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Abstract
We show that certain topologically defined uniform spanning tree probabili-

ties for graphs embedded in an annulus can be computed as linear combinations
of Pfaffians of matrices involving the line-bundle Green’s function, where the
coefficients count cover-inclusive Dyck tilings of skew Young diagrams.

1 Introduction
In [KW11c] it was shown that the probabilities of topologically defined uniform
spanning tree events can be computed as linear combinations of determinants of
matrices whose entries involve the Green’s function G and the derivative G′ of the
“line-bundle Green’s function”. These probabilities were used to compute the intensity
of loop-erased random walk [KW11c] and the probabilities of local events in the abelian
sandpile model [Wil14]. We give another formula involving Pfaffians. In addition to
being (somewhat) computationally more efficient, the Pfaffian formula implies some
structural properties of the polynomials in G and G′. First, it becomes apparent
that the coefficients of the polynomials are integers — previously the coefficients
were only known to be half-integers. Second, if each G′u,v variable is replaced with
G′u,v + f(u)− f(v), then each polynomial is unchanged. This invariance property was
observed earlier for small sizes, but a general proof was missing until now, and it
simplifies some of the sandpile calculations.

For background on the line-bundle Laplacian, response matrix, and Green’s function
for graphs embedded in surfaces, and their use in computing spanning tree probabilities,
we refer the reader to [KW11c]. Here we summarize the key facts that we use.

The line-bundle Green’s function Gu,v(z) is a generalization of the usual Green’s
function Gu,v, where u and v are vertices of a graph G, and z ∈ C. When z = 1 it
specializes to the usual Green’s function:

Gu,v = Gv,u = Gu,v(1) .
The line-bundle Green’s function G has the symmetry Gv,u(z) = Gu,v(1/z). We define

G′u,v =
[
d

dz
Gu,v(z)

]
z=1

,
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which is antisymmetric, and is what we referred to as the derivative of the line-bundle
Green’s function. From the symmetry of G it follows that G′ is antisymmetric:
G′v,u = −G′u,v. For the Green’s function there is a designated sink vertex s (which has
been suppressed from the notation) for which

Gu,s = 0

for each vertex u.
There is another set of electrical variables that are useful to work with, the response

matrix, or the Dirichlet-to-Neumann matrix Lu,v. The response matrix is defined with
respect to a designated set of vertices which we call nodes. We think of the nodes as
being “boundary vertices”, and the other vertices as being internal, and the response
matrix gives the linear map from voltages to current flows. In the line bundle setting
we denote the response matrix by Lu,v(z). Here too Lv,u(z) = Lu,v(1/z), and the
line-bundle response matrix specializes to the usual response matrix when z = 1,

Lu,v = Lv,u = [Lu,v(z)]z=1 ,

which is symmetric, and we define

L′u,v =
[
d

dz
Lu,v(z)

]
z=1

which is antisymmetric. The response matrix variables satisfy the additional relation∑
v

Lu,v = 0

for each vertex u.
Spanning tree probabilities for a graph G embedded on an annulus can be computed

in terms of either set of variables, {Gu,v, G
′
u,v} or {Lu,v, L′u,v}.

Suppose that graph G has n nodes, which we label {1, . . . , n}. A grove is a forest
such that each tree contains at least one node. Groves were first studied by Carroll
and Speyer [CS04], and then more systematically by Kenyon and Wilson [KW11a],
who gave this current definition. Any grove induces a set partition σ on the nodes
where each set consists of the nodes from the same tree. We let Z[σ] denote the
weighted sum of groves whose induced partition is σ. The weighted sum of spanning
trees Z[tree] = Z[1, . . . , n] can be computed via the matrix-tree theorem, so we are
interested in computing the ratios

...
Z[σ] := Z[σ]

Z[1|2| · · · |n] (1)

or
Z[σ] := Z[σ]

Z[tree] . (2)
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Suppose that the graph G is embedded in an annulus so that the nodes 1, . . . , n− 1
are arranged in cyclic order on one boundary of the annulus, while node n is on the
other boundary of the annulus. The grove partition function ratios (1) and (2) for
these “annular-one graphs” G were used to compute probabilities for loop-erased
random walk [KW11c] and for recurrent sandpile configurations [Wil14]. For annular-
one graphs,

...
Z[σ] can be expressed in terms of a linear combination of determinants

involving L and L′, while Zσ can be expressed in terms of a linear combination
of determinants involving G and G′ [KW11c]. We shall re-express them as linear
combinations of Pfaffians.

It turns out that Z[σ] is itself a linear combination of Z[τ ]’s, where each τ is a
“partial pairing” of the nodes 1, . . . , n [KW11c]. A partial pairing is a set of pairs of
nodes, singletons, and “internalized” nodes, which are not listed in the partition, but
which may appear in any of the parts (like the other non-node vertices in a grove).
For example,

Z[2, 6, 9|3, 4, 5|7|1, 8] = Z[2, 9|3, 5|7|1, 8]− Z[2, 9|3, 6|7|1, 8]
− Z[2, 9|3, 5|6, 7|1, 8]− Z[2, 9|3, 5|1, 6|7] + Z[2, 9|3, 5|1, 6|7, 8] .

It turns out that for the LERW and sandpile applications it suffices to assume that
node n is in a doubleton part.

Kenyon and Wilson [KW11c] showed that Z[τ ]/Z[1|2| · · · |n] can be expressed
as a linear combination of determinants involving the Li,j’s and L′i,j’s, and that
Z[τ ]/Z[1, 2, · · · , n] can be expressed as a linear combination of determinants involving
the Gi,j’s and G′i,j’s. We will give these determinant formulas in the next section,
since they are the starting point of the present work.

