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Abstract. We give a new combinatorial interpretation of the stationary dis-

tribution of the (partially) asymmetric exclusion process on a finite number of
sites in terms of decorated alternative trees and colored permutations. The cor-

responding expressions of the multivariate partition functions are then related

to multivariate generalizations of Eulerian polynomials for colored permuta-
tions considered recently by N. Williams and the third author, and others.

We also discuss stability– and negative dependence properties satisfied by the

partition functions.

1. Introduction

The Eulerian polynomial, An(x), n ∈ N, may be defined as the generating poly-
nomial for the descent statistic over the symmetric group Sn;

An(x) =
∑
σ∈Sn

xdes(σ)+1,

where des(σ) = |{i : σ(i) > σ(i + 1)}|. Another important statistic which has the
same distribution as descents is the number of excedances, exc(σ) = |{i : σ(i) > i}|.
Eulerian polynomials are among the most studied families of polynomials in combi-
natorics. There are several multivariate extensions of the Eulerian polynomials. We
are interested in the one that refines the excedance statistic over permutations by
the position of excedances. This multivariate refinement was used in conjunction
with stable polynomials in recent papers to solve the monotone column perma-
nent conjecture [9]. Similar methods were employed to generalize properties—such
as recurrences, and zero location—for several variants of Eulerian polynomials for
Stirling permutations [13], barred multiset permutations [4], signed and colored
permutation [23].

In statistical mechanics the same multivariate Eulerian polynomials appear in
connection with an important and much studied Markov process called the asym-
metric exclusion process (ASEP), which models particles hopping left and right on
a one-dimensional lattice, see [6, 7, 8, 17] and the references therein. The ASEP
has a unique stationary distribution, and Corteel and Williams [6] showed that its
partition function is a q–analog of the above mentioned multivariate Eulerian poly-
nomial (whenever α = β = 1 and γ = δ = 0, where α, β, γ and δ are as described
in Section 2).
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2 P. BRÄNDÉN, M. LEANDER AND M. VISONTAI

In this paper we show that the multivariate partition function of the stationary
distribution of the ASEP with parameters α = r/(r − 1) and β = r is a q-analog
of the multivariate Eulerian polynomials for r-colored permutations recently intro-
duced in [23]. This contains the signed permutations as special case for r = 2. We
also give a new combinatorial interpretation of the stationary distribution in terms
of colored permutations for all q, α, β ≥ 0 and γ = δ = 0. Previous combinato-
rial interpretations of the stationary distributions have been proved using either
permutation tableaux [6], or staircase tableaux [7], while our proof uses directly
the (matrix) ansatz for the ASEP of Liggett [17], which was later rediscovered by
Derrida, Evans, Hakim and Pasquier [8].

Our methods extend certain properties of the excedance set statistic studied for
the case of permutations by Ehrenborg and Steingŕımsson [11], as well as the plane
alternative trees of Nadeau [14], to the case of r-colored permutations.

We also point to negative dependence properties and zero restrictions of the
multivariate partition function satisfied by stationary distribution for q = 1 which
follow from general theorems obtained by Borcea, Liggett and the first author in [2],
and Wagner [24]. These negative dependence properties and zero restrictions gen-
eralize recent results of Hitczenko and Janson [15]. We speculate in what negative
dependence properties may hold for q 6= 0.

2. Exclusion processes

We focus on a class of exclusion processes that model particles jumping on a
finite set of sites, labeled by [n] := {1, 2, . . . , n}. Given a matrix Q = (qij)

n
i,j=1

of nonnegative numbers and vectors b = (bi)
n
i=1 and d = (di)

n
i=1 of nonnegative

numbers, define a continuous time Markov chain on {0, 1}n as follows. Let η ∈
{0, 1}n represent the configuration of the particles, with η(i) = 1 meaning that site
i is occupied, and η(i) = 0 that site i is vacant. Particles at occupied sites jump
to vacant sites at specified rates. More precisely, these are the transitions in the
Markov chain:

(J) A particle jumps from site i to site j at rate qij : The configuration η is
unchanged unless η(i) = 1 and η(j) = 0, and then only η(i) and η(j) are
exchanged.

