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Abstract

In a Markov chain started at a state x, the hitting time τ(y) is the first time that the chain
reaches another state y. We study the probability Px(τ(y) = t) that the first visit to y occurs
precisely at a given time t. Informally speaking, the event that a new state is visited at a large
time t may be considered a “surprise”. We prove the following three bounds:

• In any Markov chain with n states, Px(τ(y) = t) ≤ n

t
.

• In a reversible chain with n states, Px(τ(y) = t) ≤
√
2n
t

for t ≥ 4n+ 4.

• For random walk on a simple graph with n ≥ 2 vertices, Px(τ(y) = t) ≤ 4e logn

t
.

We construct examples showing that these bounds are close to optimal. The main feature of
our bounds is that they require very little knowledge of the structure of the Markov chain.

To prove the bound for random walk on graphs, we establish the following estimate con-
jectured by Aldous, Ding and Oveis-Gharan (private communication): For random walk on an
n-vertex graph, for every initial vertex x,

∑

y

(

sup
t≥0

pt(x, y)

)

= O(log n).

∗partially supported by EPSRC grant EP/103372X/1
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1 Introduction

Suppose that a Markov chain with n states is run for a long time t ≫ n. It would be surprising
if the state visited on the t-th step was not visited at any earlier time — if a state is likely, then
we expect it to have been visited earlier, and if it is rare, we do not expect that its first visit will
occur at precisely time t. How surprised should we be?

Let X = {Xt} be a Markov chain with finite state space S of size n, and let Px denote the
probability for the chain started at x. Let St denote the event that the state visited at time t was
not seen at any previous time. In this paper, we quantify the intuition that St is unlikely by proving
upper bounds on P(St). This question was posed by A. Kontorovich (private communication), who
asked for bounds that do not require detailed knowledge of the transition probabilities of the chain.

For y ∈ S, the hitting time τ(y) is defined as the first time that the chain reaches y. We can
express St in terms of the hitting time as follows.

St =
⋃

y∈S

{τ(y) = t}.

If we can prove a statement of the form Px(τ(y) = t) ≤ M for all y ∈ S, then it follows that
Px(St) ≤ n ·M . Although naive, it turns out that this approach gives bounds on Px(St) which are
close to optimal, as we will explain in more detail later.

We start with a simple proposition which bounds Px(τ(y) = t) in the most general setting.

Proposition 1.1. Let X be a Markov chain with finite state space S of size n, and let x and y be
any two states. Then, for all t > n,

Px(τ(y) = t) ≤ n

t
, whence Px(St) ≤

n2

t
.

Our first main theorem improves this bound for reversible chains.

Theorem 1.2. Let X be a reversible Markov chain with finite state space S of size n, and let π be
the stationary distribution of X. Consider any two states x and y. For all t > 0,

Px(τ(y) = t) ≤
2e ·max

(

1, log 1
π(x)

)

t
.

In particular, if X is the random walk on a simple graph with n ≥ 2 vertices, then

Px(τ(y) = t) ≤ 4e · log n
t

and Px(St) ≤
4e · n log n

t
.

One limitation of Theorem 1.2 is that in general, the stationary probability π(x) can be arbi-
trarily small. Our second main theorem gives an alternate bound for reversible chains that, in the
style of Proposition 1.1, depends only on n and t.

Theorem 1.3. Let X be a finite reversible Markov chain with n states, and let x and y be any two
states. Then, for all t ≥ 4n+ 4,

Px(τ(y) = t) ≤
√
2n

t
, whence Px(St) ≤

n
√
2n

t
.
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Remark 1.4. For reversible chains with non-negative eigenvalues, we prove the stronger bound

Px(τ(y) = t) ≤ 1
2

√

n
t(t−n) . The degrading of the estimate as t approaches n cannot be avoided; if

t < n, then it is possible to have Px(τ(y) = t) arbitrarily close to 1 by considering a birth-and-death
chain on states 1, 2, . . . , n where state i transitions to state i+ 1 with probability 1− ǫ for ǫ→ 0.

To give a sense of how accurate these estimates are, we give several constructions where
Px(τ(y) = t) can be relatively large. In particular, we will show that Proposition 1.1 and Theorem
1.3 are tight up to a constant factor. We also construct a family of simple graphs which achieve

Px(τ(y) = t) ≥ c
√
log n

t
(1)

for some constant c > 0. This does not quite match the upper bound of (4e log n)/t appearing
in Theorem 1.2, but it demonstrates that the dependence on n cannot be avoided. All of these
constructions can be modified slightly to give lower bounds on Px(St) which are on the order of n
times the corresponding lower bounds on Px(τ(y) = t).

In the proof of Theorem 1.2, we show a certain “maximal probability” bound that may be of
independent interest. For any two states x, y ∈ S, define

p∗(x, y) = sup
t≥0

pt(x, y),

where pt(x, y) is the transition probability from x to y in t steps. It was asked by Aldous, and
independently by Ding and Oveis Gharan, whether for random walks on simple graphs with n
vertices,

∑

y∈S p
∗(x, y) = O(log n) for any starting vertex x (private communication). Using a

theorem of Starr [9], we prove the following proposition, which verifies this.

Proposition 1.5. Let X be a reversible Markov chain with finite state space S and stationary
distribution π. Then, for any x ∈ S,

∑

y∈S

p∗(x, y) ≤ 2e ·max

(

1, log
1

π(x)

)

.

Remark 1.6. For simple random walk on an n-vertex graph, the right hand side is at most 4e·log n.
When the graph is a cycle, this bound is tight up to a constant factor (see the end of Section 2.1).

Finally, we mention some situations where stronger bounds for Px(τ(y) = t) on the order of 1
t

are possible.

Proposition 1.7. Let X be a Markov chain with state space S and stationary distribution π. Then,
for any y ∈ S and t > 0,

Pπ (τ(y) = t) ≤ 1

t
,

where Pπ denotes the probability for the walk started from a random state sampled from π. In
particular, for any state x,

Px(τ(y) = t) ≤ 1

tπ(x)
.

A consequence of Proposition 1.7 is that Px(τ(y) = t) = O
(

1
t

)

when t is significantly larger
than the mixing time. We define

dx(t) =
∥

∥pt(x, ·) − π
∥

∥

TV
,

where ‖·‖
TV

denotes total variation distance, and recall that the mixing time tmix(ǫ) is defined as
the earliest time t for which dx(t) ≤ ǫ for every state x.
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Proposition 1.8. For a Markov chain X with state space S of size n, suppose that we have a
bound of the form Px(τ(y) = t) ≤ ψ(t) for all x, y ∈ S (e.g., the bounds of Proposition 1.1 or
Theorems 1.2 and 1.3). For any t > s > 0,

Px(τ(y) = t) ≤ dx(s)ψ(t− s) +
1

t− s
.

