica-
tion of Bayes’ formula.

Lemma 2.1. Suppose X is a random element of A with distribution

(6) L(X) = L(A | h(A,B) = 1 ),

and Y is a random element of B with conditional distribution

(7) L(Y |X = a) = L(B | h(a, B) = 1 ).

Then (X, Y ) =d S, i.e., the pair (X, Y ) has the same distribution as S, given by (4).

2.2. Use of acceptance/rejection sampling. Assume that we know how to generate a
sample from L(A) — this is under the distribution in (1), where A,B are independent. But,
we need instead to sample from an alternate distribution, L(A | h(A,B) = 1), denoted above
as that of X ∈ A. The rejection method recipe, for using Equation (6), may be viewed as
having 2 steps, as follows. Let pa := Eh(a, B).

(a) Find a threshold function t : A → [0, 1], with t(a) proportional to pa, and t(a) ≤ 1,
for all a ∈ A.

(b) Propose i.i.d. samples A1, A2, . . . and independently generate uniform (0,1) random
variables U1, U2, . . ., until Ui ≤ t(Ai).

Assuming that we can find an a∗ where pa achieves its maximum value, then the optimal
function is t(a) = pa/pa∗ . However, we note that even when pa∗ is difficult to compute
exactly, we simply need an upper bound on pa∗ , and really only the ability to compute the

2In Matlab [30], we got up to 249; the 258 is from a C++ implementation; in both cases, memory rather
than time is the limiting factor.
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leading bits of t(a) as needed until a disagreement is reached between the bits of a uniform
random number in [0, 1] and t(a); see Remark 1.1 and Section 3.6.

For comparison with hard rejection sampling, we write

t(a) =
C

p
pa,

where C is allowed to be any positive constant such that C ≤ p/pa∗ , with optimal value
given by C = p/pa∗ . See [16] for a thorough treatment of acceptance/rejection methods.

The expected fraction of proposed samples Ai to be accepted will be the average of t(a)
with respect to the distribution of A, i.e.,

pacc := P(U ≤ t(A)) = E t(A) = C × pA
p

= C,

and the expected number of proposals needed to get each acceptance is the reciprocal of this,
so we define

(8) Acceptance cost :=
1

pacc
=

1

C
=

pa∗

p
,

where the last equality assumes assumes the optimal choice of C. For comparison, if
we were using rejection sampling instead of divide-and-conquer, i.e., proposing pairs (Ai, Bi)
until h(Ai, Bi) = 1, with success probability p at each trial and expected number of proposals
to get one success equal to 1/p, then, ignoring the cost of proposing the Bi, the ratio of old
cost to new might be called a speedup:

(9) speedup =
old cost

new cost
=

1/p

1/C
=

1

pa∗
,

where again the last equality assumes the optimal choice of C. Even though the cost involved
in proposing the B is in general not negligible, in Section 3.3 we will give several natural
examples, similar to Algorithm 5, where it is.

Remark 2.2. For each proposed value a = Ai, we need to be able to compute t(a); this can
be either a minor cost, a major cost, or an absolute impediment, making probabilistic divide-
and-conquer infeasible. All of these variations occur in the context of integer partitions, and
will be discussed in Sections 3.4 – 3.5, and again in Section 3.6; see also Remark 1.1.

Remark 2.3. Hard versus soft rejection. Adopting the language of information theory,
where soft-decision decoders are contrasted with hard-decision decoders, by a hard rejection

function we mean an acceptance/rejection function t : A → [0, 1] whose image is actually
{0, 1}. We may thus consider Algorithm 4 to be more specifically a hard rejection sampling
algorithm. This is in contrast to Algorithm 5, which may be considered a soft rejection
sampling algorithm.

3. Algorithms for simulating random integer partitions of n

The computational analysis that follows uses an informal adaptation of uniform costing;
see Section 3.6. Some elements of the analysis, specifically asymptotics for the acceptance
rate, will be given rigorously, for example in Theorems 3.1, 3.3, and 3.5.

An integer partition, of size n, is a multiset of positive integers, with sum n. We denote
the number of partitions of a given size n by p(n). We typically denote the parts of an integer
partition by λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0, where ℓ is the number of parts in the partition, which
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varies from 1 to n. Instead of listing the part sizes, we can instead record the multiplicities
c1, . . . , cn of each number 1, . . . , n in the integer partition.

For example, the integer partition of size 12 with parts (5, 3, 2, 1, 1) can be equally de-
scribed by the 12–tuple (c1, . . . , c12) = (2, 1, 1, 0, 1, 0, . . . , 0), where ci denotes the number of
parts of size i. All partitions of a given size n satisfy

∑n
i=1 i ci = n, and this motivates the

probabilistic formulation, given in Section 3.2, via formulas (12) and (13).

3.1. For baseline comparison: table methods. A natural algorithm for the generation
of a random integer partition is to find the largest part first, then the second largest part,
and so on. The main cost associated with this method is the storage of all the distributions.
Some details follow.

Let p(≤ k, n) denote the number of partitions of n with each part of size ≤ k, so that
p(≤ n, n) = p(n). These can be quickly calculated from the recurrence

(10) p(≤ k, n) = p(≤ k − 1, n) + p(≤ k, n− k),

where the right hand side counts the number of partitions without any k’s plus the number
of partitions with at least one k. If only a few partitions are desired, the quantities on
the right–hand side above can be computed as needed via the recursion given in Equation
(10) and normalized to form a probability distribution. However, rather than computing
each quantity as it appears, an n-by-n table, whose (i, j) entry is p(≤ i, j), can be computed
and stored. The generation of random partitions is extremely fast once this table has been
created.

An algorithm for simulating a random partition, based on Euler’s identity np(n) =∑
d,j≥1 dp(n − d j), is given in [34, 35], and cited as “the recursive method.” We haven’t

found a clearcut complexity analysis in the literature, although [12] comes close. But we
believe that this algorithm is less useful than the p(≤ k, n) table method — sampling from
the distribution on (d, j) implicit in np(n) =

∑
d,j≥1 d p(n − d j) requires computation of

partial sums; if all the partial sums for
∑

d,j≥1,dj≤m d p(m− d j) with m ≤ n are stored in a

table, the total storage requirement is of order n2 logn, and if they aren’t stored, computing
the values, as needed, becomes a bottleneck.

3.2. Rejection sampling. Fristedt [21] observed that, for any choice x ∈ (0, 1), if Zi ≡
Zi(x) has the geometric distribution given by

(11) P(Zi = k) ≡ Px(Zi = k) = (1− xi) (xi)k, k = 0, 1, 2, . . . ,

with Z1, Z2, . . . independent, and T is defined by

(12) T = Z1 + 2Z2 + · · · ,
then, conditional on the event {T = n}, the partition λ having Zi parts of size i, for
i = 1, 2, . . ., is uniformly distributed over the p(n) possible partitions of n.3

This extremely useful observation is easily seen to be true, since for any nonnegative
integers (c1, c2, . . .) with c2 + 2c2 + · · · = n, specifying a partition λ of the integer n,

P(Zi = ci, i = 1, 2, . . .) =
∏

P(Zi = ci) =
∏(

(1− xi)(xi)ci
)

(13) = xc1+2c2+···
∏

(1− xi) = xn
∏

(1− xi),

3We write Px or P, and Zi or Zi(x) interchangeably, depending on whether the choice of x ∈ (0, 1) needs
to be emphasized, or left understood.
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which does not vary with the partition λ of n.
The event {T = n} is the disjoint union, over all partitions λ of n, of the events whose

probabilities are given in (13), showing that

(14) Px(T = n) = p(n) xn
∏

(1− xi).

