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CONNECTIONS IN RANDOMLY ORIENTED GRAPHS

BHARGAV NARAYANAN

Abstract. Given an undirected graph G, let us randomly orient G by tossing

independent (possibly biased) coins, one for each edge of G. Writing a → b for

the event that there exists a directed path from a vertex a to a vertex b in such

a random orientation, we prove that for any three vertices s, a and b of G, we

have

P(s → a ∩ s → b) ≥ P(s → a)P(s → b).

1. Introduction

A very natural notion of a random directed graph is that of a random orien-

tation of a fixed undirected graph. Random orientations of graphs often exhibit

counter-intuitive properties. For example, Alm and Linusson [3] showed that in a

random orientation of any sufficiently large complete graph, the event that there is

a directed path from a to s and the event that there is a directed path from s to b

are positively correlated for any three distinct vertices s, a and b; this is surprising

since conditioning on the existence of a path from a to s would intuitively suggest

that edges are typically ‘oriented towards s’, and that it should consequently be

harder to walk from s to b. Random orientations in general, and the correlations

between connection events in particular, have been studied by a number of authors;

see, for instance, [9, 2, 7].

Given a finite undirected graph G = (V,E) and a collection of probabilities

p = (pe)e∈E, we orient the edges of G independently by tossing a pe-biased coin to

decide the orientation of an edge e ∈ E. More formally, given G = (V,E) and p as

above, suppose that V ⊂ N and define ~G(p) to be a random orientation of G where

an edge e = {a, b} ∈ E with a < b is oriented from a to b with probability pe and

from b to a otherwise, independently of the other edges. We call ~G(p) a p-biased

orientation of G and write PG,p for the corresponding probability measure. Note

Date: 6 December 2015.

2010 Mathematics Subject Classification. Primary 60C05; Secondary 60K35.

1

http://arxiv.org/abs/1609.01003v2


that ~G(p) is an unbiased, uniformly random orientation of G when pe = 1/2 for

every e ∈ E.

For a pair of vertices a and b of G, let a → b denote the connection event that

there is a directed path from a to b in a random orientation of G. Our aim in this

short paper is to establish the following correlation inequality.

Theorem 1.1. Let G = (V,E) be an undirected graph. For any three vertices

s, a, b ∈ V and any collection of probabilities p = (pe)e∈E , we have

PG,p(s → a ∩ s → b) ≥ PG,p(s → a)PG,p(s → b).

The motivation for considering biased orientations in Theorem 1.1 comes from

our lack of understanding of biased orientations of a number of natural graphs,

most important of which is perhaps the square lattice. For 0 ≤ p ≤ 1, let ~Z2(p)

denote a random orientation of the square lattice obtained as follows: orient a

horizontal edge, independently of the other edges, rightwards with probability p

and otherwise leftwards, and similarly, orient a vertical edge, independently of the

other edges, upwards with probability p and otherwise downwards. The following

conjecture is due to Grimmett [5] and remains wide open.

Conjecture 1.2. For each p 6= 1/2, ~Z2(p) almost surely contains an infinite

directed path.

Let us mention that while we state and prove Theorem 1.1 for finite graphs,

the result also holds for any graph on a countably infinite vertex set (such as the

square lattice); indeed, this follows from a standard limiting argument. We also

remark that the challenge in establishing Theorem 1.1 arises entirely from having

to deal with genuinely biased orientations.

Indeed, the main difficulty in working with random orientations is that a connec-

tion event a → b is not ‘up-closed’ in general. In other words, it is not necessarily

true that one can find a ‘good’ orientation for each edge with the property that

the event a → b is closed under the operation of changing the orientation of an

edge from ‘bad’ to ‘good’. For example, it is clear from Figure 1 that connection

events in a (large) finite grid are neither closed under the operation of changing

the orientation of a horizontal edge to the left, nor closed under the operation of

changing the orientation of a horizontal edge to the right.

This ‘up-closedness’ issue however disappears when we restrict ourselves to un-

biased orientations. Indeed, in this case, as was observed by McDiarmid [9], the
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Figure 1. Left-to-right connection events in the grid are not ‘up-closed’.

distribution of the set of vertices reachable from a vertex s in an unbiased orien-

tation of G is identical to the distribution of the connected component of s in the

standard percolation model (at density 1/2) on G. Therefore, as noted by Linus-

son [8], our result follows instantly from Harris’s lemma [6] in this case. However,

we see no simple way of deducing Theorem 1.1 from Harris’s lemma in general;

instead, our proof relies on the powerful four-functions theorem of Ahlswede and

Daykin [1].

