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Abstract

We say a graph is (Qn, Qm)-saturated if it is a maximal Qm-free sub-
graph of the n-dimensional hypercubeQn. A graph is said to be (Qn, Qm)-
semi-saturated if it is a subgraph of Qn and adding any edge forms a
new copy of Qm. The minimum number of edges a (Qn, Qm)-saturated
graph (resp. (Qn, Qm)-semi-saturated graph) can have is denoted by
sat(Qn, Qm) (resp. s-sat(Qn, Qm)). We prove that limn→∞

sat(Qn,Qm)
e(Qn)

=
0, for fixed m, disproving a conjecture of Santolupo that, when m = 2,
this limit is 1

4
. Further, we show by a different method that sat(Qn, Q2) =

O(2n), and that s-sat(Qn, Qm) = O(2n), for fixed m. We also prove the
lower bound s-sat(Qn, Qm) ≥ m+1

2
· 2n, thus determining sat(Qn, Q2) to

within a constant factor, and discuss some further questions.

2010 Mathematics Subject Classification: Primary 05C35, Secondary 05D05.

1 Introduction
Let F be a (simple) graph. We say that a (simple) graph G is F -free if it
contains no subgraphs isomorphic to F . If G is a maximal F -free subgraph of
H, we say that G is (H,F )-saturated. In other words, G is F -saturated if it is a
subgraph of H and the addition of any edge from E(H) \E(G) forms a copy of
F . In this context, H is referred to as the host graph, F as the forbidden graph
and G as a saturated graph.

The famous Turán problem in extremal combinatorics can be expressed natu-
rally in the language of saturated graphs. The extremal number of F , ex(Kn, F ),
(often written as ex(n, F )) is usually defined as the maximum number of edges
in an F -free subgraph of Kn. However, it can equivalently be written as:

ex(Kn, F ) = max{e(G) : G is (Kn, F )-saturated}.
∗Supported by an EPSRC doctoral studentship.
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This formulation yields a natural ‘opposite’ of the Turán problem. We define
the saturation number of F , sat(H,F ) as:

sat(H,F ) = min{e(G) : G is (H,F )-saturated}.

A variant of this is the semi-saturation number, s-sat(H,F ). We say that a
graph is (H,F )-semi-saturated if G is a subgraph ofH and adding any edge from
E(H) \E(G) increases the number of copies of F . A graph is (H,F )-saturated
if and only if it is (H,F )-semi-saturated and F -free. We define:

s-sat(H,F ) = min{e(G) : G is (H,F )-semi-saturated}.

The most frequently studied host graph is the complete graph, Kn. Since
work in the area began with Erdős, Hajnal and Moon [6], many others have
studied s-sat(Kn, F ) and sat(Kn, F ): see for instance the survey articles of
Pikhurko [10] and of J. Faudree, R. Faudree and Schmitt [7] and the references
contained therein.

In the literature, sat(Kn, F ) is often written as sat(n, F ) and (Kn, F )-
saturated is usually written as F -saturated. Since the results in this paper
concern a different host graph, we will reserve this latter abbreviation for a
different meaning.

A much studied variant of the Turán problem was initiated by Erdős in [5]
and expanded upon by Alon, Krech and Szabò [1]. For a fixed graph F , they
ask for ex(Qn, F ), the maximum number of edges in an F -free subgraph of the
n-dimensional hypercube, Qn. The most natural case is F = Qm, a fixed cube.
This is wide open, even for the case m = 2. The asymptotic edge density of a
maximum Q2-free graph, i.e. limn→∞

ex(Qn,Q2)
e(Qn)

was conjectured by Erdős [5]
to be 1

2 . It is still unknown, despite the attention of many authors—see for
instance the work of Balogh, Hu, Lidický and Liu [2] and of Brass, Harborth
and Nienborg [3].

In this paper, we focus on the saturation and semi-saturation problems,
where the host graph is the hypercube and the forbidden graph is a subcube.
That is, we study sat(Qn, F ) and s-sat(Qn, F ). For brevity, we shall often
write F -saturated (resp. F -semi-saturated) rather than (Qn, F )-saturated (resp.
(Qn, F )-semi-saturated) in the remainder of this paper, when the value of n is
clear or irrelevant.

The best result along these lines is that of Choi and Guan [4]:

lim sup
n→∞

sat(Qn, Q2)

e(Qn)
≤ 1

4
.

A conjecture that this is best possible, due to Santolupo, was reported in
[7]. The same survey article posed the more general question of determining
sat(Qn, Qm).

The main result of this paper, in Section 3, is the construction, for all fixed
m, of (Qn, Qm)-saturated graphs of arbitrarily low edge density, thus both gen-
eralizing and improving the bound of Choi and Guan.
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Theorem 1. For fixed m,

lim
n→∞

sat(Qn, Qm)

e(Qn)
= 0.

Slightly more precisely, we show sat(Qn, Qm) ≤ c1
nc2

e(Qn), where c1 and c2
are constants depending on m. In the case m = 2, c2 = 6/7; it is higher for
larger values of m.

In Section 4, we prove a stronger bound for the semisaturation version of
the problem.