If we are interested in random partitions of n, an especially effective choice for x, used in
[21, 37], is

(15) x(n) = exp(−c/
√
n), where c = π/

√
6.

Under this choice, we have, as n → ∞,

(16)
1

n
E x(n)T → 1,

1

n3/2
Varx(n)T → 2

c
;

this is essentially a pair of Riemann sums, see [7, page 106]. If we write σ(x) for the standard
deviation of T , then the second part of (16) says: with x = x(n), as n → ∞,

(17) σ(x) ∼
√

2/c n3/4.

The local central limit heuristic would thus suggest asymptotics for Px(T = n), and these
simplify, using (15) and (16), as follows:

(18) Px(T = n) ∼ 1√
2π σ(x)

∼ 1

2 4
√
6n3/4

.

Hardy and Ramanujan [22] proved the asymptotic formula, as n → ∞,

(19) p(n) ∼ exp(2c
√
n)/(4

√
3n), where c = π/

√
6

.
= 1.282550.

The Hardy–Ramanujan asymptotics (19) and the exact formula (14) combine to show that
(18) does hold.

Theorem 3.1. Analysis of Rejection Sampling.
Algorithm 4 does produce one sample from the desired distribution, and the expected num-

ber of proposals until the algorithm terminates is asymptotically 2 4
√
6n3/4.

Proof. It is easily seen that Px(Zi = 0 for all i > n) → 1. Hence, the asymptotics (18), given
for the infinite sum T , also serve for the finite sum Tn, in which the number of summands,
along with the parameter x = x(n), varies with n. �

Remark 3.2. We are not claiming that the running time of the algorithm grows like n3/4,
but only that the number of proposals needed to get one acceptable sample grows like n3/4.
The time to propose a sample also grows with n. Assigning cost 1 to each call to the random
number generator, with all other operations being free, the cost to propose one sample grows
like

√
n rather than n; details in Section 3.6. Combining with Theorem 3.1, the cost of the

rejection sampling algorithm grows like n5/4.

3.3. Divide-and-conquer with a deterministic second half. Perhaps surprisingly, the
choice A = (Z2, . . . , Zn) and B = Z1 from Algorithm 5 is excellent. Loosely speaking, it
reduces the cost of rejection sampling from order n3/4 to order n1/4.

The analysis of the speedup relative to waiting-to-get-lucky, as defined in (9), is easy.

Theorem 3.3. The speedup, as defined in (9), of Algorithm 5, relative to the rejection

sampling algorithm of Algorithm 4, is asymptotically
√
n/c, with c = π/

√
6. Equivalently,

the acceptance cost is asymptotically 2 π 4
√
6n1/4.
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Proof. We have A = (Z2, . . . , Zn), B = Z1, so with a = (z2, . . . , zn) and ℓ = n− (2z2 + · · ·+
nzn), we have h(a, B) = P(Z1 = ℓ). Following (9), and recalling that x = e−c/

√
n, where

c = π/
√
6, we have

speedup =
1

maxℓ P(Z1 = ℓ)
=

1

P(Z1 = 0)
=

1

1− x
∼

√
n

c
.

Combined with the asymptotic rejection cost for Algorithm 4, as given by Theorem 3.1, this
yields the claimed asymptotic acceptance cost for Algorithm 5. �

To review, step 1 of Algorithm 5 is to simulate (Z2, Z3, . . . , Zn), and accept it with prob-
ability proportional to the chance that Z1 = n − (2Z2 + · · · + nZn). The speedup shows
the brilliance of the idea in [42]: conditional on accepting a value (z2, . . . zn), we are done;
the distribution L(Z1|Z1 +

∑n
i=2 i zi = n) is trivial, so there is no need to “wait for a lucky

Z1”. Algorithm 5 is a soft rejection sampling algorithm; it might be more appropriate to
call it a soft acceptance sampling algorithm. In contrast, the hard rejection in Algorithm 4
can be viewed as simulating (Z2, Z3, . . . , Zn) and then simulating Z1 to see whether or not
Z1 = n − (2Z2 + · · · + nZn); if Z1 does not have the correct value, then one resamples
(Z2, Z3, . . . , Zn), (and then Z1), until finally getting lucky.

3.3.1. Examples: k-cores, set partitions, and plane partitions. The PDC using a determin-
istic second half is remarkably robust and powerful. It is robust in that it applies, and gives
a nontrivial speedup, for a wide variety of simulation tasks.

For a first additional example, there is much recent interest in k-cores, see [26]. There is an
easy-to-calculate bijection between k-cores and integer partitions with λ1 < k. The natural
way to simulate partitions of n with λ1 < k, following Fristedt’s method from Section 3.2,
is to use independent Z1, . . . , Zk−1, but, instead of defining x = x(n) as in (15), we instead
solve numerically for x = x(k, n) which satisfies n =

∑
1≤i<k E iZi =

∑
1≤i<k i x

i/(1 − xi).
Using A = (Z2, . . . , Zk−1) and B = Z1, the optimal threshold function is explicitly given by
P(Z1 = m)/maxj P(Z1 = j). The speedup, relative to rejection sampling, is 1/(1− x(k, n))
— exactly the same form as in Theorem 3.3, except that we no longer have the asymptotic
analysis that 1/(1− x) ∼ √

n/c.
For a second example, which shows that a good deterministic second half is not always

the first component, consider the integer partition underlying a random set partition, where
all set partitions are equally likely. See [7, Section 10.1], for more details; the summary is
that with x = x(n) to solve xex = n, so that x ∼ log n, we want independent Zi where Zi

is Poisson distributed with parameter λi = xi/i!, and getting lucky is to have
∑n

i=1 iZi = n.
For the deterministic second half, we have B = Zj, where we pick j to maximize the speedup.
Thus we want to minimize maxk P(Zj = k), i.e., to maximize λj , so we take j = ⌊x⌋. Since

j = x+ o(
√
x), we have λj = xj/j! ∼ ex/

√
2πx, and since ex = n/x, we have λj ∼ n/

√
2πx3.

