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PLANTING COLOURINGS SILENTLY

VICTOR BAPST∗, AMIN COJA-OGHLAN∗, CHARILAOS EFTHYMIOU

ABSTRACT. Letk ≥ 3 be a fixed integer and letZk(G) be the number ofk-colourings of the graphG. For certain values of
the average degree, the random variableZk(G(n,m)) is known to be concentrated in the sense that1

n
(lnZk(G(n,m)) −

lnE[Zk(G(n,m))]) converges to0 in probability [Achlioptas and Coja-Oghlan: Proc. FOCS 2008]. In the present pa-
per we prove a significantly stronger concentration result.Namely, we show that for a wide range of average degrees,
1

ω
(lnZk(G(n,m)) − lnE[Zk(G(n,m))]) converges to0 in probability foranydiverging functionω = ω(n) → ∞. For

k exceeding a certain constantk0 this result covers all average degrees up to the so-calledcondensation phase transition
dk,cond, and this is best possible. As an application, we show that the experiment of choosing ak-colouring of the random
graphG(n,m) uniformly at random is contiguous with respect to the so-called “planted model”.

1. INTRODUCTION

1.1. Background and motivation. Let G(n,m) denote the random graph on the vertex set[n] = {1, . . . , n} with
preciselym edges. The study of the graph colouring problem onG(n,m) goes back to the seminal paper of Erdős
and Rényi [16]. A wealth of research has since been devoted to either estimating the typical value of the chromatic
number ofG(n,m) [5, 8, 25, 27], its concentration [6, 26, 35], or the problem of colouring random graphs by means
of efficient algorithms [3, 17, 21]; for a more complete survey see [9, 19]. Some of the methods developed in this line
of work have had a wide impact on combinatorics (e.g., the useof martingale tail bounds).

Since the 1990s substantial progress has been made in the case of sparserandom graphs, wherem = O(n) as
n → ∞. For instance, Achlioptas and Friedgut [2] proved that for any k ≥ 3 there exists asharp threshold sequence
dk−col(n) such that for any fixedε > 0 the random graphG(n,m) is k-colourable w.h.p. if2m/n < dk−col(n) − ε,
whereasG(n,m) fails to bek-colourable w.h.p. if2m/n > dk−col(n) + ε. The best current bounds [10, 14] on
dk−col(n) show that there is a sequence(γk)k≥3, limk→∞ γk = 0, such that

(2k − 1) lnk − 2 ln 2− γk ≤ lim inf
n→∞

dk−col(n) ≤ lim sup
n→∞

dk−col(n) ≤ (2k − 1) lnk − 1 + γk. (1.1)

In recent work, to a large extent inspired by predictions from statistical physics [29], it has emerged that properties
of typical k-colourings have a very significant impact both on combinatorial and algorithmic aspects of the random
graph colouring problem. To be precise, by a typicalk-colouring we mean ak-colouring of the random graphG(n,m)
chosen uniformly at random from the set of all itsk-colourings (provided that this set is non-empty). Properties of
such randomly chosen colourings have been harnessed to study the “geometry” of the set ofk-colourings of a random
graph [1, 30] as well as the nature of correlations between the colours that different vertices take [32]. In particular,the
proofs of the bounds (1.1) ondk−col(n) exploit structural properties such as the “clustering” of the set ofk-colourings
and the emergence of “frozen variables”.

1.2. Quiet planting. The notion of choosing a random colouring of a random graphG(n,m) can be formalised as
follows. LetΛk,n,m be the set of all pairs(G, σ) such thatG is a graph on[n] with preciselym edges, andσ is a
k-colouring ofG. Further, for a graphG letZk(G) signify the number ofk-colourings ofG. Now, define a probability
distributionπrc

k,n,m(G, σ), called therandom colouring model, onΛk,n,m by letting

πrc
k,n,m(G, σ) =

[
Zk(G)

((n
2

)

m

)
P [G(n,m) is k-colourable]

]−1

.

Perhaps more intuitively, this is the distribution produced by the following experiment.

RC1: Generate a random graphG = G(n,m) subject to the condition thatZk(G) > 0.
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RC2: Choose ak-colouringτ of G uniformly at random. The result of the experiment is(G, τ ).

Since we are going to be interested in values ofm/n whereG(n,m) is k-colourable w.h.p., the conditioning in
stepRC1 is harmless. But what turns the direct study of the distribution πrc

k,n,m into a challenge is stepRC2. This is
illustrated by the fact that the best current algorithms forsampling ak-colouring ofG(n,m) are known to be efficient
only for average degreesd < k [15], a far cry fromdk−col(n), cf. (1.1).

Achlioptas and Coja-Oghlan [1] suggested to circumvent this problem by means of an alternative probability distri-
bution onΛk,n,m called theplanted model. This distribution is induced by the following experiment;for σ : [n] → [k]
let

F(σ) =

k∑

i=1

(|σ−1(i)|
2

)

denote the number of edges of the complete graph that are monochromatic underσ.

PL1: Choose a mapσ : [n] → [k] uniformly at random, subject to the condition thatF(σ) ≤
(
n
2

)
−m.

PL2: Generate a graphG on [n] consisting ofm edges that are bichromatic underσ uniformly at random. The
result of the experiment is(G,σ).

Thus, the probability that the planted model assigns to a pair (G, σ) is

πpl
k,n,m(G, σ) ∼

[((n
2

)

m

)
kn P [σ is ak-colouring ofG(n,m)]

]−1

.

In contrast to the “difficult” experimentRC1–RC2, PL1–PL2 is quite convenient to work with.
Of course, the two probability distributionsπrc

k,n,m andπpl
k,n,m differ. For instance, underπpl

k,n,m a graphG comes
up with a probability that is proportional to its number ofk-colourings, which is not the case underπrc

k,n,m. However,
the two models are related ifm = m(n) is such that

lnZk(G(n,m)) = lnE[Zk(G(n,m))] + o(n) w.h.p. (1.2)

Indeed, if (1.2) is satisfied, then the following is true [1].

If (En) is a sequence of eventsEn ⊂ Λk,n,m such thatπpl
k,n,m[En] ≤ exp(−Ω(n)), thenπrc

k,n,m[En] = o(1). (1.3)

The statement (1.3), baptised “quiet planting” by Krzalakaand Zdeborová [24], has provided the foundation for the
study of the geometry of the set of colourings, freezing etc.[1, 7, 30, 32]. Moreover, similar statements have proved
useful in the study of other random constraint satisfactionproblems [13, 31, 32]. Yet a significant complication in
the use of (1.3) is thatEn is required to beexponentiallyunlikely in the planted model. This has caused substantial
difficulties in several applications (e.g., [7, 30]).

1.3. Results. The contribution of the present paper is to show that the statement (1.3) can be sharpened in the strongest
possible sense. Roughly speaking, we are going to show that if (1.2) holds, then the random colouring model is
contiguous with respect to the planted model, i.e., in (1.3)it suffices thatπpl

k,n,m[En] = o(1) (see Theorem 1.2 below
for a precise statement). We obtain this result by establishing that under certain conditions the numberZk(G(n,m))
of k-colourings of the random graph is concentrated remarkablytightly.

To state the result, we need a bit of notation. From here on outwe always assume thatm = ⌈dn/2⌉ for a number
d > 0 that remains fixed asn → ∞. Furthermore, fork ≥ 3 we define

dk,cond = sup
{
d > 0 : lim

n→∞
E[Zk(G(n,m))1/n] = k(1− 1/k)d/2

}
. (1.4)

This definition is motivated by the well-known fact that

E[Zk(G(n,m))] = Θ(kn(1 − 1/k)m), (1.5)

Thus, Jensen’s inequality shows thatlim supn→∞ E[Zk(G(n,m))1/n] ≤ k(1 − 1/k)d/2 for all d, anddk,cond marks
the greatest average degree up to which this upper bound is tight. Under the assumption thatk ≥ k0 for a certain
constantk0 it is possible to calculate the numberdk,cond precisely [7], and an asymptotic expansion ink yields

dk,cond = (2k − 1) lnk − 2 ln 2 + γk, where lim
k→∞

γk = 0.
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Theorem 1.1. There is a constantk0 > 3 such that the following is true. Assume either thatk ≥ 3 and d ≤
2(k − 1) ln(k − 1) or thatk ≥ k0 andd < dk,cond. Then

lim
ω→∞

lim
n→∞

P [| lnZk(G(n,m))− lnE[Zk(G(n,m))]| ≤ ω] = 1. (1.6)

On the other hand, for any fixed numberω > 0, anyk ≥ 3 and anyd > 0 we have

lim
n→∞

P [| lnZk(G(n,m))− lnE[Zk(G(n,m))]| ≤ ω] < 1.

Ford, k covered by the first part of Theorem 1.1 we havelnZk(G(n,m)) = Θ(n) w.h.p. Whilst one might expect
a priori that lnZk(G(n,m)) has fluctuations of order, say,

√
n, the first part of Theorem 1.1 shows that actually

lnZk(G(n,m)) fluctuates by no more thanω(n) for anyω(n) → ∞ w.h.p. Moreover, the second part shows that this
is best possible. In addition, fork ≥ k0 Theorem 1.1 is best possible with respect to the range ofd. In fact, it has been
shown in [7] thatlnZk(G(n,m)) < lnE[Zk(G(n,m))]− Ω(n) w.h.p. ford > dk,cond.

