Saturated Subgraphs of the Hypercube

J. Robert Johnson and Trevor Pinto*
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.

September 12, 2018

Abstract

We say a graph is $\left(Q_{n}, Q_{m}\right)$-saturated if it is a maximal Q_{m}-free subgraph of the n-dimensional hypercube Q_{n}. A graph is said to be (Q_{n}, Q_{m})-semi-saturated if it is a subgraph of Q_{n} and adding any edge forms a new copy of Q_{m}. The minimum number of edges a (Q_{n}, Q_{m})-saturated graph (resp. (Q_{n}, Q_{m})-semi-saturated graph) can have is denoted by $\operatorname{sat}\left(Q_{n}, Q_{m}\right)$ (resp. s-sat $\left.\left(Q_{n}, Q_{m}\right)\right)$. We prove that $\lim _{n \rightarrow \infty} \frac{\operatorname{sat}\left(Q_{n}, Q_{m}\right)}{e\left(Q_{n}\right)}=$ 0 , for fixed m, disproving a conjecture of Santolupo that, when $m=2$, this limit is $\frac{1}{4}$. Further, we show by a different method that $\operatorname{sat}\left(Q_{n}, Q_{2}\right)=$ $O\left(2^{n}\right)$, and that $s-\operatorname{sat}\left(Q_{n}, Q_{m}\right)=O\left(2^{n}\right)$, for fixed m. We also prove the lower bound s-sat $\left(Q_{n}, Q_{m}\right) \geq \frac{m+1}{2} \cdot 2^{n}$, thus determining $\operatorname{sat}\left(Q_{n}, Q_{2}\right)$ to within a constant factor, and discuss some further questions.

2010 Mathematics Subject Classification: Primary 05C35, Secondary 05D05.

1 Introduction

Let F be a (simple) graph. We say that a (simple) graph G is F-free if it contains no subgraphs isomorphic to F. If G is a maximal F-free subgraph of H, we say that G is (H, F)-saturated. In other words, G is F-saturated if it is a subgraph of H and the addition of any edge from $E(H) \backslash E(G)$ forms a copy of F. In this context, H is referred to as the host graph, F as the forbidden graph and G as a saturated graph.

The famous Turán problem in extremal combinatorics can be expressed naturally in the language of saturated graphs. The extremal number of $F, e x\left(K_{n}, F\right)$, (often written as $e x(n, F)$) is usually defined as the maximum number of edges in an F-free subgraph of K_{n}. However, it can equivalently be written as:

$$
e x\left(K_{n}, F\right)=\max \left\{e(G): G \text { is }\left(K_{n}, F\right) \text {-saturated }\right\} .
$$

[^0]This formulation yields a natural 'opposite' of the Turán problem. We define the saturation number of $F, \operatorname{sat}(H, F)$ as:

$$
\operatorname{sat}(H, F)=\min \{e(G): G \text { is }(H, F) \text {-saturated }\}
$$

A variant of this is the semi-saturation number, s-sat (H, F). We say that a graph is (H, F)-semi-saturated if G is a subgraph of H and adding any edge from $E(H) \backslash E(G)$ increases the number of copies of F. A graph is (H, F)-saturated if and only if it is (H, F)-semi-saturated and F-free. We define:

$$
s \text {-sat }(H, F)=\min \{e(G): G \text { is }(H, F) \text {-semi-saturated }\}
$$

The most frequently studied host graph is the complete graph, K_{n}. Since work in the area began with Erdős, Hajnal and Moon [6, many others have studied s-sat $\left(K_{n}, F\right)$ and $\operatorname{sat}\left(K_{n}, F\right)$: see for instance the survey articles of Pikhurko [10] and of J. Faudree, R. Faudree and Schmitt [7] and the references contained therein.

In the literature, $\operatorname{sat}\left(K_{n}, F\right)$ is often written as $\operatorname{sat}(n, F)$ and $\left(K_{n}, F\right)$ saturated is usually written as F-saturated. Since the results in this paper concern a different host graph, we will reserve this latter abbreviation for a different meaning.

A much studied variant of the Turán problem was initiated by Erdôs in 5] and expanded upon by Alon, Krech and Szabò [1]. For a fixed graph F, they ask for $e x\left(Q_{n}, F\right)$, the maximum number of edges in an F-free subgraph of the n-dimensional hypercube, Q_{n}. The most natural case is $F=Q_{m}$, a fixed cube. This is wide open, even for the case $m=2$. The asymptotic edge density of a maximum Q_{2}-free graph, i.e. $\lim _{n \rightarrow \infty} \frac{e x\left(Q_{n}, Q_{2}\right)}{e\left(Q_{n}\right)}$ was conjectured by Erdős [5] to be $\frac{1}{2}$. It is still unknown, despite the attention of many authors-see for instance the work of Balogh, Hu, Lidický and Liu [2] and of Brass, Harborth and Nienborg [3].

In this paper, we focus on the saturation and semi-saturation problems, where the host graph is the hypercube and the forbidden graph is a subcube. That is, we study $\operatorname{sat}\left(Q_{n}, F\right)$ and $s-s a t\left(Q_{n}, F\right)$. For brevity, we shall often write F-saturated (resp. F-semi-saturated) rather than $\left(Q_{n}, F\right.$)-saturated (resp. $\left(Q_{n}, F\right)$-semi-saturated) in the remainder of this paper, when the value of n is clear or irrelevant.

The best result along these lines is that of Choi and Guan [4]:

$$
\limsup _{n \rightarrow \infty} \frac{\operatorname{sat}\left(Q_{n}, Q_{2}\right)}{e\left(Q_{n}\right)} \leq \frac{1}{4}
$$

A conjecture that this is best possible, due to Santolupo, was reported in [7]. The same survey article posed the more general question of determining $\operatorname{sat}\left(Q_{n}, Q_{m}\right)$.

The main result of this paper, in Section 3, is the construction, for all fixed m, of (Q_{n}, Q_{m})-saturated graphs of arbitrarily low edge density, thus both generalizing and improving the bound of Choi and Guan.

Theorem 1. For fixed m,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{sat}\left(Q_{n}, Q_{m}\right)}{e\left(Q_{n}\right)}=0
$$

Slightly more precisely, we show $\operatorname{sat}\left(Q_{n}, Q_{m}\right) \leq \frac{c_{1}}{n^{c} c_{2}} e\left(Q_{n}\right)$, where c_{1} and c_{2} are constants depending on m. In the case $m=2, c_{2}=6 / 7$; it is higher for larger values of m.

In Section 4, we prove a stronger bound for the semisaturation version of the problem.

Theorem 2. For all $n, m, s-s a t\left(Q_{n}, Q_{m}\right)<\left(m^{2}+\frac{m}{2}\right) 2^{n}$.
In the same section, we adapt this proof in the $m=2$ case to remove all copies of Q_{2} and thus prove a bound on $\operatorname{sat}\left(Q_{n}, Q_{2}\right)$ much stronger than that given by Theorem 1 .