As in the previous paragraph, again the optimal threshold function is given by an explicit
expression which is easy to evaluate. The speedup factor is 1/maxk P(Zj = k), which is

asymptotic to
√
2πλj ∼ (2π)1/4

√
n/x3/4. Pittel showed [38] that the expected number of

proposals for rejection sampling is asymptotic to
√

2πn(x+ 1). Hence the expected number

of proposals using the deterministic second half PDC is asymptotically x5/4/(2π)1/4, which

is O(log5/4(n)).
For a third example, we consider a sampling procedure in [9], in which a random plane

partition is generated in two stages. Stage 1 is rejection sampling, where the proposal is an
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array of independent geometrically distributed random variables {Zi,j}, 0 ≤ i, j < n.4 To
get an instance of weight n, the expected number of proposals, using rejection sampling, is
of order n2/3. There is an algorithm, to make the proposal, whose work is of the same order
as the entropy lower bound, which is order of n2/3, so the cost for stage 1 is order of n4/3.
Stage 2 is to apply a bijection due to Pak [36], which, as implemented in [9] takes order of
n log3(n). Combined, [9] has order n4/3 to name a random ensemble of weight n, plus order
n log3 n to implement the bijection, so the order n4/3 first stage dominates the computation.
Using our deterministic second half PDC, with B = Z0,0, we obtain a speedup of order n1/3,
bringing the cost of stage 1 to O(n), and hence bringing the total cost of the algorithm down
to the cost of implementing the bijection, viz., order of n log3 n.

3.4. Divide-and-conquer, by small versus large. We now return to the example of
random sampling of integer partitions. Using x = x(n) from (15), for any fixed choice
b ∈ {1, 2, . . . , n− 1}, we let

(20) A = (Zb+1, Zb+2, . . . , Zn), B = (Z1, . . . , Zb),

noting that one extreme case, b = 1, was handled in Section 3.3. With

(21) TA =

n∑

i=b+1

iZi, TB =

b∑

i=1

iZi,

we want to sample from (A,B) conditional on (TA + TB = n). The standard paradigm for
deterministic divide-and-conquer, that the two tasks should be roughly equal, suggests b of
order

√
n.

In order to simulate X , we will use rejection sampling, as reviewed in Section 2.2. To find
the optimal rejection probabilities, we want the largest C such that

Cmax
j

P(TB = n− j)

P(Tn = n)
≤ 1,

or equivalently,

(22) C =
P(Tn = n)

maxj P(TB = j)
.

Once an A has been accepted, and we have our target n− TA for the sum TB, we simply
propose B = (Z1, Z2, . . . , Zb) until Z1 + 2Z2 + · · · + bZb = n − TA; then the pair (A,B) is
our random partition.

Remark 3.4. The values P(TB = j) for j = 0, 1, . . . , n can be computed using the recursion
(10); what we really have is a variant of the n-by-n table method of Section 3.1, in which
the table is b by n. The computation time for the entire table is b n. However, one only
needs to store the current and previous row, (or with overwriting, only the current row), so
the storage is n. Once we have the last row of the b by n table, we can easily find C and
indeed the entire threshold function t.

4With P(Zi,j ≥ k) = (xi+j+1)k and x = x(n) = exp(−(2ζ(3)/n)1/3), akin to (11) and (15).
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3.5. Self-similar, recursive probabilistic divide-and-conquer: p(z) = d(z)p(z2). The
methods of Sections 3.2 – 3.3 have acceptance costs that go to infinity with n. We now
demonstrate a recursive probabilistic divide-and-conquer algorithm that has an asymptoti-
cally constant acceptance cost.

A well-known result in partition theory is

(23) p(z) =
∏

i

(1− zi)−1 =

(
∏

i

1 + zi

)(
∏

i

1

1− z2i

)
= d(z)p(z2),

where d(z) =
∏

i 1 + zi is the generating function for the number of partitions with distinct
parts, and p(z2) is the generating function for the number of partitions where each part has
an even multiplicity. This can of course be iterated to, for example, p(z) = d(z)d(z2)p(z4),
etc., and this forms the basis for a recursive algorithm.

Recall from (11) in Section 3.2, that each Zi ≡ Zi(x) is geometrically distributed with
P(Zi ≥ k) = xik. The parity bit of Zi, defined by

ǫi = 1(Zi is odd),

is a Bernoulli random variable ǫi ≡ ǫi(x), with

(24) P(ǫi(x) = 1) =
xi

1 + xi
, P(ǫi(x) = 0) =

1

1 + xi
.

Furthermore, (Zi(x) − ǫi)/2 is geometrically distributed, as Zi(x
2), again in the notation

(11), and (Zi(x)− ǫi)/2 is independent of ǫi. What we really use is the converse: with ǫi(x)
as above, independent of Zi(x

2), the Zi(x) constructed as

Zi(x) := ǫi(x) + 2Zi(x
2), i = 1, 2, . . .

indeed has the desired geometric distribution.

Theorem 3.5. The asymptotic acceptance cost for one step of the recursive divide-and-

conquer algorithm using A = (ǫ1(x), ǫ2(x), . . .), B = ((Z1(x) − ǫ1)/2, (Z2(x) − ǫ2)/2, . . .), is√
8.

Proof. The acceptance cost 1/C can be computed via (22) and (18), with

C =
Px(T = n)

maxk Px2(T = n−k
2
)
=

Px(T = n)

maxk Px2(T = k)
∼

1√
2π σ(x)

1√
2π σ(x2)

∼ n−3/4

(n/4)−3/4
= 4−3/4 = 8−1/2.

�

In effect, the recursive algorithm is to determine the (Z1, Z2, . . . , Zn) conditional on (Z1+
2Z2 + . . . = n), by finding the binary expansions: first the 1s bits of all the Zis, then the 2s
bits, then the 4s bits, and so on. Note that the rejection probabilities can be computed in
time which is little-o of the cost to generate the random bits; see Remark 1.1 and Section 3.6.
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3.5.1. Exploiting a parity constraint. Theorem 3.5 states that the asymptotic acceptance
cost for proposals of A = (ǫ1(x), ǫ2(x), . . .) is 2

√
2, and this already takes into account an

obvious lower bound of 2, since the parity of TA = ǫ1 + ǫ2 + · · · + ǫn is nearly equally
distributed over {odd, even}, and rejection is guaranteed if TA does not have the same
parity as n. An additional speedup is attainable by moving ǫ1 from the A side to the B
side: instead of simulating ǫ1, there now will be a trivial task, just as there was for Z1 in
the “b = 1” procedure of Section 3.3. That is, we switch to A = (ǫ2(x), ǫ3(x), . . .) and B =
(ǫ1(x), (Z1(x)−ǫ1)/2, (Z2(x)−ǫ2)/2, . . .); the parity of the new TA dictates, deterministically,
the value of the first component of B, under the conditioning on h(a, B) = 1. The rejection
probabilities for a proposed A are like those in Theorem 3.5, but with an additional factor
of 1/(1 + x) or x/(1 + x), depending on the parity of n+ ǫ2 + · · ·+ ǫn. Since x = x(n) → 1
as n → ∞, these two factors both tend to 1/2, so the constant C as determined by (22)
becomes, asymptotically, twice as large.