Theorem 2. For all n,m, s-sat(Qn, Qm) < (m2 + m
2 )2

n.

In the same section, we adapt this proof in the m = 2 case to remove all
copies of Q2 and thus prove a bound on sat(Qn, Q2) much stronger than that
given by Theorem 1.

Theorem 3. For all n, sat(Qn, Q2) < 10 · 2n.

It is easy to see that both these theorems are best possible up to a constant
factor, as all (Qn, Qm)-semi-saturated graphs have minimum degree m− 1.

In Section 5, we will improve this trivial lower bound, by showing that

s-sat(Qn, Qm) ≥ m+ 1

2
2n.

In Section 6, we discuss an extension to our zero density upper bound and
raise some open questions.

We briefly mention here a somewhat related saturation problem on the cube.
Here, Qn is considered as P(X), the power set of an n element set, X. Let F
be a fixed poset. A family A ⊆ P(X) is said to be F -saturated if there is
no subfamily of A with the same poset structure as F , but adding any set to
A destroys this property. Both the maximum and minimum size of such A
have been studied—see for instance Katona and Tarján [8] for the former and
Morrison, Noel and Scott [9] for the latter.

2 Preliminaries
In this section, we introduce terminology, notation and concepts that will be
used frequently in the remainder of this paper.

The hypercube Qn is the graph with vertex set {0, 1}n, and with edges
between each pair of vertices that differ in exactly one coordinate. Alternatively,
the vertex set may be considered as Fn

2 , the n-dimensional vector space over the
field with 2 elements. We write e1, . . . , en for the canonical basis of Fn

2 (ei is
the vector with a 1 in the ith coordinate, and 0’s elsewhere). We can see that x
is adjacent to y if and only if y = x+ ei, for some i ∈ {1, . . . , n}.

A subcube of Qn is an induced subgraph isomorphic to Qm, for some m ≤ n.
A set S of vertices is the vertex set of a subcube if and only if there is some set
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of coordinates J ⊆ [n] = {1, 2, 3, ..., n}, and constants aj ∈ {0, 1} for each j ∈ J
such that (x1, ..., xn) ∈ S if and only if for all j ∈ J , xj = aj . Fixed coordinates
are those coordinates in J , whereas free coordinates are coordinates that are not
fixed. We can thus represent a subcube as an element of {0, 1, ∗}n, with stars in
the free coordinates, and aj in the fixed coordinates. As edges can be thought
of as Q1’s, we may represent edges as elements of {0, 1, ∗}n in this way. We will
say an edge or subcube lies along the directions i1, . . . , ik if these contain all
the free coordinates of the edge or subcube. The weight of x ∈ V (Qn) is the
number of coordinates of x that are 1.

We may write Qn1+n2
as Qn1

�Qn2
, the graph Cartesian product of Qn1

and
Qn2

. In other words, Qn1+n2
is formed by replacing each vertex of Qn2

with a
copy of Qn1 . We call these principle Qn1 ’s. Where there was a Qn2 edge e, we
instead put edges between corresponding vertices of the principle Qn1 ’s placed
at the endpoints of e. So we have two types of edges: internal edges which
have both endpoints in the same principle Qn1

and external edges which have
endpoints in different principle Qn1

’s. Notice that there are n1 directions along
which internal edges lie, and n2 directions along which external edges lie. This
view of Qn1+n2 is crucial in the proof of Theorem 1; we will write Qn1+n2 as
Qn1

�Qn2
when we wish to use this viewpoint.

Another way of encapsulating the product nature of Qn is to write a vertex
v as (v1|v2| . . . |vt), where vi ∈ {0, 1}ni = V (Qni

) and n1 + · · · + nt = n. Two
vertices (v1|v2| . . . |vt) and (u1|u2| . . . |ut) are adjacent if and only if there is a j
such that vj and uj are adjacent as vertices of Qnj and for all i 6= j, vi = ui.
We will use this notation heavily in Section 4.

An object we shall use in several of our constructions is the Hamming code.
The properties of Hamming codes that we require are listed below, but see
van Lint [11] for more backgound. For our purposes, a Hamming code C can be
thought of as a subset of V (Qn), where n = 2r−1 for some r, with the following
properties:

1. C is a linear subspace of Fn
2 . More precisely, C is the kernel of an r by n

matrix H over the field F2, called a parity check matrix. The columns of
H are precisely the non-zero vectors in Fr

2.

2. |C| = 2n

n+1 .

3. C has minimum distance 3. In other words, min{d(x, y) : x, y ∈ C} = 3.

4. C is a dominating set for Qn. In other words, every vertex of Qn is either
in C or adjacent to a vertex in C.

Property 1 is usually taken as the definition of a Hamming code; the other
properties are simple consequences of it.

A subset C with these properties exists only if n = 2r − 1 (and when it
exists, it is the largest set with Property 3, and the smallest with Property 4).
For other values of n, we make do with an approximate Hamming code. This is
any C ⊂ V (Qn) satisfying:
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1. C is a linear subspace of Fn
2 . More precisely, C is the kernel of an r =

dlog(n+ 1)e by n matrix H over the field F2. H has as columns any n
distinct binary vectors of length r.

