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For a given graph G of minimum degree at least k, let Gp denote the random spanning

subgraph of G obtained by retaining each edge independently with probability p = p(k).

We prove that if p � (log k + log log k + ωk(1))/k, where ωk(1) is any function tending to

infinity with k, then Gp asymptotically almost surely contains a cycle of length at least

k + 1. When we take G to be the complete graph on k + 1 vertices, our theorem coincides

with the classic result on the threshold probability for the existence of a Hamilton cycle in

the binomial random graph.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C38, 05C85, 05D40, 05C05

1. Introduction

Given a graph G and a real p ∈ [0, 1], let Gp be the probability space of subgraphs of G

obtained by taking each edge of G independently with probability p. We sometimes use

the notation (G)p to avoid ambiguity. For a given graph property P and sequences of

graphs {Gi}∞
i=1 and probabilities {pi}∞

i=1, we say that (Gi)pi ∈ P asymptotically almost surely,

or a.a.s. for brevity, if the probability that (Gi)pi ∈ P tends to 1 as i goes to infinity. In
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this paper, when G and p depend upon some parameter, we abuse notation and consider

G and p as sequences obtained by taking the parameter to tend to infinity, and we say

that Gp has P a.a.s. if the sequence does.

When the host graph G is the complete graph on n vertices, the random graph

model Gp coincides with the classic binomial random graph model G(n, p), introduced

independently by Gilbert in [7] and by Erdős and Rényi in [6]. This important model

has been studied extensively for the past few decades. A result of Pósa [15] states that

for some large constant C > 0, if p � (C log n)/n then G(n, p) a.a.s. contains a Hamilton

cycle. This result was later strengthened by Korshunov [11], Komlós and Szemerédi

[10], and independently by Bollobás [3]. They proved that the same statement holds for

p � (log n + log log n + ωn(1))/n, provided n is large.

In this paper we extend the aforementioned result to a more general class of graphs.

More precisely, we would like to replace the host graph G, taken to be the complete graph

in the classic setting, by a graph with minimum degree at least k, and to find a.a.s. a cycle

of length at least k + 1 in the random subgraph Gp. Our main result is as follows.

Theorem 1.1. Let G be a graph with minimum degree at least k. If

p = p(k) � log k + log log k + ωk(1)

k
,

then Gp a.a.s. contains a cycle of length at least k + 1.

Our results are complementary to those of Krivelevich, Lee and Sudakov [12] and

Riordan [16]. They proved that for p = ωk(1)/k, the graph Gp a.a.s. contains a cycle of

length at least (1 + o(1))k, which might be slightly less than k + 1. Since the property

stated in the main theorem is monotone increasing, we assume throughout the paper that

p � (log k + 2 log log k)/k.

The rest of this paper is organized as follows. Section 2 contains a variety of tools,

which are used to prove Theorem 1.1. All propositions, statements and lemmas in that

section are stated without proofs. In Section 3, we prove our main theorem. The final

section contains some concluding remarks.

1.1. Notation

A graph G = (V , E) is given by a pair of its (finite) vertex set V (G) and edge set E(G).

We use |G| or |V (G)| to denote the order of the graph. For a subset X of vertices, we use

e(X) to denote the number of edges spanned by X, and for two disjoint sets X,Y , we

use e(X,Y ) to denote the number of edges with one endpoint in X and the other in Y .

Let G[X] denote the subgraph of G induced by a subset of vertices X. We write N(X) to

denote the collection of vertices outside X that have at least one neighbour in X. When

X consists of a single vertex, we abbreviate N(v) for N({v}), and let deg(v) denote the

cardinality of N(v), that is, the degree of v. For two graphs G1 and G2, not necessarily

over the same vertex set, we define their intersection as

G1 ∩ G2 = (V (G1) ∩ V (G2), E(G1) ∩ E(G2))
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and their union as

G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

Moreover, if X is a set of vertices, we let G \ X be the induced subgraph G[V (G) \ X].

Finally, if G is a graph and E is a collection of unordered pairs of vertices from V (G), let

G + E denote the graph obtained from G by adding the edges in E which are not already

in G. When there are several graphs under consideration, we use subscripts such as NG(X)

indicating the relevant graph of interest.

The probability space Gp is a simple product space. When sampling from this model,

one could unveil the graph Gp by successively answering queries of the form ‘does e belong

to Gp?’ for each edge e ∈ E(G). Since the answers to these queries are independent, this

process can be carried out regardless of the order of the queries, as long as each edge of G

is queried exactly once. Throughout the paper we expose Gp in this manner. The edges of

G not yet queried in Gp shall be named untested, while the others are called tested. When

an edge e from G is queried and the outcome turns out to be positive, we say that e was

successfully tested, or equivalently, e was successfully exposed. We write partially exposed

Gp as a reminder that not all edges of G were tested in Gp. All probabilistic statements

involving a partially exposed Gp must be conditioned on the outcome of the tested edges

at that particular moment of the exposure process. More precisely, if Q is the set of tested

edges, and E ⊆ Q is the set of successfully tested edges of the partially exposed Gp, then

for each subgraph Γ ⊆ G, the probability that we obtain the graph Γ after we expose all

the remaining untested edges is P
[
Gp = Γ | E(Gp) ∩ Q = E

]
.

To simplify the presentation, we often omit floor and ceiling signs whenever these

are not crucial, and make no attempt to optimize the absolute constants involved. We

also assume that the parameter k (which always denotes the minimum degree of the

host graph) tends to infinity and therefore is sufficiently large whenever necessary. All

our asymptotic notation symbols (O, o, Ω, ω, Θ) are relative to this variable k, unless

otherwise specified with a subscript. Finally, all logarithms are to base e ≈ 2.718.

2. Preliminaries

2.1. Probabilistic tools

We use extensively the following well-known bounds on the lower and upper tails of the

binomial distribution due to Chernoff (see e.g. [1, Theorems A.1.11, A.1.13, and A.1.12]).

Lemma 2.1. If X ∼ Bin(n, p), then

• P[X < (1 − a)np] < exp

(
−a2np

2

)
for every a > 0,

• P[X > (1 + a)np] < exp

(
−a2np

3

)
for every 0 < a < 1.

Lemma 2.2. Let X ∼ Bin(n, p) and a ∈ N. Then P[X � a] � (enp/a)a.
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2.2. Depth-first search algorithm

Depth-first search (DFS) is a well-known graph exploration algorithm, usually applied to

discover the connected components of an input graph. The algorithm visits all vertices of

a graph H (the input of the DFS) and produces a rooted spanning forest T of H (the

output). It also maintains a stack S (last-in/first-out data structure) of vertices. Initially,

the stack is empty, and all vertices of H are active. Each active vertex v eventually gets

reached, henceforth becoming inactive, and is then pushed into S . At some point later,

the same vertex v is popped from S and is declared explored. Once a vertex becomes

explored, it never changes its state back to active again. Indeed, the algorithm ends when

all the vertices of H become explored. The main loop of the DFS is as follows.

(i) If S is empty, choose an active vertex v, deactivate it, and push it onto the stack. The

vertex v is the root of a new tree in T .

(ii) Otherwise, let u be the unique vertex on top of the stack S . The algorithm then queries

for active neighbours of u in H , that is, active vertices w such that uw forms an edge

in H . If there is such an edge, we remove w from the set of active vertices and place

it on top of S . Otherwise, we just pop u from the top of S and mark it as explored.

Notice that we specified neither how to choose the new vertex v in (i) nor the order in

which the neighbours of u should be queried in (ii). It was implicitly assumed that these

choices were made according to some predetermined order – the priority of the DFS.

The rooted spanning forest T produced by the DFS induces a partial order on the

vertices of H . Namely, we say that u �T v if u belongs to the (unique) path connecting

v to a root of T . In this case, we say that u is an ancestor of v, or equivalently, v is a

descendant of u with respect to T . Whenever uv ∈ E(T ), we say that v is an immediate

descendant of u, or, equivalently, u is an immediate ancestor of v. A key observation is the

following.

Proposition 2.3. For every edge uv of H , u and v are comparable with respect to �T .

In our setting, we utilize the DFS algorithm on the random graph Gp, and expose an

edge only at the moment when its existence is queried by the algorithm. Note that the

input graph Gp might already be partially exposed at the moment we start the DFS. In

this case it is perfectly possible that the algorithm re-uses some of the successfully exposed

edges (the algorithm never queries the same edge twice). We discuss this topic in more

detail in Section 3.2.

Regardless of the portion of Gp that has already been exposed, the following is always

true.

Proposition 2.4. The rooted forest T produced by the DFS algorithm running on a partially

exposed Gp contains all successfully tested edges revealed by the algorithm.

For instance, if we apply the DFS to Gp with all the edges of G initially untested, since

the resulting forest T has at most n − 1 edges, the algorithm must necessarily stop after

the first n − 1 successfully exposed edges. Moreover, the connected components of Gp,
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Figure 1. The block decomposition of a graph.

when viewed as vertex subsets of V (G), are the same as the components of T , regardless

of the outcome of the remaining untested edges from Gp. One noteworthy advantage of

the DFS algorithm is that it produces this ‘certificate’ for the connected components of a

random graph by testing very few of its edges. For more details on the application of the

depth-first search algorithm to random graphs, we refer the reader to [13].

2.3. Block algorithm

Let us briefly recall some standard definitions and notions in graph theory. Let H be a

graph. A vertex in H is a cut-vertex if by removing it we increase the number of connected

components of H . A maximal connected subgraph of H without a cut-vertex is called a

block. A 2-connected graph is a graph of order at least 3 having no cut-vertex. In general,

a t-connected graph is a graph H of order at least t + 1 such that H \ X is connected for

all subsets X ⊆ V (H) of size smaller than t.

In our quest to find long cycles, we will need to merge some already revealed cycles into

longer ones. To merge two disjoint cycles, we need to find a collection of vertex-disjoint

paths connecting them. A classic result of Menger [14] enables us to find these paths.

Theorem 2.5 (Menger). Let H be a t-connected graph. For every pair of subsets A and B

of V (H), there are at least min{t, |A|, |B|} vertex-disjoint paths in H that connect A and B.

We extensively apply Menger’s result inside the blocks of Gp. This can be done because

a block having at least three vertices is necessarily 2-connected. To discover the blocks of

Gp we use another algorithm. Our proposed algorithm produces a similar ‘certificate’ for

the blocks of Gp, just like the DFS does for the connected components of Gp.

Unlike the connected components of a graph H , the blocks of H must not necessarily

be disjoint, as Figure 1 shows. In fact two blocks can intersect, but in at most one vertex.

Moreover, it is well known that blocks form a forest-like structure. More formally, let

Hblock be the bipartite graph on the vertex set A ∪ B, where A is the set of all cut-vertices

of H , B is the set of all blocks of H , and the edges are formed by pairs {v, B} satisfying

v ∈ A, B ∈ B and v ∈ B. The resulting graph Hblock, referred to as the block decomposition

of H , is always cycle-free. This graph is also commonly known as the block-cutpoint graph

of H .
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We summarize some of the properties of the block decomposition in the next pro-

position. For more details, we refer the interested reader to [5, Chapter 3] and [17,

Chapter 4].

Proposition 2.6. Let H be a graph and let Hblock be its block decomposition with vertex set

A ∪ B.

(i) The equality
⋃

B∈B V (B) = V (H) holds, and for every two distinct blocks B,B′ ∈ B,

their intersection B ∩ B′ is either empty or contains exactly one cut-vertex from A.

Furthermore, we have |B| � |V (H)|.
(ii) The sets E(B) for B ∈ B form a partition of E(H).

(iii) The graph Hblock is always cycle-free. Moreover, Hblock is a tree if H is connected.

Furthermore, if H and H∗ are two graphs having the same number of connected components,

where H is a spanning subgraph of H∗, then the following statements hold.

(iv) Every cut-vertex from H∗ is also a cut-vertex in H .

(v) If Hblock � H∗
block then there exists an edge e ∈ E(H∗) \ E(H) such that no block of H

contains both of its endpoints.

Algorithms that efficiently find the block decomposition of a graph are already known:

see for instance [9] and [17, Chapter 4]. Let us briefly describe one possible approach

to finding such a decomposition, which we shall call the block algorithm. The description

of the algorithm is first given in the deterministic setting, and is later extended to the

random setting.

Motivated by Proposition 2.6(v), we say that an unordered pair of vertices uv, where

u, v ∈ V (H), is crossing for H if u and v lie in the same connected component of H , and

there is no block B in Hblock containing both u and v. Note that by Proposition 2.6(ii),

a crossing pair is necessarily a non-edge of H . Another important property of crossing

pairs is the following.

Proposition 2.7. Let e be a crossing pair for H . Then the number of blocks of H + {e} is

strictly smaller than the number of blocks of H .

The input of the block algorithm consists of a pair (H,H∗) of graphs, where H is a

spanning subgraph of H∗ having the same number of connected components as H∗. This

requirement might seem rather artificial at first, but it greatly simplifies the description of

the algorithm. The output of the block algorithm is a graph M such that H ⊆ M ⊆ H∗

and Mblock  H∗
block.

Let M be the running graph. Initially we have M := H . The main loop of the algorithm

proceeds as follows.

If there exists a crossing pair e ∈ E(H∗) \ E(M) for the graph M, we add e to M and iterate the

loop again. Otherwise we stop and output M.