1.1 Partial pairings in terms of Pfaffians
For a partial pairing τ in which node n is in a doubleton part, we can encode τ by a
string λ of n symbols, where the symbol at position i encodes the role of node i in the
partial pairing. For bookkeeping purposes that will soon become apparent, we label
each symbol with the label of the node that it represents; when the labels are 1, . . . , n
we sometimes omit the labels. For example, for the annular partial pairing

τ = 1, 5|2|3, 4|7, 10|8, 14|11|12, 13 =
1

2
345

7
8

10 11
12

1314

the associated (labeled) encoding string is

λ = λ(τ) =
1
U

2
S

3
U

4
D

5
D

6
I

7
D

8
F

9
I
10
U

11
S

12
U

13
D

14
� . (3)
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Here node n, which is on the other boundary, is given the special symbol �. The
node paired with n is also given a special symbol, F. (So each λ(τ) has exactly one F
and one � symbol.) I indicates that the node has been internalized, and S indicates a
node in a singleton part. The remaining nodes are assigned the symbols U and D so
that when the F is cyclically rotated to the end, the substring λ◦ formed by the U’s
and D’s defines a (labeled) Dyck path whose associated noncrossing matching is the
pairing of the nodes in τ . In the above example,

λ◦ =
10
U

12
U

13
D

1
U

3
U

4
D

5
D

7
D = 1010101010101010101010101010101010

1212121212121212121212121212121212 1313131313131313131313131313131313 11111111111111111
33333333333333333 44444444444444444

55555555555555555
77777777777777777 = 1010101010101010101010101010101010

1212121212121212121212121212121212 1313131313131313131313131313131313 11111111111111111
33333333333333333 44444444444444444

55555555555555555
77777777777777777 .

We call the string λ the augmented cyclic Dyck path associated with the partial
pairing τ — “augmented” because it contains symbols not in the Dyck path λ◦, and
“cyclic” because its start is determined by the location of the F symbol.

Given two labeled augmented cyclic Dyck paths λ and µ, we say that λ � µ if
they are the same length, have the same labels, all the letters other than U and D are
the same in both λ and µ, and as Dyck paths, λ◦ lies below µ◦.

If λ is a labeled string, we let λi denote its ith labeled symbol, and we let λ(i)
denote the label of λi.

For a labeled augmented cyclic Dyck path µ, we define µI to be the labeled string
obtained from µ by deleting all the S letters, and replacing each

i

I with the two letters
i

�
i

#. We also define µS to be the labeled string obtained from µ by deleting all the I
letters, and replacing each

i

S with the two letters
i

#
i

�. For example, if µ is the labeled
augmented cyclic Dyck path in (3), then

µI =
1
U

3
U

4
D

5
D

6
�

6
#

7
D

8
F

9
�

9
#

10
U

12
U

13
D

14
�

and
µS =

1
U

2
#

2
�

3
U

4
D

5
D

7
D

8
F

10
U

11
#

11
�

12
U

13
D

14
� .

Next we define ...µ and µ. Recall that there is only one letter F in µ; let f be its label,
so that

f

F ∈ µ. For each letter
i

U,
i

D,
f

F in µS, we make the substitutions

i

U 7→


i

⊕ i < f
i

# i > f

i

D 7→


i

# i < f
i

	 i > f

f

F 7→
f

#

to obtain µ. We let ...µ be the result of these same substitutions applied to µI. For our
example,

...
µ =

1
⊕

3
⊕

4
#

5
#

6
�

6
#

7
#

8
#

9
�

9
#

10
#

12
#

13
	

14
�

and
µ =

1
⊕

2
#

2
�

3
⊕

4
#

5
#

7
#

8
#

10
#

11
#

11
�

12
#

13
	

14
� .
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The original string µ can be recovered from either µ or ...µ.
Given a string σ of m labeled symbols ⊕, 	, #, �, such as as the ones above,

we define an m×m matrix Mσ(A,A′) by

Mσ(A,A′) :=


σj 6=� σj=�

σi 6=� −A′σ(i),σ(j) + Aσ(i),σ(j)

(
+1σi=⊕ − 1σj=⊕
−1σi=	 + 1σj=	

)
Aσ(i),σ(j)

σi=� −Aσ(i),σ(j) 0


j=1,...,m
i=1,...,m .

The symbols ⊕, 	, and # are mnemonic for +1, −1, and 0, which go into the
coefficient of Aσ(i),σ(j) when σi, σj 6=�. For example, when σ is the above value for µ,
this matrix is



−
1 2

�
2

−
3 4 5 7 8 10 11

�
11 12

+
13

�
14

+ 1 0 A1,2−A′1,2 A1,2 −A′1,3 A1,4−A′1,4 · · · · · · · · · A1,11 A1,12−A′1,12 2A1,13−A′1,13 A1.14
2 A′1,2−A1,2 0 A2,2 −A2,3−A′2,3 −A′2,4 · · · · · · · · · A2,11 −A′2,12 A2,13−A′2,13 A2,14
� 2 −A1,2 −A2,2 0 −A2,3 −A2,4 · · · · · · · · · 0 −A2,12 −A2,13 0
+ 3 ... ... . . . 0 A3,4−A′3,4 · · · · · · · · · A3,11 A3,12−A′3,12 2A3,13−A′3,13 A3,14

4 0 · · · · · · · · · A4,11 −A′4,12 A4,13−A′4,13 A4,14

5 . . . ... ... ... ...
7...