Theorem 3. For all n, $\operatorname{sat}\left(Q_{n}, Q_{2}\right)<10 \cdot 2^{n}$.
It is easy to see that both these theorems are best possible up to a constant factor, as all $\left(Q_{n}, Q_{m}\right)$-semi-saturated graphs have minimum degree $m-1$.

In Section 5, we will improve this trivial lower bound, by showing that

$$
s-s a t\left(Q_{n}, Q_{m}\right) \geq \frac{m+1}{2} 2^{n}
$$

In Section 6, we discuss an extension to our zero density upper bound and raise some open questions.

We briefly mention here a somewhat related saturation problem on the cube. Here, Q_{n} is considered as $\mathcal{P}(X)$, the power set of an n element set, X. Let F be a fixed poset. A family $\mathcal{A} \subseteq \mathcal{P}(X)$ is said to be F-saturated if there is no subfamily of \mathcal{A} with the same poset structure as F, but adding any set to \mathcal{A} destroys this property. Both the maximum and minimum size of such \mathcal{A} have been studied - see for instance Katona and Tarján [8] for the former and Morrison, Noel and Scott [9] for the latter.

2 Preliminaries

In this section, we introduce terminology, notation and concepts that will be used frequently in the remainder of this paper.

The hypercube Q_{n} is the graph with vertex set $\{0,1\}^{n}$, and with edges between each pair of vertices that differ in exactly one coordinate. Alternatively, the vertex set may be considered as \mathbb{F}_{2}^{n}, the n-dimensional vector space over the field with 2 elements. We write e_{1}, \ldots, e_{n} for the canonical basis of \mathbb{F}_{2}^{n} (e_{i} is the vector with a 1 in the $i^{t h}$ coordinate, and 0's elsewhere). We can see that x is adjacent to y if and only if $y=x+e_{i}$, for some $i \in\{1, \ldots, n\}$.

A subcube of Q_{n} is an induced subgraph isomorphic to Q_{m}, for some $m \leq n$. A set S of vertices is the vertex set of a subcube if and only if there is some set
of coordinates $J \subseteq[n]=\{1,2,3, \ldots, n\}$, and constants $a_{j} \in\{0,1\}$ for each $j \in J$ such that $\left(x_{1}, \ldots, x_{n}\right) \in S$ if and only if for all $j \in J, x_{j}=a_{j}$. Fixed coordinates are those coordinates in J, whereas free coordinates are coordinates that are not fixed. We can thus represent a subcube as an element of $\{0,1, *\}^{n}$, with stars in the free coordinates, and a_{j} in the fixed coordinates. As edges can be thought of as Q_{1} 's, we may represent edges as elements of $\{0,1, *\}^{n}$ in this way. We will say an edge or subcube lies along the directions i_{1}, \ldots, i_{k} if these contain all the free coordinates of the edge or subcube. The weight of $x \in V\left(Q_{n}\right)$ is the number of coordinates of x that are 1 .

We may write $Q_{n_{1}+n_{2}}$ as $Q_{n_{1}} \square Q_{n_{2}}$, the graph Cartesian product of $Q_{n_{1}}$ and $Q_{n_{2}}$. In other words, $Q_{n_{1}+n_{2}}$ is formed by replacing each vertex of $Q_{n_{2}}$ with a copy of $Q_{n_{1}}$. We call these principle $Q_{n_{1}}$'s. Where there was a $Q_{n_{2}}$ edge e, we instead put edges between corresponding vertices of the principle $Q_{n_{1}}$'s placed at the endpoints of e. So we have two types of edges: internal edges which have both endpoints in the same principle $Q_{n_{1}}$ and external edges which have endpoints in different principle $Q_{n_{1}}$'s. Notice that there are n_{1} directions along which internal edges lie, and n_{2} directions along which external edges lie. This view of $Q_{n_{1}+n_{2}}$ is crucial in the proof of Theorem 1] we will write $Q_{n_{1}+n_{2}}$ as $Q_{n_{1}} \square Q_{n_{2}}$ when we wish to use this viewpoint.

Another way of encapsulating the product nature of Q_{n} is to write a vertex v as $\left(v_{1}\left|v_{2}\right| \ldots \mid v_{t}\right)$, where $v_{i} \in\{0,1\}^{n_{i}}=V\left(Q_{n_{i}}\right)$ and $n_{1}+\cdots+n_{t}=n$. Two vertices $\left(v_{1}\left|v_{2}\right| \ldots \mid v_{t}\right)$ and $\left(u_{1}\left|u_{2}\right| \ldots \mid u_{t}\right)$ are adjacent if and only if there is a j such that v_{j} and u_{j} are adjacent as vertices of $Q_{n_{j}}$ and for all $i \neq j, v_{i}=u_{i}$. We will use this notation heavily in Section 4.

An object we shall use in several of our constructions is the Hamming code. The properties of Hamming codes that we require are listed below, but see van Lint [11] for more backgound. For our purposes, a Hamming code C can be thought of as a subset of $V\left(Q_{n}\right)$, where $n=2^{r}-1$ for some r, with the following properties:

1. C is a linear subspace of \mathbb{F}_{2}^{n}. More precisely, C is the kernel of an r by n matrix H over the field \mathbb{F}_{2}, called a parity check matrix. The columns of H are precisely the non-zero vectors in \mathbb{F}_{2}^{r}.
2. $|C|=\frac{2^{n}}{n+1}$.
3. C has minimum distance 3 . In other words, $\min \{d(x, y): x, y \in C\}=3$.
4. C is a dominating set for Q_{n}. In other words, every vertex of Q_{n} is either in C or adjacent to a vertex in C.

Property 1 is usually taken as the definition of a Hamming code; the other properties are simple consequences of it.

A subset C with these properties exists only if $n=2^{r}-1$ (and when it exists, it is the largest set with Property 3, and the smallest with Property 4). For other values of n, we make do with an approximate Hamming code. This is any $C \subset V\left(Q_{n}\right)$ satisfying:

1. C is a linear subspace of \mathbb{F}_{2}^{n}. More precisely, C is the kernel of an $r=$ $\lceil\log (n+1)\rceil$ by n matrix H over the field \mathbb{F}_{2}. H has as columns any n distinct binary vectors of length r.
2. $|C|=\frac{2^{n}}{2^{\left[\log _{2}(n+1)\right\rceil}}$.
3. C has minimum distance 3 . In other words, $\min \{d(x, y): x, y \in C\}=3$.

3 Zero density bound on $\operatorname{sat}\left(Q_{n}, Q_{m}\right)$

In this section, we shall prove a quantitative version of Theorem 1, of which Theorem 1 is an immediate consequence.

Theorem 1. For all $m \geq 1$, there exist constants, c_{m} and a_{m}, such that $\operatorname{sat}\left(Q_{n}, Q_{m}\right) \leq \frac{c_{m}}{n^{a_{m}}} e\left(Q_{n}\right)$. More precisely, $a_{1}=1$ and $a_{m}=\frac{1}{7 \cdot 3^{m-2}}$, for all $m>1$.