Clearly, at the end of the algorithm we obtain a graph M satisfying the required

properties. Moreover, by Proposition 2.7, the number of iterations performed by the
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algorithm is less than the number of blocks of H , as every new edge added to the running

graph reduces the number of blocks of the graph M.

In the random setting, the input parameter H∗ is a partially exposed random graph,

and H is the graph containing the successfully exposed edges from H∗. As we did in the

DFS algorithm, we only expose the edges of H∗ when their existence is queried by the

algorithm. One subtlety that should be remarked is that H∗
block is not known a priori,

since the graph H∗ is random. The algorithm works regardless. Moreover, Proposition 2.7

implies the following.

Proposition 2.8. The number of edges successfully tested by the block algorithm with input

(H,H∗) is less than the number of blocks of H .

Recall that we need to ensure that H and H∗ have the same number of connected

components. To guarantee this assumption, before we start the block algorithm, we run

the DFS on H∗ and we always choose an input parameter H that contains the rooted

spanning forest produced by the DFS.

2.4. Pósa’s rotation–extension technique

In this section we present yet another technique for showing the existence of long paths

and cycles in graphs. This technique was introduced by Pósa [15] in his research on

Hamiltonicity of random graphs.

In quite informal terms, Pósa’s lemma guarantees that expanding graphs not only have

long paths, but also provide a very convenient structure for augmenting a graph to a

Hamiltonian one by adding new (random) edges. To formalize this assertion, we need

some definitions. A graph H is an (m, 2)-expander if |NH (X)| � 2|X| holds for every subset

X ⊆ V (G) of size |X| � m. Given a non-Hamiltonian graph H , a non-edge e of H is called

a booster if H + {e} is either Hamiltonian, or contains a path which is longer than any

path in H . The following consequence of Pósa’s technique (see e.g. [4, Lemma 8.5]) shows

that every connected and non-Hamiltonian graph H with good expansion properties has

many boosters.

Lemma 2.9. If H is a connected non-Hamiltonian (m, 2)-expander, then the number of

boosters for H is at least (m + 1)2/2.

3. Proof of the main result

For the rest of the paper, let ε = ε(k) := log−1/10 k and let n be the number of vertices of

G. We begin with the analysis of the structure of G. For that purpose, we make use of the

following definition.

Definition. A subset C ⊆ V (G) of the vertices of G is a pseudo-clique if its size is bounded

by (1 − 4ε)k < |C| � (1 + ε)k, and the minimum degree of G[C] is at least (1 − 4ε)k.
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This important notion plays a fundamental role in our analysis of G. We later prove that

if G is not covered by many pseudo-cliques with very few remaining vertices uncovered,

then a.a.s. Gp contains a cycle of length at least k + 1. To make this statement more

precise, let C be a collection of vertex-disjoint pseudo-cliques in G such that the union of

their vertices
⋃

C∈C C has maximum size. Vertices of G not in
⋃

C∈C C are called outcast

vertices, and let � denote the number of such vertices. We prove the following.

Lemma 3.1. If � > 107 · n/(εk) then a.a.s. Gp has a cycle of length at least k + 1.

For the case when � is small, we have the following.

Lemma 3.2. If � � 107 · n/(εk), then either a.a.s. Gp contains a cycle of length at least

k + 1, or there exist a pseudo-clique C ∈ C and a set N of size |N| � 10 such that there are

at most εk edges in G connecting C \ N to vertices not in C ∪ N.

But if there exists such a pair (C,N) as stated in Lemma 3.2, Gp must also have a cycle

of length at least k + 1 a.a.s., as the next lemma shows.

Lemma 3.3. If there exist a pseudo-clique C ∈ C and a set N ⊆ V (G) of size at most 10

such that eG(C \ N,V (G) \ (C ∪ N)) � εk, then a.a.s. Gp[C ∪ N] has a cycle of length at

least k + 1.

One can verify that lemmas 3.1, 3.2, and 3.3 together imply Theorem 1.1. In the next

subsections, we devote ourselves to the proofs of these lemmas. Our argument is divided

into six steps. In each step, we may reveal a portion of Gp by testing some of the edges

from G. The six steps are as follows.

Step 1: Pseudo-cliques were named for one clear reason: with respect to Gp they behave

similarly as if they were cliques. We formalize this claim by exposing the edges inside

pseudo-cliques and showing that a typical pseudo-clique contains a relatively long cycle in

Gp. We further delete from G a few vertices such that in the remainder, every pseudo-clique

induces a (large) Hamiltonian graph in Gp. Finally, we prove that this deletion does not

affect the host graph much.

Step 2: We run a modified DFS algorithm on the resulting graph from Step 1, handling

pseudo-cliques as if they were single vertices. This way, the number of edges revealed in

this step is small and bounded by a function that depends only on � and the number of

pseudo-cliques.

Step 3: We proceed with the block algorithm. The number of edges that are revealed in

this step is bounded similarly as in Step 2. Hence, after this step, we know the vertex sets

of the blocks of Gp, and a.a.s. most outcast vertices still have almost k untested edges

incident to them.

Step 4: The study of the internal structure of the blocks provides some insight into how

pseudo-cliques can interact with each other and with other cycles. For instance, we prove

https://doi.org/10.1017/S0963548316000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000237


216 R. Glebov, H. Naves and B. Sudakov

that if a block contains at least two pseudo-cliques then we have already exposed all the

edges of a cycle of length at least k + 1.

Step 5: We use the results from the previous step, combined with some double-counting

arguments, to prove Lemmas 3.1 and 3.2. The only remaining case for the next step is

the existence of a block in our graph with one pseudo-clique, just a constant number

of outcast vertices, and only a few edges between the pseudo-clique and the vertex set

outside the block.

Step 6: Finally, we analyse the case that remained after the previous step. In some sense,

this case is very close to the usual G(n, p) model: almost all vertices have degree close to

k inside the block, and almost no edges leave the pseudo-clique to the outside the block.

Using expansion properties of the random subgraph of the block, we show that in this

case too, we find a cycle of length at least k + 1 asymptotically almost surely.

3.1. Step 1: preparing the pseudo-cliques

Pseudo-cliques behave similarly as if they were cliques in G. When exposed in Gp, pseudo-

cliques typically contain large cycles of length close to k. However, there might be a certain

small proportion of them not behaving in this typical way. The aim of this subsection

is to show that this seldom happens, and therefore does not affect the remainder of the

graph much.

Formally, let us consider a two-round exposure process. Recall that we fixed a collection

C of disjoint pseudo-cliques. In the first round, we test edges inside pseudo-cliques with

probability p1, where p1 is such that 1 − p = (1 − p1)
2. Observe that p1 is roughly log k/2k

and testing an edge with probability p (unsuccessfully) is the same as testing it twice

(unsuccessfully) with probability p1. Denote by G− the resulting random subgraph. Let

W1 be the set of vertices that have degree at most log k/100 inside their pseudo-cliques

in G−.

In the second round we again expose with probability p1 the edges inside pseudo-cliques

in C that were not successfully exposed during the first round; the resulting supergraph

of G− is denoted by G+. For technical reasons, we would like the remainders C \ W1 of

pseudo-cliques C ∈ C to satisfy the properties:

(P1) C ∩ W1 has fewer than εk/2 vertices,

(P2) eG− (X,Y ) > 0 for any two disjoint sets X,Y ⊆ C \ W1 of size at least 6εk,

(P3) the induced graph G+[C \ W1] is Hamiltonian.

We now define the set W2 to be the union of those pseudo-cliques C ∈ C, for which the

above properties do not simultaneously hold for C \ W1. We refer to the set W := W1 ∪ W2

as the waste. The set W contains the vertices we aim to delete from the graph G to obtain

the new graph G′ := G \ W . Finally, let Z1 be the set of all outcast vertices u such that

at least an ε/3-proportion of its neighbours from G belong to W . The probability that

u ∈ Z1 is bounded by the following statement.

Lemma 3.4. Let u be an outcast vertex. Then P[u ∈ Z1] � 1/k3.
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We split the proof of Lemma 3.4 into several propositions, from which the statement

of the lemma is a trivial consequence. The first proposition of the series ensures that a.a.s.

most outcast vertices do not have many neighbours in W1.

Proposition 3.5. Let u be an outcast vertex and denote by d � k its degree in G. The

probability that at least εd/6 neighbours of u belong to W1 is at most 1/k4.

Proof. The probability that a vertex v from a pseudo-clique C has degree at most

log k/100 in G−[C] is already sufficiently small. However, these events are not independent:

the event that v has small degree in G−[C] is positively correlated with another vertex

from the same pseudo-clique getting small degree in G−[C]. Since the statement of the

proposition is far from being tight, one possibility to overcome this technicality is the

following. Let �G be the digraph obtained from G by replacing each edge vw ∈ E(G)

with two oriented edges �vw, �wv ∈ E(�G). We test each of the 2|E(G[C])| oriented edges

corresponding to the edges of G[C] independently with probability p2, where p2 is such

that 1 − p1 = (1 − p2)
2, and roughly

p2 ≈ p1

2
≈ log k

4k
.

Next, we say that we successfully exposed the (non-oriented) edge vw ∈ E(G) if we

successfully exposed at least one of the oriented edges �vw or �wv. In this model, all non-

oriented edges are exposed independently at random with probability p1. Thus, we can

assume that each edge vw of G[C] that became a non-edge also had two corresponding

oriented non-edges, �vw and �wv, in the random digraph. Hence, in order for v to get at

most log k/100 non-oriented edges, all but at most log k/100 of the oriented edges going

out from v to other vertices of C must become non-edges. Now, these events (‘all but at

most log k/100 oriented edges going out from a fixed vertex from C to other vertices in

C were tested as non-edges’) are indeed independent for any two vertices from C .

For one vertex v ∈ C , since the minimum degree in G[C] is at least (1 − 4ε)k, the

probability of this event is at most

P[Bin((1 − 4ε)k, p2) � log k/100] < k−1/5 (3.1)

due to Lemma 2.1. Thus, the probability that at least εd/6 neighbours of u belong to W1

is bounded by P[Bin(d, k−1/5) > εd/6], and another application of Lemma 2.1 finishes the

proof of the proposition.

For a pseudo-clique C , let us denote by C− the remainder C \ W1. Similarly to

Proposition 3.5, we need to ensure that also for a vertex from a pseudo-clique C , after

the first round of exposure, a.a.s. only a few neighbours of this vertex are in C ∩ W1. The

proof of this proposition follows the lines of the proof of Proposition 3.5 and is therefore

omitted.

Proposition 3.6. For fixed C ∈ C and u ∈ C , the probability that, in G−, at least log k/200

of the neighbours of u are in C ∩ W1 is at most 1/k6.
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We remark that one could have replaced log k/200 by a large constant in the statement

of Proposition 3.6. Indeed, the number of neighbours of u in C ∩ W1 can be roughly

bounded by a binomial random variable of O(log k) trials with success probability k−1/5.

However, we do not require such tight estimates.

The very same calculation also shows that a.a.s. C− is large enough, as required to

satisfy (P1).

Proposition 3.7. For fixed C ∈ C, with probability at least 1 − 1/k5, we have |C ∩ W1| <
εk/2.

Notice that the inequalities in Proposition 3.7 are again far from being sharp, but they

already suffice for our purposes.

Recall that for the second property (P2), we need G−[C−] to have edges between any

two reasonably large disjoint sets. The next proposition ensures that a.a.s. this is indeed

the case.

Proposition 3.8. For every C ∈ C, with probability at least 1 − 1/k5, we have eG−(X,Y ) > 0

for any two disjoint sets X,Y ⊆ C−, each of size at least 6εk.

Proof. In G, for every choice of the sets X,Y ⊆ C , we have eG(X,Y ) � 6ε2k2, as every

vertex from X has at least |Y | − 5εk � εk neighbours in Y . This is because every vertex

in a pseudo-clique C has at most 5εk non-neighbours in G[C]. Thus the probability that

eG−(X,Y ) = 0 is at most

(1 − p1)
6ε2k2 � exp(−k

√
log k).

Since there are at most 4k possible choices for the pair X,Y , a simple application of the

union bound finishes the proof.

For the last property (P3), required to ensure that a pseudo-clique C is not put into

W2, we need G+[C−] to be Hamiltonian. To prove the Hamiltonicity of G+[C−] we first

show in the next proposition that G−[C−] is a good expander.

Proposition 3.9. For C ∈ C, with probability at least 1 − 3/k5, the induced graph G−[C−]

is a (k/6000, 2)-expander.

Proof. Suppose that there exists a set A ⊂ C− of size |A| � k/6000 such that |NG−[C−](A)|
< 2|A|. Also assume that the conclusion of Proposition 3.6 does not hold for any vertex in

C−, that is, no vertex in C− has more than log k/200 neighbours in C ∩ W1. This happens

with probability at least 1 − 2/k5 by the union bound. Thus, if u ∈ C−, we have

degG−[C−](u) � degG−(u) − log k/200 � log k/200.

Now let B = A ∪ NG−[C−](A). Then |B| < 3|A| � k/2000, and

|E(G−[B])| � |A| log k/400 � |B| log k/1200.
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On the other hand, by Lemma 2.2 and the union bound, we have

P[∃B ⊂ C, |B| � k/2000 : |E(G−[B])| � |B| log k/1200]

�
∑

b�k/2000

(
|C|
b

)
P

[
Bin

((
b

2

)
, p1

)
> b log k/1200

]

�
∑

b�k/2000

(
|C|
b

)(
ep1

(
b
2

)
b log k/1200

)b log k/1200

< 1/k5,

where in the last inequality we used that |C| � (1 + ε)k and that p1 ≈ log k/2k. This

concludes the proof of the proposition.