2. |C| = 2n

2dlog2(n+1)e .

3. C has minimum distance 3. In other words, min{d(x, y) : x, y ∈ C} = 3.

3 Zero density bound on sat(Qn, Qm)

In this section, we shall prove a quantitative version of Theorem 1, of which
Theorem 1 is an immediate consequence.

Theorem 1′. For all m ≥ 1, there exist constants, cm and am, such that
sat(Qn, Qm) ≤ cm

nam e(Qn). More precisely, a1 = 1 and am = 1
7·3m−2 , for all

m > 1.

Before discussing the proof of Theorem 1′, we sketch a proof of the
(
1
4 + o(1)

)
bound of Choi and Guan, as this contains the main ideas of the proof of Theorem
1′. This proof is significantly different from Choi and Guan’s, which may be
considered more direct. However, our approach, which uses 1

3 + o(1) density
saturated graphs to build 1

4 +o(1) density saturated graphs, naturally gives rise
to an iterative approach for proving Theorem 1′.

We assume that there exist three (Qn, Q2)-saturated graphs, A1, A2 and A3

of 1
3 + o(1) density, such that every edge of Qn lies in one of them. We will use

these to produce a 1
4 + o(1) density (Qn+3, Q2)-saturated graph B′. These Ai

are relatively easy to construct—we will require a generalization of them in our
proof of Theorem 1′.

We first construct an ‘almost’ (Qn+3, Q2)-saturated graph B. We consider
Qn+3 as Qn�Q3. We leave two principle Qn’s corresponding to antipodal ver-
tices of Q3 empty. Around each of these empty Qn, we arrange copies of
A1, A2, A3, as in the figure below. We also add all external edges with one
endpoint in either of the two empty principle Qn’s (as indicated by the bold
edges in the figure).

The graph constructed has the property that for any edge of an empty Qn,
e, the corresponding edge, e′ is present in one of the Ai. So adding e forms
a Q2 comprising e, e′ and the two external edges that connect corresponding
endpoints of e and e′. Since the Ai are themselves Q2-saturated graphs, adding
any internal edge forms a copy of Q2.

It is easy to see that B is still Q2-free, and a quick calculation shows that
B has edge density 1

4 + o(1). We now prove a simple lemma that allows us to
extend B to a Q2-saturated graph.

Lemma 4. Fix m ≥ 2. Suppose that G is a Qm-free subgraph of Qn and
S ⊆ E(Qn). Then we can form a Qm-free graph G′ by adding no more than |S|
edges to G with the property that adding any edge in S \ E(G) forms a copy of
Qm.

5



empty

empty

A1

A1A3 A2

A2 A3

Figure 1: The ‘almost’ saturated graph, B

Proof. We order the edges in S arbitrarily. Consider these edges in this order
and add them to G if and only if doing so does not form a copy of Qm. Since
only edges of S are added by the process, we are done.

We apply this lemma to B, with S being the set of external edges that have
not already been added, i.e. those represented by the thin edges in Figure 1.
This forms a Q2-saturated graph, B′. Since there are 3

n+3e(Qn+3) external
edges, the asymptotic edge density is still 1

4 .
The proof of Theorem 1′ uses a similar method multiple times to produce

(Qn, Qm)-saturated graphs of arbitrarily low density. In the case where m = 2,
we assume that we have a collection of Q2-saturated graphs A1, . . . , Ak of edge
density at most ρ, such that every edge of Qn is contained in at least one of
the Ai. We will view Qn+k as Qn�Qk and leave several principle Qn empty.
We shall ensure that each empty Qn is adjacent, for every i, to a principle
Qn filled with Ai, and add every external edge leaving these empty Qn. This
ensures that adding an edge within the empty Qn forms a copy of Q2. The
constraint on the empty principle Qn is that the set of vertices that we replace
with empty Qn’s must have minimum distance 3, and so we employ a Hamming
code, enabling us to produce a graph with a lower density, ρ′. Of course, to apply
this method again, we need several (Qn+k, Qm)-saturated graphs of density ρ′,
which between them cover the edges of Qn+k. This turns out to be not much
harder, using cosets of the Hamming code.

In the generalm case we adapt this method. We would like to use a collection
of Ai that cover all the copies of Qm−1 in Qn. Such a collection seems hard
to construct, but a modification of the argument shows that it suffices to cover
almost all copies of Qm−1. The other modification is that instead of using empty
principle Qn, we fill them with low density Qm−1-saturated graphs, which we
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may assume exist by induction on m. We will use the following claim as a key
part of the inductive step in proving the theorem.

Claim 1. Suppose we have a collection A1, . . . , Ak of (Qn, Qm)-saturated graphs,
each of density at most ρ, and some n0 such that every Qm−1 lies along the first
n0 directions is within one of these Ai. Suppose also that there is a (Qn, Qm−1)-
saturated graph G with no more than cm−1

nam−1 e(Qn) edges. Then there is a collec-
tion of k + 1 (Qn+k, Qm)-saturated graphs, B0, . . . , Bk, such that every Qm−1
that lies along the first n0 directions is in one of these Bi. Further, each of the
Bi has density at most (1− 1

2k )ρ+ f(n, n0), where f is a function that tends to
zero whenever n, n0 →∞ in such a way that n0

n → 1.