(B) A particle at site i is created (is born) at rate bi: The configuration η is
unchanged unless η(i) = 0, and then only η(i) is changed from a zero to a
one.

(D) A particle at site i is annihilated (dies) at rate di: The configuration η is
unchanged unless η(i) = 1, and then only η(i) is changed from a one to a
zero.

The (multivariate) partition function of a discrete probability measure µ on
{0, 1}n is the polynomial in R[x1, . . . , xn] defined by

Zµ(x) =
∑

η∈{0,1}n
µ(η)xη :=

∑
η∈{0,1}n

µ(η)x
η(1)
1 · · ·xη(n)

n . (2.1)

Hence a discrete probability measure can be recovered from its partition function.
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A special case of the Markov chain described by (J), (B) and (D) above which
has been much studied by combinatorialists is the ASEP (on a line). Here

qij =


1 if j = i+ 1,

q if j = i− 1, and

0 if |j − i| > 1,

where q ≥ 0 is a parameter. Moreover, particles are only allowed to leave and
enter at the ends i = 1, n (b1 = α, d1 = γ, bn = δ, dn = β). The stationary
distributions of the ASEP have been explicitly solved by [17, Theorem 3.2] and
later by the Matrix Ansatz of [8], and also by beautiful combinatorial models such
as permutation tableaux, staircase tableaux, and alternative tableaux [6, 7, 22].
The following theorem is essentially the Matrix Ansatz of [8] for γ = δ = 0.

Theorem 2.1. Let α, β, q ≥ 0 and ξ > 0, and let {0, 1}∗ be the set of words of
finite length of zeros and ones. Define a function 〈·〉 : {0, 1}∗ 7→ R recursively by
〈ε〉 = 1 if ε is the empty word, and

〈u10v〉 = q〈u01v〉+ αβξ〈u1v〉+ αβξ〈u0v〉, 〈0v〉 = βξ〈v〉, 〈u1〉 = αξ〈u〉,

for any u, v ∈ {0, 1}∗.
Then the partition function of the ASEP on n sites with parameters α, β, q ≥ 0

and γ = δ = 0 is equal to a constant multiple of∑
η∈{0,1}n

〈η〉xη,

where we identify η with the corresponding word η(1) · · · η(n) ∈ {0, 1}∗.

In the next few sections we use Theorem 2.1 to give a purely combinatorial
interpretation of the partition function of the stationary distribution of the ASEP
in terms of permutation statistics.

3. Alternative trees

Alternative trees were introduced by Nadeau [14] in connection with alternative
tableaux, which were used by Viennot [22] as combinatorial model for the ASEP.
Throughout this section and the next, S is a finite, nonempty and totally ordered
set. An unordered rooted tree with vertex set S is called an alternative tree if the
following three conditions are satisfied

(i) The root is either minS or maxS.
(ii) If a vertex is larger than its parent, then it is larger than all of its descen-

dants.
(iii) If a vertex is smaller than its parent, then it is smaller than all of its

descendants.

See Fig. 1 for an example.
If we write a cycle as a word a1 · · · ak, we mean a1 → a2 → · · · → ak → a1.
A marked cycle on S is a pair (σ, s) where σ is a cycle on S and s ∈ S is either

the maximum or minimum of S. We write a marked cycle (σ, s) as a word

σ = Ws = Wkxk · · ·W2x2W1x1s, (3.1)

where the xi’s are defined as follows.
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Figure 1. An alternative tree on the set [0, 8] corresponding to
the marked cycle ((386214570), 0), or the permutation σ =
(38)(621457).

• If s = minS, then xk > · · · > x1 are the right-to-left maxima of the
word W , that is, xi is larger than all letters in WiWi−1xi−1 · · ·W1x1 for all
1 ≤ i ≤ k.
• If s = maxS, then xk < · · · < x1 are the right-to-left minima of W , that

is, xi is smaller than all letters in WiWi−1xi−1 · · ·W1x1 for all 1 ≤ i ≤ k.