Finally, we show that with sufficiently high probability, G+[C−] is Hamiltonian. Notice

that we could strengthen the statement and ask for G+[C−] to be Hamilton connected.

However, Hamiltonicity suffices for our proof, and it is technically slightly easier to show.

Proposition 3.10. For every C ∈ C, with probability at least 1 − 5/k5 all properties (P1),

(P2), and (P3) hold for C .

Proof. By Propositions 3.7, 3.8 and 3.9, we can assume G−[C−] is a connected (k/6000, 2)-

expander on at least (1 − 5ε)k vertices, and satisfies properties (P1) and (P2). The

connectivity of G−[C−] is a consequence of Proposition 3.9, which implies that every

connected component of G−[C−] has at least k/2000 vertices, together with Proposition 3.8.

Conditioned on these assumptions, we would like to show that then G+[C−] is Hamiltonian

with probability at least 1 − 1/k5. Indeed, if a supergraph H of G−[C−] is not Hamiltonian,

Lemma 2.9 guarantees a quadratic number of boosters. Now, let us look at the second

round of exposure as a random process, with non-edges of G−[C−] turning into edges

one by one, analogous to the standard random process coupling G(n, p) and G(n,M).

The new edges are exposed in a random order, their number |E(G+[C−]) \ E(G−[C−])|
is binomially distributed, and thus by Lemma 2.1 with probability at least 1 − e−k , there

are Ω(k log k) new successfully exposed edges. After every exposed edge, we update the

set of boosters – bearing in mind that there are still quadratically many of them. Hence,

every successfully exposed edge is a booster with probability at least a constant bounded

away from zero. Thus we expect that the number of additional exposed edges needed

for the graph induced by C− to become Hamiltonian is at most linear. Furthermore, we

can use Lemma 2.1 to say that the probability that we expose ω(k) edges and we do not

make the graph on C− Hamiltonian, is at most e−k , and the statement of the proposition

follows.

The following statement can be derived in the same way as Proposition 3.10, hence we

omit its proof.

Proposition 3.11. We may assume that there is no set X ⊆ V (G) of size (1 + ε/2)k � |X| �
(1 + 20000ε)k such that the minimum degree of G[X] is at least (1 − 10ε)k, as otherwise

Gp[X] a.a.s. would contain a cycle of length at least k + 1.
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The last proposition allows us to further assume from this point on that all pseudo-

cliques in C have size less than (1 + ε/2)k. We are ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let u ∈ Z1, and let d denote the degree of u in G. Our aim is

to bound the number of neighbours of u that are in W . We remark that the following

estimations for the number of neighbours of u which belong to W are true even if we

drop the assumption that u is outcast.

Either u has εd/6 neighbours in W1, or it has the same amount of neighbours in

W2. Proposition 3.5 bounds the probability of the first case to happen by at most 1/k4.

For the second case, notice that Proposition 3.10 implies that P[w ∈ W2] � 5/k5 for all

w ∈
⋃

C∈C C . By Markov’s inequality, we have that

P[|N(u) ∩ W2| > εd/6] <
30

εk5
<

1

k4
.

Therefore, by the union bound, P[u ∈ Z1] < 1/k3, concluding the proof of the lemma.

Lemma 3.4 bounds the number of outcast vertices that lost a significant proportion

of their neighbours after the deletion of the waste from G to obtain G′. By Markov’s

inequality, asymptotically almost surely, the size of Z1 is bounded by

|Z1| � n

k2
. (3.2)

This inequality tells us that the influence of the waste is not too large, so for most of

our subsequent arguments, we can completely ignore the vertices from W . Also, from the

definition of Z1, if v ∈ G′ \ Z1 is an outcast vertex then degG′ (v) � (1 − ε/3)k, and hence

v still retains most of its degree after the deletion of W . However, in the final part of

the proof of our main theorem, we have to use the full structure of G and incorporate

the waste vertices back. Therefore, we need a lemma to state what typically happens to a

pseudo-clique after we delete the vertices from the waste.

Lemma 3.12. Consider an arbitrary pseudo-clique C ∈ C, and denote by D1 the set of

vertices from C having more than εk neighbours in G outside C . Let D′
1 be the union of

D1 ∩ W together with the vertices in D1 \ W that lost more than a 1
100

-proportion of its

neighbours outside C after the removal of the waste vertices from W . Furthermore, let D2

be the set of vertices not in C that have at least εk neighbours in C in the graph G. Finally,

let E denote the set of edges from G connecting C \ D1 to a vertex not in C ∪ D2. Then

a.a.s. we have

|E \ E(G′)| � |E |/100, |D2 ∩ W | � |D2|/100 and |D′
1| � |D1|/100. (3.3)

Therefore, a.a.s. at least (1 + o(1))|C| pseudo-cliques in C satisfy (3.3).

Sketch of proof. For each fixed vertex u, the probability that W contains u is either zero

(if u is outcast) or tiny, as the inequality (3.1) together with Proposition 3.10 imply that

both P[u ∈ W1] and P[u ∈ W2] are small. Similarly, for each fixed edge e, the probability

that one of its endpoints belongs to W is also very small. In expectation, we have

https://doi.org/10.1017/S0963548316000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000237


The Threshold Probability for Long Cycles 221

E[E \ E(G′)] = o(|E |), hence by Markov’s inequality we know that a.a.s. |E \ E(G′)| �
|E |/100. Similarly, we have E[D1 ∩ W ] = o(|D1|) and E[D2 ∩ W ] = o(|D2|). Moreover, for

each vertex u ∈ D1, if we denote by d the number of edges connecting u to a vertex outside

C , and by d′ the number of edges connecting u to a vertex in W \ C , then E[d′] = o(d).

Thus, by Markov’s inequality, we know that P[v ∈ D′
1] = o(1), and the lemma follows by

another application of Markov’s inequality.

3.2. Step 2: exploring the connected components

Recall that at this point, some of the edges of G have already been tested in Gp, namely

all the edges inside pseudo-cliques from C. Let Q1 be the set of tested edges from the

partially exposed Gp that live inside G′, and let E1 ⊆ Q1 be the subset of the successfully

tested edges. To find the connected components of the partially exposed G′
p = Gp \ W

using the DFS algorithm, we adopt the following DFS priority:

Whenever the DFS reaches a vertex v from a pseudo-clique C ∈ C, the algorithm, instead of testing

new edges, walks through an already exposed Hamilton cycle in Gp[C \ W ] using the edges from

E1, until it visits all vertices from C \ W .

In the rooted spanning output forest T , this Hamilton cycle forms a path, and the

algorithm saved many edge tests in this way. This observation is stated more formally as

follows.

Observation 3.13. For every pseudo-clique C ∈ C such that C �⊆ W , there exists a path in

T whose vertices are precisely the vertices in C \ W .

Let Q′
2 be the set of tested edges, and let E2 ⊆ Q′

2 be the set of successfully tested edges

in this exploration of G′
p by the DFS. Clearly E(T ) ⊆ E1 ∪ E2, and |E2| < � + |C|, since

once we reach a pseudo-clique C , we do not need to test edges until all the vertices of

C \ W are reached.

Next, we query all the untested edges connecting vertices from G′ which have distance

at least k + 1 with respect to the forest T . Let Q′′
2 be the set of all such edges. We test the

edges in Q′′
2 one by one, in an arbitrary order. If by chance we successfully expose one

edge from Q′′
2, we automatically obtain a cycle of length at least k + 1 in G′

p, as desired in

Theorem 1.1, and we stop the whole procedure. In particular, the total number of edges

in Q′′
2 must be very small, say |Q′′

2 | < ε2k/2, as otherwise we would have a long cycle a.a.s..

Let Q2 be the union of Q′
2 with the tested edges from Q′′

2. We can estimate the total

number of edges Q2 using Proposition 2.4 and Lemma 2.1, obtaining the next statement.

Corollary 3.14. Asymptotically almost surely, we have

|Q2| � 1.1

p
· |E2| + ε2k/2 + ε2k/2 � 1.2

p

(
� +

n

k

)
+ ε2k.

Moreover, if not all the edges in Q′′
2 were tested at this point, then we have already exposed

a cycle of length at least k + 1 in G′
p.
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We would like to remark that the expression � + n/k is not guaranteed to tend to infinity

with k, so the inequality |Q′
2| � 1.1/p · |E2| is not guaranteed to hold asymptotically almost

surely. However, Corollary 3.14 is true because of the extra ε2k/2 term, as

P

[
Bin

(
1.2

p
·
(
� +

n

k

)
+ ε2k/2, p

)
� � +

n

k

]
→ 1 as k → ∞.

3.3. Step 3: the block decomposition

In this subsection, we apply the block algorithm to the input (H,H∗), where H = T + E1

and H∗ is the current partially exposed G′
p. Recall that T + E1 might have some large

cycles already, coming from the exposed pseudo-cliques in Step 1. Thus we can bound

the number of blocks of T + E1 from above by � + |C|. This is because for every pseudo-

clique C ∈ C which is not completely inside the waste W , the vertex set C \ W necessarily

induces a Hamiltonian graph (T + E1)[C \ W ].

Let Q3 be the set of edges from G′
p tested during the execution of the block algorithm,

and let E3 ⊆ Q3 be the subset of the successfully tested edges. From Proposition 2.8, we

know that the number of successfully tested edges revealed by the block algorithm is at

most the number of blocks of T + E1. Moreover, by the observation discussed in the last

paragraph, we also know that the total number of blocks of T + E1 is at most � + |C|,
hence |E3| � � + |C|, and by Lemma 2.1 we have the following corollary.

Corollary 3.15. Asymptotically almost surely

|Q3| � 1.2

p

(
� +

n

k

)
+ ε2k.

We would like to draw the reader’s attention to the fact that we added the term ε2k to

the right-hand side of the inequality in Corollary 3.15. This is because we want to make

sure that the right side, when multiplied by p, tends to infinity with k. We recall that a

similar ‘trick’ was used in Corollary 3.14.

3.4. Step 4: the structure inside the blocks

Let B be the family of all blocks of the partially exposed G′
p obtained in Step 3. Here,

the edges of every block B ∈ B consist of those successfully exposed in G′
p so far, that

is, E(B) ⊆ E1 ∪ E2 ∪ E3. Moreover, the cut-vertices of G′
p are precisely the same as the

cut-vertices of T + (E1 ∪ E3). One should also observe the following.

Observation 3.16. For each B ∈ B, the graph T ∩ B is a tree. Moreover, if B1 and B2 are

two distinct blocks from B having a vertex v in common, then v is the smallest vertex (with

respect to �T) from at least one of the two blocks B1 or B2.

The content of the previous observation is illustrated in Figure 2. In the picture, each

connected component represents a subtree of the form T ∩ B for some B ∈ B. The dashed

ovals represent the cut-vertices from G′
p (all small solid circles inside the dashed ovals

actually represent the same cut-vertex).
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root
root

Figure 2. Blocks and cut-vertices of G′
p together with the rooted forest T .

Note that for all pseudo-cliques C ∈ C with C �⊆ W , there exists a unique block B ∈ B
such that C \ W ⊆ V (B). This is because cycles are 2-connected. In this case, with slight

abuse of notation, we say that B contains the pseudo-clique C .

The next proposition shows that a block containing more than one pseudo-clique

already has a long cycle.

Proposition 3.17. If B ∈ B is a block that contains two distinct pseudo-cliques C1, C2 ∈ C,

then B contains a cycle of length at least k + 1.

Before we prove Proposition 3.17, let us prove an auxiliary statement.

Proposition 3.18. Let C ∈ C be such that C �⊆ W , and let B ∈ B be the block containing

C . Then for every two distinct vertices u, v ∈ C \ W , the induced graph B[C \ W ] contains

a path of length at least (1 − 20ε)k connecting u to v.

Proof. We want to show that there exists a path P in B[C \ W ] connecting u and v

of length at least (1 − 20ε)k. Because of property (P3) stated in Section 3.1, we know

that B[C \ W1] = B[C \ W ] is Hamiltonian. Let J be a Hamilton cycle in C \ W . Next,

consider the two paths P1 and P2 obtained from the cycle J connecting the vertices u and

v. Assume that P2 is no longer than P1. By property (P1), J is of length at least (1 − 5ε)k,

so P1 has at least (1 − 5ε)k/2 vertices. If the length of P1 is greater than (1 − 20ε)k, our

proposition immediately follows by taking P := P1. Otherwise the path P2 has at least

15εk vertices. Let X be the set of the 6εk vertices from the path P1 which are closest to

the endpoint v. Similarly, let Y be the set of the 6εk vertices from the path P2 which are

closest to the other endpoint u. Using property (P2), we know that B[C \ W ] has an edge

e = xy connecting a vertex x from X to a vertex y from Y , as shown in Figure 3.

We can build the longer path P by patching two segments from P1 and P2 together

with the edge e as follows. The initial segment of P consists of the path in P1 connecting

u to x, while the final segment of P consists of the path in P2 connecting y to v, and these

two segments are interconnected by e. The total length of P is at least the length of J

minus 12εk, hence the length of P is at least |J| − 12εk > (1 − 20ε)k, finishing the proof

of the proposition.
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u

v

x ∈ X

y ∈ Y

J
P1 P2

Figure 3. Rotation inside pseudo-cliques.

We are ready to prove Proposition 3.17.