Before discussing the proof of Theorem 1 , we sketch a proof of the $\left(\frac{1}{4}+o(1)\right)$ bound of Choi and Guan, as this contains the main ideas of the proof of Theorem 1. This proof is significantly different from Choi and Guan's, which may be considered more direct. However, our approach, which uses $\frac{1}{3}+o(1)$ density saturated graphs to build $\frac{1}{4}+o(1)$ density saturated graphs, naturally gives rise to an iterative approach for proving Theorem 1 .

We assume that there exist three $\left(Q_{n}, Q_{2}\right)$-saturated graphs, A_{1}, A_{2} and A_{3} of $\frac{1}{3}+o(1)$ density, such that every edge of Q_{n} lies in one of them. We will use these to produce a $\frac{1}{4}+o(1)$ density $\left(Q_{n+3}, Q_{2}\right)$-saturated graph B^{\prime}. These A_{i} are relatively easy to construct-we will require a generalization of them in our proof of Theorem 1 .

We first construct an 'almost' $\left(Q_{n+3}, Q_{2}\right)$-saturated graph B. We consider Q_{n+3} as $Q_{n} \square Q_{3}$. We leave two principle Q_{n} 's corresponding to antipodal vertices of Q_{3} empty. Around each of these empty Q_{n}, we arrange copies of A_{1}, A_{2}, A_{3}, as in the figure below. We also add all external edges with one endpoint in either of the two empty principle Q_{n} 's (as indicated by the bold edges in the figure).

The graph constructed has the property that for any edge of an empty Q_{n}, e, the corresponding edge, e^{\prime} is present in one of the A_{i}. So adding e forms a Q_{2} comprising e, e^{\prime} and the two external edges that connect corresponding endpoints of e and e^{\prime}. Since the A_{i} are themselves Q_{2}-saturated graphs, adding any internal edge forms a copy of Q_{2}.

It is easy to see that B is still Q_{2}-free, and a quick calculation shows that B has edge density $\frac{1}{4}+o(1)$. We now prove a simple lemma that allows us to extend B to a Q_{2}-saturated graph.

Lemma 4. Fix $m \geq 2$. Suppose that G is a Q_{m}-free subgraph of Q_{n} and $S \subseteq E\left(Q_{n}\right)$. Then we can form a Q_{m}-free graph G^{\prime} by adding no more than $|S|$ edges to G with the property that adding any edge in $S \backslash E(G)$ forms a copy of Q_{m}.

Figure 1: The 'almost' saturated graph, B

Proof. We order the edges in S arbitrarily. Consider these edges in this order and add them to G if and only if doing so does not form a copy of Q_{m}. Since only edges of S are added by the process, we are done.

We apply this lemma to B, with S being the set of external edges that have not already been added, i.e. those represented by the thin edges in Figure 1. This forms a Q_{2}-saturated graph, B^{\prime}. Since there are $\frac{3}{n+3} e\left(Q_{n+3}\right)$ external edges, the asymptotic edge density is still $\frac{1}{4}$.

The proof of Theorem 1 uses a similar method multiple times to produce $\left(Q_{n}, Q_{m}\right)$-saturated graphs of arbitrarily low density. In the case where $m=2$, we assume that we have a collection of Q_{2}-saturated graphs A_{1}, \ldots, A_{k} of edge density at most ρ, such that every edge of Q_{n} is contained in at least one of the A_{i}. We will view Q_{n+k} as $Q_{n} \square Q_{k}$ and leave several principle Q_{n} empty. We shall ensure that each empty Q_{n} is adjacent, for every i, to a principle Q_{n} filled with A_{i}, and add every external edge leaving these empty Q_{n}. This ensures that adding an edge within the empty Q_{n} forms a copy of Q_{2}. The constraint on the empty principle Q_{n} is that the set of vertices that we replace with empty Q_{n} 's must have minimum distance 3 , and so we employ a Hamming code, enabling us to produce a graph with a lower density, ρ^{\prime}. Of course, to apply this method again, we need several $\left(Q_{n+k}, Q_{m}\right)$-saturated graphs of density ρ^{\prime}, which between them cover the edges of Q_{n+k}. This turns out to be not much harder, using cosets of the Hamming code.

In the general m case we adapt this method. We would like to use a collection of A_{i} that cover all the copies of Q_{m-1} in Q_{n}. Such a collection seems hard to construct, but a modification of the argument shows that it suffices to cover almost all copies of Q_{m-1}. The other modification is that instead of using empty principle Q_{n}, we fill them with low density Q_{m-1}-saturated graphs, which we
may assume exist by induction on m. We will use the following claim as a key part of the inductive step in proving the theorem.

Claim 1. Suppose we have a collection A_{1}, \ldots, A_{k} of $\left(Q_{n}, Q_{m}\right)$-saturated graphs, each of density at most ρ, and some n_{0} such that every Q_{m-1} lies along the first n_{0} directions is within one of these A_{i}. Suppose also that there is a $\left(Q_{n}, Q_{m}-1\right)$ saturated graph G with no more than $\frac{c_{m-1}}{n^{a_{m-1}}} e\left(Q_{n}\right)$ edges. Then there is a collection of $k+1\left(Q_{n+k}, Q_{m}\right)$-saturated graphs, B_{0}, \ldots, B_{k}, such that every Q_{m-1} that lies along the first n_{0} directions is in one of these B_{i}. Further, each of the B_{i} has density at most $\left(1-\frac{1}{2 k}\right) \rho+f\left(n, n_{0}\right)$, where f is a function that tends to zero whenever $n, n_{0} \rightarrow \infty$ in such a way that $\frac{n_{0}}{n} \rightarrow 1$.

A precise upper bound on the densities of the B_{i} is required for the quantitative part of the theorem; this will be stated at the end of the proof of this claim.

Proof of Claim 1. We start by constructing a $k+1$ colouring c_{0} of Q_{k}, with the colours $0,1, \ldots, k$. Fix C_{0}, an approximate Hamming code in Q_{k}. We set $c_{0}(x)=0$ for all $x \in C_{0}$ and for all $j \in\{1, \ldots, k\}$ and all $x \in C_{0}$, we set $c_{0}\left(x+e_{j}\right)=j$. Note that when $k+1$ is not a power of 2 (i.e. when we do not have a genuine Hamming code), this colouring is not fully defined, since C_{0} is not dominating. For now we assign arbitrary colours other than 0 to these vertices, but we will later decide on these colours.

We write $Q_{n+k}=Q_{n} \square Q_{k}$. We induce from c_{0} a colouring on the set of principle Q_{n} 's in the natural way. We start forming the graph B_{0} by placing a copy of A_{j} in each principle Q_{n} coloured j, for each $j \neq 0$. Also, we add to the graph B_{0} every external edge with one endpoint in a principle Q_{n} coloured 0 .

We place a graph isomorphic to G in each Q_{n} that is coloured 0 (we will choose which isomorphism later).