Note that the words Wi are implicitly defined.
We will recursively describe a map T from marked cycles on S to alternative

trees on S, and then extend the construction to a bijection between permutations
and alternative trees. If σ = s is a marked cycle on one letter, then T (σ, s) is a
vertex labeled with s. Otherwise write σ = Ws as in (3.1). The root of T (σ, s) is
s, the children of s are x1, . . . , xk, and the subtree with xi as a root is T (Wixi, xi),
where we consider (Wixi, xi) a marked cycle on the set of letters of the word Wixi
for all 1 ≤ i ≤ k, see Fig. 1.

By a straightforward induction argument, it follows that the map T described
above is a bijection between alternative trees on S and marked cycles on S.

Proposition 3.1. Let (σ, s) be a marked cycle of length greater than 1, and let p(i)
denote the parent of i ∈ S \ {s} in T = T (σ, s). If i < σ(i), then

p(i) = max{σ(i), σ2(i), . . . , σk(i)}, where k + 1 = min{j > 0 : i ≥ σj(i)}.

If i > σ(i), then

p(i) = min{σ(i), σ2(i), . . . , σk(i)}, where k + 1 = min{j > 0 : σj(i) ≥ i}.

Proof. Let p(i) denote the parent of i ∈ S \ {s} in T = T (σ, s). Note that either

(a) i is one of the xj ’s in (3.1), or;
(b) the parent of i in T (σ, s) is also the parent of i in T (Wjxj , xj) for the word

Wj which i is a letter of.

In case (a) the description of p(i) is obviously correct. But then it is also true in
general (by induction on |S|) in light of (b). �

It will be convenient to depict (the tree associated to) a marked cycle as a diagram
of arcs: Order S on a line. If i < j and i is a child of j, we draw an arc between i
and j above the line. If i < j and j is a child of i, we draw an arc between i and j
below the line. Hence to each marked cycle we associate a diagram, see Fig. 2.

Let On be the set of alternative trees on [0, n+ 1] := {0, 1, . . . , n+ 1} with 0 as
a root. The set On is in bijection with Sn+1 by the map T ′ : Sn+1 → On defined
as follows. Let σ1, . . . , σk be the cycles of π ∈ Sn+1, and let si be the maximal
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(1) u u u utj i j ti - u u u u

(1) u u u utj i j ti - u u u u

(2) u u ui j ti - u u u

(3) u u utj i j - u u u

(4) u u u u` i j k - u u u u
0

1

2

3 4 5

6

78

Figure 1.
Figu

0 1 2 3 4 5 6 7 8

1

Figure 2. The diagram of the marked cycle ((386214570), 0), or
the permutation σ = (38)(621457).

element of σi for each 1 ≤ i ≤ k. Then the root of T ′(π) is 0, and the children of
the root are s1, . . . , sk. The maximal subtree with root si is defined to be T (σi, si),
where T is defined above, see Fig. 1.

Hence p(i) = 0 if i is the maximal element in its cycle, and if i < σ(i), then by
Proposition 3.1

p(i) = max{σ(i), σ2(i), . . . , σk(i)}, where k + 1 = min{j > 0 : i ≥ σj(i)},
and if i > σ(i), then

p(i) = min{σ(i), σ2(i), . . . , σk(i)}, where k + 1 = min{j > 0 : σj(i) ≥ i}.
Recall that i ∈ [n] is an excedance of σ ∈ Sn+1 if σ(i) > i. Let X (σ) denote the

set of excedances of σ. A non-root vertex i of a alternative tree T is an excedance
if i is smaller than its parent p(i). Define three statistics on alternating trees. A
pair 1 ≤ i < j ≤ n is yin-yang in T if p(j) < i < j < p(i), see Fig. 3. Let yy(T )
denote the number of yin-yang pairs in T . Let c0(T ) be the number of children of
0, and c1(T ) the number of children of n+ 1.

u u u up(j)

i j

p(i)

Figure 3. A yin-yang pair (i, j) in the diagram of a permutation/tree.