Proof of Proposition 3.17. In the proof of this proposition, we use Theorem 2.5 to

merge long cycles. Since B is 2-connected, Theorem 2.5 asserts the existence of two vertex-

disjoint paths P1, P2 in B connecting C1 \ W to C2 \ W . Let u1, v1 be the endpoints of

P1, P2 (respectively) in C1 \ W . Similarly, let u2, v2 be the endpoints of P1, P2 in C2 \ W .

By Proposition 3.18, we can obtain two paths P3, P4 both having length at least

(1 − 20ε)k, where P3 is a path in C1 \ W connecting u1 to v1, and P4 is a path in C2 \ W

connecting u2 to v2. By patching together P1, P3, P2, and P4 in that order, we obtain a

cycle of total length larger than (2 − 40ε)k > k + 1, thereby proving the proposition.

As we have seen in the proof Proposition 3.17, we can use pseudo-cliques to obtain long

cycles, which can then be merged into even longer cycles. We do not need to use the full

strength of pseudo-cliques in order to merge cycles. In the proof of Proposition 3.18, the

edge e played an important role, as it allowed us to ‘rotate’ inside the relatively long cycle.

In what follows, we describe a weaker structure that also allows this ‘rotation’ operation.

We say that a cycle J , formed by some of the successfully exposed edges from a partially

exposed G′
p, is a rotating cycle if all properties below hold simultaneously:

(P1�) J has at least (1 − 4ε)k, but at most k vertices,

(P2�) all but one edge of J belong to the forest T revealed in Step 2,

(P3�) if u ∈ V (J) is the largest vertex with respect to the order �T (we call u the pivot

of J), then there exist at least (1 − 4ε)k untested edges in the partially exposed G′
p

connecting u to another vertex of J .

The properties listed above bear some resemblance to those enumerated in Section 3.1.

For instance (P1) and (P1�) both state some bounds about the size of the structure under

consideration. Property (P2�) might look somewhat artificial at first, but we observe

that for every pseudo-clique C ∈ C such that C �⊆ W , the graph G′
p[C \ W ] contains a

Hamilton path that is entirely contained in T , a consequence of the priority of the DFS

remarked in Section 3.2. Finally, (P3�) is the property that will allow us to perform the

rotation per se, and note that (P3�) clearly implies the lower bound of the length of J in

(P1�).
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x

y

u

w

Figure 4. Rotation inside the rotating cycle.

The next proposition describes the operation of rotation, which is similar to the rotation

described in Proposition 3.18.

Proposition 3.19. Let J be a rotating cycle with pivot u ∈ V (J), and fix any two distinct

vertices x, y ∈ V (J) \ {u}. After exposing the untested edges connecting u to the other vertices

in J , a.a.s. we can find a path in G′
p[V (J)] between x and y of length at least (2 − 10ε)k/3.

Proof. Let P1 and P2 be the two paths between x and y obtained from the cycle J , with

lengths l1 and l2, respectively. Assume, without loss of generality, that u ∈ V (P1), and that

the distance from u to y is no larger than the distance from u to x in the path P1. Let N be

the set of all vertices w of J such that uw is an untested edge of G′
p, and let N1 = N ∩ P1

and N2 = N ∩ P2. If either N1 or N2 has size at least (2 − 10ε)k/3 then we are done,

since l1 � |N1| and l2 � |N2|. Otherwise, both N1 and N2 have size at least (1 − 2ε)k/3,

because (P3�) implies that |N| � (1 − 4ε)k. Next, we test all the edges connecting u to the

εk vertices from N2 which are closest to x with respect to the path P2. This is possible

because |N2| > εk. Asymptotically almost surely, we can find a successfully exposed edge

e = uw where w belongs to this subset of N2 of size εk.

We can then obtain a path P as follows. We use the segment from P1 connecting x to

u, and then we traverse the edge e, to reach the vertex w, and then use the segment from

P2 connecting w to y as illustrated in Figure 4. The length of P is at least

l1/2 + |N2| − εk � |N1|/2 + |N2| − εk = (|N| + |N2|)/2 − εk � (2 − 10ε)k/3,

concluding the proof.

Analogous to pseudo-cliques, rotating cycles are also somewhat tied to the block

structure of G′
p. For every rotating cycle J , there exists a unique block B ∈ B such that

V (J) ⊆ V (B). The equivalent of Proposition 3.17 for rotating cycles is the next statement.

Proposition 3.20. Suppose the partially exposed G′
p contains two vertex-disjoint rotating

cycles J1 and J2 whose vertices are contained in the same block B ∈ B. Then after we

expose the remaining untested edges of G′
p, a.a.s. we can find a cycle of length at least k + 1

in G′
p[V (B)].
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u1

v1

w1

u2

v2

w2J1 J2

P1

P2

P

Figure 5. Merging disjoint cycles.

Proof. Here, we again use Theorem 2.5 to merge cycles. Let P be the path in T

connecting J1 to J2. This path exists and is unique because T ∩ B is a tree. Let w1 be the

endpoint of P in J1 and let w2 be the other endpoint of P in J2. We may assume, without

loss of generality, that w1 is the smallest vertex with respect to �T in J1. To see why this

assumption can be made, observe that (P2�) implies that both V (J1) and V (J2) induce

paths in T ∩ B.

Since B is a 2-connected graph, we can use the edges of B to obtain two vertex-disjoint

paths P1, P2 connecting J1 to J2. Let u1, v1 be the endpoints of P1, P2 in J1, respectively.

Similarly, let u2, v2 be the endpoints of P1, P2 in J2. If neither u1 nor v1 is the pivot of

J1, then we can obtain the long cycle in the following way. By using Proposition 3.19, we

obtain a.a.s. a path P3 of length at least (2 − 10ε)k/3 between u1 and v1 in G′
p[V (J1)], and

clearly there exists a path P4 of length at least (1 − 4ε)k/2 between u2 and v2 in J2 (just

take the longest of the two paths connecting u2 to v2 in the cycle J2). Putting together

P1, P4, P2, and P3 in that order, we obtain a cycle of length at least (7 − 32ε)k/6 > k + 1,

thereby proving the proposition.

Otherwise, assume without loss of generality that u1 is the pivot of J1. One of the edges

in the cycle J1 connects u1 to w1 (recall that u1 is the largest vertex with respect to �T ,

while w1 is the smallest). The idea now is to modify one of the paths P1 or P2 so that

either the endpoint of P1 in J1 is no longer u1, or the endpoint of P2 is no longer v1, but

w1 instead. To do this, we follow the path P from w1 to w2, until it hits P1, P2, or J2.

If P hits P1 first, we replace the initial segment of P1 with the initial segment of P as

illustrated in Figure 5. If P hits P2 first, we modify P2 similarly. Otherwise, P never hits

P1 or P2, so we can just replace the whole path P2 by P .

If P1 was modified, we can use the ideas described in the second paragraph of this

proof to obtain the long cycle asymptotically almost surely. Otherwise, if P2 was modified,

we can use a path connecting u1 to w1 in J1 that uses all of its vertices. In this way we

obtain a cycle of length at least 3(1 − 4ε)k/2 > k + 1, and we did not need to test any

edge for this case.

Proposition 3.20 dealt with the case of vertex-disjoint rotating cycles. But what if the

cycles intersect? The next proposition shows that even if the intersection is not empty,

it is still possible to merge the rotating cycles, provided that their intersection is not too

large.
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Figure 6. Merging intersecting cycles.

Proposition 3.21. Assume the partially exposed G′
p contains two intersecting rotating cycles

J1 and J2 contained in the same block B ∈ B whose intersection J1 ∩ J2 has at most (1 −
15ε)k vertices. Then after we expose the remaining untested edges of G′

p, a.a.s. we can find

a cycle of length at least k + 1 in G′
p[V (B)].

Proof. Let u1 and u2 be the pivots of J1 and J2, respectively. Since |J1 ∩ J2| � (1 − 15ε)k,

we must necessarily have u1 �= u2, as shown in Figure 6. In fact, if u1 = u2 then either

V (J1) ⊆ V (J2) or V (J2) ⊆ V (J1), and hence we would have

|J1 ∩ J2| = min{|J1|, |J2|} > (1 − 15ε)k,

which is a contradiction. Moreover, let v1 and v2 be the smallest vertices in J1 and J2

respectively, with respect to the order �T . Furthermore, let w be the largest vertex in

J1 ∩ J2 with respect to the same order. We must have either v1 �T v2 or v2 �T v1, because

otherwise (P2�) would imply that J1 and J2 are disjoint. Assume v1 �T v2. The intersection

J1 ∩ J2 comprises the path in T joining v2 to w. We divide the remainder of the proof

into two cases.

In the first case we have |J1 ∩ J2| < 100εk. We can obtain a long cycle P as follows: we

start at v1, traverse the edge to u1, walk the path in J1 from u1 to w (we choose the path

that does not contain v1), then walk the path in J2 from w to u2 (again choosing the path

that does not contain v2), move to v2 using an edge from J2, and finish the cycle with the

path from v2 to v1 in J1. The length of P is at least

|J1| + |J2| − 2|J1 ∩ J2| > k + 1,

and we are done.

In the second case, we have |J1 ∩ J2| � 100εk. Let X be the set of the εk vertices x in the

path J1 ∩ J2 which are closest to w such that xu2 is an untested edge. Such a set X exists

because of (P3�) and |J1 ∩ J2| � 100εk. Observe that no vertex in X is more than 4εk + εk

vertices away from w, as (P3�) implies. Next, we expose the untested edges joining u2 to a

vertex in X. Asymptotically almost surely we can find a successfully exposed edge e = xu2.

We can now obtain a long cycle P in a way very similar to what we did before: we start at
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v1, traverse the edge to u1, walk the path in J1 from u1 to w, then walk the path in J2 from

w to u2, move to x using the edge e that we recently exposed, and finish the cycle with

the path from x to v1 in J1. The length of P is at least |J1| + |J2| − |J1 ∩ J2| − 5εk > k + 1,

and we are done.

So far, we only have analysed the cases where the block has either two pseudo-cliques

or two rotating cycles. To conclude this subsection, we state a proposition that handles

the case when these two different structures are mixed together in the same block.

Proposition 3.22. Let J be a rotating cycle of the partially exposed G′
p, and let B ∈ B be

the unique block containing J . Assume that B contains a pseudo-clique C ∈ C, and that the

intersection V (J) ∩ C has at most (1 − 30ε)k vertices. Then after we expose the remaining

untested edges of G′
p, a.a.s.we can find a cycle of length at least k + 1 in G′

p[V (B)].

Proof. The proof is identical to the previous proof and is therefore omitted.

3.5. Step 5: double-counting the poor and the full

In this subsection we study the rotating cycles of G′
p. For that purpose, we assume that

the statements of Proposition 3.11, Lemma 3.12, Corollary 3.14 and Corollary 3.15 hold.

We further assume that (3.2) holds, and all the edges from Q′′
2 were tested (as otherwise

we would already have a long cycle). Thus, the reader should bear in mind that any

probabilistic statement in this subsection should be conditioned on the event that all these

assumptions hold.

Let U be the set of all untested edges from G′
p so far. More precisely, let U =

E(G′) \ (Q1 ∪ Q2 ∪ Q3). In the next few paragraphs, we adopt some definitions motivated

by the work of Riordan [16]. We say that a vertex v in a block B ∈ B is poor in B if the

number of descendants (with respect to T ) of v in B is at most εk. Otherwise we say that

v is rich in B. Observe that every rich vertex in a block B has at least εk poor descendants

in B. Finally, we say that a vertex v ∈ V (B) is full in B if the number of vertices u ∈ V (B)

such that uv ∈ U is at least (1 − ε)k.

Observation 3.13 stated that the vertices of a pseudo-clique induce a path in the rooted

forest T . A consequence of this fact is the following observation.

Observation 3.23. Let C ∈ C be a pseudo-clique satisfying C �⊆ W , and let B ∈ B be the

unique block containing C . The total number of vertices in C which are poor in B is at

most εk.

The next proposition shows how to obtain a rotating cycle from full vertices.

Proposition 3.24. Let v be a full vertex in B ∈ B such that the number of edges vu ∈ U for

which u ∈ V (B) is a descendant of v with respect to T ∩ B is at most εk. Then by testing

some of the untested edges incident to v, a.a.s. we can obtain a rotating cycle with pivot v.
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Proof. We would like to remind the reader that we are using the fact that all the edges

of Q′′
2 were tested (the edges of Q′′

2 connect vertices at distance greater than k with

respect to T ), as assumed in the beginning of this subsection. Let X be the set of all

vertices u ∈ V (B), such that vu ∈ U. Because of the property of DFS forests stated in

Proposition 2.3, we know that for each u ∈ X, u is either a descendant or an ancestor of

v. By the hypothesis of the proposition, the set X has at least (1 − 2ε)k ancestors of v.

We also know that none of the vertices in X have distance more than k to v with respect

to the tree T ∩ B. Let Y ⊆ X consist of the εk vertices in X which are ancestors of v

and are as far from v as possible, with respect to the same distance on the tree T ∩ B.

Asymptotically almost surely, if we test the edges of U connecting v to vertices in Y , we

obtain a successfully tested edge e = vu. We claim that the path from v to u in the tree

T ∩ B together with the edge e forms a rotating cycle J with pivot v. This assertion is

clear, as one can immediately verify that properties (P1�), (P2�), and (P3�) hold.