Theorem 3.6. The asymptotic acceptance cost for one step of the recursive divide-and-

conquer algorithm using A = (ǫ2(x), ǫ3(x), . . .) and B = (ǫ1(x), (Z1(x) − ǫ1)/2, (Z2(x) −
ǫ2)/2, . . .) is

√
2.

Proof. The acceptance cost 1/C can be computed, as in the proof of Theorem 3.5, with the
only change being that in the display for computing C, the expression under the maxk, which
was P(T (x2) = (n− k)/2) changes to

P

(
2|n− k + ǫ1(x) and T (x2) =

⌊
n− k

2

⌋)

= P(2|n− k + ǫ1(x))× P

(
T (x2) =

⌊
n− k

2

⌋)
∼ 1

2
P

(
T (x2) =

⌊
n− k

2

⌋)
.

�

3.5.2. The overall cost of the main problem and all its subproblems. Informally, for the algo-
rithm in the previous section, the main problem has size n and acceptance cost

√
2, applied

to a proposal cost asymptotic to c0
√
n, for a net cost

√
2 c0

√
n. The first subproblem has

random size, concentrated around n/4, and hence half the cost of the main problem. The
sum of a geometric series with ratio 1/2 is twice the first term, so the net cost of the main
problem and all subproblems combined is 2

√
2 c0

√
n.

In framing a theorem to describe this, we try to allow for a variety of costing schemes. We
believe that the first sentence in the hypotheses of Theorem 3.7 is valid, with θ = 1/2, for
the scheme of Remark 3.2. The second sentence, about costs of tasks other than proposals,
is trivially true for the scheme of Remark 3.2, but may indeed be false in costing schemes
which assign a cost to memory allocation, and communication.

Theorem 3.7. Assume that the cost C(n) to propose the A = (ǫ2(x), ǫ3(x), . . .) in the first

step of the algorithm of Section 3.5.1 is given by a deterministic function with C(n) ∼ c0n
θ

for some positive constant c0 and constant θ ≥ 1/2, or even more generally, C(n) = nθ times

a slowly varying function of n. Assume that the cost of all steps of the algorithm, other than

making proposals,5 is relatively negligible, i.e., o(C(n)). Then, the asymptotic cost of the

5such as the arithmetic to compute acceptance/rejection thresholds, the generation of the random numbers
used in those acceptance/rejection steps, and merging the accepted proposals into a single partition.
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entire algorithm is
1

1− 1/4θ

√
2C(n) ≤ 2

√
2C(n).

Proof. The key place to be careful is in the distinction between the distribution of a proposed
A = (ǫ2(x), ǫ3(x), . . .), and the distribution after rejection/acceptance. For proposals, in
which the ǫi are independent, with TA :=

∑n
2 i ǫi(x) and x = x(n) from (15), calculation

gives ETA ∼ n/2 and Var(TA) ∼ (1/c)n3/2. Chebyshev’s inequality for being at least k
standard deviations away from the mean, to be used with k = k(n) = o(n1/4) and k → ∞,
gives P(|TA − ETA| > k SD(TA)) ≤ 1/k2.

Now consider the good event G that a proposed A is accepted; conditional on G, the ǫi are
no longer independent. But the upper bound from Chebyshev is robust, with P(|TA−E TA| >
k SD(TA)|G) ≤ 1/(k2

P(G)). Since P(G) is bounded away from zero, by Theorem 3.6, we
still have an upper bound which tends to zero, and shows that (n − TA)/2, divided by n,
converges in probability to 1/4.

Write Ni ≡ Ni(n) for the random size of the subproblem at stage i, starting from
N0(n) = n. The previous paragraph showed that for i = 0, Ni+1(n)/Ni(n) → 1/4, where
the convergence is convergence in probability, and the result extends automatically to each
fixed i = 0, 1, 2, . . .. We have deterministically that Ni+1/Ni ≤ 1/2, so in particular Ni > 0
implies Ni+1 < Ni. Set C(0) = 0, redefining this value if needed, so that the costs of all
proposals is exactly the random

S(n) :=
∑

i≥0

C(Ni(n)).

It is then routine analysis to use the hypothesis that C(n) is regularly varying to conclude
that S(n)/C(n) → 1/(1− 4−θ), where again, the convergence is convergence in probability.
The deterministic bound Ni+1(n)/Ni(n) ≤ 1/2 implies that the random variables S(n)/C(n)
are bounded, so it also follows that ES(n)/C(n) → 1/(1− 4−θ). �

3.5.3. A variation based on p(z) = podd(z) p(z
2). With

podd(z) :=
∏

i odd

(1− zi)−1,

Euler’s identity d(z) = podd(z) suggests a variation on the algorithm of section 3.5. It is
arguable whether the original algorithm, based on p(z) = d(z) p(z2), and the variant, based
on p(z) = podd(z) p(z

2), are genuinely different.
Arguing the variant algorithm is different: the initial proposal isA = (Z1(x), Z3(x), Z5(x), . . .).

Upon acceptance, we have determined (C1(λ), C3(λ), C5(λ), . . .), where λ is the partition of
n that the full recursive algorithm will determine, and Ci(λ) is the number of parts of size i
in λ. The B task will find (C2(λ), C4(λ), C6(λ), . . .) by iterating the divide-and-conquer idea,
so that the second time through the A procedure determines (C2(λ), C6(λ), C10(λ), . . .), and
the third time through the A procedure determines (C4(λ), C12(λ), C20(λ), . . .), and so on.

Arguing that the variant algorithm is essentially the same: just as in Euler’s bijective proof
that podd(z) = d(z), the original algorithm had a proposal A = (ǫ1(x), ǫ2(x), . . .), which
can be used to construct the proposal (Z1(x), Z3(x), Z5(x), . . .) for the variant algorithm.
That is, one can check that starting with independent ǫ(i, x) ≡ ǫi(x) given by (24), for
j = 1, 3, 5, . . . , Zj :=

∑
m≥0 ǫ(j 2

m, x) 2m indeed has the distribution of Zj(x) specified
by (11), with Z1, Z3, . . . independent. And conversely, one can check that starting with
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the independent geometrically distributed Z1(x), Z3(x), . . ., taking base 2 expansions yields
independent ǫ1(x), ǫ2(x), . . . with the Bernoulli distributions specified by (24). Hence one
could program the two algorithms so that they are coupled: starting with the same seed,
they would produce the same TA for the initial proposal, and the same count of rejections
before the acceptance for the first time through the A procedure, with same TA for that first
acceptance, and so on, including the same number of iterations before finishing. Under this
coupling, the original algorithm produces a partition µ of n, the variant algorithm produces a
partition λ of n— and we have implicitly defined the deterministic bijection f with λ = f(µ).