Theorem 1.1 enables us to establish a very strong connectionbetween the random colouring model and the planted
model. To state this, we recall the following definition. Suppose thatµ = (µn)n≥1,ν = (νn)n≥1 are two se-
quences of probability measures such thatµn, νn are defined on the same probability spaceΩn for everyn. Then
(µn)n≥1 is contiguouswith respect to(νn)n≥1, in symbolsµ ⊳ ν, if for any sequence(En)n≥1 of events such that
limn→∞ νn(En) = 0 we havelimn→∞ µn(En) = 0.

Theorem 1.2. There is a constantk0 > 3 such that the following is true. Assume either thatk ≥ 3 and d ≤
2(k − 1) ln(k − 1) or thatk ≥ k0 andd < dk,cond. Then(πrc

k,n,m)n≥1 ⊳ (π
pl
k,n,m)n≥1.

Inspired by the term “quiet planting” that has been used to describe (1.3), we are inclined to refer to the contiguity
statement of Theorem 1.2 as “silent planting”.

1.4. Discussion and further related work. The proof of Theorem 1.1 combines the second moment arguments from
Achlioptas and Naor [5] and its enhancements from [7, 14] with the “small subgraph conditioning” method [18,
34]. More precisely, the key observation on which the proof of Theorem 1.1 is based is that the fluctuations of
lnZk(G(n,m)) can be attributed to the variations of the number of bounded length cycles in the random graph.

This was known to be the case in random regular graphs. In fact, Kemkes, Perez-Gimenez and Wormald [20]
combined the small subgraph conditioning argument with thesecond moment argument from [5] to upper-bound
the chromatic number of the randomd-regular graph. While it had been pointed out by Achlioptas and Moore [4]
that the second moment argument from [5] can be used rather directly to conclude that the same upper bound holds
with a probability that remains bounded away from0 asn → ∞, small subgraph conditioning was used in [20] to
boost this probability to1 − o(1). Improved bounds on the chromatic number of random regular graphs, also based
on the second moment method and small subgraph conditioning, were recently obtained in [11]. In the case of the
G(n,m) model, small subgraph conditioning is not necessary to upper-bound the chromatic number, because the sharp
threshold result [2] can be used instead.1

A priori it might seem reasonable to expect that the random variable lnZk is more tightly concentrated in random
regular graphs that in theG(n,m) model, and that therefore small subgraph conditioning cannot be applied in the
case ofG(n,m). In fact, in the random regular graph for any fixed numberω the depth-ω neighbourhood of all but
a bounded number of vertices is just ad-regular tree. Thus, there are only extremely limited fluctuations in the local
structure of the random regular graph. By contrast, in theG(n,m)-model the depth-ω neighbourhoods can be of
varying shapes and sizes (although all but a bounded number will be acyclic), and also the number of vertices/edges in
the largest connected component and thek-core fluctuate. Nonetheless, perhaps somewhat surprisingly, we are going
to show that even in the case of theG(n,m) model, the fluctuations oflnZk are merely due to the appearance of short
cycles. Finally, Theorem 1.2 will follow from Theorem 1.1 bymeans of a similar argument as used in [1].

We expect that the present approach of combining the second moment method with small subgraph conditioning
can be applied successfully to a variety of other random constraint problems. Immediate examples that spring to mind
include randomk-NAESAT or randomk-XORSAT, random hypergraphk-colourability or, more generally, the family
of problems studied in [32]. (On the other hand, we expect that in problems such as randomk-SAT the logarithm of
the number of satisfying assignments exhibits stronger fluctuations, due to a lack of symmetry.)

1While the combination of the second moment method and the sharp threshold result can be used to show that (1.2) implies (1.3), this approach
doesnot yield Theorem 1.1. For instance, even the sharp threshold analysis from [1] allows for the possibility thatZk(G(n,m)) = (3 −

o(1))E[Zk(G(n,m))] with probability1/3, whileZk(G(n,m)) ≤ exp(−n0.99)E[Zk(G(n,m))] with probability2/3.
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1.5. Preliminaries and notation. We always assume thatn ≥ n0 is large enough for our various estimates to hold.
Moreover, ifp = (p1, . . . , pl) is a vector with entriespi ≥ 0, then we let

H(p) = −
l∑

i=1

pi ln pi.

Here and throughout, we use the convention that0 ln 0 = 0. Hence, if
∑l

i=1 pi = 1, thenH(p) is the entropy of the
probability distributionp. Further, for a numberx and an integerh > 0 we let(x)h = x(x− 1) · · · (x− h+1) denote
thehth falling factorial ofx.

We use the following instalment of the small subgraph technique.

Theorem 1.3([18]). Suppose that(δl)l≥2, (λl)l≥2 are sequences of real numbers such thatδl ≥ −1 andλl > 0 for
all l. Moreover, assume that(Cl,n)l≥2,n≥1 and(Zn)n≥1 are random variables such that eachCl,n takes values in the
non-negative integers. Additionally, suppose that for eachn the random variablesC2,n, . . . , Cn,n andZn are defined
on the same probability space. Moreover, let(Xl)l≥2 be a sequence of independent random variables such thatXl

has distributionPo(λl) and assume that the following four conditions hold.

SSC1: for any integerL ≥ 2 and any integersx2, . . . , xL ≥ 0 we have

lim
n→∞

P [∀2 ≤ l ≤ L : Cl,n = xl] =
L∏

l=2

P [Xl = xl] .

SSC2: for any integerL ≥ 2 and any integersx2, . . . , xL ≥ 0 we have

lim
n→∞

E[Zn|∀2 ≤ l ≤ L : Cl,n = xl]

E[Zn]
=

L∏

l=2

(1 + δl) exp(−λlδl).

SSC3: we have
∑∞

l=2 λlδ
2
l < ∞.

SSC4: we havelimn→∞ E[Z2
n]/E[Zn]

2 ≤ exp
[∑∞

l=2 λlδ
2
l

]
.

Then the sequence(Zn/E[Zn])n≥1 converges in distribution to
∏∞

l=2(1 + δl)
Xl exp(−λlδl).

2. OUTLINE OF THE PROOF

It turns out to be convenient to prove Theorems 1.1 and 1.2 by way of another random graph modelG(n,m). This is
a random (multi-)graph on the vertex set[n] obtained by choosingm edgese1, . . . , em of the complete graph onn
vertices uniformly and independently at random (i.e., withreplacement).

To boundZk(G(n,m)) from below, we will confine ourselves tok-colourings in which all the colour classes have
very nearly the same size. More precisely, for a mapσ : [n] → [k] we define

ρ(σ) = (ρ1(σ), . . . , ρk(σ)), whereρi(σ) = |σ−1(i)|/n (i = 1 . . . k).

Thus,ρ(σ) is a probability distribution on[k], to which we refer as thecolour densityof σ. Let Ck(n) signify the
set of all possible colour densitiesρ(σ), σ : [n] → [k]. Further, letCk be the set of all probability distributions
ρ = (ρ1, . . . , ρk) on [k], and letρ⋆ = (1/k, . . . , 1/k) signify the barycentre ofCk. We say thatρ = (ρ1, . . . , ρk) ∈ Ck

is (ω, n)-balancedif

|ρi − k−1| ≤ ω−1n− 1
2 for all i ∈ [k].

LetBn,k(ω) denote the set of all(ω, n)-balancedρ ∈ Ck(n). Now, for a graphG on [n] letZk,ω(G) signify the number
of (ω, n)-balancedk-colourings, i.e.,k-colouringsσ such thatρ(σ) ∈ Bn,k(ω). In Section 3 we will calculate the
first moment ofZk,ω to obtain the following.

Proposition 2.1. Fix an integerk ≥ 3 and a numberd ∈ (0,∞) and assume thatω = ω(n) is a sequence such that
limn→∞ ω(n) = ∞. Then

E [Zk(G(n,m))] = Θ(kn(1 − 1/k)m) and
E [Zk,ω(G(n,m))]

E [Zk(G(n,m))]
∼ |Bn,k(ω)|kk/2

(2πn)
k−1
2

(
1 +

d

k − 1

) k−1
2

.

In particular, lnE [Zk,ω(G(n,m))] = lnE [Zk(G(n,m))] +O (lnω(n)).
4



As outlined in Section 1.4, our basic strategy is to show thatthe fluctuations ofZk,ω(G(n,m)) can be attributed to
fluctuations in the number of cycles of a bounded length. Hence, for an integerl ≥ 2 we letCl,n denote the number
of cycles of length (exactly)l in G(n,m). Let

λl =
dl

2l
and δl =

(−1)l

(k − 1)l−1
. (2.1)

It is well-known thatC2,n, . . . are asymptotically independent Poisson variables (e.g., [9, Theorem 5.16]). More
precisely, we have the following.

Fact 2.2. If x2, . . . , xL are non-negative integers, then

lim
n→∞

P [∀2 ≤ l ≤ L : Cl,n = xl] =

L∏

l=2

P [Po(λl) = xl] .

In order to apply Theorem 1.3 to the random variablesCl,n andZk,ω(G(n,m)), we need to investigate the impact
of the cycle countsCl,n on the first moment ofZk,ω(G(n,m)). This is the task that we tackle in Section 4, where we
prove the following.