Notice that so far, B_{0} is Q_{m}-free. Indeed, suppose that B_{0} does contain a Q_{m}. This Q_{m} cannot lie entirely within a single principle Q_{n}, by our assumption that the A_{i} are saturated. As we have only added external edges that leave Q_{n} coloured 0 , the Q_{m} may contain an edge between two principle Q_{n} 's only if one of them is coloured 0 . Since the Hamming code has minimum distance 3, the Q_{m} must contain edges in exactly two principle Q_{n} 's, one of which is coloured 0 . But such Q_{n} are Q_{m-1}-saturated and thus contain no Q_{m-1}, yielding a contradiction.

So far, B_{0} is not quite Q_{m}-saturated-for instance adding an external edge may not create a copy of Q_{m}. However, we use Lemma 4 to remedy this. We add at most $\frac{k}{n+k} e\left(Q_{n+k}\right)$ edges to B_{0} and we now only need to consider adding internal edges.

Adding an edge within a Q_{n} coloured $j \neq 0$ forms a Q_{m}, as each A_{j} is Q_{m}-saturated. Adding an edge within a principle Q_{n} coloured 0 will form a Q_{m-1} within that Q_{n}. If that Q_{m-1} only uses edges in the first n_{0} directions, it lies within one of the A_{j} by the hypothesis of Claim 1 . Since every principle Q_{n} coloured zero is adjacent to a principle Q_{n} of every non-zero colour, a Q_{m} will be formed. Therefore, we only need to worry about adding edges to G if
the Q_{m-1} formed does not lie exclusively along the first n_{0} directions-we call such edges bad edges. We will now show that we may assume there are not very many bad edges.

Apply a random automorphism of Q_{n} to G, our low density Q_{m-1}-saturated graph. We call the graph formed $G^{\prime} \subseteq Q_{n}$, which is to be placed within a principle Q_{n} coloured 0 . Let e be a fixed edge of this principle Q_{n}.

$$
\begin{aligned}
\mathbb{P}(e \text { is a bad edge }) & \leq 1-\frac{n_{0}}{n} \cdot \frac{n_{0}-1}{n-1} \cdots \cdot \frac{n_{0}-m+2}{n-m+2} \\
& \leq 1-\frac{\left(n_{0}-m\right)^{m-1}}{n^{m-1}} \\
& =\frac{n^{m-1}-\left(n_{0}-m\right)^{m-1}}{n^{m-1}}
\end{aligned}
$$

This tells us that the expected number of bad edges, in each principle Q_{n} coloured 0 , is no more than $\left(\frac{n^{m-1}-\left(n_{0}-m\right)^{m-1}}{n^{m-1}}\right) e\left(Q_{n}\right)$. We now choose the automorphism of G that we left unspecified earlier; we can do this such that we get no more bad edges than the expected number. We use Lemma 4, with S being the set of bad edges, to form a graph that we also call B_{0} that is Q_{m}-saturated.

We now construct the other B_{i} to cover the required Q_{m-1} 's. To construct B_{i}, we repeat the same method used for constructing B_{0}, except we use $C_{i}:=$ $\left\{c+e_{i}: c \in C_{0}\right\}$ instead of C_{0}. Note that we can make the arbitrary choices of colours to ensure each principle Q_{n} is filled with each of the graphs A_{1}, \ldots, A_{k}, in one of the B_{i}.

It is easy to see that the B_{i} satisfy the necessary Q_{m-1} condition. Indeed any $Q_{m} \subseteq Q_{n+k}$ along the first n_{0} directions must lie within a principle Q_{n}. When considered as a subgraph of this Q_{n}, it must lie in a copy of one of the A_{i}-say A_{j}. This principle Q_{n} is filled with A_{j} in one of the B_{i}, so we are done.

It remains only to bound the number of edges in each saturated subgraph, B_{i}. Let $e(A)=\max \left\{e\left(A_{i}\right)\right\}, e(B)=\max \left\{e\left(B_{i}\right)\right\}, \rho(A)=\frac{e(A)}{n 2^{n-1}}$ and $\rho(B)=$
$\frac{e(B)}{+k) 2^{n+k-1}}$. In the calculations that follow, we write $a=a_{m-1}$ and $c=c_{m-1}$ for brevity.

Recall that edges were added to each B_{j} in 4 ways: from copies of A_{i}, from adding external edges, from the Q_{m-1}-saturated graphs and from adding bad edges.

Thus we have:

$$
\begin{aligned}
e(B) \leq & 2^{k}\left(1-\frac{1}{2^{\lceil\log (k+1)\rceil}}\right) e(A)+\frac{k}{n+k} e\left(Q_{n+k}\right) \\
& +\frac{2^{k}}{2^{\lceil\log (k+1)\rceil}} e\left(Q_{n}\right)\left(c_{m-1} n^{-a}+\frac{n^{m-1}-\left(n_{0}-m\right)^{m-1}}{n^{m-1}}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\rho(B) \leq & \left(1-\frac{1}{2^{\lceil\log (k+1)\rceil}}\right) \rho(A)+\frac{k}{n+k} \\
& +\frac{1}{2^{\lceil\log (k+1)\rceil}}\left(c_{m-1} n^{-a}+\frac{n^{m-1}-\left(n_{0}-m\right)^{m-1}}{n^{m-1}}\right) \\
\leq & \left(1-\frac{1}{2 k}\right) \rho(A)+\frac{k}{n}+\frac{1}{k}\left(c_{m-1} n^{-a}+\frac{n^{m-1}-\left(n_{0}-m\right)^{m-1}}{n^{m-1}}\right) .
\end{aligned}
$$

Clearly if n_{0} is large enough, and $n=(1+o(1)) n_{0}$, the last two terms can be arbitrarily small, thus concluding the proof of the claim.

We now return to prove Theorem 1 .
Proof of Theorem 1. We use induction on m.
Base case: $m=1$. This is trivial - the subgraph of Q_{n} with no edges is $Q_{1 \text {-saturated. }}$

Inductive step: take $m>1$ and assume the Theorem holds for $m-1-$ i.e. there is a $\left(Q_{n}, Q_{m}-1\right)$-saturated graph G with no more than $\frac{c_{m-1}}{n^{a_{m-1}}} e\left(Q_{n}\right)$ edges.

We first find a collection of subgraphs A_{1}, \ldots, A_{m+1} of $Q_{n_{0}}$ that satisfy the hypothesis of Claim 1, with $\rho=1$. To do this, let A_{i} initially consist of all edges whose lowest weight endpoint has weight in $\{i, \ldots, i+m-2\} \bmod m+1$, and then extend greedily until A_{i} is Q_{m} saturated. Each A_{i} contains every Q_{m-1} whose lowest weight vertex has weight $i \bmod m+1$, so every Q_{m-1} is contained in one of these A_{i}. Trivially, we may bound the density of these A_{i} above by 1 , and it is easy to see this is best possible up to a constant.