Back to arguing that the algorithms are different: we believe that the coupling described
in the preceding paragraph supplies rigorous proofs for the analogs of Theorems 3.5 and
3.6. For Theorem 3.7 however, one should also consider the computational cost of Euler’s
bijection, for various costing schemes, and we propose the following analog, for the variant
based on p(z) = podd(z) p(z

2), combined with the trick of moving ǫ1(x) from the A side to
the B side, as in Section 3.5.1:

Theorem 3.8. Assume that the cost D(n) to propose (Z1(x), Z2(x), . . . , Zn(x)), with x =
x(n), satisfies D(n) = nθ times a slowly varying function of n. Assume also that the cost

DA(n) to propose A = (Z1(x)− ǫ1(x), Z3(x), Z5(x), . . .) satisfies DA(n) ∼ D(n)/2.
Then, the asymptotic cost of the entire algorithm is

1

1− 1/4θ

√
2D(n)/2 ≤

√
2D(n).

Proof. Essentially the same as the proof of Theorem 3.7. �

It is plausible that the cost function C(n) from Theorem 3.7 and the the cost function
D(n) from Theorem 3.8 are related by C(n) ∼ D(n); note that this depends on the choice of
costing scheme, essentially asking whether or not the algorithmic cost of carrying out Euler’s
odd-distinct bijection is negligible.

3.6. Complexity considerations. In Remark 1.1 and at the end of Section 2.2 we note
that in the general view of probabilistic divide-and-conquer algorithms, a key consideration
is computability of the acceptance threshold t(a). Recall that we write p(n) for the number
of integer partitions of size n. The case of integer partitions, using any of the divide-and-
conquer algorithms of Section 3.5, is perhaps exceptionally easy, in that computing the
acceptance threshold is essentially the same as evaluating p(n), an extremely well-studied
task.

For n > 104, a single term of the Hardy–Ramanujan asymptotic series suffices to evaluate
p(n) with relative error less than 10−16; see Lehmer [27, 28].6 This single term is

(25) hr1(n) :=
exp(y)

4
√
3(n− 1

24
)

(
1− 1

y

)
, where y = 2c

√
n− 1

24
,

and numerical tabulation7, together with Lehmer’s guarantee, shows that

(26) ‖ ln p(n)− ln hr1(n)‖ < 10−16 for all n ≥ 489.

While Equation (26) is sufficient for most practical aspects of computing, with probability
2−k we will need more than k bits of p(n) in order to determine the rejection step, with k at

6We thank David Moews for bringing these papers to our attention.
7done in Mathematica R© 8.
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most ⌈log2(p(n))⌉. In the algorithm to sample a partition of size n, we start with (11) with
the choice x = x(n) = e−c/

√
n; the normalizing constant is then c(x) :=

∏
i≥1(1 − xi), and

(14) is explicitly Px(T = j) = p(j) xj
∏

i≥1(1 − xi). After taking into account the factors of

2 in (5), and writing y = x2, the threshold function t(·) ≡ tn(·) for Algorithm 6 is given by

(27) t(ℓ) =
Py(T = ℓ)

maxj Py(T = j)
=

p(ℓ) yℓ

maxj p(j) yj
,

where the rigthmost expression is the result of cancellation of the factor c(y) from the middle
expression. Let us first focus on the numerator on the far right side of (27). The cost to
evaluate p(n) is not so straightforward, however, and an approach is outlined in [23] which
is O(n1/2+o(1)). If one wants an arithmetic cost bound that is better than O(n1/2+o(1)), then
the following is needed.

Lemma 3.9. The arithmetic cost to obtain the first r bits of p(n) is O(r log5(n)).

Proof. Our proof is a modification of the proof in Section 3 of [23], which assumes that all
terms in the Rademacher series expansion [39] are evaluated with an absolute error of at most
2−3/N , where N is the number of terms of the Rademacher series taken. Let s := ⌊log2 p(n)⌋
denote a lower bound on the number of nontrivial bits in p(n). In our case, since the main
contribution of error comes from truncating the series, and this error, in the notation of
Equation (28), is R(n,N), we choose an N which bounds R(n,N) by 2s−r−1, and hence only
require each term of the series to be evaluated with an absolute error of 2s−r−4/N , which is
much less restrictive.

The details are straightforward and messy, and the punchline is that when r = o(
√
n), and

even in fact for r up to a small constant times
√
n, the first two terms of the Rademacher series

to approximate p(n) suffice8. Thus, we require that each of the terms in the Rademacher
series are evaluated with an absolute error of 2s−r−5 or less. Then one substitutes this into
[23, Equation 3.13], and obtains the cost to evaluate the leading r bits of p(n) is at most

O

(
2∑

k=1

log kM (r) log2 (r)

)
= O(r log4(n)),

where O(M(r) log2(r)) is the cost to evaluate the largest r bits of an elementary function9,

andM(r) = O(r log1+o(1)(r)) is the cost to multiply two r-bit numbers. When r = Ω(
√
n), we

may simply evaluate p(n) exactly, which was shown to require O(n1/2 log4+o(1)(n)) arithmetic
operations in [23], and hence we have opted for the simpler and concrete bound 5 in place
of 4 + o(1) since extra factors of log(n) do not affect Lemma 3.10.

The details are as follows. Let µ = π
6
(24n − 1)1/2. The Rademacher series for p(n), as

given by [27], is

p(n) =

√
12

24n− 1

N∑

k=1

Ak(n)

k1/2

((
1− k

µ

)
eµ/k +

(
1 +

k

µ

)
e−µ/k

)
+R(n,N),

8Empirically the first term suffices, but the error analysis in [39, 28] requires a second term.
9It is noted in [23] that there are two competing algorithms to evaluate the largest r bits of elementary

functions, one which is O(M(r) log(r)), and another which is O(M(r) log2(r)), but is faster in practice. Since
logarithmic terms do not affect the conclusion of Lemma 3.10, we are content with the the slightly larger
estimate.
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where Ak(n) is a complicated sum of 24kth roots of unity, and

(28) R(n,N) =
∞∑

k=N+1

Ak(n)

k1/2

((
1− k

µ

)
eµ/k +

(
1 +

k

µ

)
e−µ/k

)
.

Let v := µ/N , and define

F (n,N) :=
N−2/3π2

√
3

(
sinh(v)

v3
+

1

6
− 1

v2

)
.

It was shown in [27] that

|R(n,N)| < F (n,N)

for all positive integers n and N .
Let tk denote the kth term in the Rademacher series expansion, and suppose t̂k is the

numerical approximation stored in a computer. In order to compute the leading r bits of
p(n), we need

(29) |tk − t̂k| <
0.125× 2s−r

N
.

This differs from [23, Equation (3.1)] by the extra factor of 2s−r, which means we can be less
precise when computing the value of tk. A theorem analogous to [23, Theorem 4] thus holds;
i.e., for n > 2000, for Equation (29) to hold, it is sufficient to evaluate tk using a precision
of b = max(log2(N) + log2(|tk|)− (s− r) + log2(n) + 3, 1

2
log2(n) + 5, 11) bits.

There are two cases to consider: r = o(
√
n) and r = Ω(

√
n). When r = Ω(

√
n), we

may simply evaluate p(n) exactly, which requires O(n1/2 log4+o(1)(n)) arithmetic operations.