In particular, if t > 2tmix(1/4)⌈log2 n⌉, we have

Px(τ(y) = t) ≤ 4

t
.

The rest of the paper is organized as follows. In Section 2, we prove Proposition 1.1 and
Theorem 1.2, which are proved by the same method. We prove Proposition 1.5 as an intermediate
step, and we also describe constructions giving lower bounds on Px(τ(y) = t).

Section 3 is self-contained; we record bounds on sums of independent geometric random vari-
ables. These are used in Section 4 to prove Theorem 1.3. Here, we also construct an example to
show that the bound is of the right order.

Section 5 is devoted to describing the modified constructions which give lower bounds for Px(St).
We prove Propositions 1.7 and 1.8 in Section 6 and discuss open problems in Section 7. The last
two sections contain acknowledgements and background.

2 Proofs of Proposition 1.1 and Theorem 1.2

We start with a bound on Px(τ(y) = t) in terms of the maximal probabilities p∗(x, y).

Lemma 2.1. Let X be a Markov chain with finite state space S, and let x and y be any two states.
Then, for all t > 0,

Px(τ(y) = t) ≤ 1

t

∑

z∈S

p∗(x, z).

Proof. Observe that for each time s < t,

Px(τ(y) = t) ≤
∑

z∈S

ps(x, z)Pz(τ(y) = t− s).

Summing this inequality over all s = 0, 1, 2, . . . , t− 1, we obtain

t ·Px(τ(y) = t) ≤
t−1
∑

s=0

∑

z∈S

ps(x, z)Pz(τ(y) = t− s)

=
∑

z∈S

t−1
∑

s=0

ps(x, z)Pz(τ(y) = t− s) ≤
∑

z∈S

p∗(x, z)
t−1
∑

s=0

Pz(τ(y) = t− s)

=
∑

z∈S

p∗(x, z)Pz(1 ≤ τ(y) ≤ t) ≤
∑

z∈S

p∗(x, z).

Dividing both sides by t completes the proof.

Proof of Proposition 1.1. By Lemma 2.1, we have

Px(τ(y) = t) ≤ 1

t

∑

z∈S

p∗(x, z) ≤ 1

t

∑

z∈S

1 =
n

t
.
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Under the assumption that Proposition 1.5 holds, we can now also prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.1 and Proposition 1.5,

Px(τ(y) = t) ≤ 1

t

∑

z∈S

p∗(x, z) ≤
2e ·max

(

1, log 1
π(x)

)

t
.

For the random walk on a simple graph having n ≥ 2 vertices, the stationary probability of a vertex
is proportional to its degree, and in particular it is at least 1

n2 . Thus, in this case

Px(τ(y) = t) ≤ 4e · log n
t

.

2.1 Proof of Proposition 1.5

It remains to prove Proposition 1.5. For a Markov chain X = {Xt}, let P be the transition operator
of the chain. That is, for a function f : S → R, we have

(Pf)(x) =
∑

y∈S

p(x, y)f(y).

We deduce Proposition 1.5 from the following theorem of Starr [9].

Theorem 2.2 (special case of [9], Theorem 1). Let X = {Xt} be a reversible Markov chain with
state space S and stationary measure π. Then, for any 1 < p <∞ and f ∈ Lp(S, π),

Eπ

∣

∣

∣

∣

sup
n≥0

P 2nf

∣

∣

∣

∣

p

≤
(

p

p− 1

)p

Eπ|f |p,

where Eπ denotes expectation with respect to π.

We include a short proof of Theorem 2.2 in Section 9.1.

Proof of Proposition 1.5. Define the two quantities

p∗e(x, y) = sup
t≥0

p2t(x, y) and p∗o(x, y) = sup
t≥0

p2t+1(x, y).

for even and odd times. Take f(y) = δx,y in Theorem 2.2. Then, we find that for each t,

(P tf)(y) =
∑

z∈S

pt(y, z)f(z) = pt(y, x) =
pt(x, y)π(x)

π(y)
,

and so

sup
t≥0

(P 2tf)(y) =
p∗e(x, y)π(x)

π(y)
.

We now apply Theorem 2.2 with an exponent p to be specified later. We obtain

∑

y∈S

π(y)

(

p∗e(x, y)π(x)

π(y)

)p

≤
(

p

p− 1

)p

· π(x), (2)
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Let q = p
p−1 be the conjugate exponent of p, so that 1

p +
1
q = 1. By Hölder’s inequality,

∑

y∈S

p∗e(x, y) =
∑

y∈S

π(y)
1

q
p∗e(x, y)

π(y)
1

q

≤





∑

y∈S

π(y)





1

q




∑

y∈S

(

p∗e(x, y)

π(y)
1

q

)p




1

p

=
1

π(x)





∑

y∈S

π(y)

(

p∗e(x, y)π(x)

π(y)

)p




1

p

≤ p

p− 1
· π(x)

1

p
−1 = qπ(x)−

1

q ,

where the second inequality comes from (2). This is valid for all 1 < q < ∞, and by continuity,

also for q = 1. Setting q = max
(

1, log 1
π(x)

)

, this yields

∑

y∈S

p∗e(x, y) ≤ e ·max

(

1, log
1

π(x)

)

.

We also have
∑

y∈S

p∗o(x, y) ≤
∑

y∈S

∑

z∈S

p∗e(x, z)p(z, y) =
∑

z∈S

p∗e(x, z)
∑

y∈S

p(z, y)

=
∑

z∈S

p∗e(x, z) ≤ e ·max

(

1, log
1

π(x)

)

,

and so
∑

y∈S

p∗(x, y) ≤
∑

y∈S

p∗e(x, y) +
∑

y∈S

p∗o(x, y) ≤ 2e ·max

(

1, log
1

π(x)

)

,

which proves the lemma.

We mention an example that shows Proposition 1.5 is tight up to a multiplicative constant.
Consider a cycle of even size n = 2m, with vertices labeled by elements of Z/n in the natural
way. Let X be the simple random walk started at 0. Then, for each time t ≥ 0 and each position
−m < k ≤ m− 1, the probability pt(0, k) that X is at k is at least the probability p̃t(0, k) that a
simple random walk on Z started at 0 is at k after time t. By the local central limit theorem (see
e.g. [5], Theorem 1.2.1), we have for some universal constant C > 0 that

pt(0, k) ≥ p̃t(0, k) ≥ 2√
2πt

exp

(

−k
2

2t

)

− C√
t · k2

.