A precise upper bound on the densities of the Bi is required for the quan-
titative part of the theorem; this will be stated at the end of the proof of this
claim.

Proof of Claim 1. We start by constructing a k + 1 colouring c0 of Qk, with
the colours 0, 1, . . . , k. Fix C0, an approximate Hamming code in Qk. We set
c0(x) = 0 for all x ∈ C0 and for all j ∈ {1, . . . , k} and all x ∈ C0, we set
c0(x + ej) = j. Note that when k + 1 is not a power of 2 (i.e. when we do
not have a genuine Hamming code), this colouring is not fully defined, since C0

is not dominating. For now we assign arbitrary colours other than 0 to these
vertices, but we will later decide on these colours.

We write Qn+k = Qn�Qk. We induce from c0 a colouring on the set of
principle Qn’s in the natural way. We start forming the graph B0 by placing a
copy of Aj in each principle Qn coloured j, for each j 6= 0. Also, we add to the
graph B0 every external edge with one endpoint in a principle Qn coloured 0.

We place a graph isomorphic to G in each Qn that is coloured 0 (we will
choose which isomorphism later).

Notice that so far, B0 is Qm-free. Indeed, suppose that B0 does contain a
Qm. This Qm cannot lie entirely within a single principle Qn, by our assumption
that the Ai are saturated. As we have only added external edges that leave Qn

coloured 0, the Qm may contain an edge between two principle Qn’s only if one
of them is coloured 0. Since the Hamming code has minimum distance 3, the
Qm must contain edges in exactly two principle Qn’s, one of which is coloured
0. But such Qn are Qm−1-saturated and thus contain no Qm−1, yielding a
contradiction.

So far, B0 is not quite Qm-saturated—for instance adding an external edge
may not create a copy of Qm. However, we use Lemma 4 to remedy this. We
add at most k

n+ke(Qn+k) edges to B0 and we now only need to consider adding
internal edges.

Adding an edge within a Qn coloured j 6= 0 forms a Qm, as each Aj is
Qm-saturated. Adding an edge within a principle Qn coloured 0 will form a
Qm−1 within that Qn. If that Qm−1 only uses edges in the first n0 directions,
it lies within one of the Aj by the hypothesis of Claim 1. Since every principle
Qn coloured zero is adjacent to a principle Qn of every non-zero colour, a Qm

will be formed. Therefore, we only need to worry about adding edges to G if
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the Qm−1 formed does not lie exclusively along the first n0 directions—we call
such edges bad edges. We will now show that we may assume there are not very
many bad edges.

Apply a random automorphism of Qn to G, our low density Qm−1-saturated
graph. We call the graph formed G′ ⊆ Qn, which is to be placed within a
principle Qn coloured 0. Let e be a fixed edge of this principle Qn.

P(e is a bad edge) ≤ 1− n0
n
· n0 − 1

n− 1
· · · · · n0 −m+ 2

n−m+ 2

≤ 1− (n0 −m)m−1

nm−1

=
nm−1 − (n0 −m)m−1

nm−1
.

This tells us that the expected number of bad edges, in each principle Qn

coloured 0, is no more than
(

nm−1−(n0−m)m−1

nm−1

)
e(Qn). We now choose the

automorphism of G that we left unspecified earlier; we can do this such that
we get no more bad edges than the expected number. We use Lemma 4, with
S being the set of bad edges, to form a graph that we also call B0 that is
Qm-saturated.

We now construct the other Bi to cover the required Qm−1’s. To construct
Bi, we repeat the same method used for constructing B0, except we use Ci :=
{c+ ei : c ∈ C0} instead of C0. Note that we can make the arbitrary choices of
colours to ensure each principle Qn is filled with each of the graphs A1, . . . , Ak,
in one of the Bi.

It is easy to see that the Bi satisfy the necessary Qm−1 condition. Indeed
any Qm ⊆ Qn+k along the first n0 directions must lie within a principle Qn.
When considered as a subgraph of this Qn, it must lie in a copy of one of the
Ai—say Aj . This principle Qn is filled with Aj in one of the Bi, so we are done.

It remains only to bound the number of edges in each saturated subgraph,
Bi. Let e(A) = max{e(Ai)}, e(B) = max{e(Bi)}, ρ(A) = e(A)

n2n−1 and ρ(B) =
e(B)

(n+k)2n+k−1 . In the calculations that follow, we write a = am−1 and c = cm−1
for brevity.

Recall that edges were added to each Bj in 4 ways: from copies of Ai, from
adding external edges, from the Qm−1-saturated graphs and from adding bad
edges.
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Thus we have:

e(B) ≤ 2k
(
1− 1

2dlog(k+1)e

)
e(A) +

k

n+ k
e(Qn+k)

+
2k

2dlog(k+1)e e(Qn)

(
cm−1n

−a +
nm−1 − (n0 −m)m−1

nm−1

)
.