When r = o(
√
n), however, we note that

∑N
i=1 tk has an absolute error of at most F (n,N),

which is at most eµ/N/2. Thus, t1 + t2 guarantees at least log2(e)µ/2 correct bits, up to a
logarithmic correction factor which can be made explicit.

We then make the assumption, as is done in [23, Section 3.2], that r-bit floating point

numbers can be multiplied in time M(r) = O(r log1+o(1) r) time. Then, to calculate the
partial sum consisting of 2 terms, we evaluate

O

(
2∑

k=1

(log k)M (r) log2 (r)

)
= O(r log4(n)),

where M(r) = O(r log1+o(1)(r)) is assumed to be the cost to multiply two r-bit numbers. �

Lemma 3.10. For random U distributed uniformly in (0, 1), the expected number of arith-

metic operations for determining whether U ≤ t(ℓ), where t(ℓ) is given in Equation (27), is
O(log5(n)).

Proof. The probability of needing more than r bits is given by 2−r, and so the total expected
amount of arithmetic operations for the evaluation of t(ℓ) is given by

O

(
∑

k≥1

k log5(n) 2−k

)
= O(log5(n)).

�
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To deal with the denominator of (27), there are two strategies. The first strategy is to
find the argument j which achieves maxj p(j) y

j, i.e., which achieves maxj(j log y+log p(j)).
Now, [15, 33] shows that n 7→ p(n) is log-concave for all n > 25, so bisection search over the
range j = 1 to n requires O(logn) evaluations of p(j). To be very careful, we must also note

that we are dealing with approximate evaluations of p(j); since p(k)− p(k − 1) ∼ p(k)/
√
k,

we need only calculate the first log(n) bits of two terms of the form j log x+log p(j) in order
to determine which is greater, and Lemma 3.9 applies. The second strategy is to modify the
threshold function t(ℓ) in (27), by giving away a factor of the form 1+δ for some fixed δ > 0;
this has the effect of increasing the number of rejections, and hence the number of random bits
used, by this same factor. In detail, (26) implies that c0 := maxj≥1 | ln p(j)− ln hr1(j)| < ∞,
and one can easily evaluate c0. Hence, with 1+δ := exp(c0), we have p(j) ≤ (1+δ)hr1(j) for
all j ≥ 1, so the modified rejection threshold, t′(ℓ) := p(ℓ)yℓ/maxj((1+ δ)hr1(j)y

j), satisfies
t′ ≤ 1, and is a valid rejection threshold.

3.7. Partitions with restrictions. The self-similar recursive divide-and-conquer method
of Section 3.5 is nearly unbeatable for large n, for unrestricted partitions. There are many
classes of partitions with restrictions that iterate nicely, and should be susceptible to a corre-
sponding recursive divide-and-conquer algorithm, provided efficient enumeration, analogous
to (25), is available. Some of these classes, with their self-similar divisions, are

(1) distinct parts, d(z) = dodd(z)d(z
2);

(2) odd parts, podd(z) = dodd(z)podd(z
2);

(3) distinct odd parts, dodd(z) = d∗(z)dodd(z
3).

Here d∗(z) = (1+z)(1+z5)(1+z7)(1+z11) · · · represents distinct parts ≡ ±1 mod 6. Other
recurrences are discussed in [24, 36, 40], and the standard text on partitions [4].

It is straightforward to apply deterministic second half to restricted partitions, as the
rejection probability is given explicitly by a ratio of geometric probabilities. To apply re-
cursive PDC to restricted partitions, one must have some means of explicitly bounding the
error in any approximation to the number of partitions subject to restrictions, in order to
evaluate the functional 1(U < t(a)). As Section 3.6 shows, this is accessible, via the work of
Rademacher [39] and Lehmer [27, 28], when there are no restrictions. When the restrictions
are of a certain form, then there are completely effective error rates available [41]. Other
generalizations to Rademacher’s method are also available [2, 1, 32, 19].

4. Probabilistic divide-and-conquer with mix-and-match

4.1. Algorithmic implications of the basic lemma. Assume that one wants a sample
of fixed size m from the distribution of S. That is, one wants to carry out a simulation that
provides S1, S2, . . ., with S1, S2, . . . , Sm being independent, with each equal in distribution
to S. According to Lemma 2.1, this can be done by providing m independent pairs (Xi, Yi),
i = 1 to m, each equal in distribution to S.

A reasonable choice of how to carry this out (not using mix-and-match) is given in Algo-
rithm 7.

Note that in general, conditional on the result of stage 1, the Yi in stage 2 are not identically
distributed.
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Algorithm 7 Probabilistic Divide-and-Conquer m samples

1. Generate X1, X2, . . . , Xm i.i.d. from L(A | h(A,B) = 1).
2. Conditional on (X1, . . . , Xm) = (x1, . . . , xm),

generate Y1, Y2, . . . , Ym, independent, with distributions
L(Yi) = L(B | h(xi, B) = 1 ) for i = 1, 2, . . . , m.

3. Return ((X1, Y1), (X2, Y2), . . . , (Xm, Ym)).

4.2. Simple matching enables mix-and-match. An important class of PDC sampling
algorithms are those for which the matching condition h(A,B) = 1 defines a disjoint union
of complete bipartite graphs; that is, there exists a (set) partition I1, I2, . . . of A and a
corresponding (set) partition J1, J2, . . . of B such that h(A,B) = 1 if and only if A ∈ Ii and
B ∈ Ji, i = 1, 2, . . .. When this condition holds, we call the matching simple, and say that
mix-and-match is enabled.

The following lemma serves to clarify the logical structure of what is needed to enable
mix-and-match.

Lemma 4.1. Given h : A× B → {0, 1}, the following two conditions are equivalent:

Condition 1: ∀a, a′ ∈ A, b, b′ ∈ B,
(30) 1 = h(a, b) = h(a′, b) = h(a, b′) implies h(a′, b′) = 1,

Condition 2: ∃C, and functions cA : A → C, cB : B → C, so that ∀(a, b) ∈ A× B,
(31) h(a, b) = 1(cA(a) = cB(b)).

�

We think of C as a set of colors, so that condition (31) says that a and b match if and only
if they have the same color.

Remark 4.2. When (31) holds, we can write the event that A matches B as a union indexed
by the color involved:

{h(A,B) = 1} = ∪k∈C{cA(A) = k, cB(B) = k},
so that p =

∑
k∈C P(cA(A) = k, cB(B) = k), and we see that at most a countable set of colors

k contribute a strictly positive amount to p. As a notational convenience, we take N ⊂ C,
and use positive integers k for the names of colors that have

(32) P(cA(A) = k, cB(B) = k) > 0.

Remark 4.3. Here is an example which is not simple, i.e., does not satisfy (31). The
configuration method for random r-regular graphs on n vertices, [10, Section 2.4], involves
a uniform choice over a set of size (2n− 1)!!. For any choice 1 < b < n, one might take A,B
with |A × B| = (2n− 1)!!, |B| = (2b − 1)!!, so that A corresponds to the first n − b choices
that need to be made to specify a configuration, and B corresponds to the final b choices.
The matching function h is given by h(A,B), the indicator that the multigraph implied by
the configuration (A,B) has no loops and no multiple edges.