Define X (T ) ∈ {0, 1}n by X (T )(i) = 1 if and only if i is an excedance in T , and
define a map [·] : {0, 1}∗ → R[a, b, q] by

[η] =
∑

ac0(T )bc1(T )qyy(T ), (3.2)

where the sum is over all T ∈ ∪n≥0On with X (T ) = η.
Let σ = Ws, s = n + 1, be the (marked) cycle of π ∈ Sn+1 containing n + 1.

Then

c(π) := # cycles of π,

c′(π) := # right-to-left minima of W

yy(π) := yy(T ′(π)).

Note that yy(π) may be intrinsically defined by the description of p ◦ T ′ above.
The following theorem is now an immediate consequence of the above bijection.
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Theorem 3.2. Let T = T ′(π), where π ∈ Sn+1. Then

(X (T ), c0(T ), c1(T ), yy(T )) = (X (π), c(π), c′(π), yy(π)),

where we consider X (π) as an element of {0, 1}n.

Theorem 3.3. Let u, v ∈ {0, 1}∗ and let [·] be defined as in (3.2). Then

[u10v] = q[u01v] + [u1v] + [u0v] and [0v] = a[v], [u1] = b[u].

Proof. Two vertices in a tree are comparable if one of them is a descendant of the
other. Let i = |u|+ 1 and suppose η(i) 6= η(i+ 1). We claim that if i and i+ 1 are
comparable, then

(a) i is a leaf, p(i) = i+ 1 and p(i+ 1) < i, or;
(b) i+ 1 is a leaf, p(i+ 1) = i and p(i) > i+ 1.

To prove the claim first note that i and i+ 1 cannot be comparable if η(i) = 0 and
η(i+ 1) = 1, since then i is larger than it’s descendants while i+ 1 is smaller than
it’s descendants. Consider the case when η(i) = 1 and η(i+ 1) = 0. Then p(i) > i
and p(i+ 1) < i+ 1. If i is a descendent of i+ 1, then i has to be a leaf since i+ 1
is larger then it’s descendants while i is smaller than all it’s descendants. But then
p(i) = i+ 1, since otherwise p(i) > i+ 1 which means that i+ 1 has a descendant
which is larger than i+ 1. By a similar argument if i+ 1 is a descendant of i, then
i+ 1 is a leaf and p(i+ 1) = i.

For η ∈ {0, 1}∗, let O(η) = {T ∈ ∪n≥0On : X (T ) = η}. Hence in both (a) and
(b) above we have T ∈ O(u10v). Define a map φ : O(u10v)→ O(u01v)∪O(u1v)∪
O(u0v) as follows.

If i and i+ 1 are non-comparable, then φ(T ) is obtained by switching the labels
i and i + 1 in the tree. By the above claim this is a bijection between set of trees
in O(u10v) for which i and i+ 1 are non-comparable and O(u01v). Moreover, the
yin-yang p(i + 1) < i < i + 1 < p(i) is destroyed by φ and no other yin-yangs are
destroyed or created.

If i and i + 1 are comparable, then φ(T ) is obtained by contracting the edge
between i and i + 1 while keeping the label i and then relabel the vertices with
[0, n] so that the relative order is preserved. Then φ is a bijection between the set
of trees satisfying (a) and O(u0v), and φ is a bijection between the set of trees
satisfying (b) and O(u1v). No yin-yangs are created or destroyed. This establishes
the first equation.

If 1 is not an excedance, then 1 is a leaf and a child of the root. Hence we may
contract the edge between 0 and 1 and relabel the vertices, which shows [0v] = a[v].

Similarly, if n is an excedance, then n is a leaf and a child of n + 1. Hence we
may contract this edge and relabel the vertices, which proves [u1] = b[u]. �

Theorem 3.4. The multivariate partition function of the stationary distribution
of the ASEP on n sites with parameters α, β > 0, q ≥ 0 and γ = δ = 0 is a constant
multiple of ∑

π∈Sn+1

α−c(π)β−c
′(π)qyy(π)

∏
i∈X (π)

xi.