Proposition 2.3. Assume thatk ≥ 3 and thatd ∈ (0,∞). Then

∞∑

l=2

λlδ
2
l < ∞. (2.2)

Moreover, letω = ω(n) > 0 be any sequence such thatlimn→∞ ω(n) = ∞. If x2, . . . , xL are non-negative integers,
then

E[Zk,ω(G(n,m))|∀2 ≤ l ≤ L : Cl,n = xl]

E[Zk,ω(G(n,m))]
∼

L∏

l=2

[1 + δl]
xl exp (−δlλl) . (2.3)

Additionally, to invoke Theorem 1.3 we need to know the second moment ofZk,ω(G(n,m)) very precisely. To
obtain the required estimate, we consider two regimes ofd, k separately. In the simpler case, based on the second
moment argument from [5], we obtain the following result.

Proposition 2.4. Assume thatk ≥ 3 andd < 2(k − 1) ln(k − 1). Then

E
[
Zk,ω(G(n,m))2

]

E [Zk,ω(G(n,m))]
2 ∼ exp


∑

l≥2

λlδ
2
l


 .

The second regime ofd, k is thatk ≥ k0 for a certain constantk0 ≥ 3 andd < dk,cond (with dk,cond the number
defined in (1.4)). In this case, it is necessary to replaceZk,ω by the slightly tweaked random variablẽZk,ω used in the
second moment arguments from [7, 14].

Proposition 2.5. There is a constantk0 ≥ 3 such that the following is true. Assume thatk ≥ k0 and2(k − 1) ln(k −
1) ≤ d < dk,cond. There exists an integer-valued random variable0 ≤ Z̃k,ω ≤ Zk,ω such that

E

[
Z̃k,ω(G(n,m))

]
∼ E [Zk,ω(G(n,m))] and (2.4)

E

[
Z̃k,ω(G(n,m))2

]

E

[
Z̃k,ω(G(n,m))

]2 ≤ (1 + o(1)) exp


∑

l≥2

λlδ
2
l


 .

The proofs of Propositions 2.4 and 2.5 appear at the end of Section 5.
Of course, to apply Theorem 1.3 to the random variableZ̃k,ω we need to investigate the impact of the cycle counts

Cl,n on the first moment of̃Zk,ω as well. That is, we need a similar result as Proposition 2.3 for Z̃k,ω. Fortunately, this
does not require reiterating the proof of Proposition 2.3. Instead, what we need follows readily from Proposition 2.3
and (2.4). More precisely, we have

5



Corollary 2.6. Letx2, . . . , xL be non-negative integers. With the assumptions and notation of Proposition 2.5,

E[Z̃k,ω(G(n,m))|∀2 ≤ l ≤ L : Cl,n = xl]

E[Z̃k,ω(G(n,m))]
∼

L∏

l=2

[1 + δl]
xl exp (−δlλl) . (2.5)

Proof. Let S denote the event{∀l ≤ L : Cl,n = xl} and letZn = Z̃k,ω(G(n,m)) for the sake of brevity. Since
Zn ≤ Zk,ω, (2.4) implies the upper bound

E[Zn|S]
E[Zn]

≤ E[Zk,ω(G(n,m))|S]
(1 + o(1))E[Zk,ω(G(n,m))]

∼
L∏

l=2

[1 + δl]
xl exp (−δlλl) . (2.6)

To obtain a matching lower bound, we claim that

E[Zn|S] ≥ (1 − o(1))E[Zk,ω(G(n,m))|S]. (2.7)

Indeed, assume for contradiction that (2.7) is false. Then there is ann-independentε > 0 such that for infinitely
manyn,

E[Zn|S] < (1− ε)E[Zk,ω(G(n,m))|S]. (2.8)

By Fact 2.2 there exists ann-independentξ = ξ(x2, . . . , xL) > 0 such thatP [S] ≥ ξ. Hence, (2.8) and Bayes’
formula imply that

E[Zn] = P [S] · E[Zn|S] + P [¬S]E[Zn|¬S]
≤ P [S] · E[Zn|S] + P [¬S]E[Zk,ω(G(n,m))|¬S] [asZn ≤ Zk,ω(G(n,m))]

≤ (1− ε)P [S] · E[Zk,ω(G(n,m))|S] + P [¬S] · E[Zk,ω(G(n,m))|¬S]
≤ E[Zk,ω(G(n,m))] − εξ · E[Zk,ω(G(n,m))|S]

= E[Zk,ω(G(n,m))] ·
(
1 + o(1)− εξ

L∏

l=2

(1 + δl)
xl exp(−δlλl)

)

= (1− Ω(1))E[Zk,ω(G(n,m))] [asδl, λl, xl remain fixed asn → ∞]. (2.9)

But (2.9) contradicts (2.4). Thus, we have established (2.7). Finally, combining (2.7) with (2.3) and (2.4), we get

E[Zn|S]
E[Zn]

≥ (1 − o(1))E[Zk,ω(G(n,m))|S]
(1 + o(1))E[Zk,ω(G(n,m))]

∼
L∏

l=2

[1 + δl]
xl exp (−δlλl) , (2.10)

and the assertion follows from (2.6) and (2.10). �

We now have all the pieces in place to apply Theorem 1.3.

Corollary 2.7. Assume that eitherk ≥ 3 and d ≤ 2(k − 1) ln(k − 1) or k ≥ k0 for a certain constantk0 and
d ≤ dk,cond. Then

lim
ε→0

lim
n→∞

P

[
Zk(G(n,m))

E[Zk(G(n,m))]
≥ ε

]
= 1. (2.11)

Proof. Let ω = ω(n) > 0 be any sequence such thatlimn→∞ ω(n) = ∞. Moreover, define a sequence(Zn)n≥1 of
random variables as follows.

Case 1:d ≤ 2(k − 1) ln(k − 1): let Zn = Zk,ω(G(n,m)).
Case 2:k ≥ k0 and 2(k − 1) ln(k − 1) < d < dk,cond: let Zn be equal to the random variablẽZk,ω(G(n,m))

from Proposition 2.5.

Then in either case Proposition 2.1 and 2.5 imply that

E[Zn] ∼ E[Zk,ω(G(n,m))]. (2.12)

We are going to apply Theorem 1.3 to the random variablesZn and(Cl,n)l≥2. Fact 2.2 readily implies thatC2,n, . . .
satisfySSC1. Furthermore, Proposition 2.3 and Corollary 2.6 imply thatfor any integersx2, . . . , xL ≥ 0,

E[Zn|∀2 ≤ l ≤ L : Cl,n = xl]

E[Zn]
∼

L∏

l=2

[1 + δl]
xl exp (−δlλl) .
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Thus, conditionSSC2is satisfied as well. Additionally, (2.2) establishesSSC3. Finally, SSC4is verified by Proposi-
tions 2.4 and 2.5. Hence, Theorem 1.3 applies and shows thatZn/E[Zn] converges in distribution to

W =

∞∏

l=2

(1 + δl)
Xl exp(−λlδl),

where(Xl)l≥2 is a family of independent random variables such thatXl has distributionPo(λl). In particular, since
W takes a positive (and finite) value with probability one, we conclude that for any sequenceω = ω(n) such that
limn→∞ ω(n) = ∞ we have

lim
δ→0

lim
n→∞

P

[ Zn

E[Zn]
≥ δ

]
= 1. (2.13)

To complete the proof, let(ε(n))n≥1 be a sequence of numbers in(0, 1) such thatlimn→∞ ε(n) = 0. Setω(n) =
− ln ε(n). Then by Proposition 2.1 and (2.12) there exists ann-independent numberc > 0 such that

E[Zk(G(n,m))] ≤ ωc · E[Zn], (2.14)

provided thatn is large enough. Thus, combining (2.13) and (2.14) and recalling thatZk(G(n,m)) ≥ Zn, we see that

lim
n→∞

P

[
Zk(G(n,m))

E[Zk(G(n,m))]
≥ ε(n)

]
≥ lim

n→∞
P

[ Zn

E[Zn]
≥ ωcε(n)

]
≥ lim

n→∞
P

[ Zn

E[Zn]
≥
√
ε(n)

]
= 1.