Plugging in t = k2 (which approximately maximizes the right hand side), we obtain

p∗(0, k) ≥ 2√
2πe

· 1

|k| −
C

k3
.

Thus,
∑

k∈Z/n

p∗(0, k) ≥
m−1
∑

k=1

(p∗(0, k) + p∗(0,−k))

≥ 4√
2πe

m−1
∑

k=1

1

k
− 2C

m−1
∑

k=1

1

k3
≥ 4√

2πe
log n− C ′
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for a universal constant C ′ > 0. On the other hand, the stationary probabilities are all 1
n , so

Proposition 1.5 gives the bound
∑

k∈Z/n

p∗(0, k) ≤ 2e · log n.

Thus, Proposition 1.5 is tight up to constant factor for random walk on the cycle.

Remark 2.3. It would be interesting to determine whether the aforementioned constant factor
can be removed for random walks on regular graphs. More precisely, is it true that for any ǫ > 0
and sufficiently large n, for a random walk on an n-vertex graph we have

∑

y∈S

p∗(x, y) ≤
(

4√
2πe

+ ǫ

)

log n ?

2.2 Lower bound for Proposition 1.1

The following construction shows that Proposition 1.1 is optimal up to constant factor.

Claim 2.1. For any n ≥ 2 and t ≥ 2n, there exists a Markov chain with state space S of size n
and states x, y ∈ S such that

Px(τ(y) = t) ≥ n

8t
.

Proof. The following construction is due to Kozma and Zeitouni (private communication). Write
t = r(n − 1) + k, where 1 ≤ k ≤ n − 1 and r ≥ 2. Consider the Markov chain with states
s1, s2, . . . , sn−1, and one additional state u (see figure 1). We take the transition probabilities to
be p(si, si+1) = 1 for each 1 ≤ i ≤ n− 2, and

p(sn−1, s1) = 1− q, p(sn−1, u) = q, p(u, s2) = 1,

where q = 1
r . Note that this chain is periodic with period n− 1.

We consider the hitting time from sn−k to u. Note that in the first k steps the process deter-
ministically goes to sn−1 and then goes to either u or s1 with probabilities q and 1− q, respectively.
Thereafter, every n− 1 steps it again goes to either u or s1 with those probabilities. Thus,

Psn−k
(τ(u) = t) =

(

1− 1

r

)r

· 1
r
≥ 1

4r
=

n− 1

4t− 4k
≥ n

8t
,

completing the construction for x = sn−k and y = u.

2.3 Lower bound for Theorem 1.2

The next construction is a slight modification of a construction made in [8], where it was given as
an example of cutoff in the mixing time of trees. It gives the lower bound (1) mentioned in the
introduction.

Claim 2.2. There exist simple graphs of n vertices, for arbitrarily large values of n, such that for
the random walk started at a vertex x, there is another vertex y and a time t for which

Px(τ(y) = t) ≥ c
√
log n

t
,

where c > 0 is a universal constant.
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s1

s2

s3

s4

· · ·

sn−3

sn−2

sn−1

1− q

uq

Figure 1: Illustration of Claim 2.1.

w0 w1

· · ·
wk

· · ·
wm

...

2m− 1 levels

... ...
2m− k

...

2k − 1

Figure 2: Illustration of Gm.

Remark 2.4. In fact, the graphs we construct have maximum degree 4 (corresponding to the
vertices wk defined below). By adding self-loops, we can easily modify these examples to be regular
graphs.

For any integer m > 1, consider the graph Gm formed by a path of length 2m − 1 with vertices
denoted by v1, v2, . . . , v2m , together with m − 1 attached binary trees. In particular, for each
1 ≤ k ≤ m− 1, we attach a binary tree of height 2m− k rooted at the vertex wk := v2k (see figure
2). The analysis of Px(τ(y) = t) for random walk on Gm hinges on the following concentration of
hitting times result similar to Lemma 2.1 of [8].

Lemma 2.5. For the simple random walk on Gm started at wm, we have

Ewmτ(w0) = Θ
(

m · 22m
)

and Varwm(τ(w0)) = O
(

m · 24m
)

.
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2.3.1 Proof of Lemma 2.5

First, we recall a standard estimate on trees.

Lemma 2.6 ([8], Claim 2.3). Let Yk denote the return time of a random walk on a binary tree of
height k started at the root. Then,

EYk = Θ(2k) and EY 2
k = Θ(22k).

Let Tk denote the tree (of height 2m − k) attached to wk (excluding wk itself), and let F =
⋃m

k=1 Tk. For 1 ≤ k ≤ m, consider the walk started at wk and stopped upon hitting wk−1. Define
Zk to be the number of steps either starting or ending in F . Note that Zm is deterministically zero.
We have the following moment bounds on Zk.

Lemma 2.7. We have for 1 ≤ k ≤ m− 1,

EZk = Θ(22m) and EZ2
k = Θ(24m).

Proof. The path of the random walk started at wk and stopped upon hitting wk−1 may be decom-
posed into components of the following types:

(i) excursions from wk hitting wk+1 and not hitting Tk

(ii) excursions from wk staying entirely within Tk

(iii) excursions from wk not hitting {wk−1, wk+1} ∪ Tk

(iv) a path from wk to wk−1

Note that components of types (iii) and (iv) do not contribute to the time spent in F . Com-
ponents of type (i) can only spend time in F after first hitting wk+1, so the time they spend in F
is distributed as Zk+1. The time spent in F by a component of type (ii) is like an excursion from
the root for Tk, so it is distributed as Y2m−k. Thus, the law of Zk is given by the sum of (a random
number of) independent copies of Zk+1 and Y2m−k.

To compute the distribution of how many components of types (i) and (ii) there are, let τk be
the first time that the random walk started at wk hits {wk−1, wk+1}∪Tk. By a standard calculation,

Pwk
(Xτk = wk−1) =

2−k

2−k + 2−k−1 + 1

Pwk
(Xτk = wk+1) =

2−k−1

2−k + 2−k−1 + 1

Pwk
(Xτk ∈ Tk) =

1

2−k + 2−k−1 + 1

It follows that the number K of components of type (i) or (ii) is geometrically distributed with
mean

(

2−k

2−k + 2−k−1 + 1

)−1

= 2k + 1 +
1

2
.