Therefore,

ρ(B) ≤
(
1− 1

2dlog(k+1)e

)
ρ(A) +

k

n+ k

+
1

2dlog(k+1)e

(
cm−1n

−a +
nm−1 − (n0 −m)m−1

nm−1

)
≤
(
1− 1

2k

)
ρ(A) +

k

n
+

1

k

(
cm−1n

−a +
nm−1 − (n0 −m)m−1

nm−1

)
.

Clearly if n0 is large enough, and n = (1 + o(1))n0, the last two terms can
be arbitrarily small, thus concluding the proof of the claim.

We now return to prove Theorem 1′.

Proof of Theorem 1′. We use induction on m.
Base case: m = 1. This is trivial—the subgraph of Qn with no edges is

Q1-saturated.
Inductive step: take m > 1 and assume the Theorem holds for m − 1–

i.e. there is a (Qn, Qm − 1)-saturated graph G with no more than cm−1

nam−1 e(Qn)
edges.

We first find a collection of subgraphs A1, . . . , Am+1 of Qn0 that satisfy the
hypothesis of Claim 1, with ρ = 1. To do this, let Ai initially consist of all edges
whose lowest weight endpoint has weight in {i, . . . , i+m− 2} mod m+1, and
then extend greedily until Ai is Qm saturated. Each Ai contains every Qm−1
whose lowest weight vertex has weight i mod m+1, so every Qm−1 is contained
in one of these Ai. Trivially, we may bound the density of these Ai above by 1,
and it is easy to see this is best possible up to a constant.

We now apply Claim 1 repeatedly, t times. We write ki and ni for the value
of k and n after the ith iterate. Clearly, ki+1 = ki+1, k0 = m+1, ni+1 = ni+ki
and nt = n0 +

∑m+t
i=m i = n0 +O(t2).

After t steps, we end with saturated graphs of density, ρ:
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ρ ≤
t−1∏
i=0

(
1− 1

2ki

)
+

t−1∑
i=0

(
ki
ni

+
cm−1
ki
· n−ai +

nm−1i − (n0 −m)m−1

kin
m−1
i

)

≤ c
m+t∏
m=1

(
1− 1

2i

)
+
t(m+ t+ 1)

n0
+
tcm−1
m

· n−a0 +
t

m

nm−1t − (n0 −m)m−1

nm−10

= c′ · exp

(
−1

2

t+m∑
i=1

1

i

)
+O(t2n−10 ) +O(tn−a0 ) +O

(
t3

n0

)
= c′′t−

1
2 +O(tn−a0 ) +O(t3n−10 ).

Here, c, c′ and c′′ are constants dependent on m. If m = 2 it is optimal to
take t = n

2/7
0 , otherwise a < 3

7 , it is optimal to take t = n
2a/3
0 .

This gives the required bound.

Note that the better bound for sat(Qn, Q2) in the next section can be fed
into the induction in the theorem to produce the slightly better bound of am =

1
7·3m−3 .

4 Bounded average degree constructions

4.1 Semi-saturation
In this section we will prove Theorem 2, by constructing for each m a family
of Qm-semi-saturated graphs with bounded average degree. Although it seems
difficult in general to make these graphs Qm-free, in the m = 2 case we will use
similar ideas to prove Theorem 3.

In what follows it will be useful to write n = m(2t−1)+r, where 0 ≤ r < m2t,
and to let n0 = 2t − 1. We write a vertex of Qn as (v1|v2| . . . |vm|vm+1), where
vi ∈ {0, 1}n0 for i ≤ m and vm+1 ∈ {0, 1}r. The final section of the vector is
only included to make the number of coordinates exactly n but otherwise has
no importance in the construction.

Proof of Theorem 2. Let C ⊆ {0, 1}n0 be a Hamming Code. We define:

A = {(v1| . . . |vm|vm+1) ∈ V (Qn) : ∃i ∈ {1,m} such that vi ∈ C}.

We form E(G) by picking all edges with at least one endpoint in A. Note that
vertices in A have degree n in G; all other vertices have degree m. Therefore
e(G) = 1

2 ((n −m)|A| +m2n) ≤ m
2 (n

2n

(n0+1) + 2n). As n
n0

< 2m, e(G) satisfies
the bounds of the theorem.

We now show that G is Qm-semi-saturated. Assume e ∈ E(Qn) \ E(G) is
along a direction i in {1, n0} (all other cases can be dealt with similarly). We
write the endpoints of the edges as (v1|v2| . . . vm|vm+1) and (v′1|v2| . . . |vm|vm+1),

10



where v′1 and all of the vi do not lie in C. Thus for i = 2, 3, . . . ,m there exists
ci ∈ C adjacent to vi. Consider the 2m points of the form (x1| . . . |xm|vm+1),
where x1 ∈ {v1, v′1} and for i = 2, 3, . . . ,m, xi ∈ {vi, ci}. These vertices form a
subcube of Qn and all but the endpoints of e are in A. Thus when the edge e
is added, a copy of Qm is formed, concluding our proof.

Remark 5. Clearly, when n = m(2t−1) for some t, we get the slightly stronger
bound s-sat(Qn, Qm) ≤

(
m2

2 + m
2

)
2n.