The careful reader will notice that the conditions of Proposition 3.24 are trivially

satisfied when v is full and poor, hence we have the following corollary.

Corollary 3.25. Let v be a full poor vertex in B ∈ B. Then by testing some of the untested

edges incident to v, a.a.s. we can obtain a rotating cycle with pivot v.

We turn to identify the set of full vertices in the blocks of B. Let Z2 be the set of

all vertices v from G′ \ Z1 such that v is incident to at least εk/3 tested edges from

Q2 ∪ Q3. From our assumptions at the beginning of this subsection, more specifically from

Corollaries 3.14 and 3.15, we have

|Z2| � 15

εpk
·
(
� +

n

k

)
+ 12ε. (3.4)

To avoid future issues with double-counting arguments, we would like to identify the

set of vertices v ∈ V (G′) \ (Z1 ∪ Z2), such that there exists a unique block B ∈ B for which

all but at most εk neighbours of v in G′ belong to V (B). If v is not a cut-vertex of G′
p, this

is trivial (recall that the cut-vertices of G′
p are precisely the cut-vertices of T + (E1 ∪ E3)).

Otherwise, let Z3 be the set of cut-vertices v from G′
p not in Z1 ∪ Z2 such that v is the

smallest (with respect to the order �T ) of a block containing a pseudo-clique from C.

Moreover, let Z4 be the set of all cut-vertices v from G′
p not in Z1 ∪ Z2 ∪ Z3, such that

there are at least εk/3 edges vw in U for which v is the smallest vertex in the unique block

that contains both v and w. We claim the following.

Proposition 3.26. |Z3| � |C| and

|Z4| � 3(� + |C|)
εk

.

Proof. To prove |Z3| � |C|, note that for each pseudo-clique C ∈ C there exists a unique

block B ∈ B such that B contains C . Moreover, there is a unique vertex v which is the
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smallest vertex of B with respect to the order �T . The map given by C �→ v covers every

vertex from Z3, hence |Z3| � |C|.
To prove the other inequality, observe that if vw ∈ U, where v ∈ Z4 and w is a vertex

that belongs to a block B where v is the smallest vertex, then either w is an outcast

vertex, or there exists C ∈ C such that w ∈ C . But if w belongs to the pseudo-clique C ,

we claim that w must be the smallest vertex in the unique block that contains C . To

see this, first observe that since v �∈ Z3, B does not contain C . Let B′ �= B be the unique

block containing C . By Observation 3.16, w ∈ V (B) ∩ V (B′) must be the smallest vertex

of either B or B′. But because v is the smallest vertex from B, we infer that w is the

smallest vertex from B′, proving our claim. Since w is either outcast or the smallest vertex

of a block that contains a pseudo-clique, we must conclude that there are at most � + |C|
different choices for w.

We claim that for every vertex w ∈ V (G′), there is at most one edge in U connecting

w to an ancestor of w which is the smallest vertex of some block. To prove this claim,

suppose towards contradiction that there exist two such edges wx1 and wx2. Let B1 and

B2 be the corresponding blocks containing wx1 and wx2, respectively. The intersection of

the blocks B1 and B2 contains w, but w is not the smallest in either of them, contradicting

Observation 3.16, and proving our second claim.

Therefore, there are at most � + |C| edges vw ∈ U such that v ∈ Z4 and v is the smallest

vertex in the unique block containing both v and w. This immediately implies that

|Z4| � 3(� + |C|)
εk

,

concluding the proof of the proposition.

Let Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4. Combining (3.2), (3.4) and Proposition 3.26, we obtain that

a.a.s.

|Z | � 1.05n

k
+

16

εpk
·
(
� +

n

k

)
+ 12ε. (3.5)

Proposition 3.27. Let v ∈ V (G′) be an outcast vertex such that v �∈ Z . Then there exists a

unique block B ∈ B such that v is full in B. Moreover, for any other block B′ ∈ B such that

v ∈ V (B′) and B′ �= B, v is necessarily the smallest vertex in B′ with respect to the order

�T .

Proof. Since v is an outcast vertex and v �∈ Z1, we know that

degG′ (v) �
(

1 − ε

3

)
degG(v) �

(
1 − ε

3

)
k.

Moreover, because v �∈ Z2, at most εk/3 edges from Q2 ∪ Q3 are incident to v. Hence at

least (1 − 2ε/3)k edges from U are incident to v. Now we split the analysis into two cases.

In the first case, v is not a cut-vertex from G′
p. Then there exists a unique block B ∈ B

such that v ∈ V (B). Clearly all the edges in U incident to v are of the form vu, for some
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u ∈ V (B). Thus v is full in B, and v does not belong to any other block, concluding the

analysis in this case.

In the second case, v is a cut-vertex from G′
p. We claim that there exists a unique block

B ∈ B such that v is not the smallest element in B with respect to the order �T . To see

this, observe that if v is the smallest vertex in every block in which it belongs, then v must

be a root of the rooted forest T , and hence v ∈ Z3 ∪ Z4, as v is incident to more than

εk/3 edges from U. But this is not the case, so there exists at least one block B such that

v ∈ V (B) and v is not the smallest vertex in B. By Observation 3.16 we know that such

a B must be unique. Thus, for all edges in U of the form vu, where u �∈ V (B), the vertex

v must necessarily be the smallest in the unique block that contains both u and v. But

because v �∈ Z3 ∪ Z4, there can be at most εk/3 of such edges, so v is full in B, concluding

the proof of the proposition.

One immediate consequence of Proposition 3.27 is the following corollary.

Corollary 3.28. Let v ∈ V (B) \ Z be a vertex which is not the smallest in B ∈ B with

respect to �T . Then either v is full in B or there exists a pseudo-clique C such that v ∈ C

and B contains C .

Proof. If v is an outcast vertex, then since v is not the smallest of B and v �∈ Z ,

Proposition 3.27 implies that v must be full in B. Otherwise there exists a pseudo-clique

C ∈ C such that v ∈ C . We claim that B contains C . Suppose for a contradiction that

B does not contain C . Let B′ be the unique block containing C . By Observation 3.16, v

must be the smallest vertex of B′, since v is not the smallest vertex in B. Therefore v is the

smallest vertex of the block B′ which contains the pseudo-clique C , hence v ∈ Z3 ⊆ Z , a

contradiction, concluding the proof of the corollary.

Finally, we turn to the analysis of the poor vertices in the blocks of B. We say that a

block B ∈ B is good if the proportion of vertices from Z in B is at most ε/106. We have

the following.

Lemma 3.29. If the proportion of poor vertices inside a good block B is at most ε/1000,

then after we expose the remaining untested edges of the partially exposed G′
p, a.a.s. G′

p[V (B)]

contains a cycle of length at least k + 1.

Before we prove Lemma 3.29 we need to prove some auxiliary results. For that purpose,

let us introduce additional notation.

For each vertex v ∈ V (B), let D(v) denote the set of all vertices u ∈ V (B) which are

descendants of v (recall that every v is a descendant of itself) and let A(v) denote the

set of all vertices u ∈ V (B) which are ancestors of v with respect to the tree T ∩ B. The

block B should be clear from the context whenever we use the notation for ancestors and

descendants. We shall add the subscript ‘� d’ to either D(v) or A(v), as in the expression

D�d(v), to refer to the subset obtained by keeping the vertices at distance at most d from

v with respect to the same tree T ∩ B. Similarly, we add the superscript ‘(p)’/‘(r)’ to select
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only the poor/rich vertices of the indicated set in the notation, such as in the expression

D(p)(v).

We say that a vertex v ∈ V (B) is branching if there exist at least two distinct rich vertices

u1, u2 ∈ V (B) which are immediate descendants of v with respect to T . Similarly to what

we did previously, we reserve the superscript ‘(b)’ to denote the branching vertices of the

set under consideration. We claim the following.

Proposition 3.30. For each v such that D(b)(v) �= ∅, we have |D(p)(v)| � εk(|D(b)(v)| + 1).

Proof. Assume D(v) contains at least one branching vertex. In this case v must be rich.

Let T ′ be the subtree of T ∩ B containing all the rich descendants of v (including itself).

Since every branching vertex in D(b)(v) has degree at least 3 in T ′ (except possibly the

root v), the number of leaves in T ′ is at least |D(b)(v)| + 1. But every leaf of T ′ contains

at least εk poor descendants in T ∩ B, thereby proving the proposition.

Proposition 3.30 yields an upper bound on the total number of branching vertices in a

block, namely it is at most 1/εk times the number of poor vertices in the same block.

The next proposition allow us to find a structure that resembles a path with a small

number of ‘pendant’ vertices in a block with very few poor vertices.

Proposition 3.31. If the proportion of poor vertices inside a good block B is at most ε/1000

then there exist two vertices u, v ∈ V (B) such that u is a descendant of v at distance 30k

with respect to the tree T ∩ B, and

(1) the number of vertices in D(v) \ D(u) is at most (30 + ε/10)k, and

(2) the number of vertices in (D(v) \ D(u)) ∩ Z is at most εk/10.

Proof. Let

q(x) =
1

ε
· |D(p)

�d(x)| + k · |D(b)
�d(x)| +

1

ε
· |D�d(x) ∩ Z |,

where d := 40k. We would like to estimate q :=
∑

x rich q(x). We have

q =
∑
x rich

( ∑
y∈D(p)

�d
(x)

1/ε +
∑

y∈D(b)
�d

(x)

k +
∑

y∈Z∩D�d(x)

1/ε

)

=
∑
y poor

1

ε
· |A(r)

�d(y)| +
∑

y branching

k · |A(r)
�d(y)| +

∑
y∈Z

1

ε
· |A(r)

�d(y)|

�
∑
y poor

d

ε
+

∑
y branching

k · d +
∑
y∈Z

d

ε

� d

ε
· ε

1000
· |B| + k · d · 1

εk
· ε

1000
· |B| +

d

ε
· ε

106
· |B| < d

450
· |B|,

where for the penultimate inequality we used Proposition 3.30 to estimate the number of

branching vertices. Note that all sums are taken over vertices in B. By averaging, there
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exists a rich vertex v ∈ V (B) such that

q(v) � d

450
|B|/((1 − ε/1000)|B|) < d/400 = k/10.

In particular, we must have D
(b)
�d(v) = ∅, |D(p)

�d(v)| < εk/10 and |D�d(v) ∩ Z | < εk/10. Let

d′ = 30k. We claim that for each rich vertex x ∈ D�d′(v), there exists exactly one rich

vertex x′ which is an immediate descendant of x with respect to T ∩ B. Clearly there are

no two such vertices x′, since otherwise x would be branching, and this cannot happen

because D
(b)
�d(v) = ∅. To finish the proof of the claim, notice that if all the immediate

descendants of x were poor, then

D(x) = {x} ∪ D(p)(x) = {x} ∪ D
(p)
�εk(x),

which together with d > d′ + εk implies that |D(p)
�d(v)| � |D(p)

�εk(x)| � εk, a contradiction.

By the claim we proved in the previous paragraph, we know that the set D(r)
�d′ (v) induces

a path in T . Let u be the unique rich vertex in D(v) at distance exactly d′. We claim

that the pair u, v satisfies the conditions stated in the proposition. For the first condition,

observe that

D(v) \ D(u) ⊆ D
(r)
�d′(v) ∪ D

(p)
�d(v),

hence clearly

|D(v) \ D(u)| < d′ + εk/10.

For the second condition, we have that

Z ∩ (D(v) \ D(u)) ⊆ D�d(v) ∩ Z,

hence

|Z ∩ (D(v) \ D(u))| < εk/10,

finishing the proof of the proposition.

We have the necessary tools to prove Lemma 3.29.

Proof of Lemma 3.29. We assume, without loss of generality, that B contains at most one

pseudo-clique from C, as otherwise Proposition 3.17 would already imply the conclusion

of this lemma.

We start the proof by applying Proposition 3.31 to B, thus obtaining the pair u, v.

Let P be the path between u and v in T . We have |P | = 30k, the number of vertices in

V (P ) ∩ Z is at most εk/10, and the number of ‘pendant’ vertices from P is at most εk/10.

In particular, for each vertex w ∈ V (P ) at distance at least k from u with respect to P ,

there are at most εk/10 edges in U from w to one of its descendants not in P .

We redefine P to be the subpath of length 28k obtained by removing the two segments of

length k closest to the two endpoints from the original path. For each vertex x ∈ V (P ) \ Z ,

we know (by Corollary 3.28) that either x is full in B, or B contains a pseudo-clique

C ∈ C such that x ∈ C . But we know, by our initial assumption, that there is at most one
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u1 u2 v1 u3 v2 u4

. . .
ut−1 vt−2 ut vt−1 vt

Figure 7. The long cycle J formed by the solid lines.

such C , and if it exists, then V (P ) ∩ C should be a segment of P (because pseudo-cliques

induce paths in T , see Observation 3.13). Hence, we can always find in P two disjoint

segments L1, L2, each of length 8k, such that for every x ∈ (V (L1) ∪ V (L2)) \ Z , x is full

in B and the distance between these segments along the path P is at least k. In other

words, almost all vertices from L1 ∪ L2 are full in B.

Let us divide the rest of the proof into two cases. In the first case, we assume that there

exist two vertices x1 ∈ L1 and x2 ∈ L2, both full in B, such that for each i ∈ {1, 2}, there

are at most εk descendants w of xi in B for which wxi is an edge in U. By Proposition 3.24,

then a.a.s. we can obtain two rotating cycles, with pivots x1 and x2 and by Proposition 3.20

we can merge these two disjoint rotating cycles and obtain the desired long cycle, proving

the lemma in this first case.