Let Wk be a random variable drawn according to Zk+1 with probability 1
2k+1+1

and according to

Y2m−k with probability 2k+1

2k+1+1
. Then, conditioned on a component being of type (i) or (ii), the

9



time it spends in T is distributed as Wk. Thus, Zk is a sum of K i.i.d. copies of Wk. We now give
recursive estimates of the first and second moments of Zk. For the first moment, we have

EZk = (EK) · (EWk) = (EK) ·
(

2k+1

2k+1 + 1
EY2m−k +

1

2k+1 + 1
EZk+1

)

.

Applying Lemma 2.6 to estimate EY2m−k and using our explicit characterization of K, this gives

c · 22m ≤ EZk ≤ C · 22m +
7

10
·EZk+1

for some universal constants c and C. Recall that Zm = 0, so this recursive bound implies that
EZk = Θ(22m) for all 1 ≤ k ≤ m− 1.

We now bound the second moment of Zk. Note that our first moment bound immediately
implies that EWk = Θ(22m−k). We have

EZ2
k = (EK) · (EW 2

k ) + (EK(K − 1)) · (EWk)
2

= (EK) ·
(

2k+1

2k+1 + 1
EY 2

2m−k +
1

2k+1 + 1
EZ2

k+1

)

+O(24m)

≤ 7

10
·EZ2

k+1 +O(24m),

where we use the upper bound on EY 2
2m−k from Lemma 2.6. By the same argument as was used

for the first moment, this implies EZ2
k = O(24m) for 1 ≤ k ≤ m − 1. Note that we also have

EZ2
k ≥ (EZk)

2, so we have

EZk = Θ(22m) and EZ2
k = Θ(24m).

as desired.

We are now ready to prove Lemma 2.5.

Proof of Lemma 2.5. Note that a random walk started at wm and stopped upon hitting w0 can
be decomposed into independent walks started at wk and stopped upon hitting wk−1 for k =
m,m− 1, . . . , 1. Let Z = Z1 +Z2 + · · ·+Zm be the total number of steps starting or ending in F ,
and let Z ′ be the total number of steps completely outside of F , so that τ := Z + Z ′ is the hitting
time from wm to w0.

Note that Z ′ has the distribution of the hitting time of a random walk on a path of length
2m − 1 from one end to the other. The following estimates are standard (see e.g. [2], III.7):

EZ ′ = Θ(22m) and EZ ′2 = O(24m).

It follows from Lemma 2.7 that

Eτ = EZ +EZ ′ = Θ(m · 22m),

which proves the first part of the lemma. We also have

Var(Z) =

m
∑

k=1

Var(Zk) = O(m · 24m)

EZ2 = (EZ)2 +Var(Z) = O(m2 · 24m).

10



Thus,
Var(τ) = 2

(

EZZ ′ −EZEZ ′
)

+Var(Z) +Var(Z ′)

≤ 2
√

(EZ2)(EZ ′2) +Var(Z) +Var(Z ′) = O(m · 24m),

which is the second statement in the lemma, completing the proof.

2.3.2 Proof of Claim 2.2

We will show using Lemma 2.5 that Gm satisfies the criteria of Claim 2.2.

Proof of Claim 2.2. For any m ≥ 2, take

n = 22m − 2m − 2m+ 2

to be the number of vertices of Gm. For convenience, write T = Ewmτ(w0). By Lemma 2.5 and
Chebyshev’s inequality, there is a universal constant C such that

Pwm

(

|τ(w0)− T | ≥ C
√
m · 24m

)

≤ 1

2
.

It follows by the pigeonhole principle that for some t with

T − C
√
m · 24m ≤ t ≤ T +C

√
m · 24m (3)

we have

Pwm (τ(w0) = t) ≥ 1

4C
√
m · 22m .

Moreover, note that T is on the order of m · 22m by Lemma 2.5, so for sufficiently large m, (3)
implies that t ≥ cm · 22m for a sufficiently small constant c > 0. Then,

Pwm (τ(w0) = t) ≥ 1

4C
√
m · 22m ≥ c

√
m

4Ct
≥ c

4
√
2 · C

·
√
log n

t
.

This is the desired bound upon renaming of constants, and m (hence n) can be made arbitrarily
large.

3 Sums of geometrics

We devote this section to establishing some basic estimates for geometric random variables that
will be used later. This section can be read on its own and does not rely on any other part
of the paper. We say that a random variable Z is geometrically distributed with parameter p if
P(Z = t) = p(1 − p)t for t = 0, 1, 2, . . .. First, we have the following estimate on sums of i.i.d.
geometrics.

Lemma 3.1. Let m > 0 be an integer, and let X1,X2, . . . ,Xn be i.i.d. geometric random variables
with parameter p = n

m+n . Then,

1

3

√

n

m(m+ n)
≤ P (X1 +X2 + · · · +Xn = m) ≤ 1

2

√

n

m(m+ n)
.

11



For the proof, we use the following version of Stirling’s formula which holds for all integers
N ≥ 1 (see e.g. [2], II.9).

√
2π ≤ N !

NN+ 1

2 e−N
≤

√
2π · e 1

12 . (4)

Consequently, we have the following estimate on binomial coefficients.

Proposition 3.2. For any positive integers M and N , we have

1

3

√

M +N

MN
· (M +N)M+N

MM ·NN
≤
(

M +N

M

)

≤ 1

2

√

M +N

MN
· (M +N)M+N

MM ·NN
.

Proof. Apply (4) to each factorial term in
(M+N

M

)

= (M+N)!
M !·N ! .

Proof of Lemma 3.1. By direct calculation, we have

P(X1 +X2 + · · ·+Xn = m) = pn(1− p)m
(

m+ n− 1

n− 1

)

=

(

n

m+ n

)n( m

m+ n

)m

·
(

m+ n

n

)

· n

m+ n
.

Applying Proposition 3.2 to
(m+n

n

)

gives the result.

We can also prove the following bound on sums of independent geometric variables (not neces-
sarily identically distributed) due to Nazarov (private communication).

Lemma 3.3. Let X1,X2, . . . ,Xn be independent geometric random variables. Then, for any t ≥ 0,

P(X1 +X2 + · · · +Xn = t) ≤ 1

2

√

n

t(t+ n)
. (5)

Remark 3.4. We actually show that P(X1 +X2 + · · ·+Xn = t) is maximized when each Xi has
parameter n

t+n . The lemma then follows from Lemma 3.1.