We define M (L)
µ = M...

µ(L,L′), and M (G)
µ = Mµ(G,G′), where Gi,n is replaced with 1.

Both M (L)
µ and M (G)

µ are antisymmetric. The new formulas involve Pfaffians of these
matrices M (L)

µ and M (G)
µ .

The new formulas have coefficients that are defined in terms of “cover-inclusive
Dyck tilings”, which were first defined in [KW11b] and independently in [SZJ12],

Figure 1: Cover-inclusive Dyck tilings of a skew shape. (This figure first appeared in
[KW11b].)
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and were studied further in [Kim12, KMPW14, KW11c, KW14, JVK14], and whose
definition we now recall. If λ and µ are Dyck paths such that λ is below µ, then the
region λ/µ is a skew Young diagram (rotated 45◦). A Dyck tile is a ribbon tile which
is shaped like a Dyck path, i.e., a collection of

√
2×
√

2 boxes rotated 45◦ centered at
the points of a Dyck path. A Dyck tiling of λ/µ is a tiling of it by Dyck tiles. We
say that one Dyck tile covers another Dyck tile if it contains a box which is directly
(not diagonally) above a box of the other tile. A cover-inclusive Dyck tiling is one for
which, whenever a Dyck tile T1 covers another Dyck tile T2, the range of x-coordinates
of T1 is a subset of the range of x-coordinates of T2. See Figure 1 for a list of the Dyck
tilings of a particular skew shape λ/µ.

Theorem 1.1. Suppose τ is a partial pairing of the nodes of an annular-one graph
with n nodes, where node n is paired in τ . Let λ be the labeled augmented cyclic Dyck
path which encodes τ . Then

Z[τ ]
Z[1|2| · · · |n] =

∑
µ�λ

[# of c.i. Dyck tilings of λ◦/µ◦]× Pf M (L)
µ (4)

and
Z[τ ]

Z[1, 2, . . . , n] =
∑
µ�λ

[# of c.i. Dyck tilings of λ◦/µ◦]× Pf M (G)
µ . (5)

1.2 Examples
We give a couple of examples:

For the partial pairing 1, 3|2, 4, the encoding string λ is
1
D

2
F

3
U

4
�, the only µ in the

sum is µ =
1
D

2
F

3
U

4
�, for which the skew Young diagram λ◦/µ◦ has only the empty Dyck

tiling, so the coefficient is 1. For this µ =
1
D

2
F

3
U

4
�, ...µ =

1
#

2
#

3
#

4
�, so

Z[1, 3|2, 4]
Z[1|2|3|4] = Pf


0 −L′1,2 −L′1,3 L1,4
L′1,2 0 −L′2,3 L2,4
L′1,3 L′2,3 0 L3,4
−L1,4 −L2,4 −L3,4 0


︸ ︷︷ ︸

M
(L)
DFU�

= −L′1,2L3,4 − L′2,3L1,4 − L′3,1L2,4 ,

which matches [KW11c, eqn. 5.5b], and µ =
1
#

2
#

3
#

4
�, so

Z[1, 3|2, 4]
Z[1, 2, 3, 4] = Pf


0 −G′1,2 −G′1,3 1
G′1,2 0 −G′2,3 1
G′1,3 G′2,3 0 1
−1 −1 −1 0


︸ ︷︷ ︸

M
(G)
DFU�

= −G′1,2 −G′2,3 −G′3,1 ,

which matches [KW11c, eqn. 5.6b].
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For the partial pairing 1, 4|2|6, 7 the encoding string is λ =
1
U

2
S

3
I

4
D

5
I

6
F

7
�, the only

µ � λ is µ =
1
U

2
S

3
I

4
D

5
I

6
F

7
�, and ...

µ =
1
⊕

3
�

3
#

4
#

5
�

5
#

6
#

7
�, so

Z[1, 4|2|6, 7]
Z[1|2|3|4|5|6|7] = Pf



0 L1,3 L1,3 − L′1,3 L1,4 − L′1,4 L1,5 L1,5 − L′1,5 L1,6 − L′1,6 L1,7
−L1,3 0 −L3,3 −L3,4 0 −L3,5 −L3,6 0

L′1,3 − L1,3 L3,3 0 −L′3,4 L3,5 −L′3,5 −L′3,6 L3,7
L′1,4 − L1,4 L3,4 L′3,4 0 L4,5 −L′4,5 −L′4,6 L4,7
−L1,5 0 −L3,5 −L4,5 0 −L5,5 −L5,6 0

L′1,5 − L1,5 L3,5 L′3,5 L′4,5 L5,5 0 −L′5,6 L5,7
L′1,6 − L1,6 L3,6 L′3,6 L′4,6 L5,6 L′5,6 0 L6,7
−L1,7 0 −L3,7 −L4,7 0 −L5,7 −L6,7 0


︸ ︷︷ ︸

M
(L)
USIDIF�

while µ =
1
⊕

2
#

2
�

4
#

6
#

7
�, so

Z[1, 4|2|6, 7]
Z[1, 2, 3, 4, 5, 6, 7] = Pf



0 G1,2 −G′1,2 G1,2 G1,4 −G′1,4 G1,6 −G′1,6 1
G′1,2 −G1,2 0 G2,2 −G′2,4 −G′2,6 1
−G1,2 −G2,2 0 −G2,4 −G2,6 0

G′1,4 −G1,4 G′2,4 G2,4 0 −G′4,6 1
G′1,6 −G1,6 G′2,6 G2,6 G′4,6 0 1
−1 −1 0 −1 −1 0


︸ ︷︷ ︸

M
(G)
USIDIF�

For 1, 2|3, 7|4, 6 we have λ = UDFUID�, there are two µ’s such that µ � λ:

Z[1, 2|3, 7|4, 6]
Z[1, 2, 3, 4, 5, 6, 7] = Pf M (G)

UDFUID� + Pf M (G)
DDFUIU�

For the partial pairing 1, 3|2|4, 10|5, 6|7, 9 we have λ = USDFUDUID�, there are
five µ’s such that µ � λ, and for one of these µ’s the skew Young diagram λ◦/µ◦ has
two Dyck tilings:

Z[1, 3|2|4, 10|5, 6|7, 9]
Z[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] = Pf M (G)

USDFUDUID� + Pf M (G)
USDFUUDID�

+ Pf M (G)
DSDFUDUIU� + Pf M (G)

DSDFUUDIU� + 2× Pf M (G)
DSDFUUUID�

1.3 Corollaries
The formulas in Theorem 1.1 immediately imply the following statement.

Corollary 1.2. For a partition τ on {1, . . . , n} in which n is not in a singleton
part, on an annular-one graph with n nodes, the ratio Z[τ ]

Z[1|2|···|n] is a polynomial in the
variables L and L′ with integer coefficients. Similarly, Z[τ ]

Z[1,2,··· ,n] is a polynomial in G

and G′ with integer coefficients.
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It was known that these ratios are polynomials in the L and L′ variables, or the
G and G′ variables [KW11c], but the integrality of the coefficients was previously a
mystery.

Recalling
Z[1, 3|2, 4]
Z[1, 2, 3, 4] = −G′1,2 −G′2,3 −G′3,1 ,

observe that this polynomial is invariant under the substitution G′i,j → G′i,j+f(i)−f(j).
The next corollary states that this is a general phenomenon for the G-G′-polynomials
of any partition:

Corollary 1.3. For a partition τ on {1, . . . , n} in which n is not in a singleton part,
on an annular-one graph with n nodes, the G-G′-polynomial for Z[τ ]

Z[1,2,··· ,n] is invariant
under replacing each G′i,j with G′i,j + f(i)− f(j).

Proof of Corollary 1.3. Consider each Pfaffian in the formula from Theorem 1.1. Since
the last column (row) is all 1’s (−1’s), we can add an all-f(i)’s row to row i and
subtracting an all-f(i)’s-column from column i, without changing the value of the
Pfaffian. Since G′i,j occurs only in row i and column j (and row j and column i), with
coefficient 1 (and −1), these operations replace each G′i,j with G′i,j + f(i)− f(j) and
keep the Pfaffian invariant.

We remark that it was known [KW11c] that substituting G′i,j → G′i,j + f(i)− f(j)
and then evaluating the polynomial at the values of G and G′ that arise from an
annular-one graphs will give a result independent of f . Corollary 1.3 is a stronger
statement, since it was not known whether the values of G and G′ that arise from
annular-one graphs are full-dimensional or whether they satisfy algebraic relations
which cause the substituted G-G′-polynomials, when evaluated at these values, to be
independent of f .

2 Determinant formulas
For an annular partial pairing τ on n nodes, let λ be its encoding string, let T denote
the set of internalized nodes, and Q denote the set of singleton nodes. Let k denote
the order of the Dyck path λ◦, i.e., half its length, so that n = 2k + 2 + |Q|+ |T |.

Let S ⊂ {1, . . . , n} \ (Q ∪ T ) be a subset of the paired nodes which has size k + 1
and includes n, and let R = {1, . . . , n} \ (S ∪ Q ∪ T ) be the complementary set of
paired nodes. Given λ and S, Kenyon and Wilson [KW11c] defined

Bλ,S(ζ) =
∑
µ�λ

[# of c.i. Dyck tilings of λ/µ]× ζ# indices in S at which µ has an up-step×

ζ−# indices in S \ {n} after λ’s flat step + # down steps of λ after λ’s flat step , (6)

8



and showed how to use these polynomials Bλ,S to compute the ratios of grove partition
functions. Specifically

Z[τ ]
Z[1|2| · · · |n] = (−1)|T | × lim

z→1

∑
R,S

Bλ,S(z2)
(1− z2)k det L S,T

R,T , (7)

where L S,T
R,T denotes the submatrix of L whose rows are indexed by R and T and

whose columns are indexed by S and T , and we need to specify a pairing between
the indices of R and S to determine the signs of the determinants. We use the
Dvoretzky-Motzkin cycle lemma bijection to make this pairing, as indicated below
(figure taken from [KW11c]). Essentially we make a path with period 2k + 1 which
has an up step at each index in R and a down step at each index in S \ {n}. The up
and down steps are the endpoints of chords underneath the path, and these chords
define the pairing, where the extra up step is paired with n.

S={1,2,5,9,10,12}
R={3,4,6,7,8,11} ⇒ 1

2 3
4 5 6

7
8 9

1011 1
2 3

4 5 6
7

8 9
1011

⇒ 4 5 6
7

8 9
1011 1

2 3

12

⇒ 5
4|26|10

7 |98| 111|12
3

Recall that Li,j = Li,j(z) is a function of z. We change variables to z = et

(here we differ slightly from the notation in [KW11c], which used ζ = z2 = et). We
expand Li,j(et) = Li,j + L′i,jt+ · · · , and let L̂i,j denote its linearized approximation
L̂i,j = Li,j + L′i,jt. In general the series expansion for Li,j(et) will have more terms,
but while it is not a priori obvious, the limit (7) can be evaluated using L̂i,j in place
of Li,j(et):

Z[τ ]
Z[1|2| · · · |n] = (−1)|T | × lim

t→0

1
(−2t)k

∑
R,S

Bλ,S(e2t) det L̂ S,T
R,T , (8)

and a similar formula

Z[τ ]
Z[1, 2, . . . , n] = lim

t→0

1
(−2t)k

∑
R,S

Bλ,S(e2t) det Ĝ S,Q
R,Q , (9)

holds, where Ĝi,j = Gi,j +G′i,jt and each Ĝi,n is replaced with 1 [KW11c]. From these
formulas we derive the Pfaffian formulas.