4.2 Improved bound for sat(Qn, Q2)

In the m = 2 case, the Q2-semi-saturated graph constructed above consists of
all edges incident with vertices in A = {(v1|v2|v3) ∈ V (Qn) : v1 ∈ C or v2 ∈ C}.
It is easy to see this contains large subcubes, of the form (c|∗, . . . , ∗|∗, . . . , ∗) or
(∗, . . . , ∗|c|∗, . . . , ∗), for c ∈ C. There are other Q2’s in this graph, but those
within these large subcubes are hardest to deal with. We prevent subcubes of
the first type by only adding edges of the form {(c|v), (c|v′)}, where c ∈ {0, 1}n0

and v ∈ {0, 1}n−n0 and v has lower weight than v′, if v1 has even weight. Of
course doing just this alteration means the graph is no longer semi-saturated;
we get around this by picking a subset D of V (Qn0) with similar properties to
C, and adding edges starting at (d|v2|v3) if (v2|v3) contains an odd number of
1’s and if d ∈ D. We make use of the following claim, which allows us to choose
a D with the required properties.

Claim 2. There exists a Q2-free spanning subgraph, H, of Qn0 , that has two
independent dominating sets, C,D ⊂ V (H) = {0, 1}n0 , with C disjoint from D,
where |C| = 2n0/(n0 + 1) and |D| = 3 · 2n0/(n0 + 1). Further, H only contains
edges incident with C ∪D and e(H) ≤ 2n0+1.

We shall prove this claim later, but first we show why it implies the theorem.

Proof of Theorem 3. Similarly to before, we write n = 2(2t − 1) + r, where
0 ≤ r < 2t+1, and let n0 = 2t − 1. We write an element, x, of {0, 1, ∗}n as
(x1|x2|x3), where x1, x2 ∈ {0, 1, ∗}n0 and x3 ∈ {0, 1, ∗}r. We refer to x1 as
the first part of x, x2 as the second part and so on. We will use this notation
particularly when x represents a vertex or an edge of Qn (it contains no stars
or one star).

We start by constructing a graph G that is Q2-free and will then use Lemma
4 add a ‘few’ edges (o(2n) edges) to form G′, a Q2-saturated graph. As in the
proof of Theorem 2, we will define a subset, A of the vertices, which will be
dominating in G:

A = {(v1|v2|v3) ∈ {0, 1}n : v1 ∈ C ∪D or v2 ∈ C ∪D}.

The definition of G is slightly more complicated. We add edges to E(G) in three
stages, and then delete some of these edges to ensure G is Q2-free.
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Firstly, we add all edges e where e1 ∈ C, and the remainder, (e2|e3), contains
an even number of 1’s and a single star, as well as edges where e2 ∈ C and the
remainder, (e1|e3) contains an even number of 1’s and a single star. We call
these Type 1 edges. There are 2|C|(n− n0)2n−n0−2 ≤ (n−n0)

2(n0+1)2
n Type 1 edges.

Similarly, we add those edges e where e1 ∈ D and the remainder, (e2|e3)
contains an odd number of 1’s and a single star, as well as edges where e2 ∈ D
and the remainder contains an odd number of 1’s and a single star. We call
these Type 2 edges. There are 2(n− n0)|D|2n−n0−2 ≤ 3(n−n0)

2(n0+1) 2
n Type 2 edges.

Lastly, we add all edges, e where e1 or e2 is an edge of H. There are
2 · 2n−n0e(H) ≤ 4 · 2n Type 3 edges.

We now delete all edges e which have an endpoint, (v1|v2|v3) such that both
v1 and v2 lie in C ∪D. Thus e(G) ≤

(
2(n−n0)
n0+1 + 4

)
2n − n2n

(n0+1)2 .

Suppose, for contradiction, that G contains a Q2. Note that as all edges of
G are incident with a vertex of A, this Q2 must contain a vertex (v1|v2|v3) ∈ A,
where, without loss of generality, v1 ∈ C ∪ D. Note that none of the vertices
can have their second part in C ∪D, or there is a vertex of the Q2 with both
first and second part in C ∪D, impossible by our deletion step.

Let s be the number of stars of the Q2 that are in the first part of its vector
representation. If s = 2, all four edges are Type 3 edges, impossible as H is
Q2-free.

If instead s = 1, suppose the other star is in the second part (the other case
is identical). Then we may write the vertices of the Q2 as (v1|v2|v3), (v′1|v2|v3),
(v′1|v′2|v3) and (v1|v′2|v3), where v1 ∈ C ∪D and v2, v′2 /∈ C ∪D. It is easy to see
that v′1 ∈ C ∪D. By a parity argument, v1 and v′1 are both in C or both in D.
But this is impossible as C and D are each H0-independent sets.

Finally, if s = 0, then we can have only Type 1 edges or only Type 2 edges
(depending on whether v1 ∈ C or v1 ∈ D). But this is impossible by a simple
parity argument.