Proof. Let pi be the parameter of Xi, and define qi = 1−pi ∈ [0, 1), so that P(Xi = k) = (1−qi)qki .
Then, by expanding terms, we have

P(X1 +X2 + · · ·+Xn = t) =
n
∏

i=1

(1− qi)
∑

j1+...+jn=t
ji∈Z

+

qj11 q
j2
2 · · · qjnn . (6)

The right side of equation (6) may be regarded as a function of q = (q1, . . . , qn) ∈ [0, 1]n, which we
denote by F (q).

We will show that F (q) is maximized when all the qi are equal. This will be accomplished by
showing that if qi 6= qj for some i and j, then by replacing both qi and qj with some common value,
we can increase F (q). To this end, for any 0 ≤ x < y < 1 and integer k ≥ 0, define

fk(x, y) = (1− x)(1− y)(xk + xk−1y + . . .+ yk).

We also define

P (x, y, t) =

{

(1−x)(1−y)
(y−x)(1−t)2

if x ≤ t ≤ y

0 otherwise.

12



Clearly, P (x, y, t) ≥ 0, and

∫ 1

0
P (x, y, t) dt =

∫ y

x
P (x, y, t) dt =

(1− x)(1− y)

(y − x)(1 − t)

∣

∣

∣

∣

y

t=x

= 1,

and so P (x, y, ·) may be regarded as a probability density on [0, 1]. Moreover,

∫ 1

0
P (x, y, t)fk(t, t) dt =

∫ y

x

(1− x)(1− y)

y − x
· (k + 1)tk dt

=
(1− x)(1− y)

y − x
· (yk+1 − xk+1) = fk(x, y). (7)

Now, consider a point q∗ = (q∗1 , . . . , q
∗
n) ∈ [0, 1]n which maximizes F (q∗) on the compact set

[0, 1]n, and suppose for sake of contradiction that not all of the q∗i are equal. Then, without loss of
generality, we may assume q∗1 < q∗2. Fixing q

∗
i for i > 2 and considering F as a function of the first

two variables only, it is easy to see from equation (6) that F takes the form

F (q∗1 , q
∗
2) =

t
∑

k=0

ckfk(q
∗
1 , q

∗
2)

for constants c0, c1, . . . , ct. Thus, according to (7) with x = q∗1 and y = q∗2 , we have1

F (q∗1 , q
∗
2) =

∫ 1

0
P (q∗1, q

∗
2 , t)F (t, t) dt.

However, by the maximality of F (q∗), we also have that F (t, t) ≤ F (q∗1, q
∗
2) for all t ∈ [q∗1 , q

∗
2], so

∫ 1

0
P (q∗1 , q

∗
2 , t)F (t, t) dt ≤

∫ 1

0
P (q∗1 , q

∗
2, t)F (q

∗
1 , q

∗
2) dt = F (q∗1 , q

∗
2),

and this inequality is strict since F (t, t) is non-constant on [q∗1 , q
∗
2 ]. This is a contradiction, so it

follows that the q∗i all take some common value r. To determine this value r, we may compute

F (q∗) = (1− r)n ·
(

t+ n− 1

n− 1

)

rt,

and optimizing over r, we find that r = t
t+n . This corresponds to the case where each Xi has

parameter n
t+n . Applying Lemma 3.1 finishes the proof.

Corollary 3.5. If (Xi)
n
i=1 are independent mixtures of geometric random variables, then (5) holds.

Proof. For each i, let θi be a random variable on [0, 1] so that Xi is distributed as a geometric with
parameter θi. By Lemma 3.3, we have

P(X1 +X2 + · · ·+Xn = t | θ1, . . . , θn) ≤
1

2

√

n

t(t+ n)
.

Taking the expectation over the θi gives the result.

1The assumption y < 1 is satisfied because clearly if q∗2 = 1, then F (q∗) = 0 is not maximal.
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1

1− p

2

1− p

3

1− p

· · · n−1

1− p

n
p p p p p

Figure 3: Illustration of Claim 4.1.

4 Proof of Theorem 1.3

We are now ready to prove Theorem 1.3, which is a “worst case” bound for reversible chains that
does not depend on the stationary probability. Before proving the theorem, it is instructive to
construct the example that attains the lower bound.

Claim 4.1. For any n ≥ 2 and t ≥ n, there exists a reversible Markov chain X on n states with
two states x and y such that

Px(τ(y) = t) ≥
√
n

3t
.

Proof. Let p = n
t . Consider the case where X is a pure-birth chain with states labeled 1, 2, . . . , n,

with transition probabilities

p(i, i) = 1− p, p(i, i + 1) = p for 1 ≤ i ≤ n− 1

p(n, n) = 1.

Suppose that X starts at 1, and let Ti be the first hitting time of state i, with T1 = 0. Let
Di = Ti+1 − Ti − 1, so that

Tn = n− 1 +
n−1
∑

i=1

Di.

Note that each Di is a geometric random variable with parameter p, and the Di are independent.
Thus, applying Lemma 3.1 with m = t− n+ 1, we have

P (Tn = t) ≥ 1

3

√

n

(t− n+ 1)(t+ 1)
≥

√
n

3t
,

as desired.

In fact, the above example is in some sense the extremal case. In a pure-birth chain, we saw that
the hitting time from the beginning to the end is a sum of geometric random variables. Lemma 3.3
implies that the sum of n geometric random variables cannot be too concentrated, which essentially
proves Theorem 1.3 for pure-birth chains.

Then, we will show that the behavior of the hitting time in a general reversible Markov chain
is like a mixture of pure-birth chains. Such a representation was shown by Miclo [7]; in this paper,
we give a short elementary proof based on loop erasures of first hitting paths from x to y. By this
mixture argument, it follows that the bound for pure-birth chains carries over to the general case,
although we lose approximately a factor of 2 due to the possibility of negative eigenvalues.

The next lemma is a variant of the well-known spectral decomposition of return probabilities in
reversible Markov chains. The proof is essentially the same as that of Lemma 2.2 in [3], although
our formulation includes an additional non-negativity statement. For the sake of completeness, we
include a proof of this lemma in Section 9.2.
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Lemma 4.1. Let X be a reversible, irreducible Markov chain with finite state space S. Consider any
x ∈ S, and let U ⊂ S be a subset not containing x. Then, there exist real numbers a1, . . . , a|S| ≥ 0
and λ1, . . . , λ|S| ∈ [−1, 1] such that

Px(Xt = x, τ(U) > t) =

|S|
∑

i=1

aiλ
t
i.

for each integer t ≥ 0. Moreover, if the eigenvalues of X (that is, the eigenvalues of the matrix of
transition probabilities) are non-negative, then we may take λi ∈ [0, 1] for each i.