3 Pfaffian formulas
We start in section 3.1 by showing that a Pfaffian can be expressed as a sum of
determinants. In section 3.2 we give an application of this identity to tripartite
pairings. Then we use the Pfaffian identity and equations (8) and (9) to prove
Theorem 1.1 in section 3.3.

9



3.1 The Pfaffian as a sum of determinants
For any matching M = (i1, j1), . . . , (ik, jk), we define sign(M) = (−1)cr(M), where
cr(M) is the number of crossings of arcs from M when M is drawn as k arcs between
the points {1, . . . , 2k} on a line. For the left endpoint of each arc we can associate an
up-step, and for each right endpoint we can associate a down-step, which results in a
Dyck path. The down steps of the matching M are the down steps of its Dyck path,
i.e., {max(i1, j1), . . . ,max(ik, jk)}.

Given a set of positive integers R for which R ⊂ {1, . . . , 2|R|}, we define dR as
follows. We let n = 2|R| and S = {1, . . . , n} \R. For an arbitrary matrix A we define

dR(A) :=

det[Ai,j]j∈Si∈R n ∈ S
det[−Ai,j]j∈Si∈R n ∈ R ,

(10)

where R and S are ordered according to the Dvoretzky-Motzkin bijection as described
above. For example,

d{3,4,6,7,8,11}(A) = det[Ai,j]j=5,2,10,9,1,12
i=4,6,7,8,11,3 .

Lemma 3.1. Suppose n ≥ 0 is even, R ⊂ {1, . . . , n}, |R| = n/2, and S = {1, . . . , n}\
R. Let A be an arbitrary n× n matrix. Then

dR(A) =
∑

directed matchings M s.t.
M matches R to S

(−1)cr(M) ∏
(r,s)∈M

(−1)1r>sAr,s .

Proof. Let k = n/2. The arrangement of elements of R and S in dR is given by the
Dvoretzky-Motzkin cycle lemma bijection, and in particular corresponds to a matching
M0 = {(r1, s1), . . . , (rk, sk)} (each r` ∈ R and s` ∈ S) which has no crossings when
drawn in the annulus. By the determinant expansion,

detASR =
∑
π∈Sk

sign(π)
k∏
`=1

Ar`,sπ(`) . (11)

Suppose n /∈ R. When we draw matching M0 on a line, there may be crossings of
the arc (j, n) from arcs (a, b), such that a > j > b; these are precisely the arcs whose
starting point is larger than its endpoint. When drawn on the line, the number of
crossings is cr(M0) = ∑

(i,j)∈M0 1i>j. If instead n ∈ R, then cr(M0) = ∑
(i,j)∈M0 1i<j.

For a permutation π let the matching M(π) be M(π) = {(r1, sπ(1)), . . . , rk, sπ(k)}.
The matching M0 corresponds to the identity permutation, so at least when the
permutation π is the identity, we have

sign(π) = (−1)cr(M(π))(−1)
∑

(r,s)∈M(π) 1r>s(−1)(n/2)1n∈R ,

a formula which we now verify for the other permutations. Any permutation π can
be expressed as a sequence of transpositions, and it is a straightforward case analysis
to verify that any transposition changes the parity of the number of crossings in the
matching plus the number of arcs directed backwards.

10



Theorem 3.2. Suppose n ≥ 0 is even. If A is an arbitrary n× n matrix, and dR(A)
is as defined in (10), then ∑

R⊂{1,...,n}
|R|=n/2

dR(A) = Pf
[
A− AT

]
, (12)

where AT is the transpose of A.

Proof. From Lemma 3.1, we see that the left-hand side of (12) equals∑
directed matchings M

(−1)cr(M) ∏
(r,s)∈M

(−1)1r>sAr,s .

Let n = 2k, and let Wi,j = Ai,j − Aj,i. We can expand the Pfaffian as

Pf[W ] =
∑

undirected matchings M
M={(i1,j1),...,(ik,jk)}

i1<j1,...,ik<jk
j1<···<jk

(−1)cr(M)
k∏
`=1

Wi`,j` .

When we make the substitution Wi,j = Ai,j − Aj,i, this has the effect of choosing
directions for each pairing, converting the sum over undirected matchings into a sum
over directed matchings:

Pf
[
A− AT

]
=

∑
directed matchings M

(−1)cr(M) ∏
(r,s)∈M

(−1)1r>sAr,s .