Proof. The theorem follows immediately by comparing Theorem 2.1 and Theo-
rem 3.3. �

Note that a different combinatorial interpretation in terms of permutation sta-
tistics of the univariate partition function (equivalent to setting all xi’s equal in
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Theorem 3.4) of the ASEP on n sites with parameters α, β > 0, q ≥ 0 and γ = δ = 0
was recently obtained by Josuat-Vergès [16].

4. Decorated alternative trees and colored permutations

Let r be a positive integer. Consider

Zr oSn = {(κ, σ) | κ : [n]→ Zr and σ ∈ Sn},
the wreath product of the symmetric group of order n with a cyclic group of order
r. The elements of the Zr oSn are often referred to as r-colored permutations.

There are several different ways of defining excedances for wreath products. For
our purposes, the definition of Steingŕımsson [21] is the most suitable choice. Let
π = (κ, σ) ∈ Zr oSn. Define the excedance set, X (π), and the anti-excedance set,
Y(π), by

i ∈ X (π) if and only if

{
σ(i) > i, or;

σ(i) = i and κi 6= 0.

and

σ(i) ∈ Y(π) if and only if

{
σ(i) < i, or;

σ(i) = i and κi = 0.

Let π = (κ, σ) ∈ Zr oSn and consider the cycle decomposition of σ. A cycle c
of σ is called a zero cycle if κi = 0 for the maximal element i of c, otherwise c is
called a non-zero cycle.

A decorated alternative tree on a finite non-empty set of integers S is an alter-
native tree on S where the vertices are also colored with 0, . . . , r − 1, where r > 1.
Hence each vertex in the tree is labeled with an element from S × {0, . . . , r − 1}.
The coloring should obey the following restrictions. Let s and t be the smallest and
largest vertex (with respect to the total order on S), respectively.

(a) The children of the root (which is s) all have color zero.
(b) The largest vertex of a maximal subtree whose root is a child of t has

non-zero color.
(c) The root s has color 1, and t has color 0.

Let Orn be the set of decorated trees on S = [0, n + 1] with permitted colors
{0, . . . , r − 1}. Then Orn is in bijection with Zr oSn by the mapping T ′′ described
below. Start with the tree consisting of a single vertex 0 (as a root) and attach n+1
to it. Give them colors 1 and 0, respectively. Let σ1, . . . , σk be the zero cycles, and
let si be the maximal element of σi. The children of 0 are n+1 and s1, . . . , sk. The
maximal subtree with root si is defined to be T (σi, si), where T is defined above.
Now assign colors according to κ.

Let τ1, . . . , τ` be the non-zero cycles, and let ti be the minimal element of τi.
The children of n+ 1 are t1, . . . , t`. The maximal subtree with root ti is defined to
be T (τi, ti), where T is defined above. Assign colors according to κ. See Fig. 4 for
an example.

The definitions of X and yy are the same as for the non-decorated trees. For a
decorated tree T ∈ Orn, c0(T ) is defined as the number of children of 0 minus one,
while c1(T ) is the number of children of n+ 1. Define [·]r : {0, 1}∗ → R[a, b, q] by

[η]r =
∑

ac0(T )bc1(T )qyy(T ), (4.1)

where the sum is over all T ∈ ∪n≥0Orn with X (T ) = η.
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Figure 4. An alternative tree on the set [0, 8], with root 0,
corresponding to the colored permutation π = (30)(425074612218).

Theorem 4.1. Let T = T ′′(π), where π ∈ Zr oSn. Then

(X (T ), c0(T ), c1(T ), yy(T )) = (X (π),nc(π), zc(π), yy(π)),

where we consider X (π) as an element of {0, 1}n.

Theorem 4.2. Let u, v ∈ {0, 1}∗, and let [·]r be defined as in (4.1). Then

[u10v]r = q[u01v]r + r[u1v]r + r[u0v]r, [0v]r = a[v]r, [u1]r = b(r − 1)[u]r.