In the second case, we assume that there is no such pair of vertices x1, x2. Hence we

might also assume that, without loss of generality, for each full vertex x in L1, there exist

at least εk descendants y of x for which xy ∈ U. Out of these descendants, at most εk/10

do not belong to P (recall that the number of ‘pendant’ vertices from P is at most εk/10).

Thus x sends at least 9εk/10 untested edges to its descendants in P . Furthermore, at most

4εk/5 of these descendants are of distance at most 4εk/5, thus there are at least εk/10

edges in U connecting x to one of its descendants in P at distance at least 4εk/5 from

x. Observe that we can a.a.s. obtain a cycle of length at least 4εk/5 by testing the εk/10

edges in U going from a full vertex to its descendants on the path P . The key idea in

what comes next is to merge O(1/ε) of these small cycles.

In P , and hence in L1, there can be at most εk/10 non-full vertices. This implies that

for each subsegment L in L1 of length εk/5, at least εk/10 of its vertices are full, thus

there exists a set EL of at least ε2k2/100 edges in U of the form xy, where x ∈ V (L), and

y ∈ V (P ) is a descendant of x at distance at least 4εk/5. Clearly the distance between x

and y in P is at most k, as all edges of Q′′
2 were tested according to our assumption in

the beginning of this subsection. By the union bound and by Lemma 2.1, if we test the

edges in EL for every segment L in L1, a.a.s. we can find one successfully exposed edge in

each EL.

To obtain the long cycle is straightforward. We start with a segment L(1) of length

εk/5 containing the endpoint of L1 which is smallest with respect to the order �T . In

this segment, we can find an edge u1v1 ∈ EL(1) which was successfully exposed, where

u1 ∈ V (L(1)). We then proceed recursively for each j as follows. Let L(j+1) be the segment

of L1 of length εk/5 whose smallest vertex with respect to �T is the ancestor of vj at

distance εk/5 + 1 (hence L(j+1) does not contain vj). Then choose an edge uj+1vj+1 ∈ EL(j+1)

which was successfully exposed, where uj+1 ∈ V (L(j+1)). Repeat this process while vj has

distance at most 5k from the smallest vertex from L1. Assume the last segment chosen

was L(t). The cycle J we seek can be easily seen from Figure 7.
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The reader can check that the distance between uj and vj−1 is always smaller than

the distance between uj and vj−2 with respect to the path P . In fact, we always jump

‘downwards’ by at least 4εk/5 and move ‘upwards’ by εk/5 + 1. So the total length of

J is at least half of the distance between u1 and vt, therefore |J| � 5
2
k, which proves the

lemma.

Now that we have studied the case when the number of poor vertices is small, it is

natural to consider the case where this number is sufficiently large. In the next lemma, we

show the existence of the desired cycle in this situation.

Lemma 3.32. If the number of poor vertices not in Z inside a block B is at least 200εk,

then after we expose the remaining untested edges of G′
p, a.a.s. G′

p[V (B)] contains a cycle of

length at least k + 1.

Before we prove the previous lemma, we list and prove some technical results. The first

one is Theorem 3.1(ii) proved by Krivelevich, Lee and Sudakov [12].

Theorem 3.33. Let G be a bipartite graph of minimal degree at least k. Then asymptotically

almost surely Gp contains a path of length (2 + o(1))k whenever p = ωk(1)/k, for any function

ωk(1) < k that tends to infinity with k.

The second technical result is inspired by the same paper [12].

Proposition 3.34. Let B ∈ B be a block. Suppose there exists a pair (P ,X), where P is a

path in T ∩ B of size (1 − 5ε)k � |P | � (1 + ε)k, and X ⊆ V (B) \ V (P ) is a set of at least

180εk vertices, such that for each v ∈ X there are at least (1 − 80ε)k vertices u ∈ V (P )

satisfying uv ∈ U. After exposing all the edges in U connecting P to X, a.a.s. we can find a

cycle in G′
p[V (B)] of length at least k + 1.

Proof. The main idea here goes along the lines of the proof of Theorem 1.2 (Case 1) in

the above-mentioned paper [12]. Let w be an arbitrary vertex in X. We test all the edges

in U connecting w to P , and a.a.s. we obtain two successfully tested edges wu1 and wu2,

such that u1 and u2 are at distance at least (1 − 82ε)k with respect to P . We redefine P as

the segment of itself connecting u1 to u2. We now know that (1 − 82ε)k � |P | � (1 + ε)k,

and that for each vertex v ∈ X \ {w}, there exists a set of at least (1 − 163ε)k vertices

u ∈ V (P ) such that uv ∈ U.

Let Y be an arbitrary subset of X \ {w} of size 175ε|P | < 180εk. We partition P into

1/(175ε) segments P1, . . . , P1/175ε, each of length 175ε|P |. By an averaging argument, there

exists an interval Pi for which e(Pi, Y ) � (1 − 200ε)|Pi||Y |. Consider a bipartite graph Γ

formed by the edges of U with the vertex set being the union of the two parts Pi and

Y . Note that the number of non-adjacent pairs is at most 200ε|Pi||Y | (also note that

|Y | = |Pi|). We repeatedly remove vertices of degree at most (1 − 40ε1/2)|Y | from Γ. As

long as the total number of deleted vertices is at most 20ε1/2|Y |, each deletion accounts

for at least 20ε1/2|Y | non-adjacent pairs of Γ. So, if we continue this removal process

https://doi.org/10.1017/S0963548316000237 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000237


236 R. Glebov, H. Naves and B. Sudakov

for at least 20ε1/2|Y | vertices, the total number of non-adjacent pairs we removed from

Γ is at least 400ε|Y |2, which is a contradiction. Thus, this process must stop before we

remove 20ε1/2|Y | vertices, and we obtain a subgraph Γ1 of minimum degree at least

(1 − 40ε1/2)|Y |.
Let Pi,0 and Pi,1 be the two segments of Pi of length 45ε1/2|Y | closest to the two

endpoints of Pi. Even after removing the vertices in Pi,0 ∪ Pi,1 from Γ1, we are left with a

graph Γ2 of minimum degree at least

(1 − 40ε1/2)|Y | − 90ε1/2|Y | > 9

10
|Y |.

By Theorem 3.33, (Γ2)p a.a.s. contains a path of length at least

2

(
9

10
+ o(1)

)
|Y | > 5

3
|Y |.

By removing at most two vertices, we may assume that the endpoints x and y of this

path are both in Y . Since Γ1 has minimum degree at least (1 − 40ε1/2)|Pi|, both of these

endpoints have at least 5ε1/2|Pi| > ε3/2k neighbours in both Pi,0 and Pi,1. By Lemma 2.1,

(Γ1)p a.a.s. contains two edges xv0 and yv1, where v0 ∈ Pi,0 and v1 ∈ Pi,1. We found a path

in (Γ1)p of length at least 5
3
|Y |, which starts at v0 and ends at v1, and uses only vertices

from Y ∪ (Pi \ (Pi,0 ∪ Pi,1)) as internal vertices. Together with the path P and the two

edges wu1 and wu2, we obtain a cycle of length at least

|P | − |Pi| +
5

3
|Y | > k + 1,

concluding the proof of the proposition.

Our last auxiliary statement studies the set of poor vertices inside a block.

Proposition 3.35. Let B be a block. Suppose x1 and x2 are two full poor vertices in B. If

x1 and x2 have distance at least 30εk with respect to T , then after we expose the remaining

untested edges of G′
p, a.a.s. G′

p[V (B)] contains a cycle of length at least k + 1.

Proof. Proposition 3.24 guarantees that, by testing some edges in U incident to x1 and

x2, we will obtain a.a.s. two rotating cycles J1 and J2 with pivots x1 and x2, respectively.

If J1 and J2 are disjoint, by Proposition 3.20 we can merge them and obtain the desired

long cycle. Otherwise, if J1 and J2 intersect, then the unique path in T from x1 to x2 is

contained in J1 ∪ J2 and is edge-disjoint from J1 ∩ J2. Thus

|J1| + |J2| − |J1 ∩ J2| = |J1 ∪ J2| � |J1 ∩ J2| + 30εk, (3.6)

which implies |J1 ∩ J2| < (1 − 15ε)k. By Proposition 3.21, we can merge these two inter-

secting rotating cycles, thereby proving the proposition.

We turn to prove Lemma 3.32.

Proof of Lemma 3.32. Observation 3.23 says that each pseudo-clique can contribute

at most εk poor vertices to the block in which it is contained. Moreover, if B contains
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more than one pseudo-clique, Proposition 3.17 would already imply the conclusion of this

lemma. Thus, we may assume that among the poor vertices not in Z , at least 199εk of

them do not belong to pseudo-cliques that are contained in B. Let X denote the set of

such vertices. We have |X| � 199εk, and clearly X does not contain the smallest vertex of

B with respect to �T (otherwise the smallest element would be poor, and hence |B| � εk).

By Corollary 3.28, each vertex in X must necessarily be full in B. If there exist two full

poor vertices v1 and v2 at distance at least 30εk with respect to T , we can obtain the long

cycle by using Proposition 3.35. Thus we may assume that all the poor full vertices of B

are close to each other, that is, they have distance at most 30εk. Let v be any full poor

vertex, and let P be the path containing all the ancestors of v in B at distance less than k.

Clearly (1 − 2ε)k � |P | � k. For every vertex v′ ∈ X, since v and v′ are at distance at most

30εk, there exists at least (1 − 80ε)k pairs uv′ ∈ U, where u ∈ P (recall that no edge in U

connects pairs of vertices at distance larger than k). Thus we can apply Proposition 3.34,

and a.a.s. obtain a cycle of length at least k + 1 in G′
p[V (B)], finishing the proof of the

lemma.

The last case to be solved is when the number of poor vertices is not too large and not

too small. The next lemma investigates this case.

Lemma 3.36. Suppose the proportion of poor vertices inside a good block B ∈ B is at least

ε/1000, but the total number of poor vertices in B \ Z is at most 200εk. We have either

• B contains a pseudo-clique C and all the other vertices in V (B) \ C belong to Z , or

• after testing all the edges of U joining two vertices from B, a.a.s. G′
p[V (B)] contains a

cycle of length at least k + 1.

As before, we need some technical statements in preparation for the proof of Lemma 3.36.

The first statement strengthens Proposition 3.35.

Proposition 3.37. Let B be a block. Suppose x1, x2 �∈ Z are two vertices in B, such that for

each i ∈ {1, 2}, there are at most εk edges in U connecting xi to one of its descendants in

B. If x1 and x2 have distance at least 60εk with respect to T and are not comparable with

respect to �T , then after we expose the remaining untested edges of G′
p, a.a.s. G′

p[V (B)]

contains a cycle of length at least k + 1.

Proof. First observe that the smallest vertex in B does not belong to the set {x1, x2},
because otherwise x1 and x2 would be comparable with respect to �T . Let L be the union

of all pseudo-cliques C ∈ C which are contained in B.

In the first case, both x1 and x2 belong to L. Let C1, C2 ∈ C be the pseudo-cliques

contained in B such that x1 ∈ C1 and x2 ∈ C2. We claim that C1 �= C2. To prove our

claim, assume that C1 = C2. But by Observation 3.13, we know that the vertices of C1

induce a path in T , and hence in T ∩ B. But this would imply that x1 and x2 are

comparable with respect to �T , contradicting the hypothesis of the proposition. Hence

C1 �= C2. But by Proposition 3.17, we can merge the two cycles in the pseudo-cliques and

obtain the desired long cycle. This finishes the analysis of the first case.
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In the second case, neither x1 or x2 belong to L. By Corollary 3.28, both x1 and x2 are

full in B, since they do not belong to L ∪ Z . After testing some of the edges of U incident

to x1 and x2 we can obtain two rotating cycles J1 and J2 respectively, as Proposition 3.24

assures. Either J1 is disjoint from J2 or their intersection is of size at most (1 − 30ε)k (we

use the same strategy as in (3.6) to estimate the size of J1 ∩ J2). In any case, by either

Proposition 3.20 or Proposition 3.21, a.a.s. we can obtain the long cycle after we test the

remaining edges of U in B, concluding the analysis of this case.

In the last remaining case, we assume that x1 ∈ L but x2 �∈ L. As before, we know that

x2 is full in B. Using Proposition 3.24, we obtain a.a.s. a rotating cycle J in B for which

x2 is its pivot. Moreover, since x1 ∈ L, we also know that x1 belongs to a pseudo-clique

C ∈ C which is contained in B. We claim that |V (J) ∩ C| < (1 − 30ε)k. If V (J) and C are

disjoint, then our claim is trivially true. Otherwise, if they intersect, then there is a cycle J ′

in B containing the vertices of C \ W , such that J ′ ∩ T is a path (Observation 3.13). By a

calculation analogous to (3.6), we obtain that |J ∩ J ′| = |V (J) ∩ C| < (1 − 30ε)k, proving

our claim. Finally, we finish the proof of this proposition with a final application of

Proposition 3.22 to obtain the long cycle.

Our second auxiliary result allows us to estimate the number of poor vertices in a block.

Proposition 3.38. Let δ > 1, B be a block, v be a poor vertex in B, and let P be the unique

path from v to the smallest vertex from B with respect to �T . If |V (B) ∩ Z | < εk, and every

poor vertex of B not in Z ∪ {v} is at distance at most δεk from v, then there is no rich

vertex in B outside P at distance at least δεk from v. Furthermore, B contains at least

(|B| − |P |)/(δ + 1) poor vertices.

