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INDUCED SUBGRAPHS WITH MANY DISTINCT DEGREES

BHARGAV NARAYANAN AND ISTVÁN TOMON

Abstract. Let hom(G) denote the size of the largest clique or independent set

of a graph G. In 2007, Bukh and Sudakov proved that every n-vertex graph

G with hom(G) = O(log n) contains an induced subgraph with Ω(n1/2) distinct

degrees, and raised the question of deciding whether an analogous result holds

for every n-vertex graph G with hom(G) = O(nε), where ε > 0 is a fixed

constant. Here, we answer their question in the affirmative and show that every

graph G on n vertices contains an induced subgraph with Ω((n/ hom(G))1/2)

distinct degrees. We also prove a stronger result for graphs with large cliques

or independent sets and show, for any fixed k ∈ N, that if an n-vertex graph G

contains no induced subgraph with k distinct degrees, then hom(G) ≥ n/(k −
1)− o(n); this bound is essentially best-possible.

1. Introduction

A subset of the vertices of a graph is called homogeneous if it induces either a

clique or an independent set. What can one say about the structure of graphs with

no large homogeneous sets? This is a central question in graph Ramsey theory and

has received considerable attention over the last sixty years. Let hom(G) denote

the size of the largest homogeneous set of a graph G. Erdős and Szekeres [8]

proved that hom(G) ≥ (log n)/2 for any graph G on n vertices and subsequently,

Erdős [7] used probabilistic arguments to demonstrate the existence of an n-vertex

graph G with hom(G) ≤ 2 logn; here, and throughout the paper, all logarithms

are base 2. Despite considerable effort, see [11, 2, 6, 5] for instance, we know

of no deterministic constructions of graphs with no large homogeneous sets; this

suggests that such graphs should perhaps ‘look like’ random graphs. This belief

is supported by many results which show that graphs with no large homogeneous

sets possess many of the same properties as random graphs.
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For a constant C > 0, we say that an n-vertex graph G is C-Ramsey if

hom(G) ≤ C log n. There are a number of results which show that Ramsey graphs

share various properties with dense random graphs. For example, Erdős and Sze-

merédi [10] proved that Ramsey graphs must have edge densities bounded away

from 0 and 1. Prömel and Rödl [12] later showed that every C-Ramsey graph on

n vertices is (δ log n)-universal for some positive constant δ = δ(C); here, a graph

is k-universal if it contains an induced copy of every graph on at most k vertices.

As a final example, let us mention that Shelah [13] proved that Ramsey graphs

contain exponentially many non-isomorphic induced subgraphs.

The results of this paper are motivated by a line of questioning proposed by

Bukh and Sudakov. Bukh and Sudakov [3] proved, settling a conjecture of Erdős,

Faudree and Sós [9], that every C-Ramsey graph on n vertices contains an induced

subgraph with at least δn1/2 distinct degrees for some constant δ(C) > 0. They

then raised the possibility of a similar result holding for graphs with much larger

homogeneous sets, and suggested in particular that for any 0 < ε < 1/2, every

n-vertex graph G with hom(G) < nε should contain an induced subgraph with

Ω(n1/2−ε) distinct degrees; by building on their work, we establish this fact as a

special case of Theorem 1.1 below.

For a graph G, let f(G) denote the largest integer k for which G contains an

induced subgraph with k distinct degrees. Our first result is the following.

Theorem 1.1. For every graph G on n vertices, we have

f(G) ≥ 1

250

(

n

hom(G)

)1/2

.

We believe that this result is far from sharp however; for example, we are unable

to construct an n-vertex graph G either with hom(G) < n1/2 and f(G) = o(n1/2),

or with hom(G) ≥ n1/2 and f(G) = o(n/ hom(G)).