Let us now prove Theorem 1.3.

Proof of Theorem 1.3. We will first prove the stronger bound

Px(τ(y) = t) ≤ 1

2

√

n

t(t− n)
. (8)

in the case where all the eigenvalues are non-negative. We then deduce the theorem by considering
even times. It is convenient to assume throughout that X is irreducible so Lemma 4.1 applies.
This is valid because we may always restrict to the communicating class of x without increasing
the number of states.

Let z = (x = z0, z1, . . . , zk = y) be a random variable denoting the path taken by the chain
started at x and stopped upon hitting y. Thus, |z| = τx(y), and we are interested in bounding
P(|z| = t). Define the loop erasure of z to be the path (w0, w1, . . . , wℓ) determined as follows. We
take w0 = x, and inductively for each i ≥ 0, let ki be the largest index such that zki ∈ {w0, . . . , wi}.
Then, as long as ki < k, define wi+1 = zki+1 and continue the process for i+ 1. If ki = k, then the
path ends. In particular, kℓ = k.

We denote this path, which is a function of z, by w(z). A less formal description of the
loop erasure is that w(z) is the path obtained by following z and, whenever the path forms a loop,
removing all vertices from that loop. Loop-erased walks appear in other contexts, including random
walks on lattices and uniform sampling of spanning trees (see e.g. [4], [10]).

Fix a loop erasure w = (x = w0, w1, . . . , wℓ = y), and let P̂w denote the conditional probability
P(· | w(z) = w). We now describe a method of sampling from P̂w(z). For each 0 ≤ i < ℓ,
let Pi denote the set of all paths starting and ending at wi (possibly of length 1) and avoiding
{y,w0, w1, . . . , wi−1}. For each i, we independently sample a path z̃i = (z̃i,0, z̃i,1, . . . z̃i,k) from Pi

with probability

ci ·
k
∏

j=1

p(z̃i,j−1, z̃i,j),

where ci is the normalizing constant which makes all the probabilities sum to 1. We obtain a sample
from P̂w(z) by taking the concatenation z = [z̃0][z̃1] · · · [z̃ℓ−1]y.

Now, observe that

P(|z̃i| = t) =
∑

w∈Pi

|w|=t

ci ·
t
∏

j=1

p(wj−1, wj) = ci ·Pwi
(Xt = wi, τ({y,w1, . . . , wi−1}) > t).

By Lemma 4.1, |z̃i| is distributed as a mixture of geometric random variables. Also, note that

|z| = ℓ+ |z̃0|+ |z̃1|+ · · ·+ |z̃ℓ−1|.
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Hence, by Corollary 3.5, we have

P̂w(|z| − ℓ = m) ≤ 1

2

√

ℓ

m(m+ ℓ)

Recall that w is a loop erasure and therefore, the wi are all distinct, which implies ℓ ≤ n. Thus,
taking m = t− ℓ, the above inequality can be rewritten

P̂w(|z| = t) ≤ 1

2

√

ℓ

(t− ℓ)t
≤ 1

2

√

n

(t− n)t
.

This bound holds for each w, so taking the expectation over all possible loop erasures w, we obtain

P(|z| = t) ≤ 1

2

√

n

(t− n)t
.

We have thus proved (8) when the chain has non-negative eigenvalues. Let us now consider the
general case, where the eigenvalues can be negative. Let Yt = X2t, so that Y is also a Markov chain
(with transition matrix the square of the transition matrix of X). Note that Y has non-negative
eigenvalues. Let τx,X(y) denote the hitting time from x to y under the chain X, and similarly
let τx,Y (y) be the hitting time from x to y under Y . If τx,X(y) = 2k, then we necessarily have
τx,Y (y) = k. Hence, if t = 2k, we immediately have

P(τx,X(y) = t) ≤ P(τx,Y (y) = k) ≤ 1

2

√

n

(k − n)k
<

√
2n

t
,

where we used the assumption t ≥ 4n+ 4. If t = 2k + 1, then we have

P(τx,X(y) = t) =
∑

s∈S, s 6=y

p(x, s)P(τs,X(y) = t− 1)

≤
∑

s∈S, s 6=y

p(x, s) · 1
2

√

n

(k − n)k
≤ 1

2

√

n

(k − n)k
≤

√
2n

t
.

completing the proof.

5 Lower bound constructions for Px(St)
We now describe how to modify the constructions in Claims 2.1, 2.2, and 4.1 to give corresponding
lower bounds for Px(St).

First, recall the cycle construction in the proof of Claim 2.1. Using a similar construction but
with n copies of the state u (see figure 4), we can obtain the following lower bound for Px(St).

Claim 5.1. For any n ≥ 2 and t ≥ 2n, there exists a Markov chain with 2n states and a starting
state x such that

Px(St) ≥
n2

56t
.
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s1

s2

s3

s4

· · ·

sn−2

sn−1

sn

1− nq

u1q

...

un

q

Figure 4: Illustration of Claim 5.1.

Proof. Write t = rn+ k, where 1 ≤ k ≤ n and r ≥ 2. Define q = 1
r . Consider a Markov chain with

states
{s1, s2, . . . , sn} ∪ {u1, u2, . . . , un}

whose transition probabilities are

p(si, si+1) = 1 for each 1 ≤ i ≤ n− 1,

p(sn, s1) = 1− nq

p(sn, ui) = q, p(ui, s2) = 1 for each 1 ≤ i ≤ n.

This is very similar to the example in the proof of Claim 2.1, except that u is replaced by many
states u1, u2, . . . , un. Note that the chain is periodic with period n.

We consider the process started at x := sn−k+1, so that at time t− 1, the process is in state sn.
After t− 1 steps, the process has taken r steps starting in sn, so the probability that a given state
uj is still unvisited is (1 − q)r. Thus, letting Z be the number of states in {u1, . . . , un} which are
visited by time t− 1, we have

EZ = n · (1− (1− q)r) = n ·
(

1−
(

1− 1

r

)r)

≤ 3

4
· n,

and so Markov’s inequality implies

Px

(

Z ≥ 7n

8

)

≤ 6

7
.

On the event that Z < 7n
8 , there are at least n

8 states among {u1, . . . , un} which have not been
visited, so the probability that the chain hits a new state on the t-th step is at least nq

8 . Thus,

Px(St) ≥ Px

(

St

∣

∣

∣

∣

Z <
7n

8

)

·Px

(

Z <
7n

8

)

≥ nq

56
≥ n2

56t
,

as desired.
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We can also modify the constructions corresponding to Claims 2.2 and 4.1 to obtain the follow-
ing.