Proof. Let X be the set of poor vertices in B. The proof of the first part of the proposition

goes by contradiction. Assume that there exists a rich vertex u outside P at distance at

least δεk from v. Recall that D(u) denotes the set of descendants of u in B. Observe that

all vertices from D(u) ∩ X must have distance greater than δεk from v. On the other hand,

|D(u) ∩ X| � εk (since every rich vertex has at least εk poor descendants), and every vertex

in D(u) ∩ X must belong to Z by the assumptions of the proposition. We then have a

contradiction, because |D(u) ∩ X| � εk > |V (B) ∩ Z |. This contradiction proves the first

statement of the proposition.

For each u �∈ V (P ) such that u has an immediate ancestor in P , we shall prove that

|D(u) ∩ X| � |D(u)|
δ + 1

. (3.7)

We identify the set F of the rich vertices in D(u) that have no rich descendant. For

every w ∈ F , since w is rich, we have |D(w)| > εk, and all vertices in D(w) are poor,

except for w itself. Hence |D(u) ∩ X| � εk|F |. Furthermore, no rich vertex in D(u) is at

distance larger than δεk from u, since it would have distance at least δεk from v as

well, which is impossible. In other words, every rich vertex in D(u) belongs to some path

in T from a vertex in F to u. Since all these paths have length at most δεk, the total

number of rich vertices in D(u) is at most δεk|F |, thereby proving (3.7). Therefore the total
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number of poor vertices in B is at least (|B| − |P |)/(δ + 1), concluding the proof of the

proposition.

The last auxiliary result is to handle the case of a block containing a long path and

few vertices in Z . The statement is as follows.

Proposition 3.39. Let B be a block, let v be a poor vertex in V (B) \ Z , and let P be the

unique path from v to the smallest vertex from B with respect to �T . If

|V (B) ∩ Z | < 3εk/10, |P | � (1 + 1000ε)k,

and every poor vertex of B not in Z ∪ {v} is at distance at most 100εk from v, then after

testing the remaining untested edges from G′
p, a.a.s. we can find a cycle of length at least

k + 1 in G′
p[V (B)].

Proof. Let L be the union of all pseudo-cliques that are contained in B. Observe that L

is the union of at most one pseudo-clique, as otherwise we would have a cycle of length

at least k + 1 by Proposition 3.17.

We claim that either v ∈ L, or after possibly testing a few edges from U incident to v,

we obtain a.a.s. a rotating cycle J with pivot v. To see this, observe that if v �∈ L, then

Corollary 3.28 implies that v must be full in B. Using Corollary 3.25, we obtain a.a.s. such

a rotating cycle J , proving our claim. In any case, we can assume that v belongs to a cycle

(either because v belongs to a pseudo-clique C contained in B or because it is the pivot

of a rotating cycle J) of length at least (1 − 5ε)k.

Suppose there is vertex w in P at distance at least 100εk from the endpoint v of P that

satisfies:

(i) w �∈ Z ∪ L, and w is not the smallest vertex in B, and

(ii) there are at most εk edges of U connecting w to one of its descendants.

By (i) and by Corollary 3.28, we know that w must be full in B, and hence by

Proposition 3.24, after testing the far-reaching edges in U incident to w, we obtain

a.a.s. a rotating cycle J ′ with pivot w. We could then merge J ′ with the large cycle

containing v (which could be either from a pseudo-clique C ∈ C if v ∈ L, or from the

rotating cycle J with pivot v, if v �∈ L) by using Proposition 3.22, hence obtaining the

desired long cycle, and we would be done.

From the discussion in the last paragraph, we may assume without loss of generality

that there is no vertex w satisfying both (i) and (ii). Thus every vertex w ∈ V (P ) at

distance at least 100εk from v satisfying (i) must have at least εk descendants u in B such

that uw ∈ U.

Let us denote by z the smallest vertex with respect to �T on P such that there are

at least εk/40 vertices u of distance at most 100εk from v with zu ∈ U. Notice that such

a vertex z exists, since, for example, v itself, as a poor full vertex, has at least εk/40

neighbours in U of distance at most 100εk from v. Then, for every w ∈ V (P ) with w <T z

of distance at least 100εk from v and satisfying (i), of the at least εk descendants u in B

such that uw ∈ U, at most |Z ∩ V (B)| + εk/40 < 13εk/40 do not belong to P . To see this,
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observe that w does not have a rich descendant u outside P of distance at least 100εk

from v, as otherwise it would contradict the conclusion of Proposition 3.38 (applied with

δ = 100). Furthermore, every poor descendant of w of distance at most 100εk from v must

belong to Z ∩ B. So the total number of descendants of w outside P is at most 13εk/40.

In particular, w has at least 27εk/40 descendants u such that u ∈ V (P ) and uw ∈ U.

At most 13εk/20 of these edges connect w to a vertex in P at distance at most 13εk/20

from w. Hence there are at least εk/40 edges in U connecting w to one of its descendants

at distance at least 13εk/20 on P . If we test these edges, a.a.s.we can find a successfully

tested edge connecting w to one of its deep descendants in P , thus forming a small cycle of

length at least 13εk/20. We can now use the same technique as in the proof of Lemma 3.29

to finish the proof of the proposition (see Figure 7). In the next few paragraphs, we briefly

sketch this technique. We also remark that in our case we only need to merge constantly

many small cycles, which simplifies the union bound argument.

The idea is to start at a full vertex w0 that satisfies (i) and is at distance between

(1 + 998ε)k and (1 + 999ε)k from v, and repeat the following loop. For each i = 0, 1, 2, . . . ,

by testing some edges of U incident to wi, a.a.s. we can find a neighbour w′
i of wi at

distance at least 13εk/20 from wi which is a descendant of wi on P . Then we go ‘upwards’

(in direction to the smallest vertex from B) the path P starting from w′
i until we find

another full vertex wi+1. Recall that we need to go ‘upwards’ at most 3εk/10 vertices

to reach this full vertex, as long as we move entirely outside L. Also observe that the

small cycles do not ‘double-overlap’, as 13εk/20 > 2 · (3εk/10). We repeat the loop until

we either hit the interior of J (if it exists), or a vertex from L which is not the smallest

vertex in L, or a vertex below z.

Recall that v belongs to a cycle, which could be formed by vertices from either J or

L. Since this cycle has size between (1 − 5ε)k and (1 + ε)k, we must necessarily stop this

procedure after constantly many iterations of the loop. More precisely, if T denotes the

time we stopped, then

T <
999εk

7εk/20
< 300.

Assume that at the very last step, the vertex w′
T either belongs to the interior of J (if it

exists) or is in L (but is not the smallest vertex in the pseudo-clique). In the first case, we

can close the cycle we are forming with J , because v has a.a.s. a neighbour which is an

ancestor of w′
T at distance at most 5εk from w′

T . In the latter case, when w′
T ∈ L, from

Proposition 3.22 one can deduce that the smallest vertex from L in the block is at distance

at most (1 + 40ε)k from v. In addition, by Proposition 3.18, we can close the cycle using

the majority of vertices from L. More specifically, there is a path in G′
p[L] of length at

least (1 − 20ε)k which connects w′
T and the smallest vertex from L. Therefore, regardless

of what happens in the last iteration of our procedure, the merged cycle always has size

at least

(1 + 998ε)k − 45εk − 20εk − 300 · 3εk

10
> k.

The case when, at the very last step, the vertex w′
T is below z (but w′

T neither belongs

to the interior of J (if it exists) nor is a non-smallest vertex of L), proceeds analogously to
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the above argument: we expose the (at least εk/40) edges from U connecting z to vertices

at distance at most 100εk from v, obtaining at least one neighbour v′ of z. By definition

of z, it has distance at most (1 + 100ε)k from v, since z has neighbours at distance

at most 100εk from v, and all far-reaching edges were already tested unsuccessfully in

Q′′
2. Therefore, since w′

T must have distance at least (1 − 5ε)k from v, the segment of P

connecting z and w′
T has length at most 105εk. The merged cycle using the path from w′

T

to v′ has size at least

(1 + 998ε)k − 105εk − 100εk − 300 · 3εk

10
> k,

thereby proving the proposition.

We are ready to prove Lemma 3.36.

Proof of Lemma 3.36. Let X be the set of poor vertices of B, and let Y = X \ Z . Since

|Z ∩ V (B)| � 10−6ε|B| (because B is good) and |X| � 10−3ε|B|, we must conclude that

|Y | � ε|B|/1100. We also know that |Y | � 200εk, and this implies that |B| < 3 · 105k (we

will improve this bound later), thus |Z ∩ V (B)| < 3εk/10. Finally, we have

|X| � |Y | + |Z ∩ V (B)| � 201εk.

Fix a vertex v ∈ Y arbitrarily. Using Proposition 3.37 one can see that v has distance

(with respect to T ) of at most 60εk from any other vertex from Y , as otherwise we

would obtain the long cycle and the second conclusion of the lemma would hold. Indeed,

since we are considering poor vertices, there can be no situation when one of them is a

descendant of the other of distance at least 60εk, and therefore Proposition 3.37 can be

applied.

Let P be the path in T joining v to the smallest vertex v0 of B with respect to �T . By

applying Proposition 3.38 for δ = 60, we obtain that the total number of poor vertices in

B is at least (|B| − |P |)/61, which implies that

|B| � |P | + 61|X| � |P | + 15000εk.

We might assume then that |P | < (1 + 1000ε)k. This is because the conclusion of

the lemma would be true otherwise, as Proposition 3.39 shows. In particular, we must

have |B| < (1 + 16000ε)k. If |V (B) \ Z | > (1 + ε)k, then we claim that Γ := G′[V (B) \
(Z ∪ {v0})] is a graph with minimum degree at least (1 − 5ε)k. Indeed, every vertex in

Γ which does not belong to a pseudo-clique contained in B is full in B, and every

vertex in Γ which does belong to a pseudo-clique contained in B has degree at least

(1 − 5ε)k in G′[V (B) \ (Z ∪ {v0})] because |Z ∩ V (B)| < 3εk/10 and every pseudo-clique

not completely inside the waste lost at most εk/2 vertices to W , and the claim follows.

Thus Γ is a graph with minimum degree at least (1 − 6ε)k satisfying (1 + ε)k � |Γ| �
(1 + 16000ε)k. However, as assumed at the beginning of this subsection, such a graph

cannot exist, because it would violate the assumption that Proposition 3.11 holds. This

implies that |V (B) \ Z | � (1 + ε)k, hence |B| � (1 + 2ε)k.

Next, we claim that there exists a pseudo-clique C ∈ C such that B contains C . To prove

our claim, suppose, for a contradiction, that B does not contain any pseudo-clique from C.
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Then every vertex u in V (B) \ (Z ∪ {v0}) must be outcast. Indeed, if u belongs to a pseudo-

clique C ′ ∈ C, then u is the smallest vertex in the unique block that contains C ′, hence

u ∈ Z3 ⊆ Z , which is a contradiction. Moreover, since every vertex in V (B) \ (Z ∪ {v0}) is

full in B, we have that Γ is a graph with minimum degree at least (1 − 2ε)k whose vertex

set consists of only outcast vertices. This fact, together with |Γ| < (1 + ε)k, implies that

the set V (B) \ (Z ∪ {v0}) forms a pseudo-clique in G which is disjoint from all the other

pseudo-cliques from C. But this contradicts the maximality of the union
⋃

C∈C C , since

we chose the collection of disjoint pseudo-cliques that covers the maximum number of

vertices possible. This contradiction proves that B contains exactly one pseudo-clique C

from C.

It remains to show that V (B) ⊆ Z ∪ C , or equivalently V (B) \ (C ∪ Z) = ∅. Suppose

not. Clearly v0 ∈ Z3 ⊆ Z (because v0 is the smallest vertex in B, and B contains a pseudo-

clique). Every vertex in V (B) \ (Z ∪ C) must be outcast and full in B, hence the graph

Γ′ := G′[C ∪ (V (B) \ Z)] is a graph with minimum degree (1 − 4ε)k. By the assumption

that Proposition 3.11 holds, we have that

|Γ′| <
(

1 +
ε

2

)
k.

Hence the vertices of Γ′ form a pseudo-clique in G, and if we replace C by C ′ :=

C ∪ (V (B) \ Z) (recall that C ′ \ C consists only of outcast vertices), we obtain a family of

pseudo-cliques whose union is larger than before, contradicting the maximality of
⋃

C∈C C .

This final contradiction establishes the lemma.

We turn to prove Lemma 3.1. One important fact that will be used in subsequent double-

counting arguments is the following consequence of Observation 3.16: by removing the

smallest vertex with respect to �T from each block in B, we obtain a family of pairwise

vertex-disjoint graphs.

Proof of Lemma 3.1. Assume, for a contradiction, that � > 107 · n/εk, but Gp does not

a.a.s. contain a cycle of length at least k + 1. Lemmas 3.29, 3.32 and 3.36 combined imply

that either Gp a.a.s. contains a cycle of length at least k + 1, or all the good blocks contain

a pseudo-clique inside, and the remaining vertices not in the pseudo-clique are in Z . We

can bound the number t of vertices not in good blocks as follows.

By definition, every non-good block B contains at least (ε/106)|B| vertices from Z .