Our next result sharpens Theorem 1.1 for graphs with very large homogeneous

sets. For a positive integer k ∈ N, the disjoint union of n/(k − 1) cliques each of

size k − 1 gives us an example of a graph G on n vertices with f(G) = k − 1 and

hom(G) = max{n/(k − 1), k − 1}. We prove that if k is fixed and n is sufficiently

large, then such a construction is essentially best-possible.

Theorem 1.2. Fix k ∈ N and ε > 0. If n is sufficiently large, then f(G) ≥ k for

every n-vertex graph G with hom(G) < n/(k − 1 + ε).

2



We remark that with ε fixed, the minimal n for which we are able to verify

Theorem 1.2 is exponential in k. We further believe that it should be possible to

prove Theorem 1.2 without an ε-dependent error term; however, we are unable to

do this at present.

This paper is organised as follows. In the next section, we establish some nota-

tion and collect together a few basic tools. In Section 3, we introduce the main

ideas used in this paper and prove Theorem 1.1. In Section 4, we refine the ideas

used to prove Theorem 1.1 and prove Theorem 1.2. We conclude with a discussion

of some open problems in Section 5.

For the sake of clarity of presentation, we systematically omit floor and ceiling

signs whenever they are not crucial. We also make no attempt to optimise the

absolute constants in our results.

2. Preliminaries

In this short section, we introduce some notation and collect together some facts

that we shall rely on repeatedly in the sequel.

2.1. Notation. For us, a pair {x, y} will always mean an unordered pair with

x 6= y. For a set X , we write X(2) for the family of all pairs on the ground set X .

Let G = (V,E) be a graph. We write v(G) and e(G) respectively for the

number of vertices and edges of G. The complement of G is denoted by G. The

neighbourhood of a vertex x is denoted by Γ(x), and the non-neighbourhood of x

is denoted by Γ(x). Also, let d(x) = |Γ(x)| denote the degree of x in G, and let

d(x) = |Γ(x)| be the degree of x in G.

For a subset U ⊂ V , we write G[U ] for the subgraph of G induced by U . For a

vertex x ∈ V , we write ΓU(x) for the set Γ(x) ∩U and ΓU(x) for the set Γ(x) ∩U ;

we also set dU(x) = |ΓU(x)| and dU(x) = |ΓU(x)|.
Finally, we define the neighbourhood-distance between two vertices x, y ∈ V by

δ(x, y) = |(Γ(x) \ {y})△(Γ(y) \ {x})|.

It is not hard to check that this distance satisfies the triangle inequality, i.e.,

δ(x, y) + δ(y, z) ≥ δ(x, z) for any three vertices x, y, z ∈ V .

2.2. Graph theoretic estimates. We need the following simple fact about the

neighbourhood-distance.
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Proposition 2.1. For each K ∈ N, there exists a ∆ ∈ N such that the following

holds. If G is a graph with δ(x, y) ≤ K for all x, y ∈ V (G), then either G or G

has maximum degree at most ∆.

Proof. We prove the claim with ∆ = 4K. The proposition is trivial if v(G) ≤ 4K,

so we may assume that v(G) ≥ 4K + 1. Fix a vertex v ∈ V (G) and let s and t be

the number of edges and non-edges between Γ(v) and Γ(v) respectively.

If x ∈ Γ(v), then dΓ(v)(x) ≤ δ(v, x) ≤ K. Hence, s ≤ K|Γ(v)| and analogously,

t ≤ K|Γ(v)|. Since s+ t = |Γ(v)||Γ(v)|, it follows that

|Γ(v)||Γ(v)| ≤ K(|Γ(v)|+ |Γ(v)|) = K(v(G)− 1).

Since v(G) ≥ 4K + 1, this is only possible if one of |Γ(v)| or |Γ(v)| is at most 2K.

If |Γ(v)| ≤ 2K, then it is not hard to see that every vertex has degree at most 3K;

indeed, this follows from the trivial observation that d(x) ≤ δ(x, v) + d(v) for any

x ∈ V (G). If |Γ(v)| ≤ 2K on the other hand, then it is clear that the maximum

degree of G is at most 3K. �

We shall also require the following fact.