We now show that while G is not quite saturated, it is ‘almost’ saturated.
Suppose e is a Qn-edge not incident with A. Without loss of generality, the
endpoints are (v1|v2|v3) and (v′1|v2|v3), where v1, v′1v2, v3 /∈ C ∪D. This is an
element of E(Qn) \ E(G). Assume that (v1|v3) is even, (the other case is very
similar) and that v′1 has higher weight than v1. Then pick c ∈ C adjacent to
v2. {(v′1|v2|v3), (v′1|c|v3)} and {(v1|v2|v3), (v1|c|v3)} are Type 3 edges. Also,
{(v1|c|v3), (v′1|c|v3)} is a Type 1 edge as (x|y) is even. Thus a Q2 would be
formed by adding the edge.

All Qn-edges with exactly one endpoint in A are edges of G, so we only need
to consider edges where one endpoint, (v1|v2|v3), has v1 and v2 ∈ C ∪D. There
are 2n

n edges of this type, and so we may use Lemma 4 add them greedily to G
to form a Q2-saturated graph G′, which has no more edges than the bound in
the theorem.

Remark 6. Again, we get a stronger bound for some values of n; when n =
2(2t − 1) for some t, it is easy to see that sat(Qn, Q2) ≤ 6 · 2n.
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We now return to prove the claim.

Proof of Claim. Let C be a Hamming code in Qn0
. For i = 1, . . . , n0, let vi

be the image of the basis vector ei under the parity check matrix M of the
Hamming code. We may assume that v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0) and
v3 = (1, 1, 0, . . . , 0), as every vector in Ft

2 occurs as a column of M . We shall
construct H in four stages, and then prove that it has the required properties.

1. Add to E(H) every Qn0
-edge adjacent to an element of C.

2. Add to E(H) every Qn0-edge of the form {c+e1+ek, c+e1}, where c ∈ C,
and where k ∈ [4, n0] is such that vk has a 0 in the first coordinate.

3. Add to E(H) every Qn0
-edge of the form {c + e1 + ek, c

′ + e2}, where
c, c′ ∈ C, and where k ∈ [4, n0] is such that vk has a 1 in the first coordinate
and a 0 in the second coordinate.

4. Add to E(H) every Qn0-edge of the form {c + e1 + ek, c
′ + e3}, where

c, c′ ∈ C, and where k ∈ [4, n0] is such that vk has a 1 in the first coordinate
and a 1 in the second coordinate.

Since C is a Hamming code, it is an independent, dominating set and
|C| = 2n0/(n0 + 1). We write Ci = {c + ei : c ∈ C}; in other words, Ci =
M−1(vi). Let D = C1 ∪ C2 ∪ C3. It is easy to see every edge of H is inci-
dent with C ∪ D. Since the Ci are disjoint translates of C, a Hamming code,
|D| = 3 · 2n0/(n0 + 1).

Again using that C1 is a translate of a Hamming code, every x ∈ V (Qn0)\C1

can be written uniquely in the form c + e1 + ek for c ∈ C and k ∈ [1, n0]. The
restriction k 6= 1 is equivalent to x /∈ C. The restriction k 6= 2 is equivalent to
x /∈ C3. This is as M(c + e1 + e2) = M(c) +M(e1) +M(e2) = v1 + v2 = v3.
Similarly, k = 3 if and only if x ∈ C2. Thus steps 2, 3 and 4 ensure D is
independent and dominating in H.

Notice also that each x /∈ C ∪ D is H-adjacent to exactly 1 element in D.
Hence e(H) ≤ 2|Qn0

|, as required. It remains only to show that H is Q2-
free. Suppose not. Since we have only added edges with at least one endpoint
in C ∪ D, the Q2 must contain two opposite vertices in C ∪ D. Since C has
minimum distance 3, and since every x /∈ C ∪D is adjacent to only 1 element
in D, one of these vertices is in D, and one is in C. Thus the vertices of the
Q2 may be written in the form c ∈ C, c+ ei, c+ ej and c+ ej + ei ∈ Ck, where
i, j ∈ [4, n0] are such that vi+vj = vk, and k ∈ {1, 2, 3}. But it is impossible for
all the edges of this Q2 to lie in e(H). Indeed, suppose for example that k = 3.
Then vi and vj must both have 1 in the first coordinate and 1 in the second
coordinate, impossible if they sum to vk. This concludes the proof of the claim.
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5 Lower Bounds
All the lower bounds in this section are for s-sat; easily s-sat(Qn, Qm) ≤
sat(Qn, Qm), so the bounds are also valid for sat.

If a graph is (Qn, Qm)-semi-saturated, for m ≥ 2, it must be connected.
Thus it contains a spanning tree for Qn and so s-sat(Qn, Qm) ≥ 2n − 1. This
shows that Theorems 2 and 3 are best possible up to a constant factor.

Another trivial observation improves this for m ≥ 3: if a graph is (Qn, Qm)-
semi-saturated, it has minimum degree m− 1. Thus s-sat(Qn, Qm) ≥ m−1

2 2n.
We do better than both trivial bounds for all m.

Theorem 7. If m ≥ 2, s-sat(Qn, Qm) ≥
(
m+1
2 − o(1)

)
2n.