Remark 4.4. Observe that the matching function from Section 3 with h(A,B) = 1(TA +
TB = n), for (A,B) ∈ A × B, satisfies condition 2 of Lemma 4.1, with cA(A) = TA and
cB(B) = n− TB. Hence mix-and-match is enabled.
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The intent of the following lemma is to show that if h satisfies (31), then mix-and-match
strategies can be used in stage 2 of the broad outline of Section 4.1. We consider a procedure
which proposes a sequence D1, D2, . . . of elements of B with the following properties: we
assume there is a sequence of σ−algebras F0 ⊂ F1 ⊂ F2 ⊂ · · · for whichDn is Fn measurable.
We think of F0 as carrying the information from stage 1 of an algorithm along the lines
described in Section 4.1, carrying information such as “which demands a1, a2, . . . must be
met” — or reduced information, such as the colors cA(a1), . . . , cA(am).

Lemma 4.5. Assume that h satisfies (31) and that the following conditions hold:

(1) For every n ≥ 1 and k satisying (32), conditional on Fn−1 together with cB(Dn) = k,
the distribution of Dn is equal to L(B|cB(B) = k).

(2) For every k satisying (32),

(33) with probability 1, infinitely many n have cB(Dn) = k.

(3) Define stopping times τ
(k)
i , the “time n of the i-th instance of cB(Dn) = k”, by τ

(k)
0 = 0

and for i ≥ 1, τ
(k)
i = inf{n > τ

(k)
i−1 : cB(Dn) = k}. We write D(n) ≡ Dn, to avoid

multi-level subscripting, and define B
(k)
i := D(τ

(k)
i ) for i = 1, 2, . . ..

Then, for each k, the B
(k)
1 , B

(k)
2 , . . . are independent, with the distribution L(B|cB(B) = k),

and as k varies, these sequences are independent.

Proof. The proof is a routine exercise by summing over all possible values for the random

times τ
(k)
i . Writing out the full argument would be notationally messy, and not interesting.

�

4.3. Divide-and-conquer with mix-and-match. When a sample of sizem > 1 is desired,
and the matching function is simple, Lemmas 2.1, 4.1, and 4.5 combine to suggest the
following algorithm. Stage 1 of the algorithm generates samples A1, A2, . . . , Am from X ,
according to Lemma 2.1. This creates a multiset ofm colors, {c1, . . . , cm}, where ci = cA(Ai).
We think of these as m demands that must be met by Stage 2 of the algorithm. One strategy
for Stage 2 is to generate an i.i.d. sequence of samples of B; initially, for each sample, we
compute its color c = cB(B) and check whether c is in the multiset of demands {c1, . . . , cm};
when we find a match, we pair B with one of the Ai of the matching color, to produce our
first sample, which we set as Si = (Ai, B). Then we reduce the multiset of demands by
one element, and iterate, until all m demands have been met. Lemma 4.5 implies that the
resulting list (S1, S2, . . . , Sm) is an i.i.d. sample of m values of S, as desired.

A simple algorithmic view of the mix-and-match PDC algorithm is as follows, which
assumes that mix-and-match is enabled.

Algorithm 8 Probabilistic Divide-and-Conquer Mix-and-Match

1. Generate X1, X2, . . . , Xm i.i.d. from L(A | h(A,B) = 1).
2. Generate B1, B2, . . . i.i.d. from L(B) until all Xi’s have a match.
3. Return ((X1, Bj1), (X2, Bj2), . . . , (Xm, Bjm)).

We refer to Step 1 as the “A phase” and Step 2 as the “B phase.” The A phase can be
performed using the techniques of previous sections. The B phase is straightforward since
we are sampling from the unconditional distribution L(B).
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Remark 4.6. For Step 3, it is important to note that the order in which completed samples

are returned is not arbitrary! In particular:

(a) We cannot report the sample in the order in which matching Bji’s are found. That
is, if we denote by (j1), (j2), . . . , (jm) the ordering of the sequence j1, . . . , jm from
smallest to largest, and i1, . . . , im the corresponding indices for the matching samples
from the A phase, then in general

((X11 , B(j1)), (Xi2, B(j2)), . . . , (Xim, B(jm)))

is not an i.i.d. sample from L(S).
(b) Continuing with the previous point, we can either apply a random permutation to

the list, or report the sample in the order in which the Xi’s are generated in the A
phase, as we have done in Step 3.

The practical significance of item (a) above is that if we are running a simulation for
m samples, and we wish to abort the simulation early and/or print out partial results for a
smaller sample size r ≤ m, we can only certify that ((X1, Bj1), . . . , (Xr, Bjr)) is an i.i.d. sam-

ple of size r from L(S) if every Xi, i ≤ r, has been matched with a Bji.

4.3.1. Roaming x. Consider again a sample of sizem = 1. Having acceptedX = (Zb+1, . . . , Zn)
with color k = TA, in the notation of (21), we now need Y , which is B = (Z1, . . . , Zb) con-

ditional on having color k, which simplifies to having n− k = TB :=
∑b

i=1 iZi. One obvious
strategy is to sample B repeatedly, until getting lucky. The distribution of B is specified by
(11) and (15) — with a choice of parameter, x = x(n), not taking into account the values of
b and n− k. A computation similar to (13) shows that the distribution of (Z1(y), . . . , Zb(y))

conditional on
(∑b

i=1 iZi(y) = n− k
)
is the same, for all choices y ∈ (0, 1).

As observed in [7, Section 5, page 114)], the y which maximizes Py(TB = n − k) is the

solution of n − k =
∑b

i=1 E iZi(y). Thus, in the case m = 1, the optimal choice of y is
easily prescribed. However, for large m, using mix-and-match brings into play a complicated
coupon collector’s situation. With a multiset of demands {c1, . . . , cm} from Section 4.3, the
freedom to allow y to roam allows us to tilt the distribution in response to the demands that
remain at each stage. The algorithm designer has many choices of global strategy. Based
on computer experiments, it is not obvious whether or not a greedy strategy — picking y to
maximize the chance that the next proposed B satisfies at least one of the demands — is
optimal.

5. Computational considerations for implementing PDC on integer

partitions

In Section 3, several methods were presented for the simulation of partitions of the integer
n. The analysis focused on the asymptotic rejection probabilities, which varied by choice of
(A,B).

The punchline is: instead of rejection sampling (Algorithm 4), the default algorithm
should always be PDC deterministic second half with von Neumann’s rejection method
(Algorithm 5). It is guaranteed faster than rejection sampling, requires the same amount of
memory, and under various restrictions on the parts of an integer partition it is still appli-
cable even when self-similar bijections do not exist. In addition, it is no more difficult to
program on a computer.
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Then, if more efficiency is needed, one can weigh the costs of storing all or part of a table
of values or exploring the existence of self-similar bijections.