Since this holds for any sequenceε(n) → 0, the assertion follows. �

Proof of Theorem 1.1.Corollary 2.7 and Markov’s inequality imply that

lim
ω→∞

lim
n→∞

P [| lnZk(G(n,m))− lnE[Zk(G(n,m))]| < ω] = 1. (2.15)

To derive Theorem 1.1 from (2.15), letS be the event thatG(n,m) consists ofm distinct edges. Given thatS occurs,
G(n,m) is identical toG(n,m). Furthermore, Fact 2.2 implies thatP [S] = Ω(1). Consequently, (2.15) yields

1 = lim
ω→∞

lim
n→∞

P [| lnZk(G(n,m)) − lnE[Zk(G(n,m))]| < ω|S]
= lim

ω→∞
lim
n→∞

P [| lnZk(G(n,m)) − lnE[Zk(G(n,m))]| < ω] . (2.16)

Furthermore, (1.5) and Proposition 2.1 imply thatE[Zk(G(n,m))],E[Zk(G(n,m))] = Θ(kn(1 − 1/k)m). Hence,
E[Zk(G(n,m))] = Θ(E[Zk(G(n,m))]) and (2.16) implies that

lim
ω→∞

lim
n→∞

P [| lnZk(G(n,m)) − lnE[Zk(G(n,m))]| < ω] = 1,

which is the first part of Theorem 1.1.
To obtain the second assertion, letEt be the event that the random graphG(n,m) containst isolated triangles (i.e.,

t connected components that are isomorphic to the complete graph on3 vertices). It is well-known that fort ≥ 0 there
existsε = ε(d, t) > 0 such that

lim inf
n→∞

P [Et] > ε. (2.17)

Furthermore, if givenEt we letG′(n,m) denote the random graph obtained by choosing a set oft isolated triangles
randomly and removing them, thenG′(n,m) is identical toG(n − 3t,m − 3t). Hence, there is a constantC =
C(d, k) > 0 such that

E[Zk(G
′(n,m))] = E[Zk(G(n− 3t,m− 3t))] ≤ C(d, k) · kn−3t(1 − 1/k)m−3t. (2.18)

As the number ofk-colourings of a triangle isk(k − 1)(k − 2), (2.18) and (1.5) yield

E[Zk(G(n,m))|Et] = E[Zk(G(n− 3t,m− 3t))](k(k − 1)(k − 2))t

≤ C(d, k) · kn(1− 1/k)m−3t(1 − 1/k)t(1− 2/k)t

≤ C(d, k) · kn(1− 1/k)m · (1 − 1/(k − 1)2)t

≤ O(E[Zk(G(n,m))]) · (1 − 1/(k − 1)2)t.

Hence, for anyω > 0 we can chooset large enough so thatE[Zk(G(n,m))|Et] ≤ E[Zk(G(n,m))]/(2ω). In combi-
nation with Markov’s inequality, this implies that

P [lnZk(G(n,m)) ≥ lnE[Zk(G(n,m))] − ω|Et] ≤ 1/2. (2.19)
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Finally, combining (2.17) and (2.19), we conclude that for any finiteω there isε > 0 such that for large enoughn,

P [lnZk(G(n,m)) ≥ lnE[Zk(G(n,m))]− ω] ≥ P [lnZk(G(n,m)) ≥ lnE[Zk(G(n,m))]− ω|Et]P [Et] > ε/2.

This completes the proof of the second claim. �

Proof of Theorem 1.2.Assume for contradiction that(An)n≥1 is a sequence of events such that for some fixed number
0 < ε < 1/2 we have

lim
n→∞

πpl
k,n,m [An] = 0 while lim sup

n→∞
πrc
k,n,m [An] > ε. (2.20)

Let G(n,m, σ) denote a graph on[n] with preciselym edges, such that all of these edges are bichromatic underσ,
chosen uniformly at random. Then

E[Zk(G(n,m))1An ] =
∑

σ:[n]→[k]

P [σ is ak-colouring ofG(n,m) and(G(n,m), σ) ∈ An]

=
∑

σ:[n]→[k]

P [(G(n,m), σ) ∈ An|σ is ak-colouring ofG(n,m)]

·P [σ is ak-colouring ofG(n,m)]

=
∑

σ:[n]→[k]

P [G(n,m, σ) ∈ An] · P [σ is ak-colouring ofG(n,m)]

≤ O((1 − 1/k)m)
∑

σ:[n]→[k]

P [G(n,m, σ) ∈ An]

= O(kn(1 − 1/k)m)P [G(n,m,σ) ∈ An] = o(kn(1 − 1/k)m). (2.21)

By Corollary 2.7, for anyε > 0 there isδ > 0 such that for all large enoughn we have

P [Zk(G(n,m)) < δE[Zk(G(n,m))]] < ε/2. (2.22)

Now, letE be the event thatZk(G(n,m)) ≥ δE[Zk(G(n,m))] and letq = πrc
k,n,m [An|E ]. Then

E[Zk(G(n,m))1An ] ≥ δE[Zk(G(n,m))] · P [((G(n,m), τ ) ∈ An, E ]
≥ δqE[Zk(G(n,m))]P [E ] ≥ δqE[Zk(G(n,m))]/2

=
δq

2
· Ω(kn(1− 1/k)m). (2.23)

Combining (2.21) and (2.23), we obtainq = o(1). Hence, (2.22) implies that

πrc
k,n,m [An] = πrc

k,n,m [An|¬E ] · P [¬E ] + q · P [E ] ≤ P [¬E ] + q ≤ ε/2 + o(1),

in contradiction to (2.20). �

3. THE FIRST MOMENT

The aim in this section is to prove Proposition 2.1. The calculations that we perform follow the path beaten in [5, 14,
20]. LetZk,ρ(G) be the number ofk-colourings of the graphG with colour densityρ.

Lemma 3.1. Letk ≥ 3 andd ∈ (0,∞). Set

g : ρ ∈ Ck 7→ H(ρ) +
d

2
ln

(
1−

k∑

i=1

ρ2i

)
, α(d, k) = ln k +

d

2
ln

(
1− 1

k

)
, cn(d, k) = (2πn)

1−k
2 kk/2. (3.1)

(1) There exist numbersC1 = C1(k, d), C2 = C2(k, d) > 0 such that

C1n
1−k
2 exp [ng(ρ)] ≤ E [Zk,ρ(G(n,m))] ≤ C2 exp [ng(ρ)] for anyρ ∈ Ck(n). (3.2)

Moreover, if‖ρ− ρ⋆‖2 = o(1), then

E [Zk,ρ(G(n,m))] ∼ cn(d, k) exp [d/2 + ng(ρ)] . (3.3)

(2) Assume thatω = ω(n) → ∞. Then

E [Zk,ω(G(n,m))] ∼ |Bn,k(ω)|cn(d, k) exp [d/2 + nα(d, k)] . (3.4)
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Proof. By Stirling’s formula and the independence of the edges in the random graphG(n,m),

E[Zk,ρ(G(n,m))] =

(
n

ρ1n, . . . , ρkn

)(
1− 1

N

k∑

i=1

(
ρin

2

))m

, whereN =

(
n

2

)
. (3.5)

Further,
k∑

i=1

(
ρin

2

)
= N

(
k∑

i=1

ρ2i

)
+

n

2

(
k∑

i=1

ρ2i − 1

)
+O(1).

Consequently

m ln

(
1− 1

N

k∑

i=1

(
ρin

2

))
= m ln

[(
1 +

n

2N

)(
1−

k∑

i=1

ρ2i

)]
+ o(1)

= n
d

2
ln

(
1−

k∑

i=1

ρ2i

)
+

d

2
+ o(1). (3.6)

Eq. (3.2) follows from (3.5), (3.6) and Stirling’s formula.Moreover, (3.3) follows from (3.5) and (3.6) because
‖ρ− ρ⋆‖2 = o(1) implies that

∑k
i=1 ρ

2
i ∼ 1/k and

(
n

ρ1n, . . . , ρkn

)
∼ (2πn)

1−k
2 kk/2 exp [nH(ρ)] .

To obtain (3.4), we observe that ifρ ∈ Bn,k(ω), then‖ρ− ρ⋆‖2 = o(1). Further, by Taylor expansion we obtain

H(ρ) = ln k +O

(
k∑

i=1

(
ρi −

1

k

)2
)

= ln k + o(n−1), (3.7)

ln

(
1−

k∑

i=1

ρ2i

)
= ln

(
1− 1

k

)
+O

(
k∑

i=1

(
ρi −

1

k

)2
)

= ln

(
1− 1

k

)
+ o(n−1). (3.8)

Thus, (3.4) follows from (3.3), (3.7) and (3.8). �

Corollary 3.2. With the expressions from (3.1), for anyk ≥ 3 andd ∈ (0,∞)

E [Zk(G(n,m))] ∼ exp [d/2 + nα(d, k)]

(
1 +

d

k − 1

)− k−1
2

.

Proof. The functionsρ ∈ Ck 7→ H(ρ) andρ ∈ Ck 7→ d
2 ln(1−

∑k
i=1 ρ

2
i ) are both concave and attain their maximum

atρ = ρ⋆. Consequently, settingB(d, k) = k(1 + d
k−1 ) and expanding aroundρ = ρ⋆, we obtain

α(d, k)− B(d, k)

2
‖ρ− ρ⋆‖22 −O

(
‖ρ− ρ⋆‖32

)
≤ g(ρ) ≤ α(d, k)− B(d, k)

2
‖ρ− ρ⋆‖22. (3.9)

Plugging the upper bound from (3.9) into (3.2) and observingthat|Cn,k| ≤ nk = exp(o(n)), we find

S1 =
∑

ρ∈Cn,k

‖ρ−ρ⋆‖2>n−5/12

E [Zk,ρ(G(n,m))] ≤ C2 exp [α(d, k)] exp

[
−B(d, k)

2
n1/6

]
. (3.10)

On the other hand, (3.3) implies that

S2 =
∑

ρ∈Cn,k

‖ρ−ρ⋆‖2≤n−5/12

E [Zk,ρ(G(n,m))] ∼
∑

ρ∈Cn,k

‖ρ−ρ⋆‖2≤n−5/12

cn(d, k) exp(d/2) exp [ng(ρ)]

∼ cn(d, k) exp [d/2 + nα(d, k)]
∑

ρ∈Ck(n)

exp

[
−n

B(d, k)

2
‖ρ− ρ⋆‖22

]
. (3.11)