Proposition 2.2. For any k,∆ ∈ N, there exists an L ∈ N such that the following

holds. If G is a graph with f(G) < k and maximum degree at most ∆, then G

contains at most L vertices of degree at least k − 1.

Proof. We shall prove the claim with L = (∆2 + 1)k. We say that two vertices

x, y ∈ V (G) are independent if (Γ(x)∪{x})∩ (Γ(y)∪ {y}) = ∅. As the maximum

degree of G is at most ∆, a vertex of G is dependent on at most ∆+∆(∆−1) = ∆2

other vertices. Let S ⊂ V (G) be the set of vertices of degree at least k − 1 and

suppose for the sake of contradiction that |S| > L. Since |S|/(∆2+1) > k, we can

select k pairwise independent vertices from S; let x1, x2, . . . , xk be these vertices.

For 1 ≤ i ≤ k, let Xi be an arbitrary (i− 1)-element subset of Γ(xi) and let

X = {x1, x2, . . . , xk} ∪X1 ∪X2 ∪ · · · ∪Xk.

Since the vertices x1, x2, . . . , xk are pairwise independent, we see that dX(xi) = i−1

for each 1 ≤ i ≤ k. It follows that x1, x2, . . . , xk have different degrees in G[X ];

this contradicts the fact that f(G) < k. �

Finally, we need the Caro–Wei theorem [4, 14] which refines Turán’s theorem.
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Proposition 2.3. Every graph G contains an independent set of size at least

∑

v∈V (G)

1

d(v) + 1
≥ v(G)2

2e(G) + v(G)
.

Proof. Order the vertices of G uniformly at random and consider the set I of those

vertices that precede all their neighbours in this ordering. Clearly, I is independent;

the proposition follows since

E[|I|] =
∑

v∈V (G)

1

d(v) + 1
. �

2.3. Probabilistic inequalities. We need the following two well-known inequal-

ities; the proofs of these claims may be found in [1]. We shall require Markov’s

inequality.

Proposition 2.4. Let X be a non-negative real-valued random variable. For any

t ≥ 0, we have

P(X > t) <
E[X ]

t
. �

We shall also require Hoeffding’s inequality.

Proposition 2.5. Let X =
∑n

i=1Xi where X1, X2, . . . , Xn are independent real-

valued random variables with 0 ≤ Xi ≤ 1 for each 1 ≤ i ≤ n. For any t ≥ 0, we

have

P(|X − E[X ]| ≥ t) ≤ 2 exp

(−2t2

n

)

. �

3. Small homogeneous sets

This section is devoted to the proof of Theorem 1.1. Before we prove the result,

let us give an overview of the proof. To show that a graph G contains an induced

subgraph with many distinct degrees, we pick a random subset U of the vertices and

consider the subgraph of G induced by U . We first show that if the neighbourhood-

distance between a pair of vertices x, y ∈ U is large, then the probability of dU(x)

and dU(y) being equal is small. Next, to show that there are many such pairs

of vertices with large neighbourhood-distances, we bound the number of pairs of

vertices with small neighbourhood-distances in terms of hom(G). We now make

this sketch precise.
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Proof of Theorem 1.1. The result is trivial if our graph has fewer than 250 vertices,

so we may assume that G = (V,E) is a graph on n ≥ 250 vertices. Let U be a

random subset of V obtained by selecting each vertex of G with probability 1/2,

independently of the other vertices. Define an auxiliary degree graph D on U where

two vertices x, y ∈ U are joined by an edge if they have the same degree in G[U ];

note that D is the union of vertex disjoint cliques, one for each vertex degree in

G[U ]. For any pair of distinct vertices x, y ∈ V , the probability that xy is an edge

of D is precisely P(dU(x) = dU(y))/4. Hence, the expected number of edges of D

is given by

E[e(D)] =
1

4

∑

{x,y}∈V (2)

P(dU(x) = dU(y)).