3.2 Applications of the Pfaffian identity
Before continuing with our main result, we mention an interesting consequence of
Theorem 3.2. Curtis, Ingerman, and Morrow [CIM98] gave an interpretation of the
determinant detLSR when R = {r1, . . . , rk} and S = {s1, . . . , sk} are disjoint subsets
of {1, . . . , n}, which, when translated into the language of groves, asserts that

detLs1,...,sk
r1,...,rk

=
∑
π∈Sk

sign(π)Z[r1, sπ(1)| · · · |rk, sπ(k)|(other nodes singletons)]
Z[1| · · · |n] . (13)

This formula holds for any graph.
If B and C are two disjoint sets of nodes, and we set Ai,j = 0 when i ∈ C or j ∈ B

and otherwise set Ai,j = Li,j, then Theorem 3.2 with the above interpretation of the
minors implies Pf[A−AT ] is a sum over directed matchings for which the nodes in B
are sources and the nodes in C are destinations, of the sign of the directed matching
times the grove ratio associated with that matching. In particular, nodes of B are only
paired with nodes not in B, and nodes in C are only paired with nodes not in C. If a
matching M contains a pair (i, j) where i, j ∈ B or i, j ∈ C, then M is not included
in the sum. Notice that if i, j /∈ B ∪ C, then the matching (M \ {(i, j)}) ∪ {(j, i)}, in
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which the pair (i, j) has been reversed, has the same weight as M but opposite sign.
Thus

Pf


j∈B j /∈B∪C j∈C

i∈B 0 Li,j Li,j

i/∈B∪C −Li,j 0 Li,j

i∈C −Li,j −Li,j 0

 =

=
∑

directed matchings M
if (i, j) ∈M then

i ∈ B or j ∈ C or both

(−1)cr(M) ∏
(i,j)∈M

(−1)1j<i

 ...
Z[i1, j1| · · · |in/2, jn/2] . (14)

When the graph is circular planar (i.e., the nodes lie on the outer face of a planar graph),
and B = {1, . . . , |B|} and C = {n+ 1− |C|, . . . , n}, there is only one matching M for
which

...
Z[M ] 6= 0, and the sign is positive, so

...
Z[M ] is the Pfaffian. For example,

...
Z

 1
2

3

4
5

6

 = Z[1, 6|2, 3|4, 5]
Z[1|2|3|4|5|6] = Pf



0 0 L1,3 L1,4 L1,5 L1,6
0 0 L2,3 L2,4 L2,5 L2,6
−L1,3 −L2,3 0 0 L3,5 L3,6
−L1,4 −L2,4 0 0 L4,5 L4,6
−L1,5 −L2,5 −L3,5 −L4,5 0 0
−L1,6 −L2,6 −L3,6 −L4,6 0 0


.

This is one of several tripartite matching formulas that were derived earlier by Kenyon
and Wilson [KW09] using a different method [KW11a].

The determinant formula (13) has been extended in several directions. Kenyon and
Wilson [KW11c] showed that if Q = {q1, . . . , q`} and T = {t1, . . . , tm}, and Q,R, S, T
partition {1, . . . , n}, then

det L s1,...,sk,t1,...,tm
r1,...,rk,t1,...,tm = (−1)m

∑
π∈Sk

sign(π)
Z
[
sπ(1)
r1 | · · · |

sπ(k)
rk |q1| · · · |q`

]
Z [1| · · · |n] , (15)

where the Z ’s give the weighted sum of “cycle-rooted groves”. (The cycle weights
go to zero and Z converges to Z when z → 1, see [KW11c] for further explanation.)
When we combine Theorem 3.2 with the above formula, we obtain the following:

Theorem 3.3. Suppose there are n nodes, P,Q, T partition {1, . . . , n}, and |P | = 2k
is even. For each i ∈ P let αi and βi be parameters, and for i ∈ T let αi = βi = 1.
List the nodes p1, . . . , p2k, t

′
1, t1, . . . , t

′
m, tm, where t′i is a second copy of ti, and let

T ′ = {t′1, . . . , t′m}. Then

12



Pf


j∈P∪T j∈T ′

i∈P∪T αiβjLi,j − αjβiLj,i αiLi,j

i∈T ′ −αjLj,i 0


j=p1,...,p2k,t

′
1,t1,...,t

′
m,tm

i=p1,...,p2k,t
′
1,t1,...,t

′
m,tm

=

=
∑

directed matchings M of P
M={(r1,s1),...,(rk,sk)}

(−1)cr(M) ∏
(r,s)∈M

(−1)1s<rαrβs

× Z [s1
r1 | · · · |

sk
rk
|q1| · · · |q`]

Z [1| · · · |n] .

(16)

Proof. If i ∈ T ′ then take αi = 0 and βi = 1. Then apply Theorem 3.2 with
Ai,j = αiβjLi,j, and use (15) to interpret the determinants. The factor of (−1)m in
(15) is absorbed into the Pfaffian because we listed each t′i before ti.

Any of (13) or (14) or (15) can be recovered from (16) by choosing the α’s and
β’s suitably and/or setting z = 1.

3.3 Proof of main theorem
Our approach to proving the Pfaffian formulas in Theorem 1.1 is to prove that the
right hand sides of (8) and (9) are equal as polynomials in formal variables to the
Pfaffian expressions. We will not, for example, use the fact that ∑j Li,j = 0 or other
relations that the electrical network quantities might satisfy, since the Li,j’s and the
Gi,j’s satisfy different relations. By working with formal variables that do not satisfy
these extra relations, the same proof works for both the L-L′ polynomials and the
G-G′ polynomials.

The roles of the S and I symbols are reversed between the L-L′ polynomials for...
Z[τ ] and the G-G′ polynomials for Z[τ ]. As a matter of convenience, we will give these
symbols the roles they have for the G-G′ polynomials. To obtain the L-L′ polynomials,
we will at some point substitute I for S and S for I.

