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Abstract

The main result in Y. O. Hamidoune’s paper “Adding Distinct Congruence Classes” (Com-

bin. Probab. Comput. 7 (1998) 81-87) is as follows: If S is a generating subset of a cyclic group
G such that 0 6∈ S and |S| ≥ 5, then the number of sums of the subsets of S is at least
min(|G|, 2|S|). Unfortunately, argument of the author, who, sadly, passed away in 2011, relies
on a lemma whose proof is incorrect; in fact, the lemma is false for all cyclic groups of even
order. In this short note we point out this mistake, correct the proof, and discuss why the main
result is actually true for all finite abelian groups.
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Let G be a finite abelian group, written additively. For a positive integer h and a subset A of G,
we let ĥ A denote the set of sums of the h-subsets of A:

ĥ A = {Σb∈Bb | B ⊆ A, |B| = h}.

Additionally, we let ΣA denote the set of all nonempty subset sums of A:

ΣA = ∪
|A|
h=1

ĥ A = {Σb∈Bb | ∅ 6= B ⊆ A}.

If G is cyclic and of order m, we identify it with Zm = Z/mZ. The main result in [3] is as follows:

Theorem 1 (Hamidoune; cf. [3]) Let S be a generating subset of Zm such that 0 6∈ S and |S| ≥ 5.
Then the number of sums of the subsets of S is at least min(m, 2|S|).
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As was pointed out in [3], the result is best possible: if m = 3k for some k ≥ 3, then

S = {3, 6, . . . , 3(k − 1)} ∪ {1}

has |ΣS| = 2k. (This example clearly generalizes to noncyclic groups.)

The proof of Theorem 1 in [3] considers two cases: when 2|S| ≤ m− 1 and when 2|S| ≥ m. The
proof provided for the first case is correct; in fact, it was delivered for an arbitrary abelian group of
order m. However, the author derives the second case from the following:

Lemma 2 (Hamidoune; cf. [3]) Let A be a subset of Zm \ {0} such that 2|A| ≥ m. Then A ∪
(2̂ A) = Zm.

Clearly, if Lemma 2 were true, it would immediately yield Theorem 1 in the case when 2|S| ≥ m.
However, Lemma 2 is false for every even value of m: for example, with

A = {1, 2, . . . ,m/2},

we have 0 6∈ A∪ (2̂ A). In fact, when m ≡ 2 mod 4, then there are subsets A of Zm with the required
properties for which A ∪ (2̂ A) misses two elements of Zm: for example, for

A = {1, 2, . . . , (m− 2)/4} ∪ {m/2,m/2 + 1, . . . , (3m− 2)/4},

neither 0 nor m/2− 1 is in A ∪ (2̂ A).

It turns out that for the conclusion of Lemma 2, one must assume that 2|A| ≥ m + 2. More
generally, we can prove:

Proposition 3 Let G be a finite abelian group, and let G2 be the subset—indeed, subgroup—of
elements of order at most 2.

1. There is a subset A ⊆ G \ {0} with 2|A| = |G|+ |G2| − 2 for which A ∪ (2̂ A) 6= G.

2. If A ⊆ G \ {0} satisfies 2|A| ≥ |G|+ |G2|, then A ∪ (2̂ A) = G.

We should point out that |G|+ |G2| is always even, hence our two statements are complementary.

Proof: To prove the first statement, partition G \ G2 into disjoint parts K and −K (with −K
consisting of the inverses of the elements in K). Then A = (G2 \{0})∪K satisfies our requirements.

For our second statement, it suffices to prove that (G \ A) ⊆ 2̂ A. Let g ∈ G \ A be arbitrary,
and let

Lg = {x ∈ G | 2x = g}.

We show that if Lg 6= ∅, then |Lg| = |G2|. To see this, we choose an element x ∈ Lg, and consider
the set x−Lg. (Here and below, for an element z and a subset Y of G, we let z + Y denote the set
{z + y | y ∈ Y } and z − Y denote the set {z − y | y ∈ Y }.) Note that x− Lg has size |Lg| and is a
subset of G2, thus |Lg| ≤ |G2|. Similarly, x+G2 ⊆ Lg, so |G2| ≤ |Lg| as well.

Now let A0 = A ∪ {0}. Then

|A0 ∩ (g −A0)| = |A0|+ |g −A0| − |A0 ∪ (g −A0)| ≥ 2|A0| − |G| ≥ |G2|+ 2.
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By the previous paragraph, we then must have an element a1 ∈ A0 ∩ (g − A0) for which a1 6∈ Lg.
Since a1 ∈ g−A0, we also have an element a2 ∈ A0 for which a1 = g− a2 and thus g = a1+ a2. But
a1 6∈ Lg, and thus a2 6= a1. Now if a1 = 0, then a2 6= 0, so g ∈ A, contradicting our assumption. So
a1 ∈ A and, similarly, a2 ∈ A. Therefore, g ∈ 2̂ A, as claimed. ✷

Let us turn now to the proof of Theorem 1. We employ the following result:

Theorem 4 (Gallardo, Grekos, et al.; cf. [2]) If m ≥ 12 is even and |A| ≥ m/2 + 1, then
3̂ A = Zm.

Proof of Theorem 1: As we explained above, we only need to treat the case when 2|S| ≥ m. In
the subcase when m is odd, this inequality is equivalent to 2|S| ≥ m + 1; since G2 = {0} in this
subcase, the second statement of Proposition 3 implies that

|ΣS| ≥ |S ∪ (2̂ S)| = m = min{2|S|,m}.

As the first statement of Proposition 3 shows, in the subcase when m is even, considering only
S ∪ (2̂ S) is not sufficient. Luckily, when m ≥ 12, we can take advantage of Theorem 4: with
A = S ∪ {0}, we have |A| ≥ m/2 + 1, so

|ΣS| ≥ |3̂ S| = m = min{2|S|,m}.

This leaves only the cases of m ∈ {6, 8, 10}, which can be checked individually (or see Theorem 6
below). ✷

In closing, we mention the following generalization of Theorem 1:

Theorem 5 Let S be a generating subset of an abelian group G, and suppose that 0 6∈ S and |S| ≥ 5.
Then the number of sums of the subsets of S is at least min(|G|, 2|S|).

Our proof relies on the following 1973 result on the so-called critical number c(G) of G where

c(G) = min{s ∈ N | A ⊆ G \ {0}, |A| = s ⇒ ΣA = G}.

Theorem 6 (Diderrich and Mann; cf. [1]) Let G be an abelian group of order 2k with k ≥ 2.

1. If k ≥ 5 or G ∼= Z
3

2
, then c(G) = k.

2. If G ∼= Z4,Z6,Z8,Z
2

2
, or Z2 × Z4, then c(G) = k + 1.

Proof of Theorem 5: As we mentioned above, the case when 2|S| ≤ |G| − 1 was completed in
[3], so assume that 2|S| ≥ |G|. If |G| is odd, then, as before, our claim follows from the second
statement of Proposition 3. Finally, if |G| is even, the claim follows from Theorem 6. ✷
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