We shall bound the probability of the event dU(x) = dU(y) by the neighbourhood-

distance between x and y; a similar result appears in [3].

Lemma 3.1. For any pair of distinct vertices x, y ∈ V , we have

P(dU(x) = dU(y)) <
20

√

δ(x, y) + 1
.

Proof. Let s = |Γ(x) \ Γ(y)| and t = |Γ(y) \ Γ(x)|. Observe that s + t is equal to

δ(x, y) + 2 if xy ∈ E and δ(x, y) otherwise. Without loss of generality, we may

suppose that s ≥ t. Therefore, s ≥ δ(x, y)/2 and it follows that

P(dU(x) = dU(y)) =
1

2s+t

t
∑

i=0

(

s

i

)(

t

i

)

≤ 1

2s
max
0≤i≤s

(

s

i

)

(

1

2t

t
∑

i=0

(

t

i

)

)

=
1

2s

(

s

⌊s/2⌋

)

<
10√
s+ 1

≤ 20
√

δ(x, y) + 1
. �

As an immediate consequence of this lemma, we have

E[e(D)] <
∑

{x,y}∈V (2)

5
√

δ(x, y) + 1
. (1)

We now bound the right hand side of (1) in terms of hom(G). Fix a vertex x ∈ V

and consider the sets S = Γ(x) and T = Γ(x). Note that δ(x, y) ≥ dT (y) for any
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y ∈ T . By applying Proposition 2.3 to the graph G[T ], we get

hom(G) ≥
∑

y∈T

1

dT (y) + 1
≥
∑

y∈T

1

δ(x, y) + 1
.

Similarly, if y ∈ S, then δ(x, y) ≥ dS(y). Applying Proposition 2.3 to the comple-

ment of G[S], we similarly get

hom(G) ≥
∑

y∈S

1

dS(y) + 1
≥
∑

y∈S

1

δ(x, y) + 1
.

It follows that

2 hom(G) ≥
∑

y∈V \{x}

1

δ(x, y) + 1
.

Finally, by summing this inequality over all the vertices of G and applying the

Cauchy–Schwarz inequality, we get

n hom(G) ≥
∑

{x,y}∈V (2)

1

δ(x, y) + 1
≥
(

n

2

)−1




∑

{x,y}∈V (2)

1
√

δ(x, y) + 1





2

. (2)

From (1) and (2), we conclude that

E[e(D)] < 4
√

n3 hom(G).

It follows from Markov’s inequality that

P

(

e(D) > 12
√

n3 hom(G)
)

<
1

3
.

Next, since |U | is the sum of n ≥ 250 independent indicator random variables and

E[|U |] = n/2, it follows from Hoeffding’s inequality that

P(|U | < n/3) <
1

3
.

Hence, with positive probability, the degree graph D satisfies v(D) > n/3 and

e(D) < 12(n3 hom(G))1/2. Applying Proposition 2.3 to D, we see that this graph

contains an independent set of size at least

v(D)2

2e(D) + v(D)
≥ 1

250

√

n

hom(G)
.

The vertices of this independent set have different degrees in G[U ] by the definition

of D. Therefore, the subgraph induced by U has at least (1/250)(n/ hom(G))1/2

distinct degrees with positive probability; the result follows. �
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4. Large homogeneous sets

In this section, we consider graphs with large homogeneous sets and prove The-

orem 1.2. Before we turn to the proof of Theorem 1.2, let us identify the ineffi-

ciencies in the proof of Theorem 1.1; to this end, we consider some examples of

graphs with large homogeneous sets that contain no induced subgraphs with many

distinct degrees. Let b, k, n ∈ N be positive integers satisfying b ≤ k ≤ (logn)/2

and consider

(1) a disjoint union of n/k cliques each of size k,

(2) a disjoint union of k cliques each of size n/k, and

(3) a disjoint union of k/b copies of H , where H is the disjoint union of n/k

cliques each of size b.