We now apply Claim 1 repeatedly, t times. We write k_{i} and n_{i} for the value of k and n after the $i^{\text {th }}$ iterate. Clearly, $k_{i+1}=k_{i}+1, k_{0}=m+1, n_{i+1}=n_{i}+k_{i}$ and $n_{t}=n_{0}+\sum_{i=m}^{m+t} i=n_{0}+O\left(t^{2}\right)$.

After t steps, we end with saturated graphs of density, ρ :

$$
\begin{aligned}
\rho & \leq \prod_{i=0}^{t-1}\left(1-\frac{1}{2 k_{i}}\right)+\sum_{i=0}^{t-1}\left(\frac{k_{i}}{n_{i}}+\frac{c_{m-1}}{k_{i}} \cdot n_{i}^{-a}+\frac{n_{i}^{m-1}-\left(n_{0}-m\right)^{m-1}}{k_{i} n_{i}^{m-1}}\right) \\
& \leq c \prod_{m=1}^{m+t}\left(1-\frac{1}{2 i}\right)+\frac{t(m+t+1)}{n_{0}}+\frac{t c_{m-1}}{m} \cdot n_{0}^{-a}+\frac{t}{m} \frac{n_{t}^{m-1}-\left(n_{0}-m\right)^{m-1}}{n_{0}^{m-1}} \\
& =c^{\prime} \cdot \exp \left(-\frac{1}{2} \sum_{i=1}^{t+m} \frac{1}{i}\right)+O\left(t^{2} n_{0}^{-1}\right)+O\left(t n_{0}^{-a}\right)+O\left(\frac{t^{3}}{n_{0}}\right) \\
& =c^{\prime \prime} t^{-\frac{1}{2}}+O\left(t n_{0}^{-a}\right)+O\left(t^{3} n_{0}^{-1}\right) .
\end{aligned}
$$

Here, c, c^{\prime} and $c^{\prime \prime}$ are constants dependent on m. If $m=2$ it is optimal to take $t=n_{0}^{2 / 7}$, otherwise $a<\frac{3}{7}$, it is optimal to take $t=n_{0}^{2 a / 3}$.

This gives the required bound.

Note that the better bound for $\operatorname{sat}\left(Q_{n}, Q_{2}\right)$ in the next section can be fed into the induction in the theorem to produce the slightly better bound of $a_{m}=$ $\frac{1}{7 \cdot 3^{m-3}}$.

4 Bounded average degree constructions

4.1 Semi-saturation

In this section we will prove Theorem 2, by constructing for each m a family of Q_{m}-semi-saturated graphs with bounded average degree. Although it seems difficult in general to make these graphs Q_{m}-free, in the $m=2$ case we will use similar ideas to prove Theorem 3

In what follows it will be useful to write $n=m\left(2^{t}-1\right)+r$, where $0 \leq r<m 2^{t}$, and to let $n_{0}=2^{t}-1$. We write a vertex of Q_{n} as $\left(v_{1}\left|v_{2}\right| \ldots\left|v_{m}\right| v_{m+1}\right)$, where $v_{i} \in\{0,1\}^{n_{0}}$ for $i \leq m$ and $v_{m+1} \in\{0,1\}^{r}$. The final section of the vector is only included to make the number of coordinates exactly n but otherwise has no importance in the construction.

Proof of Theorem 2. Let $C \subseteq\{0,1\}^{n_{0}}$ be a Hamming Code. We define:

$$
A=\left\{\left(v_{1}|\ldots| v_{m} \mid v_{m+1}\right) \in V\left(Q_{n}\right): \exists i \in\{1, m\} \text { such that } v_{i} \in C\right\}
$$

We form $E(G)$ by picking all edges with at least one endpoint in A. Note that vertices in A have degree n in G; all other vertices have degree m. Therefore $e(G)=\frac{1}{2}\left((n-m)|A|+m 2^{n}\right) \leq \frac{m}{2}\left(n \frac{2^{n}}{\left(n_{0}+1\right)}+2^{n}\right)$. As $\frac{n}{n_{0}}<2 m, e(G)$ satisfies the bounds of the theorem.

We now show that G is Q_{m}-semi-saturated. Assume $e \in E\left(Q_{n}\right) \backslash E(G)$ is along a direction i in $\left\{1, n_{0}\right\}$ (all other cases can be dealt with similarly). We write the endpoints of the edges as $\left(v_{1}\left|v_{2}\right| \ldots v_{m} \mid v_{m+1}\right)$ and $\left(v_{1}^{\prime}\left|v_{2}\right| \ldots\left|v_{m}\right| v_{m+1}\right)$,
where v_{1}^{\prime} and all of the v_{i} do not lie in C. Thus for $i=2,3, \ldots, m$ there exists $c_{i} \in C$ adjacent to v_{i}. Consider the 2^{m} points of the form $\left(x_{1}|\ldots| x_{m} \mid v_{m+1}\right)$, where $x_{1} \in\left\{v_{1}, v_{1}^{\prime}\right\}$ and for $i=2,3, \ldots, m, x_{i} \in\left\{v_{i}, c_{i}\right\}$. These vertices form a subcube of Q_{n} and all but the endpoints of e are in A. Thus when the edge e is added, a copy of Q_{m} is formed, concluding our proof.

Remark 5. Clearly, when $n=m\left(2^{t}-1\right)$ for some t, we get the slightly stronger bound s-sat $\left(Q_{n}, Q_{m}\right) \leq\left(\frac{m^{2}}{2}+\frac{m}{2}\right) 2^{n}$.

4.2 Improved bound for $\operatorname{sat}\left(Q_{n}, Q_{2}\right)$

In the $m=2$ case, the Q_{2}-semi-saturated graph constructed above consists of all edges incident with vertices in $A=\left\{\left(v_{1}\left|v_{2}\right| v_{3}\right) \in V\left(Q_{n}\right): v_{1} \in C\right.$ or $\left.v_{2} \in C\right\}$. It is easy to see this contains large subcubes, of the form $(c|*, \ldots, *| *, \ldots, *)$ or $(*, \ldots, *|c| *, \ldots, *)$, for $c \in C$. There are other Q_{2} 's in this graph, but those within these large subcubes are hardest to deal with. We prevent subcubes of the first type by only adding edges of the form $\left\{(c \mid v),\left(c \mid v^{\prime}\right)\right\}$, where $c \in\{0,1\}^{n_{0}}$ and $v \in\{0,1\}^{n-n_{0}}$ and v has lower weight than v^{\prime}, if v_{1} has even weight. Of course doing just this alteration means the graph is no longer semi-saturated; we get around this by picking a subset D of $V\left(Q_{n_{0}}\right)$ with similar properties to C, and adding edges starting at $\left(d\left|v_{2}\right| v_{3}\right)$ if $\left(v_{2} \mid v_{3}\right)$ contains an odd number of 1's and if $d \in D$. We make use of the following claim, which allows us to choose a D with the required properties.

Claim 2. There exists a Q_{2}-free spanning subgraph, H, of $Q_{n_{0}}$, that has two independent dominating sets, $C, D \subset V(H)=\{0,1\}^{n_{0}}$, with C disjoint from D, where $|C|=2^{n_{0}} /\left(n_{0}+1\right)$ and $|D|=3 \cdot 2^{n_{0}} /\left(n_{0}+1\right)$. Further, H only contains edges incident with $C \cup D$ and $e(H) \leq 2^{n_{0}+1}$.