The last sum is almost in the standard form of a Gaussian summation, just that the vectorsρ ∈ Ck(n) that we sum
over are subject to the linear constraintρ1 + · · · + ρk = 1. We rid ourselves of this constraint by substituting
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ρk = 1− ρ1 − · · · − ρk−1. Formally, letJ be the(k − 1)× (k − 1)-matrix whose diagonal entries are equal to2 and
whose remaining entries are1. Then

∑

ρ∈Cn,k

exp

[
−n

B(d, k)

2
‖ρ− ρ⋆‖22

]
∼

∑

y∈ 1
nZk

exp

[
−n

B(d, k)

2
〈Jy, y〉

]

∼ (2πn)
k−1
2 k−

k
2

(
1 +

d

k − 1

)− k−1
2

[asdetJ = k]. (3.12)

Plugging (3.12) into (3.11), we obtain

S2 ∼ cn(d, k) exp [d/2 + nα(d, k)] (2πn)
k−1
2 k−

k
2

(
1 +

d

k − 1

)− k−1
2

= exp [d/2 + nα(d, k)]

(
1 +

d

k − 1

)− k−1
2

[using (3.1)]. (3.13)

Finally, comparing (3.10) and (3.13), we see thatS1 = o(S2). Thus,E[Zk(G(n,m))] = S1 + S2 ∼ S2, and the
assertion follows from (3.13). �

Proof of Proposition 2.1.The first assertion is immediate from Corollary 3.2. Moreover, the second assertion follows
from Corollary 3.2 and the second part of Lemma 3.1. �

4. COUNTING SHORT CYCLES

Throughout this section, we letx2, . . . , xL denote a sequence of non-negative integers. Moreover, letS be the event
thatCl,n = xl for l = 2, . . . , L. Additionally, letV(σ) be the event thatσ is a k-colouring of the random graph
G(n,m). We also recallλl, δl from (2.1).

4.1. Proof of Proposition 2.3. The key ingredient to the proof is the following lemma concerning the distribution of
the random variablesCl,n givenV(σ).

Lemma 4.1. Letµl =
dl

2l

[
1 + (−1)l

(k−1)l−1

]
. ThenP[S|V(σ)] ∼∏L

l=2
exp(−µl)

xl!
µxl

l for anyσ ∈ Bn,k(ω).

Before we establish Lemma 4.1, let us point out how it impliesProposition 2.3. By Bayes’ rule,

E [Zk,ω(G(n,m))|S] =
1

P[S]

∑

τ∈Bn,k(ω)

P[V(τ)]P[S|V(τ)]

∼
∏L

l=2
exp(−µl)

xl!
µxl

l

P[S]

∑

τ∈[k]n:τ∈B

P[V(τ)] [from Lemma 4.1]

∼
∏L

l=2
exp(−µl)

xl!
µxl

l

P[S]
E[Zk,ω(G(n,m))].

From Lemma 4.1 and Fact 2.2 we get that
∏L

l=2
exp(−µl)

xl!
µxl

l

P[S]
∼

L∏

l=2

[1 + δl]
xl exp (−δlλl) ,

whence Proposition 2.3 follows. �

4.2. Proof of Lemma 4.1. We are going to show that for any fixed sequence of integersm2, . . . ,mL ≥ 0, the joint
factorial moments satisfy

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] ∼
L∏

l=2

µml

l . (4.1)

Then Lemma 4.1 follows from [9, Theorem 1.23].
We consider the number of sequences ofm2 + · · ·+mL distinct cycles such thatm2 corresponds to the number of

cycles of length2, and so on. Clearly this number is equal to(C2,n)m2 · · · (CL,n)mL . Let Y be the number of those
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sequences of cycles such that any two cycles are vertex-disjoint. Also, letY ′ denote the number of sequences which
have intersecting cycles. Clearly it holds that

E [(C2,n)m2 · · · (CL,n)mL |V(σ)] = E[Y |V(σ)] + E[Y ′|V(σ)]. (4.2)

ForE[Y ′|V(σ)] we use the following claim, whose proof follows below.

Claim 4.2. It holds thatE[Y ′|V(σ)] = O(n−1).

Hence, we need to count vertex disjoint cycles givenV(σ). To this end, we adapt the argument for random regular
graphs from [20, Section 2]. Thus, we consider rooted, directed cycles, first. This will introduce a factor of2l for the
number of cycles of lengthl. That is, ifDl is the number of rooted, directed cycles of lengthl thenDl = 2lCl.

For a rooted directed cycle(v1, . . . , vl) of lengthl, we call(σ(v1), . . . , σ(vl)) the typeof the cycle underσ. For
t = (a1, . . . , al) let Dl,t denote the number of rooted, directed cycles (of lengthl and) typet. We claim that

E [Dl,t|V(σ)] ∼
(n
k

)l (m)l
N l(1−F(σ)/N)l

∼
(

d

k − 1

)l

with N =

(
n

2

)
. (4.3)

Indeed, sinceσ is (ω, n)-balanced, the number of ways of choosing a vertex of colourti is (1+o(1))n/k, and we have
got to choosel vertices in total. Thus, the total number of ways of choosingl vertices(v1, . . . , vl) such thatσ(vi) = ti
for all i is (1 + o(1))(n/k)l. In addition, each edge{vi, vi+1} of the cycle is present in the graph with a probability
asymptotically equal tom/(N − F(σ))This explains the first asymptotic equality in (4.3). The second one follows
becausem ∼ dn/2 andF(σ) ∼ 1/kN (asσ ∈ Bn,k(ω)).

In particular, the r.h.s. of (4.3) is independent of the typet. For a givenl let Tl signify the number of all possible
types of cycles of lengthl. Thus,Tl is the set of all sequences(t1, . . . , tl) such thatti+1 6= ti for all 1 ≤ i < l
andtl 6= t1. Let T1 = 0. ThenTl satisfies the recurrenceTl + Tl−1 = k(k − 1)l−1 (cf. [20, Section 2]).2 Hence,
Tl = (k − 1)l + (−1)l(k − 1). Combining this formula with (4.3), we obtain

E [Dl|V(σ)] ∼ Tl · E [Dl,t|V(σ)] ∼
(
1 +

(−1)l

(k − 1)l−1

)
· dl.

Hence, recalling thatCl =
1
2lDl, we get

E [Cl|V(σ)] ∼ dl

2l

[
1 +

(−1)l

(k − 1)l−1

]
. (4.4)

In fact, sinceY considers only vertex disjoint cycles andl, m2, . . . ,mL remain fixed asn → ∞, (4.4) yields

E[Y |V(σ)] ∼
L∏

l=2

(
dl

2l

[
1 +

(−1)l

(k − 1)l−1

])ml

.

Plugging the above relation and Claim 4.2 into (4.2) we get (4.1). The proposition follows. �

Proof of Claim 4.2: For every subsetR of l vertices, wherel ≤ L let IR be equal to 1 if the number of edges with
both end inR is at least|R|+1. Let the eventHL = {

∑
R:|R|≤L IR > 0}. It is direct to check that ifY ′ > 0 then the

eventHL occurs. This implies that

P[Y ′ > 0|V(σ)] ≤ P[HL|V(σ)].
The claim follows by bounding appropriatelyP[HL|V(σ)]. For this we are going to use Markov’s inequality, i.e.

P[HL|V(σ)] ≤ E



∑

R:|R|≤L

IR|V(σ)


 =

L∑

l=1

∑

R:|R|=l

E [IR|V(σ)] .

For any setR such that|R| = l, we can putl + 1 edges inside the set in at most
((l2)
l+1

)
ways. Clearly conditioning on

V(σ) can only reduce the number of different placings of the edges.

2To see this, observe thatk(k − 1)l is the number of all sequences(t1, . . . , tl) such thatti+1 6= ti for all 1 ≤ i < l. Any such sequence
either satisfiestl 6= t1, which is accounted for byTl, or tl = t1 andtl−1 6= t1, in which case it is contained inTl−1.
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Using inclusion/exclusion, for a fixed setR of cardinalityl we get that

E [IR|V(σ)] ≤
( (l

2

)

l + 1

) l+1∑

i=0

(
l + 1

i

)
(−1)i

(
1− i

N −F (σ)

)m

≤
( (l

2

)

l + 1

)(
m

N −F (σ)

)l+1

[from the Binomial theorem]

∼
( (l

2

)

l + 1

)(
d

n(1− 1/k)

)l+1

. [sincem = dn
2 , andF (σ) ∼ 1

kN ].

It holds that

P[Hm|V(σ)] ≤ (1 + o(1))
L∑

l=1

(
n

l

)( (l
2

)

l + 1

)(
d

n(1 − 1/k)

)l+1

≤ (1 + o(1))

L∑

l=1

(ne
l

)l ( le

2

)l+1(
d

n(1 − 1/k)

)l+1

[since
(
i
j

)
≤ (ie/j)

j ]

≤ 1 + o(1)

n

L∑

l=1

led

2(1− 1/k)

(
e2d

2(1− 1/k)

)l

= O(n−1),

the last equality holds sinceL is a fixed number. The claim follows. �

5. THE SECOND MOMENT COMPUTATION

In this section we prove the second moment bounds claimed in Propositions 2.4 and 2.5, which constitute the main
technical contribution of this work. While here we need an asymptotically tight expression for the second moment, in
prior work on colouringG(n,m) the second moment was merely computedup to a constant factor[5, 7, 14]. Only in
the case of random regular graphs was the second moment computed up to a factor of1 + o(1) [20]. In addition, all
of these papers confine themselves to the case of colourings whose colour densities are(O(1), n)-balanced, whereas
here we need to deal with(ω, n)-balanced colour densities for a diverging functionω = ω(n) → ∞.