Proof. The definition of φ : O(u10v) → O(u01v) ∪ O(u1v) ∪ O(u0v) is almost the
same as for the non-decorated case, we just have to specify how the colors are
effected. For the non-comparable case, the color of i and i + 1 are swapped, so
that the color stay at the same place in the tree. When we contract an edge in the
comparable case we keep the color of i+ 1. Hence the map in the comparable case
is r to 1, which explains the factor r in the equation.

If 1 is not an excedance, then 1 is a leaf, has color zero, and 1 is a child of the
root. Hence we may contract the edge between 0 and 1 and relabel the vertices,
which shows [0v]r = a[v]r.

Similarly, if n is an excedance, then n is a leaf of non-zero color, and n is a child
of n + 1. Hence we may contract this edge and relabel the vertices, which proves
[u1]r = b(r − 1)[u]r. �

Theorem 4.3. The multivariate partition function of the stationary distribution
of the ASEP on n sites with parameters α, β > 0, q ≥ 0 and γ = δ = 0 is a constant
multiple of ∑

σ∈ZroSn

( r
α

)nc(σ)
(

r

(r − 1)β

)zc(σ)

qyy(σ)
∏

i∈X (σ)

xi,

where r ≥ 2 is an integer.
In particular, when α = r and β = r/(r − 1), then the partition function is a

constant multiple of ∑
σ∈ZroSn

qyy(σ)
∏

i∈X (σ)

xi,

Proof. The theorem follows immediately by using Theorem 4.1, and comparing
Theorem 2.1 with Theorem 4.2. �
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5. Multivariate Eulerian polynomials and stability

The Eulerian polynomials are important in enumerative and algebraic combi-
natorics and their generalizations to finite Coxeter groups, wreath products and
partially ordered sets have been studied frequently. An important property, first
noted by Frobenius [12], is that all zeros of An(x) are real. This result has subse-
quently been lifted to different generalizations of Eulerian polynomials [3, 20].

Recently efforts have been made to generalize Frobenius’ result in yet another di-
rection, namely to multivariate polynomials [23]. A notion of “real-rootedness” that
has been fruitful in several settings is the following. A polynomial P (x1, . . . , xn) is
stable if P (x1, . . . , xn) 6= 0 whenever Im(xj) > 0 for all 1 ≤ j ≤ n. For applications
to the ASEP we find it convenient to define the multivariate generalization in terms
of excedances.

There is a strong relationship between symmetric exclusion processes and sta-
bility which was first proved in [2] (without (B) and (D)) and in [24] (with (B) and
(D)).

Theorem 5.1. Consider the Markov chain described by (J), (B) and (D) in Sec-
tion 2, with Q symmetric. If the partition function of the initial distribution is
stable, then the distribution is stable for all t ≥ 0.

Corollary 5.2. Consider the Markov chain described by (J), (B) and (D) in Sec-
tion 2, with Q symmetric. If the Markov chain is irreducible and positive recurrent,
then the partition function of the (unique) stationary distribution is stable.

Proof. Choose an initial distribution with stable partition function, for example a
product measure. Then the partition function, Zt(x), of the distribution at time
t is stable for all t > 0 by Theorem 5.1. The partition function of the stationary
distribution is given by limt→∞ Zt(x), and hence the corollary follows from Hurwitz’
theorem on the continuity of zeros (see [10, Footnote 3, p. 96] for a multivariate
version). �

As an immediate corollary of Theorem 4.3 and Corolllary 5.2 we have.

Corollary 5.3. Let n and r be positive integers and a and b nonnegative real
numbers. Then the polynomial∑

π∈ZroSn

anc(π)bzc(π)
∏

i∈X (π)

xi, (5.1)

where zc(π) and nc(π) denotes the number of zero cycles and non-zero cycles of π,
respectively, is stable.

This corollary generalizes a recent theorem of Hitczenko and Janson [15, Theorem
4.5] who proved that the univariate polynomials obtained by setting all the xi’s in
(5.1) equal are real–rooted. We shall now see how Corollary 5.3 can be generalized
further by introducing a new set of variables.