Let λ be a labeled augmented cyclic Dyck path with n symbols. Let λ∗ be the
substring obtained from λ by excising all S and I symbols that it contains, let n∗ be
the length of λ∗, and let Eλ be the set of labels of S symbols. For our running example

λ =
1
U

2
S

3
U

4
D

5
D

6
I

7
D

8
F

9
I
10
U

11
S

12
U

13
D

14
�

we have

λ∗ =
1
U

3
U

4
D

5
D

7
D

8
F

10
U

12
U

13
D

14
� , n∗ = 10 , Eλ = {2, 11} .

For an arbitrary n× n matrix A we define
?

Zλ(A ) :=
∑

R∗⊂{1,...,n∗}
|R∗|=n∗/2
{n∗}∩R=∅

S∗={1,...,n∗}\R∗

Bλ∗,S∗(e2t)
(1− e2t)k det A λ∗(S∗),Eλ

λ∗(R∗),Eλ (17)

13



Recall from (6) that Bλ,S(ζ) is a sum over µ � λ of (# of c.i. Dyck tilings of λ◦/µ◦)
times ζ to the power

(# up steps of µ in S before flat step)
− (# down steps of µ in S after flat step)

+ (# down steps of λ after flat step) .

We define
?

Z µ(A ) := 1
(1− e2t)k

∑
R∗⊂{1,...,n∗}
|R∗|=n∗/2
{n∗}∩R∗=∅

S∗={1,...,n∗}\R∗

det A
µ∗(S∗),Eµ
µ∗(R∗),Eµ ×

exp
[
2t
∣∣∣(up steps of µ∗ before flat step) ∩ S∗

∣∣∣]÷
exp

[
2t
∣∣∣(down steps of µ∗ after flat step) ∩ S∗

∣∣∣] .
(18)

Observe that if µ � λ then µ∗(·) = λ∗(·) and Eµ = Eλ, so
?

Zλ(A ) = exp
[
2t (# down steps of λ after flat step)

]
×∑

µ�λ
[# of c.i. Dyck tilings of λ◦/µ◦]

?

Z µ(A ) . (19)

The following lemma will help us evaluate
?

Z µ(A ):

Lemma 3.4. Suppose n ≥ 0 is even, B,C, U, V ⊂ {1, . . . , n}, B ∩ C = ∅, and
U ∩ V = ∅. Let A be an arbitrary n× n matrix. Then

∑
R⊂{1,...,n}
|R|=n/2
B⊂R

C∩R=∅
S={1,...,n}\R

exp
[
2t
(
|S ∩ U | − |S ∩ V |

)]
dR(A) =

= exp
[
t(|U | − |V |)

]
× Pf


j∈B j /∈B∪C j∈C

i∈B 0 Ãi,j Ãi,j

i/∈B∪C −Ãj,i Ãi,j − Ãj,i Ãi,j

i∈C −Ãj,i −Ãj,i 0


j=1,...,n
i=1,...,n ,

(20)

where
Ãi,j = Ai,j exp

[
t(1j∈U − 1i∈U − 1j∈V + 1i∈V )

]
.

Proof. Observe that 2|S ∩ U | = |S ∩ U | − |R ∩ U |+ |U |, and similarly for 2|S ∩ V |.
Since Ã is obtained from A by multiplying the ith row by exp[t(1i∈V − 1i∈U )] and jth
column by exp[t(1j∈U − 1j∈V )], the determinants dR(A) and dR(Ã) differ by a factor
depending on R and S:

exp
[
2t
(
|S ∩ U | − |S ∩ V |

)]
× dR(A) = exp

[
t(|U | − |V |)

]
× dR(Ã) .
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We can set Ai,j = 0 whenever j ∈ B or i ∈ C, since these variables do not occur
in equation (20). We then remove the restrictions B ⊂ R and C ∩ R = ∅ in the
summation on the left-hand side of equation (20), since with the above variables
zeroed out, dR(A) = 0 whenever B 6⊂ R or C ∩R 6= ∅. Without these restrictions on
the sum, we can apply Theorem 3.2 to sum up the dR(Ã)’s to obtain (20).

Lemma 3.5. Let µ be a labeled augmented cyclic Dyck path with n symbols, and
suppose µ has length m. Let U denote the set of labels in µ above ⊕ symbols, and let
V denote the set of labels in µ above 	 symbols. Let A be an arbitrary n× n matrix,
and let

Ãi,j = Ai,j exp
[
t(1j∈U − 1i∈U − 1j∈V + 1i∈V )

]
. (21)

Then

?

Z µ(A ) = Pf


µj 6=� µj=�

µi 6=�
Ãµ(i),µ(j) − Ãµ(j),µ(i)

1− e2t Ãµ(i),µ(j)

µi=� −Ãµ(j),µ(i) 0


j=1,...,m
i=1,...,m .

(22)

Proof. Recall that µS is the string obtained from µ by replacing each
i

S symbol with
i

#
i

� and omitting each I symbol. Let Bµ denote the positions of these new #’s
(replacing an S) in µS, let Cµ denote the positions of these new �’s in µS. The strings
µS and µ have the same length, which we are calling m. If µ is our earlier example

µ =
1
U

2
S

3
U

4
D

5
D

6
I

7
D

8
F

9
I
10
U

11
S

12
U

13
D

14
� ,

then
µS =

1
U

2
#

2
�

3
U

4
D

5
D

7
D

8
F

10
U

11
#

11
�

12
U

13
D

14
�

and

Bµ = positions of {
2
#,

11
#} = {2, 10} and Cµ = positions of {

2
�,

11
�} = {3, 11} .

Let Uµ denote the set of positions at which µ has an U before its F, and let Vµ
denote positions at which µ has a D after its F.