Thus, the plan is to extend the arguments from [5, 7, 14] to geta precise asymptotic result, and to cover the
(ω, n)-balanced case. Unsurprisingly, in the course of this we will frequently encounter formulas that resemble those
of [5, 7, 14], and occasionally we will be able to reuse some ofthe calculations done in those papers. Furthermore,
to determine the precise constant we can harness a bit of linear algebra from [20]. Throughout this sectionω = ω(n)
stands for a function that tends to∞ (slowly).

5.1. The overlap. Following [5], forσ, τ : [n] → [k] we define theoverlap matrixρ(σ, τ) = (ρij(σ, τ))i,j∈[k] as the
k × k-matrix with entries

ρij(σ, τ) =
1

n
· |σ−1(i) ∩ τ−1(j)|.

Moreover, for ak × k-matrixρ = (ρij) we introduce the shorthands

ρi⋆ =

k∑

j=1

ρij , ρ · ⋆ = (ρi⋆)i∈[k], ρ⋆j =

k∑

i=1

ρij , ρ⋆ · = (ρ⋆i)i∈[k].

Thus, for anyσ, τ : [n] → [k] we haveρ · ⋆, ρ⋆ · ∈ Ck(n).
Let Rk denote the set of all probability measuresρ = (ρij)i,j∈[k] on [k] × [k] and letρ̄ signify thek × k-matrix

with all entries equal tok−2, the barycentre ofRk. Additionally, we introduce

Rn,k = {ρ(σ, τ) : σ, τ : [n] → [k]} ,
Rint

n,k =
{
ρ ∈ Rn,k : ρij > 1/k3 for all i, j ∈ [k]

}
,

Rbal
n,k(ω) =

{
ρ ∈ Rint

n,k : |ρi⋆ − k−1| ≤ ω−1n−1/2, |ρ⋆i − k−1| ≤ ω−1n−1/2 for all i ∈ [k]
}
,

Rbal
n,k(ω, η) =

{
ρ ∈ Rbal

n,k(ω) : ‖ρ− ρ̄‖2 ≤ η
}

(η > 0).
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For a given graphG on [n], let Z(2)
k,ρ(G) be the number of pairs(σ, τ) of k-colourings ofG whose overlap isρ.

Then by the linearity of expectation,

E
[
Zk,ω(G(n,m))2

]
=

∑

ρ∈Rbal
n,k(ω)

E[Z
(2)
k,ρ(G(n,m))]. (5.1)

We are going to show that the r.h.s. of (5.1) is dominated by the contributions withρ “close to” ρ̄. More precisely, let

Z
(2)
k,ω,η(G) =

∑

ρ∈Rbal
n,k(ω,η)

Z
(2)
k,ρ(G) for anyη > 0.

Then the second moment argument performed in [5] fairly directly yields the following statement.

Proposition 5.1. Assume thatk ≥ 3 and thatd < 2(k − 1) ln(k − 1). Then for any fixedη > 0 it holds that

E[Zk,ω(G(n,m))2] ∼ E[Z
(2)
k,ω,η(G(n,m))].

In addition, the second moment argument from [14] implies

Proposition 5.2. There is a constantk0 > 3 such that fork ≥ k0 and that2(k − 1) ln(k − 1) ≤ d < dk,cond the
following is true. There exists an integer-valued random variable 0 ≤ Z̃k,ω ≤ Zk,ω that satisfies

E[Z̃k,ω(G(n,m))] ∼ E [Zk,ω(G(n,m))]

and such that for any fixedη > 0 we haveE[Z̃k,ω(G(n,m))2] ≤ (1 + o(1))E[Z
(2)
k,ω,η(G(n,m))].

Since the above statements do not quite appear in this form in[5, 14], we will prove them in Sections 5.4 and 5.5,
respectively.

5.2. Homing in on ρ̄. Having reduced our task to studying overlapsρ such that‖ρ− ρ̄‖2 ≤ η for a small but fixed
η > 0, in this section we are going to argue that, in fact, it suffices to considerρ such that‖ρ− ρ̄‖2 ≤ n−5/12 (where
the constant5/12 is somewhat arbitrary; any number smaller than1/2 would do). More precisely, we have

Proposition 5.3. Assume thatk ≥ 3 and thatd < dk,cond. There exists a numberη0 = η0(d, k) such that for any
0 < η < η0 we have

E[Z
(2)
k,ω,η(G(n,m))] ∼ E[Z

(2)

k,ω,n−5/12(G(n,m))].

In order to prove Proposition 5.3, we first need the followingelementary estimates.

Fact 5.4. For anyk ≥ 3, d ∈ (0,∞) the following estimates are true.

(1) Letρ ∈ Rint
n,k. Then

E

[
Z

(2)
k,ρ(G(n,m))

]
∼

√
2πn

1−k2

2

∏k
i,j=1

√
2πρij

exp[d/2 + nH(ρ) +m ln(1− ‖ρ · ⋆‖22 − ‖ρ⋆ · ‖22 + ‖ρ‖22)] (5.2)

(2) For anyρ ∈ Rbal
n,k(ω) we have

E

[
Z

(2)
k,ρ(G(n,m))

]
∼

√
2πn

1−k2

2

∏k
i,j=1

√
2πρij

exp[d/2 + nH(ρ) +m ln(1− 2/k + ‖ρ‖22)]. (5.3)

Proof. By Stirling’s formula, the total number ofσ, τ with overlapρ ∈ Rint
n,k is given by:

(
n

ρ11n, . . . , ρkkn

)
∼

√
2πn− k2

−1
2



∏

i,j

1√
2πρij


 exp [nH(ρ)] . (5.4)

To obtainE
[
Z

(2)
k,ρ(G(n,m))

]
, we need to multiply this number by the probability that two mapsσ, τ with overlapρ

are both colourings of a randomly chosen graph. The number of“forbidden” edges joining two vertices with the same
13



colour under eitherσ or τ is given by

F(σ, τ) =

k∑

i=1

(
ρi⋆n

2

)
+

k∑

j=1

(
ρ⋆jn

2

)
−

k∑

i,j=1

(
ρijn

2

)

= N




k∑

i=1

ρ2i⋆ +

k∑

j=1

ρ2⋆j −
k∑

i,j=1

ρ2ij


+

n

2




k∑

i=1

ρ2i⋆ +

k∑

j=1

ρ2⋆j −
k∑

i,j=1

ρ2ij − 1


+O(1).

Therefore, the probability thatσ andτ are both colourings ofG(n,m) depends only on their overlapρ, and is

P [σ, τ arek-colourings ofG(n,m)] =
(N −F(σ, τ))

m

Nm

∼ exp


m ln


1−

k∑

i=1

ρ2i⋆ −
k∑

j=1

ρ2⋆j +

k∑

i,j=1

ρ2ij


+

d

2


 . (5.5)

Eq. (5.2) is obtained by multiplying (5.5) with (5.4).
To prove the second claim, letǫi = ρi⋆ − 1/k for i ∈ [k]. Because

∑k
i,j=1 ρij = 1 we have

∑k
i=1 ǫi = 0.

Consequently,

‖ρ · ⋆‖22 =
1

k
+

k∑

i=1

ǫ2i . (5.6)

Further, if ρ is (ω, n)-balanced, thenǫi = o(n−1/2) for all i ∈ [k]. Hence, (5.6) yields‖ρ · ⋆‖22 = 1
k + o(n−1).

Similarly,‖ρ⋆ · ‖22 = 1
k + o(n−1). Therefore, for any(ω, n)-balancedρ,

m ln
(
1− ‖ρ · ⋆‖22 − ‖ρ⋆ · ‖22 + ‖ρ‖22

)
∼ m ln

(
1− 2

k
+ ‖ρ‖22

)
.

Plugging the above into (5.2) completes the proof. �

To evaluate the exponential part in Eq. (5.3), we require thefollowing Lemma.

Lemma 5.5. Letk ≥ 3 andd < (k − 1)2. Letα(d, k) be as in (3.1) and set

Cn(d, k) = exp(d/2)kk
2

(2πn)
1−k2

2 , D(d, k) = k2

(
1− d

(k − 1)
2

)
.