Let
Fn = Fn,r(x,y, a, b) =

∑
π∈ZroSn

anc(π)bzc(π)
∏

i∈X (π)

xi
∏

j∈Y(π)

yj .

Theorem 5.4. For positive integers n and r,

Fn = (a(r − 1)x1 + by1)F ∗n−1 + rx1y1

n∑
j=2

(
∂

∂xj
+

∂

∂yj

)
F ∗n−1, (5.2)
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where F ∗n−1 is obtained from Fn−1 by the changes of variables xi → xi+1 and
yi → yi+1 for all 1 ≤ i ≤ n− 1, and F0 = 1.

Proof. Consider a colored permutation π∗ = (κ∗, σ∗), where σ∗ is a permutation of
{2, . . . , n} and κ∗ : {2, . . . , n} → Zr. When σ∗ is written as a product of cycles and
i 7→ j (i.e., σ∗(i) = j), then we record xi if i < j and yj if j < i. If i 7→ i is a fixed
point, then we record xi if κ∗i 6= 0, and yi otherwise.

To create an element π = (κ, σ) ∈ Zr oSn from π∗ we insert 1 into σ∗ and choose
its color κ1. Hence inserting 1 between i 7→ j in an existing cycle will have the effect
of taking the derivative with respect to xi or yj depending on whether i ∈ X (π∗) or
j ∈ Y(π∗), respectively, and multiplying by x1y1 since 1 ∈ X (π) ∩ Y(π). Note also
that the assignment of variables to the arrows i 7→ j is injective. This explains the
second term on the right hand side of (5.2). If we make 1 a fixed point we either
create a new non-zero cycle and an excedance (if κ1 6= 0), or a zero cycle and an
anti-excedance (if κ1 = 0). This explains the first term on the right hand side of
(5.2). �

Remark 5.5. Theorem 5.4 can be seen as a relation satisfied by the stationary
distributions of the ASEP with q − 1 = γ = δ = 0. Is there a similar relation for
general α, β, γ, δ?

Remark 5.6. In [23] a multivariate extension of the Eulerian polynomials for wreath
products was defined in terms of descent– and ascent bottoms. By the recursion
given in the proof of Theorem 3.15 in [23], we see that for a = b = 1, their
polynomials are the same as ours up to a reindexing of the variables.

Theorem 5.7. Let r > 1 and n be positive integers and a, b ≥ 0. Then Fn,r(x,y, a, b)
is stable.

Proof. By (5.2), Fn = T (F ∗n−1), where T is the linear operator

T = a(r − 1)x1 + by1 + rx1y1

n∑
j=2

(
∂

∂xj
+

∂

∂yj

)
.

Since F1 = a(r− 1)x1 + by1 is obviously stable it remains to prove that T preserves
stability. By the characterization of stability preservers, [1, Theorem 2.2], this is
the case if the polynomial

GT = T ((x1 + z1) · · · (xn + zn)(y1 + w1) · · · (yn + wn)) ,

is stable (in 4n variables). Here T acts on the x- and y-variables and treats the z-
and w-variables as constants. Now

GT
x1y1

∏n
j=1(xj + zj)(yj + wj)

=
a(r − 1)

y1
+

b

x1
+

n∑
j=2

(
1

xj + zj
+

1

yj + wj

)
.

Each term on the right hand side of the above equation has negative imaginary
part whenever all variables have positive imaginary parts. Hence GT is stable and
the theorem follows. �

6. Negative dependence

Negative dependence in probability theory models repelling particles. There are
many correlation inequalities of varying strength that model negative dependence,
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see [2, 18]. For example, a discrete probability measure µ on {0, 1}n is negatively
associated if ∫

fgdµ ≤
∫
fdµ

∫
gdµ, (6.1)

whenever f, g : {0, 1}n → R depend on disjoint sets of variables (i.e., f depends
only on {ηi : i ∈ A} and g depends only on {ηj : j ∈ B}, where A ∩ B = ∅). In
particular if µ is negatively associated, then it is pairwise negatively correlated, i.e.,
for distinct i, j ∈ [n]:

µ(η(i) = η(j) = 1) ≤ µ(η(i) = 1)µ(η(j) = 1),

which is obtained from (6.1) by setting

f(η) =

{
1 if η(i) = 1

0 otherwise
and g(η) =

{
1 if η(j) = 1

0 otherwise
.