Furthermore, as it was previously remarked, if we remove the smallest vertex from each

block in B, we obtain a family of disjoint graphs. Hence, if t0 denotes the number of

blocks in B of size 1, then

|Z | � t0 +
∑
B∈B

(|Z ∩ B| − 1) � t0 +
ε

2 · 106

∑
B not good

|B|>1

|B| � εt

2 · 106
. (3.8)

Thus

t � 2 · 106

ε
· |Z |,
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where t denotes the number of vertices in non-good blocks. By (3.5) we obtain

t � 106 ·
(

3n

εk
+

32

ε2pk
·
(
� +

n

k

)
+ 24

)
.

Using Lemma 3.36, we can estimate the number of outcast vertices by adding the

estimation of |Z | in (3.5) with our previous bound for t in (3.8) for t. This is true

because if an outcast vertex is in a good block, then it must belong to Z . Hence we have

� � t + |Z |, which implies that � � 107 · n/εk, a contradiction that establishes Lemma 3.1.

Next is Lemma 3.2.

Proof of Lemma 3.2. Suppose that � � 107 · n/εk, but Gp does not a.a.s. have a cycle

of length at least k + 1. Clearly |C| is roughly n/k, as the number of outcast vertices is

� = o(n). Let B′ be the sub-family of B consisting of the good blocks. If we plug the

inequality � � 107 · n/εk into the bound (3.5), we obtain |Z | � 1.1n/k, since ε2pk → ∞ as

k → ∞. Moreover, using inequality (3.8), we obtain that the number of vertices of G′ not

in good blocks is at most 107 · n/εk = o(n). Because of Lemma 3.36, every member B of B′

contains a pseudo-clique C ∈ C and V (B) \ C ⊆ Z , hence |B′| ≈ n/k, or more specifically,

0.99n/k � |B′| � 1.01n/k. Furthermore, by Corollaries 3.14 and 3.15, the total number of

edges in Q2 ∪ Q3 (recall that Q2 is the set of edges tested by DFS, and Q3 is the set of

edges tested by the block algorithm) is at most

108 · n

εpk
+ 2ε2k = o(εn).

We claim that every block B ∈ B \ B′ of size 1 � |B| < (1 − 4ε)k must contain at least

max{1, |B| − 1} vertices from Z (and hence B is necessarily not good). This is because B

can not contain a pseudo-clique (its size is too small) and every vertex of V (B) \ Z which

is not the smallest with respect to �T must be full in B (see Corollary 3.28). However

B contains no full vertex, as |B| < (1 − 4ε)k, therefore B contains at least |B| − 1 vertices

from Z . When |B| = 1, the unique vertex in B is isolated in G′
p, hence it belongs to Z

(and belongs to no other block in B) thus proving our claim.

The number of blocks B ∈ B \ B′ having size |B| � (1 − 4ε)k is o(n/k). This is because

the total number of vertices not in good blocks in G′ is at most o(n). Thus the number of

blocks in B ∈ B \ B′ having size |B| < (1 − 4ε)k is at most |Z | � 1.1n/k. Combining these

observations, we obtain |B| � 3|B′|.
The above implies the following four statements.

(i) Fewer than 1
4

· |B′| blocks in B′ have more than five vertices from Z . This is a

consequence of the inequality |Z | �
∑

B∈B(|Z ∩ V (B)| − 1).

(ii) The number of blocks in B′ having more than five cut-vertices is less than

1

5
· |B| � 3

5
· |B′|.
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This is because the total number of cut-vertices is at most |B| − 1, and after the

removal of the smallest vertex from each block in B, those blocks containing more

than five cut-vertices still contribute at least five to this total.

(iii) At least 0.99|B′| blocks B ∈ B′ are such that there are fewer than εk/3 edges from

G′ having one endpoint in V (G′) \ V (B) and the other being a non-cut-vertex of B.

This is true since every such edge is necessarily tested and belongs to Q2 ∪ Q3, and

the total number of edges in Q2 ∪ Q3 is o(εn).

(iv) At least 0.99|B′| blocks in B′ contain pseudo-cliques that satisfy the condition (3.3) in

Lemma 3.12.

Hence, there exists a block B ∈ B′ satisfying the conditions stated in (i)–(iv). Let C ∈ C
be the unique pseudo-clique contained in B.

It is time to incorporate the waste vertices back. Let N denote the union of V (B) ∩ Z

with all cut-vertices from B. By (i) and (ii), the set N has size at most 10 and clearly

V (B) ⊆ C ∪ N. Let F be the set of edges in G connecting C \ N to a vertex outside C ∪ N.

We prove that |F | � εk. In order to prove this inequality, we will apply Lemma 3.12. Let

us recall the definitions of the sets D1, D
′
1, D2 and E in (3.3). The set D1 consists of all the

vertices in C that have more than εk neighbours outside C in G. The subset D′
1 ⊆ D1 is

the union of D1 ∩ W with all vertices in D1 \ W which lost more than a 1
100

proportion

of its neighbours outside C after the deletion of W . The set D2 is the set of all vertices

from G not in C that have at least εk neighbours in C . At last, E is the set of all edges

from G connecting C \ D1 to a vertex outside not in C ∪ D2.

We claim that all vertices in D1 \ D′
1 are cut-vertices, and thus D1 \ D′

1 ⊆ N. Every

vertex in D1 \ D′
1 sends at least 0.99εk edges outside C in G′; in particular, it also sends

at least 0.99εk − |N| > εk/3 edges outside B. But by (iii), every vertex in B that sends at

least εk/3 edges to the outside B must be a cut-vertex, hence D1 \ D′
1 ⊆ N.

Next, we claim that D′
1 = ∅. By the discussion in the previous paragraph, we have

D1 \ D′
1 ⊆ N, hence |D1 \ D′

1| � 10. The inequality (3.3) states that |D′
1| � |D1|/100, thus

|D1 \ D′
1| � 99|D′

1|. Hence we have |D′
1| < 10/99 < 1, which implies D′

1 = ∅.

Our next claim states that D2 \ W ⊆ N. To prove this, let us first show that every vertex

in D2 \ W belongs to B. A vertex in D2 \ W sends at least εk edges to C in G, and since

|C ∩ W | < εk/2 (as otherwise C would be completely thrown away to the waste), this

implies that every vertex in D2 \ W has more than εk/2 neighbours in C \ W in the graph

G′, hence more than εk/2 − |N| neighbours in C \ (W ∪ N). By (iii), any such vertex must

belong to B, hence D2 \ W ⊆ V (B). On the other hand, since D2 and C are disjoint, clearly

we must have D2 \ W ⊆ V (B) ∩ Z ⊆ N, proving our claim.

Similarly to the proof of D′
1 = ∅, let us now show that D2 ∩ W = ∅. Because D2 \ W ⊆ N,

we have |D2 \ W | � 10, and by (3.3), we must have |D2 \ W | � 99|D2 ∩ W |, therefore

|D2 ∩ W | < 10/99 < 1, which implies D2 ∩ W = ∅.

We turn to prove |F | < εk. Assume not. Because D1, D2 ⊆ N, we have F ⊆ E . Moreover,

every vertex in C \ D1 can send at most εk edges to the outside C in G, and every vertex

not in D2 can send at most εk edges to C in G. Thus

|E \ F | � |N \ D1|εk + |N \ D2|εk � 20εk,
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and hence

|F | � |E | � |F | + 20εk � 21|F |.

By the inequality (3.3), we know that |E \ E(G′)| � |E |/100, hence |F \ E(G′)| � 21|F |/100.

This implies that there are at least 0.79εk > εk/3 edges in G′ connecting a vertex from

C \ N to a vertex outside C ∪ N ⊇ V (B), which contradicts (iii), hence |F | < εk. Therefore

the pair (C,N) satisfies the statement of Lemma 3.2. This concludes the proof of the

lemma.

3.6. Step 6: finishing the proof

It remains to prove Lemma 3.3.

Proof of Lemma 3.3. If we remove the vertices from N that have fewer than εk

neighbours in C ∪ N, we might increase the number of edges between C \ N and V (G) \
(C ∪ N) to at most εk + |N|εk � 11εk. So we can assume that every vertex from N has

at least εk neighbours from G in C ∪ N, and that eG(C \ N,V (G) \ (C ∪ N)) � 11εk. Let

X = C ∪ N. From now on, we only deal with the graph G[X].

Observe for the beginning that |X| � k + 1. Indeed, the minimum degree in G is at least

k, and the number of edges between C \ N and V (G) \ X is less than the size of C \ N.

In the following, we show that a.a.s. Gp[X] is Hamiltonian.

The general framework of the proof is to show some expansion properties of Gp[X] and

then to deduce the Hamiltonicity from them. There are several recent papers dedicated

to or just using Hamiltonicity of expanders, and the notion of expanders is slightly

different every time, depending on the setting it should be applied in. Here we go with

the notion used by Glebov and Krivelevich [8]: a graph H with the vertex set [m] is

called a p′-expander, if there exists a set D ⊂ [m] such that H and D satisfy the following

properties.

• |D| � m0.09.

• The graph H does not contain a non-empty path of length at most (2 logm)/(3 log logm)

such that both of its (possibly identical) endpoints lie in D.

• For every set S ⊂ [m] \ D of size |S | � 1/p′, its neighbourhood satisfies

|N(S)| � mp′

1000
|S |.

Let us denote F = G[X], and let m = |X| be its order. Furthermore, let us define for con-

venience p′ = (logm + log logm)/m. We first show that for every f1, f2 = ωm(1), f1 < f2 <

log logm, every graph H satisfying Fp1
⊆ H ⊆ Fp2

with pi = (logm + log logm + fi)/m is

a.a.s. a p′-expander. (Notice that we are coupling Fp1
and Fp2

, so that Fp1
⊆ Fp2

.) Indeed,

let us fix

D = {v ∈ X : dFp1
(v) < mp′/100}

to be the set of all vertices from X with degree less than mp′/100 in Fp1
. The proof of the

first property is similar to the proof of Claim 4.3 in [2], and the second property is shown

to hold similarly to Claim 4.4 in [2]. Finally, the proof of the third bullet follows the lines
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of the corresponding proof in Lemma 10 in [8]. Furthermore, observe that Lemma 2.1

guarantees us that a.a.s.every vertex from C has degree at least two in H , and for the

vertices in N this also holds a.a.s. by Lemma 2.1. Hence, the random graph H is a.a.s. a

p′-expander with minimum degree at least 2. Applying Lemma 11 from [8], we see that

H is either Hamiltonian or has quadratically many boosters.

With this statement in our toolbox, the proof is similar to the proof of Proposition 3.10.

We fix p1 such that p − p1 = ωm(1), and let p2 = p. We start with H = Fp1
and successively

add random edges to its edge set until we obtain Fp. We update the set of boosters

after each new edge. Every such edge has at least constant probability to be a booster

for the current H as long as H is not Hamiltonian. Every added edge that is a booster

increases the length of the longest cycle in the current graph by at least one, or makes

it Hamiltonian. Therefore, after at most k added boosters, the process would end with a

Hamiltonian graph. On the other hand, the total number of added edges is a binomial

random variable |E(Fp)| − |E(Fp1
)| with

(
m
2

)
trials and probability p − p1 = ωm(1). By

Lemma 2.1, with probability at least 1 − exp(−m), the number of new edges that are

added to obtain Fp from Fp1
is ωm(m). Hence, Lemma 2.1 guarantees us that a.a.s. we get

sufficiently many boosters to make the graph Fp Hamiltonian, proving the lemma.

4. Concluding remarks and open questions

In this paper, we studied random subgraphs of graphs with large minimum degree. Our

goal was to extend classical results on random graphs to a more general model, where

we replace the host graph by a graph with large minimum degree. We determined the

threshold probability for having cycle of length at least k + 1 in the random subgraph of

graph with minimum degree at least k, showing that the assertion about Hamiltonicity of

G(k + 1, p) can be extended to this setting.

We believe that there are further interesting statements that one can deduce from our

proof. One of them is the bipartite version of Theorem 1.1. Namely, that in a bipartite

graph with minimum degree at least k, the random subgraph (with the same probability

as in this paper) a.a.s. contains a cycle of length at least 2k. However, since the paper is

already quite long, we do not check all the technical details needed for the proof of this

statement.

Another fact that can be shown similarly to Theorem 1.1 is as follows. Let G be a

graph with minimum degree at least k, and fix a constant c. If

p = p(k) � log k + log log k + c

k
,

then Gp contains a cycle of length at least k + 1 with probability at least e−e−c − o(1).

This particular statement is an analogue of the well-known result on the probability of

G(k + 1, p) being Hamiltonian in the range of p where the probability of having one

vertex of degree at most one is a constant (see e.g. [4]). The only difference in the proof

compared to Theorem 1.1 would be the proof of the corresponding version of Lemma 3.3,

since this is the only place where we use the additional summand ω(1) in the definition

of p.
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One natural question is to determine whether the results of this paper, as well as several

previous ones on this topic, hold if one weakens the condition of minimum degree of

the host graph. One possibility here would be to only require the host graph G to have

average degree at least k. Does this still guarantee cycles of length (1 − o(1))k and k + 1

in Gp, for the same value of p as in [12] and in this paper?

Finally, it would be interesting to find more monotone properties P for which the

threshold probability in the binomial random graph model is the smallest among all host

graphs of given minimum degree. Formally, these are the properties P such that if G(n, p)

a.a.s. satisfies P , then this holds a.a.s. also for a random subgraph Gp of a graph G with

minimum degree at least n − 1.
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