For a given µ, the subsets R∗ of {1, . . . , n∗} for which |R∗| = n∗/2 are in straightfor-
ward bijective correspondence with those subsets R of {1, . . . ,m} for which |R| = m/2,
Bµ ⊂ R and Cµ∩R = ∅, i.e., R = µ−1(µ∗(R∗))∪Bµ. Consider the pairing between R∗
and S∗ = {1, . . . , n∗} \R∗ given by the cycle lemma bijection. This pairing naturally
extends to a pairing between R and S = {1, . . . ,m} \ R, where a pair (r∗, s∗) gets
mapped to the pair (µ−1(µ∗(r∗)), µ−1(µ∗(s∗))), with the pairing between R and S also
containing the pairs (b, b+1) for each b ∈ Bµ. Provided n∗ /∈ R∗, this extended pairing
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is precisely the pairing between R and S given by the cycle lemma bijection. Thus∑
R∗⊂{1,...,n∗}
|R∗|=n∗/2
{n∗}∩R∗=∅

S∗={1,...,n∗}\R∗


det A

µ∗(S∗),Eµ
µ∗(R∗),Eµ ×

exp
[
2t
∣∣∣Uµ∗ ∩ S∗∣∣∣]÷

exp
[
2t
∣∣∣Vµ∗ ∩ S∗∣∣∣]


=

∑
R⊂{1,...,m}
|R|=m/2
{m}∩R=∅
Bµ⊂R

Cµ∩R=∅
S={1,...,m}\R


det A µS(S)

µS(R)×

exp
[
2t
∣∣∣UµS ∩ S

∣∣∣]÷
exp

[
2t
∣∣∣VµS ∩ S

∣∣∣]

.

(23)

We could apply Lemma 3.4 with B = Bµ and C = Cµ∪{m} to evaluate the right-hand
side of (23), but it turns out to work better with B = ∅, C = Cµ ∪ {m}. So long
as (Cµ ∪ {m}) ∩R = ∅, if Bµ 6⊆ R, then the determinant det A µS(S)

µS(R) has at least one
repeated column and therefore does not contribute to the sum. Applying Lemma 3.4
with B = ∅, C = Cµ ∪ {m}, U = UµS , V = VµS , and n = m, and then using the fact
that µS(·) = µ(·), we see that the right-hand side of (23) equals

Pf
[ j /∈ C j ∈ C

i /∈ C Ãµ(i),µ(j) − Ãµ(j),µ(i) Ãµ(i),µ(j)

i ∈ C −Ãµ(j),µ(i) 0

]
j=1,...,m
i=1,...,m ,

with Ã defined as in (21). Observe that Cµ ∪ {m}, UµS , and VµS are the locations of
�, ⊕, and 	 symbols in µ respectively (which is of course the reason we defined µ
the way we did).

The definition of
?

Z µ(A ) also contains a factor of 1/(1− e2t)n∗/2−1. If for some x
we scale the rows and columns not in C by a factor of x1/2, and scale the rows and
columns in C by a factor of x−1/2, the Pfaffian is scaled by a factor of x[(m−|C|)−|C|]/2.
Now m = n∗+ 2|E| and |C| = |E|+ 1, so [(m−|C|)−|C|]/2 = n∗/2− 1. Upon taking
x = 1/(1− e2t), we obtain (22).

So far all these calculations are exact. Next we take the limit t→ 0:
Lemma 3.6. Let µ be a labeled augmented cyclic Dyck path with n symbols, and
suppose µ has length m. Let A be an n× n matrix of formal power series for which
Ai,j(t) = Aj,i(−t) = Ai,j + A′i,jt+O(t2). Then

?

Z µ(A ) = Pf


µj 6=� µj=�

µi 6=�

(
+1µi=⊕ − 1µj=⊕
−1µi=	 + 1µj=	

)
Aµ(i),µ(j) − A′µ(i),µ(j) Aµ(i),µ(j)

µi=� −Aµ(i),µ(j) 0


j=1,...,m
i=1,...,m︸ ︷︷ ︸

Mµ(A,A′)

+O(t)

Proof. Straightforward series expansion of the expression from Lemma 3.5.

It is also straightforward to extract the coefficients of higher powers of t in the
series expansion

?

Z µ(A ) using Lemma 3.5. As discussed earlier, the constant term
is relevant for computing grove probabilities. The term linear in t is relevant for
computing expected winding [KW11c], and also depends on just the Ai,j’s and A′i,j’s.
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Proof of Theorem 1.1. Immediate from (8), (9), (17), (18), (19) and Lemma 3.5. For
the G-G′ polynomials we substitute G for A and G′ for A′. For the L-L′ polynomials
we first substitute I for S and S for I, and then L for A and L′ for A′, and we absorb
the factor of (−1)|T | from (8) into the Pfaffian by writing

i

�
i

# rather than
i

#
i

�.

4 Open problems
The coefficients in the Pfaffian formulas in Theorem 1.1 count Dyck tilings whose
lower path is λ◦ and whose upper path depends on the summand. It is known that the
sum of these coefficients is the number of increasing labelings of the planted plane tree
associated with the Dyck path λ◦ [KMPW14]. Is there something more to understand
here?

Is there a polynomial-time algorithm for evaluating Z[τ ]? For certain τ ’s there
will be few or even just one Pfaffian, though for general τ the number of Pfaffians is
exponentially large in the number of nodes. But these Pfaffians are all closely related
to one another, which suggests the possiblity that some clever linear algebra could be
used to evaluate the sum without evaluating each individual Pfaffian.
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