Claim 5.2. There exist simple graphs of n vertices, for arbitrarily large values of n, such that for
the random walk started at a vertex x, there is a time t for which

Px(St) ≥
cn

√
log n

t
,

where c > 0 is a universal constant.

Claim 5.3. For any n, there exists a reversible Markov chain X on 2n states with two states x
and y such that

Px(St) = Ω

(

n
√
n

t

)

.

The constructions we give for the above claims are both based on a general lemma that translates
certain lower bounds on Px(τ(y) = t) into lower bounds on Px(St).

Lemma 5.1. Consider a Markov chain with state space S with states x, y ∈ S and a subset
U ⊂ S such that starting from x, the chain cannot reach U without going through y. Let Zs denote
the number of visited states in U at time s. Then, for any integer N > 0, there exists s with
t ≤ s < t+ 2N such that

Px(Ss) ≥
Px(t ≤ τ(y) < t+N) ·EyZN

2N
.

Proof. Note that no state in U can be visited before τ(y). We lower bound Ex (Zt+2N−1 − Zt) by
only considering the event that t ≤ τ(y) < t+N . We have

Ex (Zt+2N−1 − Zt) ≥
N−1
∑

k=0

Px(τ(y) = t+ k)EyZN = Px(t ≤ τ(y) < t+N) ·EyZN .

This lower bounds the expected number of new states visited in the time interval [t, t+ 2N), so it
follows by the pigeonhole principle that for some t ≤ s < t+ 2N , we have

Px(Ss) ≥
Px(t ≤ τ(y) < t+N) ·EyZN

2N
.

We now prove the claims.

Proof Claim 5.2. Let Gm be as in the proof of Claim 2.2, and let n be the size of Gm. Let k = ⌊ 3
√
n⌋,

and let Hn denote the three-dimensional discrete torus of size k3, whose vertex set is (Z/kZ)3, with
edges between nearest neighbors.

We recall the standard fact that the effective resistance between y and z in Hk is bounded by a
constant (Exercise 9.1, [6]). Define a graph G̃m by attaching to Gm a copy of Hk so that (0, 0, 0) in
Hk is joined to w0 in Gm (see figure 5). The graph G̃m has O(k3) = O(n) edges, so by the commute
time identity (Proposition 10.6, [6]), we have for any z ∈ Hk (with Hk regarded as a subgraph of
G̃m),

Ew0
τ(z) = O(n).
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w0

· · ·
wℓ

· · ·
wm

...
2m− ℓ

...

k × k × k torus,
k = ⌊ 3

√
n⌋

n ≈ 22m

Figure 5: Illustration of G̃m.

1

1− p

· · · n−1

1− p

n n+1 · · · 2n
p p p 1 1 1

Figure 6: Illustration of Claim 5.3.

Consequently, the expected number of visited vertices in Hn for a random walk started at w0

and run for n steps is at least cn for some constant c > 0. Recall also from Lemma 2.5 that
Ewmτ(w0) has expectation on the order of m · 22m = Θ(n log n) with fluctuations on the order of√
m · 22m = Θ(n

√
log n). It follows that for some t with t = Θ(n log n),

Pwm(t ≤ τ(w0) < t+ n) = Ω

(

1√
log n

)

.

Thus, we may apply Lemma 5.1 with U being the vertex set of Hk, x = wm, y = w0, and
N = n. We find that for some s = Θ(n

√
log n),

Pwm(Ss) ≥
Pwm(t ≤ τ(w0) < t+ n) · Ew0

Zn

2n

= Ω

(

1√
log n

)

·Θ(n) · 1

2n
= Ω

(

n
√
log n

s

)

,

as desired.

Proof Claim 5.3. It suffices to prove the bound for t ≥ n
√
n, so we assume this in what follows.

Consider the pure-birth chain from the proof of Claim 4.1 (with states labeled 1, 2, . . . , n), and
introduce n additional states labeled n + 1, . . . , 2n. We use the same transition probabilities as in
the proof of Claim 4.1, with the modification that p(i, i + 1) = 1 for i = n, n + 1, . . . , 2n − 1 (see
figure 6).

Recall from the proof of Claim 4.1 that the hitting time τ from 1 to n is distributed as

n− 1 +

n−1
∑

i=1

Di,
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where the Di are independent geometrics of parameter p = n
t . We can thus calculate

Eτ = Θ(t) and Var(τ) = O

(

t2

n

)

.

It follows that for some t′ = Θ(t),

P(t′ ≤ τ < t′ + n) = Ω

(

n
√
n

t

)

.

We can apply Lemma 5.1 with U = {n, n + 1, . . . , 2n}, x = 1, y = n,and N = n. Note that
if the chain is started at y, then Zn = n deterministically in this case. Thus, we obtain for some
s = Θ(t′) = Θ(t),

Px(Ss) ≥
Px(t

′ ≤ τ(y) < t′ + n) ·EyZn

2n

= Ω

(

n
√
n

t

)

· n · 1

2n
= Ω

(

n
√
n

s

)

,

as desired.

6 Proofs of Propositions 1.7 and 1.8

Proof of Proposition 1.7. Let S be the state space of X. Note that for t > 1,

Pπ(τ(y) = t) =
∑

x∈S\{y}

Px(τ(y) = t− 1)Pπ(X1 = x)

≤
∑

x∈S

π(x)Px(τ(y) = t− 1) = Pπ(τ(y) = t− 1).

Thus, Pπ(τ(y) = t) is non-increasing in t, and so

Pπ(τ(y) = t) ≤ 1

t

t−1
∑

s=0

Pπ(τ(y) = s) ≤ 1

t
.

For any particular state x ∈ S, we have

Px(τ(y) = t) ≤ 1

π(x)
Pπ(τ(y) = t) ≤ 1

tπ(x)
.

Proof of Proposition 1.8. We have

Px(τ(y) = t) ≤
∑

z∈S

ps(x, z)Pz(τ(y) = t− s)

≤
∑

z∈S, ps(x,z)≥π(z)

(ps(x, z)− π(z))Pz(τ(y) = t− s) +
∑

z∈S

π(z)Pz(τ(y) = t− s)

≤
∑

z∈S, ps(x,z)≥π(z)

(ps(x, z)− π(z))ψ(t − s) +
∑

z∈S

π(z)
1

t− s
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≤ d(s)ψ(t − s) +
1

t− s
,

where between the second and third lines we used Proposition 1.7.
Suppose that t > 2tmix(1/4)⌈log2 n⌉, and take s =

⌊

t
2

⌋

. By Proposition 1.1, we may take
ψ(u) = n

u . Note that s ≥ tmix(1/4)⌈log2 n⌉, so

d(s) ≤
(

1

2

)⌈log2 n⌉

≤ 1

n
.