We shall prove this claim later, but first we show why it implies the theorem.
Proof of Theorem [3. Similarly to before, we write $n=2\left(2^{t}-1\right)+r$, where $0 \leq r<2^{t+1}$, and let $n_{0}=2^{t}-1$. We write an element, x, of $\{0,1, *\}^{n}$ as $\left(x_{1}\left|x_{2}\right| x_{3}\right)$, where $x_{1}, x_{2} \in\{0,1, *\}^{n_{0}}$ and $x_{3} \in\{0,1, *\}^{r}$. We refer to x_{1} as the first part of x, x_{2} as the second part and so on. We will use this notation particularly when x represents a vertex or an edge of Q_{n} (it contains no stars or one star).

We start by constructing a graph G that is Q_{2}-free and will then use Lemma 4 add a 'few' edges $\left(o\left(2^{n}\right)\right.$ edges) to form G^{\prime}, a Q_{2}-saturated graph. As in the proof of Theorem 2, we will define a subset, A of the vertices, which will be dominating in G :

$$
A=\left\{\left(v_{1}\left|v_{2}\right| v_{3}\right) \in\{0,1\}^{n}: v_{1} \in C \cup D \text { or } v_{2} \in C \cup D\right\} .
$$

The definition of G is slightly more complicated. We add edges to $E(G)$ in three stages, and then delete some of these edges to ensure G is Q_{2}-free.

Firstly, we add all edges e where $e_{1} \in C$, and the remainder, $\left(e_{2} \mid e_{3}\right)$, contains an even number of 1's and a single star, as well as edges where $e_{2} \in C$ and the remainder, $\left(e_{1} \mid e_{3}\right)$ contains an even number of 1 's and a single star. We call these Type 1 edges. There are $2|C|\left(n-n_{0}\right) 2^{n-n_{0}-2} \leq \frac{\left(n-n_{0}\right)}{2\left(n_{0}+1\right)} 2^{n}$ Type 1 edges.

Similarly, we add those edges e where $e_{1} \in D$ and the remainder, $\left(e_{2} \mid e_{3}\right)$ contains an odd number of 1 's and a single star, as well as edges where $e_{2} \in D$ and the remainder contains an odd number of 1's and a single star. We call these Type 2 edges. There are $2\left(n-n_{0}\right)|D| 2^{n-n_{0}-2} \leq \frac{3\left(n-n_{0}\right)}{2\left(n_{0}+1\right)} 2^{n}$ Type 2 edges.

Lastly, we add all edges, e where e_{1} or e_{2} is an edge of H. There are $2 \cdot 2^{n-n_{0}} e(H) \leq 4 \cdot 2^{n}$ Type 3 edges.

We now delete all edges e which have an endpoint, $\left(v_{1}\left|v_{2}\right| v_{3}\right)$ such that both v_{1} and v_{2} lie in $C \cup D$. Thus $e(G) \leq\left(\frac{2\left(n-n_{0}\right)}{n_{0}+1}+4\right) 2^{n}-\frac{n 2^{n}}{\left(n_{0}+1\right)^{2}}$.

Suppose, for contradiction, that G contains a Q_{2}. Note that as all edges of G are incident with a vertex of A, this Q_{2} must contain a vertex $\left(v_{1}\left|v_{2}\right| v_{3}\right) \in A$, where, without loss of generality, $v_{1} \in C \cup D$. Note that none of the vertices can have their second part in $C \cup D$, or there is a vertex of the Q_{2} with both first and second part in $C \cup D$, impossible by our deletion step.

Let s be the number of stars of the Q_{2} that are in the first part of its vector representation. If $s=2$, all four edges are Type 3 edges, impossible as H is Q_{2}-free.

If instead $s=1$, suppose the other star is in the second part (the other case is identical). Then we may write the vertices of the Q_{2} as $\left(v_{1}\left|v_{2}\right| v_{3}\right),\left(v_{1}^{\prime}\left|v_{2}\right| v_{3}\right)$, $\left(v_{1}^{\prime}\left|v_{2}^{\prime}\right| v_{3}\right)$ and $\left(v_{1}\left|v_{2}^{\prime}\right| v_{3}\right)$, where $v_{1} \in C \cup D$ and $v_{2}, v_{2}^{\prime} \notin C \cup D$. It is easy to see that $v_{1}^{\prime} \in C \cup D$. By a parity argument, v_{1} and v_{1}^{\prime} are both in C or both in D. But this is impossible as C and D are each H_{0}-independent sets.

Finally, if $s=0$, then we can have only Type 1 edges or only Type 2 edges (depending on whether $v_{1} \in C$ or $v_{1} \in D$). But this is impossible by a simple parity argument.

We now show that while G is not quite saturated, it is 'almost' saturated. Suppose e is a Q_{n}-edge not incident with A. Without loss of generality, the endpoints are $\left(v_{1}\left|v_{2}\right| v_{3}\right)$ and $\left(v_{1}^{\prime}\left|v_{2}\right| v_{3}\right)$, where $v_{1}, v_{1}^{\prime} v_{2}, v_{3} \notin C \cup D$. This is an element of $E\left(Q_{n}\right) \backslash E(G)$. Assume that $\left(v_{1} \mid v_{3}\right)$ is even, (the other case is very similar) and that v_{1}^{\prime} has higher weight than v_{1}. Then pick $c \in C$ adjacent to v_{2}. $\left\{\left(v_{1}^{\prime}\left|v_{2}\right| v_{3}\right),\left(v_{1}^{\prime}|c| v_{3}\right)\right\}$ and $\left\{\left(v_{1}\left|v_{2}\right| v_{3}\right),\left(v_{1}|c| v_{3}\right)\right\}$ are Type 3 edges. Also, $\left\{\left(v_{1}|c| v_{3}\right),\left(v_{1}^{\prime}|c| v_{3}\right)\right\}$ is a Type 1 edge as $(x \mid y)$ is even. Thus a Q_{2} would be formed by adding the edge.

All Q_{n}-edges with exactly one endpoint in A are edges of G, so we only need to consider edges where one endpoint, $\left(v_{1}\left|v_{2}\right| v_{3}\right)$, has v_{1} and $v_{2} \in C \cup D$. There are $\frac{2^{n}}{n}$ edges of this type, and so we may use Lemma 4 add them greedily to G to form a Q_{2}-saturated graph G^{\prime}, which has no more edges than the bound in the theorem.

Remark 6. Again, we get a stronger bound for some values of n; when $n=$ $2\left(2^{t}-1\right)$ for some t, it is easy to see that $\operatorname{sat}\left(Q_{n}, Q_{2}\right) \leq 6 \cdot 2^{n}$.