Proof. Let G be a (Qn, Q2)-semi-saturated graph with minimum degree m− 1;
note this contains all (Qn, Qm)-semi-saturated graphs. We call a pair (v, e),
where v ∈ V (Qn), e ∈ E(Qn) \ E(G)), good if there is a path of length 3 in G
linking the endpoints of e, that passes through v, meaning v is not a start or
end vertex of the path.

Note that every non-edge of G is in at least 2 good pairs, whereas each vertex
v is in at most

(
d(v)
2

)
good pairs.

Therefore ∑
v∈V (Qn)

(
d(v)

2

)
≥ 2(e(Qn)− e(G)).

Subject to fixed
∑

v d(v), the left hand side is maximized when the degrees
are as different as possible. But no degree can be larger than n or smaller than
m− 1. Note that 2e(G) =

∑
v d(v), so we have 2e(G)−2n

n−1 vertices of degree n in
this extreme case.

So certainly

2e(G)− (m− 1)2n

n− 1

(
n

2

)
≥ n2n − 2e(G)

(n+ 2)e(G)− n(m− 1)2n−1 ≥ n2n

e(G) ≥
(
m+ 1

2
− o(1)

)
2n.

6 Further Questions

Having seen that limn→∞
sat(Qn,Qm)

n2n−1 = 0, it is natural to ask for a more precise
bound—while in Section 4 we have determined sat(Qn, Qm) up to a constant,
for m = 2, there is still a wide gap between the best upper and lower bounds
for general m. In particular, we do not know whether families of Qm-saturated
graphs of bounded average degree exist for all m.
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Question 1. For which m does there exist a constant cm such that for all n,
sat(Qn, Qm) ≤ cm2n?

In Section 4, we were able to produce better bounds on s-sat(Qn, Q2) than
sat(Qn, Q2). Further, the construction we had for s-sat contained many copies
of Q2. This small amount of evidence may suggest that in general, the two are
different, even asymptotically.

Question 2. Is sat(Qn, Q2) = s-sat(Qn, Q2) for all n? Does equality hold for
all sufficiently large n? If not, is lim inf sat(Qn,Q2)

2n > lim sup s-sat(Qn,Q2)
2n ?

Recall that all our lower bounds are for s-sat—it seems hard to bound sat
more strongly.

Another version of sat that has been studied in the literature (see Section 10
of [7]) (where the host graph is Kn) could be studied for this problem. We say
that a graph G ⊆ Qn is (Qn, Qm)-weakly-saturated if we can add the edges in
E(Qn)\E(G) one at a time (in some order) such that every new edge creates at
least one new copy of F . We write w-sat(Qn, Qm) for the minimum number of
edges a (Qn, Qm)-weakly saturated graph can have. Clearly, w-sat(Qn, Qm) ≤
s-sat(Qn, Qm) ≤ sat(Qn, Qm). It is not hard to see, by induction on n, that
there are many weakly (Qn, Q2)-saturated trees and so w-sat(Qn, Q2) = 2n −
1. Indeed, given any G1, G2, possibly different weakly (Qn−1, Q2)-saturated
trees, we place them in complementary Qn−1’s, and connect any one pair of
corresponding vertices. This forms a weakly (Qn, Q2)-saturated tree. However,
w-sat(Qn, Qm) is in general not known.

Question 3. For m ≥ 3, what is w-sat(Qn, Qm)?

In [1], Alon, Krech and Szabò discuss an interesting hypergraph type general-
ization of the Turán problem on the hypercube. We write Qt

n for the 2t-uniform
hypergraph with vertex set {0, 1}n and edge set consisting of all t-dimensional
subcubes of Qn. We say that a subhypergraph H of Qt

n is Qt
m-free if it contains

no subhypergraph isomorphic to Qt
m. As in the usual (t = 1) case of this Turán

problem, they ask how many edges H can have- in particular asking for the

limit: limn→∞max

{
e(H)

(nt)2n−t

}
. This question is still open, but it is interesting

to know that the corresponding saturation problem can be attacked by the same
method as the proof of Theorem 1′.

Let H be a subhypergraph of Qt
n. We say that G is (Qt

n, Q
t
m)-saturated if G

is Qt
m-free but adding another 2t-edge to G forms a subhypergraph isomorphic

to Qt
m. In other words, G is a maximal Qt

m-free subgraph of Qt
n. We write

sat(Qt
n, Q

t
m) for the smallest number of edges a (Qt

n, Q
t
m)-saturated H can have.

We can show by the same method as the proof of Theorem 1′ that, for t ≥ 1
and s ≥ 0,

lim
n→∞

sat(Qt
n, Q

t
t+s)(

n
t

)
2n−t

= 0.

As in the proof of Theorem 1’ we proceed by induction on s with the s = 0
case being trivial. The iteration step analogous to Claim 1 is based on the same
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colouring of principal Qn’s. In each principal Qn with colour 0 we place a low
density Qt

t+s−1-saturated subgraph of Qt
n. We also add all those 2t-edges which

contain 2t−1 points in some principal Qn with colour 0. The remainder of the
proof is a straightforward generalisation and the details are left to the reader.
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