It is not hard to see that if G is the graph in either of the above three examples,

then hom(G) = n/k and f(G) = k. Suppose that G is one of the graphs described

above; let U be a 1/2-random subset of V (G) and define the degree graph D on

U as in the proof of Theorem 1.1.

If G is the graph in example (1), then with high probability, G[U ] has about

n

2k

(

k − 1

i

)

vertices of degree i for each 0 ≤ i ≤ k − 1. This means that while G[U ] has k

distinct degrees, the k cliques in the auxiliary graph D have very different sizes.

Hence, the final application of the Caro–Wei bound in the proof of Theorem 1.1

is too crude for this graph.

If G is the graph in example (2), then G[U ] again has k distinct degrees with

high probability. However, notice that δ(x, y) is either 0 or 2n/k − 2 for any pair

of vertices x, y ∈ V (G) with the former being the case for about 1/k of the pairs.

Our application of the Cauchy–Schwartz inequality in the proof of Theorem 1.1 is

therefore suboptimal for this graph.

Our third example is a generalisation of the first two examples. The graph

defined in example (3) is the complement of the graph in our first example if b = k,

and is the graph in our second example when b = 1. When 1 < b < k, this example

illustrates both the aforementioned inefficiencies in the proof of Theorem 1.1.

Nevertheless, notice that in all of our examples, a random induced subgraph

has at least k distinct degrees with high probability; our strategy for proving
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Theorem 1.2 will be informed by this fact. Let us now sketch our strategy. First,

we show that we may partition the vertex set of our graph G into groups in such a

way that vertices within a group are all close together in neighbourhood-distance

while vertices from different groups are far apart. We then select a random subset

U of the vertices as before. We use the bound on hom(G) to show that in G[U ],

the degrees of the vertices within a group are distributed like the vertex degrees in

a random induced subgraph of the graph in example (1). We then argue that most

pairs of vertices from different groups have different degrees in G[U ]. We finally

deduce from these facts that the number of distinct degrees in G[U ] is large.

We are ready to prove Theorem 1.2; while following the proof, the reader is

encouraged to keep example (3) in mind.

Proof of Theorem 1.2. The result is trivial when k = 1, so fix k ≥ 2. Also, we may

assume without loss of generality that 0 < ε < 1/2. With the benefit of hindsight,

we define the constants β = ε/10k, η = εβ/105k2 and J = 104k1224k/η4.

Assume that n is sufficiently large and suppose for the sake of contradiction that

G = (V,E) is a graph on n vertices with hom(G) < n/(k − 1 + ε) and f(G) < k.

Let U be a random subset of V obtained by selecting each vertex of V with

probability 1/2, independently of the other vertices. As before, define an auxiliary

degree graph D on U where two vertices x, y ∈ U are joined by an edge if they

have the same degree in G[U ].

For a set of vertices W ⊂ V , we define

δ̂(W ) =
∑

{x,y}∈W (2)

5
√

δ(x, y) + 1
.

We first prove the following.

Claim 4.1. For each W ⊂ V , we have

δ̂(W ) >
|W |2 − 3k|W |

54k
.

Proof. The statement is trivial if |W | ≤ 3k, so suppose that |W | ≥ 3k + 1 ≥ 7.

Note that by Lemma 3.1, the quantity δ̂(W ) is an upper bound for the expected

number of edges of D spanned by W ∩ U ; in other words,

E[e(D[W ∩ U ])] ≤ δ̂(W ).

9



Applying Markov’s inequality, we get

P(e(D[W ∩ U ]) > 3δ̂(W )) < 1/3.

Also, |W ∩ U | is the sum of |W | ≥ 7 independent indicator random variables, so

by Hoeffding’s inequality,

P(|W ∩ U | < |W |/3) ≤ 2 exp(−14/9) < 1/2.