The proof of Theorem 1.1 is given in Section 2. We make a few remarks and

conclude this note in Section 3.

2. Proof of the main result

To prove Theorem 1.1, we shall require the four-functions theorem of Ahlswede

and Daykin [1]; see [4] for a proof and several related results.

Theorem 2.1. Let S be a finite set and let α, β, γ and δ be functions from the set

of all subsets of S to the non-negative reals. If we have

α(X1)β(X2) ≤ γ(X1 ∪X2)δ(X1 ∩X2)

for any two subsets X1, X2 ⊂ S, then
∑

X⊂S

α(X)
∑

X⊂S

β(X) ≤
∑

X⊂S

γ(X)
∑

X⊂S

δ(X).

Before we proceed further, let us introduce some additional notation. For a set

of vertices A and a vertex b, we write A → b for the union of all the events a → b

with a ∈ A. Theorem 1.1 is a special case of the following result.
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Theorem 2.2. Let G = (V,E) be an undirected graph. For any nonempty set

S ⊂ V , any pair of vertices a, b ∈ V and any collection of probabilities p = (pe)e∈E ,

we have

PG,p(S → a ∩ S → b) ≥ PG,p(S → a)PG,p(S → b).

Proof. We prove the theorem by induction on the number of vertices. Clearly, the

result holds trivially when G has only one vertex. Therefore, suppose that G has

more than one vertex and that we have proved the result for all graphs with fewer

vertices than G. The inequality is also trivial if either a ∈ S or b ∈ S, so suppose

that neither a nor b belongs to S.

Let H denote the graph obtained by deleting S from G. Let T denote the set of

those vertices of H that are adjacent to some vertex of S in G. We write OS ⊂ T

for the (random) set of those vertices v ∈ T for which there exists an edge oriented

from S to v in ~G(p).

In what follows, to reduce clutter, we write P for the measure PG,p and P̂ for

the measure induced by P on the graph H . For a subset X ⊂ T , let us define

α(X) = P(OS = X)P̂(X → a),

β(X) = P(OS = X)P̂(X → b),

γ(X) = P(OS = X)P̂(X → a ∩X → b), and

δ(X) = P(OS = X).

Note that

P(S → a) =
∑

X⊂T

P(OS = X)P(S → a |OS = X) =
∑

X⊂T

P(OS = X)P̂(X → a),

so we have

∑

X⊂T

α(X) = P(S → a),

∑

X⊂T

β(X) = P(S → b),

∑

X⊂T

γ(X) = P(S → a ∩ S → b), and

∑

X⊂T

δ(X) = 1.

4



Therefore, by Theorem 2.1, to prove our result, it suffices to show that

α(X1)β(X2) ≤ γ(X1 ∪X2)δ(X1 ∩X2)

for any two subsets X1, X2 ⊂ T . We may inductively assume that we have estab-

lished Theorem 2.2 for H . Hence, it follows that

P̂(((X1 ∪X2) → a) ∩ ((X1 ∪X2) → b)) ≥ P̂((X1 ∪X2) → a)P̂((X1 ∪X2) → b)

≥ P̂(X1 → a)P̂(X2 → b).

Therefore, it suffices to show that

P(OS = X1)P(OS = X2) ≤ P(OS = X1 ∪X2)P(OS = X1 ∩X2).

This is easy to check. Indeed, each v ∈ T belongs to OS with some probability pv,

independently of the other vertices of T . Hence, we have

P(OS = X1)P(OS = X2) =
∏

v∈X1∩X2

p2v
∏

v∈X1△X2

pv(1− pv)
∏

v/∈X1∪X2

(1− pv)
2

= P(OS = X1 ∪X2)P(OS = X1 ∩X2).

The conditions of Theorem 2.1 have been verified; Theorem 2.2 now follows by

induction. �

3. Conclusion

The correlation inequality proved in this paper is ‘intuitively obvious’, and

it therefore feels somewhat unsatisfactory that our proof must rely on the four-

functions theorem. Finding a more elementary proof of our main result remains

an interesting problem.
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