• If ρ ∈ Rbal
n,k(ω) satisfies‖ρ− ρ̄‖2 ≤ n−5/12, then

E

[
Z

(2)
k,ρ(G(n,m))

]
∼ Cn(d, k) exp

[
2nα(d, k)− n

D(d, k)

2
‖ρ− ρ̄‖22

]
. (5.7)

• There exist numbersη = η(d, k) > 0 andA = A(d, k) > 0 such that ifρ ∈ Rbal
n,k(ω) satisfies‖ρ − ρ̄‖2 ∈

(n−5/12, η), then

E

[
Z

(2)
k,ρ(G(n,m))

]
= exp

[
2nα(d, k)−An1/6

]
. (5.8)

Proof. Following [5], we consider

f : Rk → R, ρ 7→ H(ρ) +
d

2
ln


1− 2

k
+

k∑

i,j=1

ρ2ij


 . (5.9)
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Then Fact 5.4 yieldsE[Z(2)
k,ρ(G(n,m))] ∼ Cn(d, k) exp [nf(ρ)]. The functionf satisfiesf(ρ̄) = 2α(d, k). Further,

expandingf aroundρ̄ by writing ǫ = ρ− ρ̄ (so that
∑k

i,j=1 ǫij = 0) gives

f(ρ) = H(ρ̄)− k2

2

k∑

i,j=1

ǫ2ij +O
(
‖ǫ‖32

)
+

d

2
ln


1− 2

k
+

1

k2
+

k∑

i,j=1

ǫ2ij




= f(ρ̄)− D(d, k)

2
‖ǫ‖22 +O(‖ǫ‖32). (5.10)

Consequently for‖ρ− ρ̄‖2 ≤ n−5/12,

exp [nf(ρ)] = exp

[
nf(ρ̄)− n

D(d, k)

2
‖ρ− ρ̄‖22 +O(n−1/4)

]
,

whence (5.7) follows.
We now prove Eq. (5.8). Similarly to (5.10) and becausef is smooth in a neighborhood of̄ρ, there existη > 0 and

A > 0 such that for‖ρ− ρ̄‖2 ≤ η,
f(ρ) ≤ f(ρ̄)−A‖ρ− ρ̄‖22.

Hence, if‖ρ− ρ̄‖2 ∈ (n−5/12, η), then

E

[
Z

(2)
k,ρ(G(n,m))

]
= O

(
n

1−k2

2

)
exp [nf(ρ)] ≤ exp

[
2nα(d, k)−An1/6

]
,

as claimed. �

Proof of Proposition 5.3.We fix η > 0 andA > 0 as given by Lemma 5.5. Fixingρ0 ∈ Rbal
n,k(ω, η) such that

‖ρ0 − ρ̄‖2 ≤ k/n, we obtain from the first part of Lemma 5.5 that

E[Z
(2)

k,ω,n−5/12(G(n,m))] ≥ E

[
Z

(2)
k,ρ0

(G(n,m))
]
∼ Cn(d, k) exp [2nα(d, k)] . (5.11)

On the other hand, because|Rbal
n,k(ω, η)| is bounded by a polynomial inn, the second part of Lemma 5.5 yields

∑

ρ∈Rbal
n,k(ω,η)

‖ρ−ρ̄‖2>n−5/12

E

[
Z

(2)
k,ρ(G(n,m))

]
≤ exp

[
2nα(d, k)−An1/6 +O(lnn)

]
. (5.12)

Combining (5.11) and (5.12), we obtain

E[Z
(2)
k,ω,η(G(n,m))] ∼

∑

ρ∈Rbal
n,k(ω,n−5/12)

E

[
Z

(2)
k,ρ(G(n,m))

]
∼ E[Z

(2)

k,ω,n−5/12(G(n,m))],

as claimed. �

5.3. The leading constant.Here we compute the contribution of overlap matricesρ ∈ Rbal
n,k(ω, n

−5/12).

Proposition 5.6. Assume thatk ≥ 3, d < (k − 1)2. Then withcn(d, k) from (3.1),

E

[
Z

(2)

k,ω,n−5/12(G(n,m))
]
∼ (|Bn,k(ω)|cn(d, k) exp [nα(d, k)])2 exp(d/2)

(
1− d

(k − 1)2

)− (k−1)2

2

.

In order to prove the Proposition, we will need the followinglemma regarding Gaussian summations over matrices
with coefficients in1

nZ whose lines and columns sums to zero. Thus, let

Sn =

{
(ǫi,j)1≤i≤k

1≤j≤k
, ∀i, j ∈ [k], ǫi,j ∈

1

n
Z, ∀j ∈ [k],

k∑

i=1

ǫij =

k∑

i=1

ǫji = 0

}
. (5.13)

Lemma 5.7. Letk ≥ 2, d < (k − 1)2 andD > 0 be fixed. Then

∑

ǫ∈Sn

exp

[
−n

D

2
‖ǫ‖22 + o(n1/2)‖ǫ‖2

]
∼
(√

2πn
)(k−1)2

D−
(k−1)2

2 k−(k−1). (5.14)

Lemma 5.7 and its proof are very similar to an argument used in[20, Section 3]. In fact, Lemma 5.7 follows from
15



Lemma 5.8([20, Lemma 6 (b) and 7 (c)]). There is a(k − 1)2 × (k − 1)2-matrixH = (H(i,j),(k,l))i,j,k,l∈[k−1] such
that for anyε = (εij)i,j∈[k] ∈ Sn we have

∑

i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′ = ‖ε‖22 .

This matrixH is positive definite anddetH = k2(k−1).

Proof of Lemma 5.7.Together with the Euler-Maclaurin formula and Lemma 5.8, a Gaussian integration yields

∑

ǫ∈Sn

exp

[
−n

D

2
‖ǫ‖22 + o(n1/2)‖ǫ‖2

]
=

∑

ǫ∈(Z/n)(k−1)2

exp


−n

D

2

∑

i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′ + o(n1/2)‖ǫ‖2




∼ n(k−1)2
∫

. . .

∫
exp


−n

D

2

∑

i,j,i′,j′∈[k−1]

H(i,j),(i′,j′)εijεi′j′


dε11 · · · dε(k−1)(k−1)

∼
(√

2πn
)(k−1)2

D
−(k−1)2

2 (detH)−1/2 ∼
(√

2πn
)(k−1)2

D
−(k−1)2

2 k−(k−1),

as desired. �

Proof of Proposition 5.6.Forρ(1), ρ(2) ∈ Bn,k(ω), we introduce the set of overlap matrices

Rbal
n,k(ω, n

−5/12, ρ(1), ρ(2)) = {ρ ∈ Rbal
n,k(ω, n

−5/12) : ρ · ⋆ = ρ(1), ρ⋆ · = ρ(2)}.
In particular,Rbal

k,n(ω, n
−5/12, ρ(1), ρ(2)) contains the “product” overlapρ(1) ⊗ ρ(2) defined by(ρ(1) ⊗ ρ(2))ij =

ρ
(1)
i ρ

(2)
j . Becauseρ(1) andρ(2) are(ω, n)-balanced, we find

‖ρ(1) ⊗ ρ(2) − ρ̄‖2 = o(n−1/2). (5.15)

With these definitions we see that

E

[
Z

(2)

k,ω,n−5/12(G(n,m))
]
=

∑

ρ(1)∈Bn,k(ω)

∑

ρ(2)∈Bn,k(ω)

∑

ρ∈Rbal
n,k(ω,n−5/12,ρ(1),ρ(2))

E

[
Z

(2)
k,ρ(G(n,m))

]
. (5.16)

Let us fix from now on two(ω, n)-balanced colour densitiesρ(1), ρ(2) and simplify the notation by writing

R̂ = Rbal
n,k(ω, n

−5/12, ρ(1), ρ(2)), ρ̂ = ρ(1) ⊗ ρ(2).

Thus, we are going to evaluate

Σ1 =
∑

ρ∈R̂

E

[
Z

(2)
k,ρ(G(n,m))

]
.

Eq. (5.7) of Lemma 5.5 gives

Σ1 ∼
∑

ρ∈R̂

Cn(d, k) exp

[
2nα(d, k)− n

D(d, k)

2
‖ρ− ρ̄‖22

]
. (5.17)

Further, by the triangle inequality,

‖ρ− ρ̂‖2 − ‖ρ̂− ρ̄‖2 ≤ ‖ρ− ρ̄‖2 ≤ ‖ρ− ρ̂‖2 + ‖ρ̂− ρ̄‖2. (5.18)

Along with (5.15) this gives‖ρ − ρ̄‖22 = ‖ρ− ρ̂‖22 + o(n−1/2)‖ρ− ρ̂‖2 + o(n−1). Hence by replacing in (5.17) we
obtain with the notations of Lemma 5.5

Σ1 ∼
∑

ρ∈R̂

Cn(d, k) exp

[
2nα(d, k)− n

D(d, k)

2
‖ρ− ρ̂‖22 +o(n1/2)‖ρ− ρ̂‖2 + o(1)

]

∼ Cn(d, k) exp [2nα(d, k)]
∑

ρ∈R̂

exp

[
−n

D(d, k)

2
‖ρ− ρ̂‖22 + o(n1/2)‖ρ− ρ̂‖2

]
. (5.19)

Moreover, withSn as in (5.13), it follows from (5.18) that{
ρ̂+ ǫ : ǫ ∈ Sn, ‖ǫ‖2 ≤ n−5/12/2

}
⊂
{
ρ ∈ R̂ : ‖ρ− ρ̄‖2 ≤ n−5/12

}
⊂ {ρ̂+ ǫ : ǫ ∈ Sn} .

16



Hence,

Σ2 = Cn(d, k) exp [2nα(d, k)]
∑

ǫ∈Sn

‖ǫ‖2>n−5/12/2

exp

[
−n

D(d, k)

2
‖ǫ‖22(1 + o(1))

]

= Cn(d, k) exp [2nα(d, k)]
∑

l∈Z/n

l>n−5/12/2

∑

ǫ∈Sn

‖ǫ‖2=l

exp

[
−nl2

D(d, k)

2
(1 + o(1))

]

= Cn(d, k) exp [2nα(d, k)]O
(
nk2
)
exp

[
−D(d, k)

2
n1/6

]
.