Hence, with positive probability, we have both e(D[W ∩ U ]) ≤ 3δ̂(W ) and |W ∩
U | ≥ |W |/3. By Proposition 2.3, with positive probability, the graph D[W ∩ U ]

contains an independent set of size at least

|W ∩ U |2
2e(D[W ∩ U ]) + |W ∩ U | ≥

|W |2

54δ̂(W ) + 3|W |
.

However, since f(G) < k, we know that D cannot contain an independent set of

size k. It follows that

k >
|W |2

54δ̂(W ) + 3|W |
,

or equivalently,

δ̂(W ) >
|W |2 − 3k|W |

54k
. �

This tells us that every large subset of V must have many pairs of vertices whose

neighbourhood-distance is small. This suggests that we should be able to group

the vertices of G into large groups in such a way that the neighbourhood-distance

between any two vertices within a group is small. We prove such a statement this

next; recall that β = ε/10k and J = 1024k2024k/(εβ)4.

Claim 4.2. There exists a K = K(k, ε) > 0 such that the following holds. There

are pairwise disjoint sets A1, A2, . . . , Am ⊂ V such that

(1) |A1 ∪A2 ∪ · · · ∪ Am| > (1− β)n,

(2) |Ai| > βn/104k for each 1 ≤ i ≤ m,

(3) if x, y ∈ Ai, then δ(x, y) < K, and

(4) if x ∈ Ai and y ∈ Aj with i 6= j, then δ(x, y) > J .

Proof. We prove the claim with

K = 2

(

106k2 +
J log(104k)

log(1 + β/2)

)

.

We shall construct a sequence of pairwise disjoint sets A1, A2, . . . and another

nested sequence of sets B0 ⊂ B1 ⊂ . . . such that for each l ∈ N,

10



(i) Bl is disjoint from A1 ∪ A2 ∪ · · · ∪Al,

(ii) |Al| > βn/104k,

(iii) |Bl| < (β/2)
∑l

i=1 |Ai|,
(iv) if x, y ∈ Al, then δ(x, y) < K, and

(v) if x ∈ Al and y ∈ V \ (Al ∪ Bl), then δ(x, y) > J .

We set B0 = ∅. Let l ≥ 0 and suppose that the sets A1, A2, . . . , Al and Bl have

already been constructed satisfying the above properties. The claim is proved if
∑l

i=1 |Ai| > (1− β)n. Suppose otherwise; we construct Al+1 and Bl+1 as follows.

Define W = V \ (Bl ∪ A1 ∪ A2 ∪ · · · ∪ Al) and note that |W | > βn/2. Let p be

the number of pairs {x, y} ∈ W (2) such that δ(x, y) < 106k2. Note that we have

δ̂(W ) =
∑

{x,y}∈W (2)

5
√

δ(x, y) + 1
< 5p+

|W |2
103k

.

On the other hand, if n is sufficiently large, then by Claim 4.1, we have

δ̂(W ) >
|W |2 − 3k|W |

54k
>

|W |2
100k

.

It follows that p > |W |2/103k. Thus, there is a vertex w ∈ W and a subset S ⊂ W

with |S| > |W |/103k where every x ∈ S satisfies δ(w, x) < 106k2.

We set C1 = {w} ∪ S and iteratively construct an increasing sequence of sets

C1 ⊂ C2 ⊂ . . . as follows. Having constructed Ci, consider the set T of vertices

x ∈ W \ Ci for which there exists a vertex y ∈ Ci such that δ(x, y) ≤ J . If

|T | ≥ β|Ci|/2, then set Ci+1 = Ci ∪ T . Otherwise, stop and define Al+1 = Ci and

Bl+1 = Bl ∪ T .

It is clear that Bl+1 ∩ (A1 ∪ A2 ∪ · · · ∪ Al+1) = ∅ and that δ(x, y) > J for all

x ∈ Al+1 and y ∈ V \ (Bl+1 ∪Al+1). It is also clear that

|Al+1| ≥ |C1| >
|W |
103k

>
βn

104k
.