We now return to prove the claim.
Proof of Claim. Let C be a Hamming code in $Q_{n_{0}}$. For $i=1, \ldots, n_{0}$, let v_{i} be the image of the basis vector e_{i} under the parity check matrix M of the Hamming code. We may assume that $v_{1}=(1,0, \ldots, 0), v_{2}=(0,1,0, \ldots, 0)$ and $v_{3}=(1,1,0, \ldots, 0)$, as every vector in \mathbb{F}_{2}^{t} occurs as a column of M. We shall construct H in four stages, and then prove that it has the required properties.

1. Add to $E(H)$ every $Q_{n_{0}}$-edge adjacent to an element of C.
2. Add to $E(H)$ every $Q_{n_{0}}$-edge of the form $\left\{c+e_{1}+e_{k}, c+e_{1}\right\}$, where $c \in C$, and where $k \in\left[4, n_{0}\right]$ is such that v_{k} has a 0 in the first coordinate.
3. Add to $E(H)$ every $Q_{n_{0}}$-edge of the form $\left\{c+e_{1}+e_{k}, c^{\prime}+e_{2}\right\}$, where $c, c^{\prime} \in C$, and where $k \in\left[4, n_{0}\right]$ is such that v_{k} has a 1 in the first coordinate and a 0 in the second coordinate.
4. Add to $E(H)$ every $Q_{n_{0}}$-edge of the form $\left\{c+e_{1}+e_{k}, c^{\prime}+e_{3}\right\}$, where $c, c^{\prime} \in C$, and where $k \in\left[4, n_{0}\right]$ is such that v_{k} has a 1 in the first coordinate and a 1 in the second coordinate.

Since C is a Hamming code, it is an independent, dominating set and $|C|=2^{n_{0}} /\left(n_{0}+1\right)$. We write $C_{i}=\left\{c+e_{i}: c \in C\right\}$; in other words, $C_{i}=$ $M^{-1}\left(v_{i}\right)$. Let $D=C_{1} \cup C_{2} \cup C_{3}$. It is easy to see every edge of H is incident with $C \cup D$. Since the C_{i} are disjoint translates of C, a Hamming code, $|D|=3 \cdot 2^{n_{0}} /\left(n_{0}+1\right)$.

Again using that C_{1} is a translate of a Hamming code, every $x \in V\left(Q_{n_{0}}\right) \backslash C_{1}$ can be written uniquely in the form $c+e_{1}+e_{k}$ for $c \in C$ and $k \in\left[1, n_{0}\right]$. The restriction $k \neq 1$ is equivalent to $x \notin C$. The restriction $k \neq 2$ is equivalent to $x \notin C_{3}$. This is as $M\left(c+e_{1}+e_{2}\right)=M(c)+M\left(e_{1}\right)+M\left(e_{2}\right)=v_{1}+v_{2}=v_{3}$. Similarly, $k=3$ if and only if $x \in C_{2}$. Thus steps 2,3 and 4 ensure D is independent and dominating in H.

Notice also that each $x \notin C \cup D$ is H-adjacent to exactly 1 element in D. Hence $e(H) \leq 2\left|Q_{n_{0}}\right|$, as required. It remains only to show that H is $Q_{2^{-}}$ free. Suppose not. Since we have only added edges with at least one endpoint in $C \cup D$, the Q_{2} must contain two opposite vertices in $C \cup D$. Since C has minimum distance 3 , and since every $x \notin C \cup D$ is adjacent to only 1 element in D, one of these vertices is in D, and one is in C. Thus the vertices of the Q_{2} may be written in the form $c \in C, c+e_{i}, c+e_{j}$ and $c+e_{j}+e_{i} \in C_{k}$, where $i, j \in\left[4, n_{0}\right]$ are such that $v_{i}+v_{j}=v_{k}$, and $k \in\{1,2,3\}$. But it is impossible for all the edges of this Q_{2} to lie in $e(H)$. Indeed, suppose for example that $k=3$. Then v_{i} and v_{j} must both have 1 in the first coordinate and 1 in the second coordinate, impossible if they sum to v_{k}. This concludes the proof of the claim.

5 Lower Bounds

All the lower bounds in this section are for s-sat; easily s-sat $\left(Q_{n}, Q_{m}\right) \leq$ $\operatorname{sat}\left(Q_{n}, Q_{m}\right)$, so the bounds are also valid for sat.

If a graph is $\left(Q_{n}, Q_{m}\right)$-semi-saturated, for $m \geq 2$, it must be connected. Thus it contains a spanning tree for Q_{n} and so s-sat $\left(Q_{n}, Q_{m}\right) \geq 2^{n}-1$. This shows that Theorems 2 and 3 are best possible up to a constant factor.

Another trivial observation improves this for $m \geq 3$: if a graph is $\left(Q_{n}, Q_{m}\right)$ -semi-saturated, it has minimum degree $m-1$. Thus s-sat $\left(Q_{n}, Q_{m}\right) \geq \frac{m-1}{2} 2^{n}$.

We do better than both trivial bounds for all m.
Theorem 7. If $m \geq 2$, s-sat $\left(Q_{n}, Q_{m}\right) \geq\left(\frac{m+1}{2}-o(1)\right) 2^{n}$.
Proof. Let G be a $\left(Q_{n}, Q_{2}\right)$-semi-saturated graph with minimum degree $m-1$; note this contains all $\left(Q_{n}, Q_{m}\right)$-semi-saturated graphs. We call a pair (v, e), where $\left.v \in V\left(Q_{n}\right), e \in E\left(Q_{n}\right) \backslash E(G)\right)$, good if there is a path of length 3 in G linking the endpoints of e, that passes through v, meaning v is not a start or end vertex of the path.

Note that every non-edge of G is in at least 2 good pairs, whereas each vertex v is in at most $\binom{d(v)}{2}$ good pairs.

Therefore

$$
\sum_{v \in V\left(Q_{n}\right)}\binom{d(v)}{2} \geq 2\left(e\left(Q_{n}\right)-e(G)\right)
$$

Subject to fixed $\sum_{v} d(v)$, the left hand side is maximized when the degrees are as different as possible. But no degree can be larger than n or smaller than $m-1$. Note that $2 e(G)=\sum_{v} d(v)$, so we have $\frac{2 e(G)-2^{n}}{n-1}$ vertices of degree n in this extreme case.

So certainly

$$
\begin{aligned}
\frac{2 e(G)-(m-1) 2^{n}}{n-1}\binom{n}{2} & \geq n 2^{n}-2 e(G) \\
(n+2) e(G)-n(m-1) 2^{n-1} & \geq n 2^{n} \\
e(G) & \geq\left(\frac{m+1}{2}-o(1)\right) 2^{n} .
\end{aligned}
$$

6 Further Questions

Having seen that $\lim _{n \rightarrow \infty} \frac{\operatorname{sat}\left(Q_{n}, Q_{m}\right)}{n 2^{n-1}}=0$, it is natural to ask for a more precise bound-while in Section 4 we have determined $\operatorname{sat}\left(Q_{n}, Q_{m}\right)$ up to a constant, for $m=2$, there is still a wide gap between the best upper and lower bounds for general m. In particular, we do not know whether families of Q_{m}-saturated graphs of bounded average degree exist for all m.