5.1. On proposing an instance of the independent process. All of the algorithms for
integer partitions center around the generation of variates from the process of independent
random variables Z = (Z1, Z2, . . . , Zn), sampled under (11) and (15). The number of random
bits needed to sample from this process is at least the (base 2) entropy H(Z). With x chosen
as in (15), it is nontrivial10 to see that this entropy is asymptotically log2(p(n)), and hence,
by Hardy–Ramanujan (19), asymptotic to (2/ ln 2)c

√
n, with c = π/

√
6.

5.1.1. Näıve proposals. The simplest procedure for sampling from the independent process
Z = (Z1, Z2, . . . , Zn) is to sample each coordinate separately, using the fact that, if Z is
geometrically distributed with parameter p, then Z =d ⌊ln(U)/ ln(1−p)⌋ for U uniform over
the interval (0, 1). Iterating through all coordinates supplies a O(n) procedure for sampling
Z.

Erdős and Lehner [20] showed that with probability tending to 1, the largest part is close
to 2c

√
n log(n), and that the number of part-sizes, corresponding to the number of nonzero

Zi’s in Z, is close to (1/c)
√
n, with c = π/

√
6. This implies that with high probability

Zi = 0 for all i ≫ √
n log(n). There are several adaptations one can make, such as pooling

the variables together under a single uniform random variable, but the implementations are
messy.

A variation due to Sheldon Ross11 would generate L, the largest index for which Zj > 0,
whose distribution is given by

P(L = j) = xj
∏

k>j

(1− xk).

Conditional on {L = j} for some j > 0, the distribution of Z is equal to the distribution of
the vector (Z1, Z2, . . . , 1 + Zj, 0, 0, . . .).

5.1.2. A proposal on the same order as the lower entropy bound. Our recommended proposal
is one that takes advantage of the relation between geometric and Poisson random variables.
See [9] for an alternative description.

A geometric random variable Z with parameter 0 < a < 1 can be represented as a sum of
independent Poisson random variables Yj, j = 1, 2, . . ., as Z =

∑
j jYj, where EYj = aj/j

(this is easily verified using generating functions). The random variables Yj can be generated
via a Poisson process as follows. Let r =

∑
j a

j/j, and divide the interval [0, r] into disjoint

10Using the notation of entropy and conditional entropy as in [11],

H(Z) =
∑

m

P(T = m)H(Z|T = m) +H(T )

≥
∑

m

P(T = m)H(Z|T = m)

=
∑

m

P(T = m) log2(p(m)).

Then using Chebyshev’s inequality together with (17), we see that the sum can be restricted to m ≥ m0 =
(1 − ε)n with P(T ≥ m0) → 1 and ε → 0, which proves the lower bound. The upper bound follows by
observing that H(T ) = o(log(p((1− ε)n))) for all ε sufficiently small.

11Personal communication.
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intervals of length a, a2/2, a3/3, etc. Then Yj = k if exactly k arrivals occur in the interval
of length aj/j.

To simulate the vector (Z1(x), Z2(x), . . . , Zi(x), . . .), with parameters a = x, x2, . . . , xi, . . .,
we fix disjoint intervals of length xij/j for i, j ≥ 1, and run a Poisson process on the interval
[0, s], where s =

∑
i,j x

ij/j.

Our claim that we have an algorithm using O(
√
n) calls to a random number generator is

supported by the calculation here that, with x = x(n) = exp(−c/
√
n) and c = π/

√
6,

(34) s(n) :=
∑

i,j≥1

xij

j
=
∑

j

1

j2
jxj

1− xj
≤ π2

6

x

1− x
∼ c

√
n;

the inequality follows from the observation that for 0 < x < 1, jxj ≤ x + x2 + . . . + xj ≤
x(1− xj)/(1− x).

5.2. Floating point considerations and coin tossing. Is floating point accuracy suffi-
cient, in the context of computing an acceptance threshold t(a)? There is a very concrete
answer, based on [25], see [11, Section 5.12] for an accessible exposition. First, given
p ∈ (0, 1), a p-coin can be tossed using a random number of fair coin tosses; the expected
number is exactly 2, unless p is a kth level dyadic rational, i.e., p = i/2k with odd i, in which
case the expected number is 2 − 21−k. The proof is by consideration of say B,B1, B2, . . .
i.i.d. with P(B = 0) = P(B = 1) = 1/2; after r tosses we have determined the first r bits of
the binary expansion of a random number U which is uniformly distributed in (0, 1), and the
usual simulation recipe is that a p-coin is the indicator 1(U < p). Unless ⌊2r p⌋ = ⌊2r U⌋, the
first r fair coin tosses will have determined the value of the p-coin. Exchanging the roles of U
and p, we see that the number of bits of precision read off of p is, on average, 2, and exceeds
r with probability 2−r. If a floating point number delivers 50 bits of precision, the chance
of needing more precision is 2−50 per evaluation of an indicator of the form 1(U < p). Our
divide-and-conquer doesn’t require very many acceptance/rejection decisions; for example,
with n = 260, there are about 30 iterations of the algorithm in Theorem 3.6, each involving on
average about

√
2 acceptance/rejection decisions, according to Theorem 3.5. So one might

program the algorithm to deliver exact results; most of the time determining acceptance
thresholds p = t(a) in floating point arithmetic, but keeping track of whether more bits of
p are needed. On the unlikely event, of probability around 30 ×

√
2/250 < 4 × 10−14, that

more precision is needed, the program demands a more accurate calculation of t(a). This
would be far more efficient than using extended integer arithmetic to calculate values of p(n)
exactly; see Remark 1.1 and Section 3.6.

Another place to consider the use of floating point arithmetic is in proposing the vector
(Z1(x), . . . , Zn(x)). If one call to the random number generator suffices to find the next
arrival in a rate 1 Poisson process, we have an algorithm using O(

√
n) calls, which can

propose the entire vector (Z1, Z2, . . .), using x = x(n) from (15). The proposal algorithm,
summarized in Section 5.1.2, is based on a compound Poisson representation of geometric
distributions, and is similar to a coupling used in [5], Section 3.4.1.

Once again, suppose we want to guarantee exact simulation of a proposal (Z1(x), . . . , Zn(x)).
In the standard rate 1 Poisson process, run up to time s(n), given by (34), we need to assign
exactly, for each arrival, say at a random time R, the corresponding index (i, j), such that
the partial sum for s(n) up to, but excluding the ij term, is less than R, but the partial
sum, including the ij term, is greater than or equal to R. Based on an entropy result from
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Knuth and Yao [25], a crucial quantity is

(35) h(n) :=
∑

i,j≥1

xij

j
ln

j

xij
≤ (c− ζ ′(2)/c)

√
n.

An exact simulation of the Poisson process, assigning ij labels to each arrival, can be done12

with O(s(n) + h(n)) genuine random bits, and the bounds for s(n) and h(n) show that this
is O(

√
n).
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