Thus,

Px(τ(y) = t) ≤ 1

n
· n

t− s
+

1

t− s
=

2

t− s
≤ 4

t
.

7 Open problems

We pose two open problems arising from our work. First, it is natural to try to close the gap
between the bound in Theorem 1.2 and the corresponding example given in Claim 2.2. We suspect
that Theorem 1.2 is not optimal and make the following conjecture.

Conjecture 7.1. Let X be a reversible Markov chain with finite state space, and let π be the
stationary distribution of X. Consider any two states x and y. For all t > 0,

Px(τ(y) = t) = O

(

1

t

√

max

(

1, log
1

π(x)

)

)

.

The second question relates to hitting times in an interval and is due to Holroyd. The example
in Claim 2.1 shows that Proposition 1.1 is optimal up to a constant, but it has the very special
property of being periodic with a large period. Consequently, a time t for which Px(τ(y) = t) is
large is surrounded by many times t′ near t where Px(τ(y) = t′) = 0. This motivates the following
conjecture of Holroyd.

Conjecture 7.2. Let X be a Markov chain with finite state space S with |S| = n, and let x and y
be any two states. Then, for all t > n,

Px(t ≤ τ(y) ≤ t+ n) = O
(n

t

)

.
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9 Background

9.1 Proof of Theorem 2.2

The following distillation of Starr’s proof came from helpful discussions with Jonathan Hermon.

Proof. We consider the chain where the initial state X0 is drawn from the stationary measure π.
It suffices to prove the case where f ∈ Lp(S, π) is non-negative, since otherwise we may replace f
by |f | (noting that |P 2nf | ≤ P 2n|f |). Thus, assume henceforth that f ≥ 0. For any n ≥ 0, we have

(P 2nf)(X0) := E (f(X2n) | X0) = E (E (f(X2n) | Xn) | X0) = E (Rn | X0) , (9)

where Rn := E (f(X2n) | Xn). Since X0 ∼ π, by reversibility,

(Xn,Xn+1, . . . ,X2n) and (Xn,Xn−1, . . . ,X0)

have the same law. Hence,

Rn = E (f(X2n) | Xn) = E (f(X0) | Xn) = E (f(X0) | Xn,Xn+1, . . .) , (10)

where the second equality in (10) follows by the Markov property. Fix for now an integer N ≥ 0.
By (10), (Rn)

N
n=0 is a reverse martingale, i.e. (RN−n)

N
n=0 is a martingale. By Doob’s Lp maximal

inequality (e.g. [1], Theorem 5.4.3),
∥

∥

∥

∥

max
0≤n≤N

Rn

∥

∥

∥

∥

p

≤ p

p− 1
‖R0‖p =

p

p− 1
‖f(X0)‖p. (11)

Define hN := max0≤n≤N P
2nf . By (9),

hN (X0) = max
0≤n≤N

E (Rn | X0) ≤ E

(

max
0≤n≤N

Rn

∣

∣

∣

∣

X0

)

. (12)

Recall that conditional expectation is an Lp contraction (e.g. [1], Theorem 5.1.4). Thus, taking Lp

norms in (12) and applying (11), we have

‖hN (X0)‖p ≤
∥

∥

∥

∥

max
0≤n≤N

Rn

∥

∥

∥

∥

p

≤ p

p− 1
‖f(X0)‖p,

where in the first inequality we have implicitly used f ≥ 0. Taking N → ∞ and applying the
monotone convergence theorem, we conclude that

Eπ

∣

∣

∣

∣

sup
n≥0

P 2nf

∣

∣

∣

∣

p

=

∥

∥

∥

∥

lim
N→∞

hN (X0)

∥

∥

∥

∥

p

p

≤
(

p

p− 1

)p

‖f(X0)‖pp =

(

p

p− 1

)p

Eπ|f |p.

9.2 Proof of Lemma 4.1

Proof. Let Q be the transition matrix of X, and let π be its stationary distribution. Define the
inner product 〈·, ·〉π on R

S by 〈f, g〉π =
∑

s∈S π(s)f(s)g(s). Note that by reversibility, we have

〈Qf, g〉π =
∑

s∈S

π(s)

(

∑

s′∈S

Q(s, s′)f(s′)

)

g(s)

22



=
∑

s∈S

∑

s′∈S

π(s′)Q(s′, s)f(s′)g(s)

=
∑

s′∈S

π(s′)

(

∑

s∈S

Q(s′, s)g(s)

)

f(s′) = 〈f,Qg〉π.

Hence, Q is self-adjoint with respect to the π inner product. Note that because Q is stochastic, its
eigenvalues lie in the interval [−1, 1].

Now, let S̃ = S \U , and let Q̃ be the transition matrix of X killed upon hitting U . That is, for

f ∈ R
S̃ ,

(Q̃f)(s) =
∑

s′∈S̃

p(s, s′)f(s′).

If we regard Q as a symmetric bilinear form, then Q̃ is the restriction of Q onto the subspace
R
S̃. Hence, Q̃ is also a symmetric bilinear form, and if Q is positive semidefinite, then so is Q̃.
Let X̃t be the walk started at x and killed upon hitting U , and let ft(s) =

1
π(s)P(X̃t = s) (we

are guaranteed that π(s) > 0 by irreducibility). Note that f0(s) =
1

π(x)δx,s, and

ft(s) =
1

π(s)
P(X̃t = s) =

1

π(s)

∑

s′∈S̃

p(s′, s)P(X̃t−1 = s′)

=
∑

s′∈S̃

p(s, s′)ft−1(s
′) = (Q̃ft−1)(s),

so ft = Q̃tf0. We thus have

P(Xt = x, τ(U) > t) = P(X̃t = x) = π(x)ft(x)

= π(x) · 〈ft, f0〉π = π(x) · 〈Q̃tf0, f0〉π.
Since Q̃ is self-adjoint with respect to 〈·, ·〉π, it has an orthonormal basis (in the π inner product)

of eigenvectors ℓ1, . . . , ℓ|S̃| ∈ R
S̃ . For each i, let λi be the eigenvalue corresponding to ℓi. We can

write f0 = a1ℓ1 + · · ·+ a|S̃|ℓ|S̃|, and the last expression becomes

π(x)

|S̃|
∑

i=1

a2iλ
t
i.

This proves the lemma.
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