Question 1. For which m does there exist a constant c_{m} such that for all n, $\operatorname{sat}\left(Q_{n}, Q_{m}\right) \leq c_{m} 2^{n}$?

In Section 4, we were able to produce better bounds on s-sat $\left(Q_{n}, Q_{2}\right)$ than $\operatorname{sat}\left(Q_{n}, Q_{2}\right)$. Further, the construction we had for s-sat contained many copies of Q_{2}. This small amount of evidence may suggest that in general, the two are different, even asymptotically.
Question 2. Is $\operatorname{sat}\left(Q_{n}, Q_{2}\right)=s-s a t\left(Q_{n}, Q_{2}\right)$ for all n ? Does equality hold for all sufficiently large n ? If not, is $\lim \inf \frac{\operatorname{sat}\left(Q_{n}, Q_{2}\right)}{2^{n}}>\lim \sup \frac{s-\operatorname{sat}\left(Q_{n}, Q_{2}\right)}{2^{n}}$?

Recall that all our lower bounds are for s-sat-it seems hard to bound sat more strongly.

Another version of sat that has been studied in the literature (see Section 10 of [7]) (where the host graph is K_{n}) could be studied for this problem. We say that a graph $G \subseteq Q_{n}$ is $\left(Q_{n}, Q_{m}\right)$-weakly-saturated if we can add the edges in $E\left(Q_{n}\right) \backslash E(G)$ one at a time (in some order) such that every new edge creates at least one new copy of F. We write $w-\operatorname{sat}\left(Q_{n}, Q_{m}\right)$ for the minimum number of edges a $\left(Q_{n}, Q_{m}\right)$-weakly saturated graph can have. Clearly, w-sat $\left(Q_{n}, Q_{m}\right) \leq$ $s-\operatorname{sat}\left(Q_{n}, Q_{m}\right) \leq \operatorname{sat}\left(Q_{n}, Q_{m}\right)$. It is not hard to see, by induction on n, that there are many weakly $\left(Q_{n}, Q_{2}\right)$-saturated trees and so w-sat $\left(Q_{n}, Q_{2}\right)=2^{n}-$ 1. Indeed, given any G_{1}, G_{2}, possibly different weakly $\left(Q_{n-1}, Q_{2}\right)$-saturated trees, we place them in complementary Q_{n-1} 's, and connect any one pair of corresponding vertices. This forms a weakly $\left(Q_{n}, Q_{2}\right)$-saturated tree. However, $w-s a t\left(Q_{n}, Q_{m}\right)$ is in general not known.
Question 3. For $m \geq 3$, what is $w-\operatorname{sat}\left(Q_{n}, Q_{m}\right)$?
In [1], Alon, Krech and Szabò discuss an interesting hypergraph type generalization of the Turán problem on the hypercube. We write Q_{n}^{t} for the 2^{t}-uniform hypergraph with vertex set $\{0,1\}^{n}$ and edge set consisting of all t-dimensional subcubes of Q_{n}. We say that a subhypergraph H of Q_{n}^{t} is Q_{m}^{t}-free if it contains no subhypergraph isomorphic to Q_{m}^{t}. As in the usual $(t=1)$ case of this Turán problem, they ask how many edges H can have- in particular asking for the limit: $\lim _{n \rightarrow \infty} \max \left\{\frac{e(H)}{\binom{n}{t} 2^{n-t}}\right\}$. This question is still open, but it is interesting to know that the corresponding saturation problem can be attacked by the same method as the proof of Theorem 1 .

Let H be a subhypergraph of Q_{n}^{t}. We say that G is $\left(Q_{n}^{t}, Q_{m}^{t}\right)$-saturated if G is Q_{m}^{t}-free but adding another 2^{t}-edge to G forms a subhypergraph isomorphic to Q_{m}^{t}. In other words, G is a maximal Q_{m}^{t}-free subgraph of Q_{n}^{t}. We write $\operatorname{sat}\left(Q_{n}^{t}, Q_{m}^{t}\right)$ for the smallest number of edges a $\left(Q_{n}^{t}, Q_{m}^{t}\right)$-saturated H can have. We can show by the same method as the proof of Theorem 1 that, for $t \geq 1$ and $s \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{sat}\left(Q_{n}^{t}, Q_{t+s}^{t}\right)}{\binom{n}{t} 2^{n-t}}=0
$$

As in the proof of Theorem $\mathbb{1}$ we proceed by induction on s with the $s=0$ case being trivial. The iteration step analogous to Claim 1 is based on the same
colouring of principal Q_{n} 's. In each principal Q_{n} with colour 0 we place a low density Q_{t+s-1}^{t}-saturated subgraph of Q_{n}^{t}. We also add all those 2^{t}-edges which contain 2^{t-1} points in some principal Q_{n} with colour 0 . The remainder of the proof is a straightforward generalisation and the details are left to the reader.

Acknowledgements

The second author was supported by an EPSRC doctoral studentship.

References

[1] N. Alon, A. Krech, T. Szabò. Turán's theorem in the hypercube. SIAM J. Discrete Maths. 21(1) (2007) 66-72.
[2] J. Balogh, P. Hu, B. Lidický and H. Liu. Upper bounds on the size of 4and 6-cycle-free subgraphs of the hypercube. European J. Combin. 35 (2014) 75-85.
[3] P. Brass, H. Harborth and H. Nienborg. On the maximum number of edges in a C_{4}-free subgraph of $Q_{n} . \mathrm{J}$. Graph Theory. 19 (1) (1995) 17-23.
[4] S. Choi and P. Guan. Minimum Critical Squarefree Subgraph of a Hypercube. Proceedings of the Thirty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing. 189 (2008) 57-64.
[5] P. Erdős. Some problems in graph theory, combinatorial analysis and combinatorial number theory. In Graph Theory and Combinatorics. B. Bollobás, ed. Academic Press, London. (1984) 1-17.
[6] P. Erdős, A. Hajnal and J. W. Moon. A Problem in Graph Theory. The American Mathematical Monthly. 71(10) (1964) 1107-1110.
[7] J. R. Faudree, R. J. Faudree and R. Schmitt. A Survey of Minimum Saturated Graphs. The Electronic Journal of Combinatorics. 18 (2011).
[8] G. O. H. Katona and T. G. Tarján. Extremal problems with excluded subgraphs in the n-cube. Graph Theory, Lagow, Poland, Lecture Notes in Mathematics. 1018, Berlin: Springer (1983), 84-93.
[9] N. Morrison, J. A. Noel and A. Scott. On Saturated k-Sperner Systems. arXiv:1402.5646. (2014).
[10] O. Pikhurko. Results and Open Problems on Minimum Saturated Hypergraphs. Ars Combinatorica. 72 (2004) 435-451.
[11] J. H. van Lint. Introduction to Coding Theory. Berlin; Springer-Verlag (1999).

[^0]: *Supported by an EPSRC doctoral studentship.