Consequently, (5.19) yieldsΣ2 = o(Σ1). Thus, we obtain from Lemma 5.7 that

Σ1 ∼ Cn(d, k) exp [2nα(d, k)]
∑

ǫ∈Sn

exp

[
−n

D(d, k)

2
‖ǫ‖22 + o(n−1/2)‖ǫ‖2

]
.

∼ Cn(d, k) exp [2nα(d, k)]
(√

2πn
)(k−1)2

k−k(k−1)

(
1− d

(k − 1)2

)− (k−1)2

2

. (5.20)

In particular, the last expression is independent of the choice of the vectorsρ1, ρ2 that definedR̂. Therefore, substi-
tuting (5.20) in the decomposition (5.16) completes the proof of Proposition 5.6. �

Proof of Propositions 2.4 and 2.5.First observe that

exp


∑

l≥2

λlδ
2
l


 =

(
1− d

(k − 1)2

)−
(k−1)2

2

exp

(
−d

2

)
.

Proposition 2.4 is immediately obtained by combining Proposition 3.1 with Propositions 5.1, 5.3 and 5.6. On the other
hand, Proposition 2.5 is obtained by combining Proposition3.1 with Propositions 5.2, 5.3 and 5.6. �

5.4. Proof of Proposition 5.1. Let

f : ρ ∈ Rk → R, ρ 7→ H(ρ) +
d

2
ln

(
1− 2

k
+ ‖ρ‖22

)
. (5.21)

The following is a consequence of Fact 5.4.

Fact 5.9. Letk ≥ 3, d ∈ (0,∞) andρ ∈ Rbal
n,k(ω). ThenE[Z(2)

k,ρ(G(n,m))] = exp(nf(ρ) +O(lnn)).

Fact 5.9 reduces our task to studying the functionf(ρ). For the range ofd covered by Proposition 5.1, this analysis is
the main technical achievement of [5], where (essentially)the following statement is proved.

Lemma 5.10. Assume thatk ≥ 3 and thatd ≤ 2(k − 1) ln(k − 1). For anyn > 0 and any(ω, n)-balanced overlap
matrixρ we have

f(ρ) ≤ f(ρ̄)− 2(k − 1) ln(k − 1)− d

4(k − 1)2
(
k2‖ρ‖22 − 1

)
+ o(1). (5.22)

Proof. For ρ such that
∑k

i=1 ρij =
∑k

i=1 ρji = 1/k the bound (5.22) is proved in [5, Section 3]. This implies
that (5.22) also holds forρ ∈ Rbal

n,k(ω), becausef is uniformly continuous on the compact setRk. �

Now, assume thatk andd satisfy the assumptions of Proposition 5.1 and letη > 0 be any fixed number. The
functionR → R, ρ → k2‖ρ‖2 is smooth, strictly convex and attains its global minimum of1 atρ = ρ̄. Consequently,
there existck > 0 such that if‖ρ− ρ̄‖2 > η, then

(
k2‖ρ‖2 − 1

)
≥ ck. Hence, Fact 5.9 and Lemma 5.10 yield

∑

ρ∈Rbal
n,k(ω)

‖ρ−ρ̄‖2>η

E

[
Z

(2)
k,ρ(G(n,m))

]
≤ exp [nf(ρ̄)− nckdk + o(n)] , wheredk =

2(k − 1) ln(k − 1)− d

4(k − 1)2
> 0. (5.23)
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On the other hand, fixing anyρ0 ∈ Rbal
n,k(ω) such that‖ρ0 − ρ̄‖2 ≤ k/n, we obtain from Fact 5.9 that

∑

ρ∈Rbal
n,k(ω)

‖ρ−ρ̄‖2≤η

E

[
Z

(2)
k,ρ(G(n,m))

]
≥ E

[
Z

(2)
k,ρ0

(G(n,m))
]
≥ exp [nf(ρ̄) +O(lnn)] . (5.24)

Combining (5.23) and (5.24), we conclude thatE[Z2
k,ω(G(n,m))] ∼ E[Z

(2)
k,ω,η(G(n,m))], thereby completing the

proof of Proposition 5.1.

5.5. Proof of Proposition 5.2. We continue to letf denote the function from (5.21). LetB be the set of allρ ∈ Rk

such that
k∑

j=1

ρij =
k∑

j=1

ρji = 1/k for all i ∈ [k].

Further, let us say thatρ ∈ Rk is s-stableif ρ has preciselys entries in the interval(0.51/k, 1]. Then anyρ ∈ B is s-
stable for somes ∈ {0, 1, . . . , k}. In addition, letκ = ln20 k/k and let us callρ ∈ Rk separableif kρij 6∈ (0.51, 1−κ)
for all i, j ∈ [k]. The following lemma summarizes the analysis of the function f performed in [14, Section 4].

Lemma 5.11. For anyc > 0 there isk0 > 0 such that for allk > k0 and all d such that(2k − 1) ln k − c ≤ d ≤
(2k − 1) ln k the following statements are true.

(1) If 1 ≤ s < k, then for all separables-stableρ ∈ B we havef(ρ) < f(ρ̄).
(2) If ρ ∈ B is 0-stable andρ 6= ρ̄, thenf(ρ) < f(ρ̄).
(3) If d = (2k − 1) ln k − 2, then for all separable,k-stableρ ∈ B we havef(ρ) < f(ρ̄).

Further, let us call ak-colouringσ of a graphG on [n] separableif for any otherk-colouringτ of G the overlap
matrixρ(σ, τ) is separable. The following is implicit in [14, Section 3].

Lemma 5.12. There isk0 > 0 such that for allk > k0 and all d such that2(k − 1) ln(k − 1) ≤ d ≤ (2k − 1) lnk
the following is true. Let̄Zk,ω(G(n,m)) denote the number of(ω, n)-balancedk-colourings ofG(n,m) that fail to be
separable. ThenE[Z̄k,ω(G(n,m))] = o(E[Zk,ω(G(n,m))]).

To state the final ingredient to the proof of Proposition 5.2,we need the following definition. For a graphG on [n]
and ak-colouringσ of G we letC(G, σ) be the set of allτ ∈ Bn,k(ω) that arek-colourings ofG such thatρ(σ, τ) is
k-stable.

Lemma 5.13([7]). There isk0 > 0 such that for allk > k0 and alld such that(2k − 1) ln k − 2 ≤ d ≤ dk,cond the
following is true. LetZ̃k,ω(G(n,m)) denote the number of(ω, n)-balancedk-colourings such that|C(G(n,m), σ)| >
E[Zk,ω(G(n,m))]/n. ThenE[Z̃k,ω(G(n,m))] = o(E[Zk,ω(G(n,m))]).

Proof of Proposition 5.2.Assume thatk ≥ k0 for a large enough numberk0 and thatd ≥ 2(k − 1) ln(k − 1). We
consider two different cases.

Case 1:d ≤ (2k − 1) ln k − 2: let Z̃k,ω be the number of(ω, n)-balanced separablek-colourings ofG(n,m).
Then Lemma 5.12 implies thatE[Z̃k,ω(G(n,m))] ∼ E [Zk,ω(G(n,m))]. Furthermore, in the case thatd =
(2k−1) ln k−2, the second and the third statement of Lemma 5.11 imply thatf(ρ) < f(ρ̄) for any separable
ρ ∈ B \ {ρ̄}. Becausef(ρ) is the sum of the concave functionρ 7→ H(ρ) and the convex functionρ 7→
d
2 ln(1 − 2/k ‖ρ‖22), this implies that, in fact, for anyd ≤ (2k − 1) ln k − 2 we havef(ρ) < f(ρ̄) for any
separableρ ∈ B \ {ρ̄}. Hence, the uniform continuity off onRk and Fact 5.9 yield

E[Z̃k,ω(G(n,m))2] ≤ (1 + o(1))
∑

ρ∈Rbal
n,k(ω)

ρ is 0-stable

E

[
Z

(2)
k,ρ(G(n,m))

]
. (5.25)

Finally, combining (5.25) with Fact 5.9 and the third part ofLemma 5.11, we see that for anyη > 0,
∑

ρ∈Rbal
n,k(ω)

ρ is 0-stable
‖ρ−ρ̄‖2>η

E

[
Z

(2)
k,ρ(G(n,m))

]
≤

∑

ρ∈Rbal
n,k(ω)

ρ is 0-stable
‖ρ−ρ̄‖2>η

exp(nf(ρ) +O(lnn)) = o
(
E[Z

(2)
k,ω,η(G(n,m))]

)
. (5.26)

The assertion follows by combining (5.25) and (5.26).
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Case 2:(2k − 1) ln k − 2 < d < dk,cond: let Z̃k,ω be the number of(ω, n)-balanced separablek-colourings
σ of G(n,m) such that|C(G(n,m), σ)| ≤ E[Zk,ω(G(n,m))]/n. Then Lemmas 5.12 and 5.13 imply that
E[Z̃k,ω(G(n,m))] ∼ E [Zk,ω(G(n,m))]. Furthermore, the first part of Lemma 5.11 and Fact 5.9 entail
that (5.25) holds for this random variablẽZk,ω. Moreover, as in the previous case (5.25), Fact 5.9 and the
third part of Lemma 5.11 show that (5.26) holds true for any fixedη > 0.

In either case the assertion follows by combining (5.25) and(5.26). �
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