It was proved in [2] that if the multivariate partition function of a discrete probabil-
ity measure µ is stable (such measures are called strong Rayleigh), then it satisfies
several of the strongest correlation inequalities known to model negative depen-
dence. In particular µ is negatively associated.

Corollary 6.1. The stationary distribution of the ASEP with q = 1 and α, β, γ, δ ≥
0 is negatively associated.

Hitczenko and Janson [15] used the real–rootedness of the univariate partition
function (obtained by setting x1 = · · · = xn = x in 2.1) of the stationary distri-
bution of the ASEP with q = 1, α, β ≥ 0 and γ = δ = 0, to prove concentration
inequalities for the corresponding measures. Since we now know that the multi-
variate partition functions are stable whenever q = 1 and α, β, γ, δ ≥ 0 there are
more refined concentration inequalities available due to Pemantle and Peres [19].
A function f : {0, 1}n → R is Lipschitz-1 if

|f(η)− f(ξ)| ≤ d(η, ξ), for all η, ξ ∈ {0, 1}n,

where d is the Hamming distance.

Theorem 6.2 (Pemantle and Peres, [19]). Suppose µ is a probability measure on
{0, 1}n whose partition function is stable and has mean m = E(

∑n
i=1 ηi). If f is

any Lipschitz-1 function on {0, 1}n, then

µ(η : |f(η)− Ef | > a) ≤ 5 exp

(
− a2

16(a+ 2m)

)
.

The case when f(η) =
∑n
i=1 ηi (the number of particles) corresponds to the

univariate partition function.
We pose as an open problem to investigate negative dependence properties when

q 6= 1. In particular:

Question 1. Consider the ASEP on n sites with γ = δ = 0, α = β = 1 and q 6= 1.
Is the multivariate partition function of the stationary distribution stable? Is the
stationary distribution negatively associated?

Question 1 is open even for the case q = 0. It is also open whether the univariate
partition function is real–rooted, for γ = δ = 0, α = β = 1 and q 6= 1. However, for
q = 0, we get the (n+1)st Narayana polynomial, which is known to be real–rooted.
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This can be seen as supporting evidence for a affirmative answer to Question 1
when q = 0.

It would be interesting if one could find explicit combinatorial models for the
exclusion process for classes of labeled graphs which are not necessarily lines. In the
symmetric case the partition functions of the stationary distributions (if unique) will
be stable by Corollary 5.2, and thus the stationary distributions will be negatively
associated.
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[12] G. Frobenius, Über die Bernoulli’sehen zahlen und die Euler’schen polynome, Sitzungs-
berichte der Königlich Preussischen Akademie der Wis- senschaften (1910), zweiter Halbband.

[13] J. Haglund, M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling

permutations, European J. Combin. 33 (2012), 477–487.
[14] P. Nadeau, The structure of alternative tableaux, J. Combin. Theory Ser. A 118 (2011)

1638–1660.

[15] P. Hitczenko, S. Janson, Weighted random staircase tableaux, Combin. Probab. Comput., to
appear.

[16] M. Josuat-Vergès, Combinatorics of the three-parameter PASEP partition function, Elec-
tronic J. Combin. 18 (2011), Article P22.

[17] T.M. Liggett, Ergodic theorems for the asymmetric simple exclusion process, Trans. Amer.
Math. Soc. 213 (1975), 237–261.

[18] R. Pemantle, Towards a theory of negative dependence, J. Math. Phys. 41 (2000), 1371–1390.
[19] R. Pemantle, Y. Peres, Concentration of Lipschitz functionals of determinantal and other

strong Rayleigh measures, Combin. Probab. Comput. 23 (2014), 140–160.
[20] C. D. Savage, M. Visontai The s-Eulerian polynomials have only real zeros, Trans. Amer.

Math. Soc., to appear.
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