Finally, note that we must have |T | < β|Ci|/2 when we define Al+1 and Bl+1, so

we inductively have

|Bl+1| <
β

2

l+1
∑

i=1

|Ai|.

Next, observe that for each i ≥ 1, we have

|Ci| ≥
(

1 +
β

2

)i−1

|C1| ≥
(

1 +
β

2

)i−1 |W |
103k

.
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As each Ci is a subset of W , it is clear that the sets Al+1 and Bl+1 get defined after

at most log(104k)/ log(1 + β/2) iterations. The neighbourhood-distance satisfies

the triangle inequality; consequently,

δ(w, x) < 106k2 + (i− 1)J

for all x ∈ Ci and therefore,

δ(x, y) < 2(106k2 + (i− 1)J)

for all x, y ∈ Ci. Thus, for all x, y ∈ Al+1, we have

δ(x, y) < 2

(

106k2 +
J log(104k)

log(1 + β/2)

)

= K.

Therefore, the sets A1, A2, . . . , Al+1 and Bl+1 also satisfy the properties described

above.

To finish the proof, note that since the sets A1, A2, . . . are pairwise disjoint, the

above described construction procedure must terminate; indeed, if m > 104k/β,

then
∑m

i=1 |Ai| > (1− β)n. �

Let K and A1, A2, . . . , Am be as promised by Claim 4.2. Note that m ≤ 104k/β

since |Ai| > βn/104k for each 1 ≤ i ≤ m.

To proceed, we need to introduce the following notion of independence. If S ⊂ V

and x, y ∈ S, we say that x and y are S-independent in G if

(ΓS(x) ∪ {x}) ∩ (ΓS(y) ∪ {y}) = ∅;

analogously, we say that x and y are S-independent in G if

(ΓS(x) ∪ {x}) ∩ (ΓS(y) ∪ {y}) = ∅.

Recall that U is a 1/2-random subset of the vertices; therefore, if x and y are

S-independent, then dU∩S(x) and dU∩S(y) are independent random variables.

For 1 ≤ i ≤ m, let ri be the unique non-negative integer such that

rin

k − 1 + ε
< |Ai| − ηn ≤ (ri + 1)n

k − 1 + ε
.

Our next step is to show that each Ai has a large subset of pairwise Ai-independent

vertices; recall that η = εβ/105k2.

Claim 4.3. For each 1 ≤ i ≤ m, there is a subset Bi ⊂ Ai with |Bi| > ηn/2k2

such that either

12



(1) ri ≤ dAi
(x) ≤ k − 2 for every x ∈ Bi, and

(2) any pair of distinct vertices x, y ∈ Bi are Ai-independent in G,

or

(1) ri ≤ dAi
(x) ≤ k − 2 for every x ∈ Bi, and

(2) any pair of distinct vertices x, y ∈ Bi are Ai-independent in G.

It is clear from the definition of ri that ri ≤ k − 1; the above claim implicitly

tells us that our assumptions about G actually imply that ri ≤ k − 2 for each

1 ≤ i ≤ m.

Proof of Claim 4.3. Fix 1 ≤ i ≤ m and let r = ri, A = Ai and F = G[Ai]. To avoid

confusion, we write dF and δF to denote the degrees and neighbourhood-distances

in the graph F .

Note that δF (x, y) ≤ δ(x, y) < K for all x, y ∈ A. Hence, by applying Proposi-

tion 2.1 to F , we see that there exists a ∆ = ∆(k, ε) such that either dF (x) ≤ ∆

for all x ∈ A or dF (x) ≤ ∆ for all x ∈ A. We suppose that the former holds; the

other case may be handled analogously.

We now apply Proposition 2.2 to F and conclude that all but at most L = L(k, ε)

vertices x ∈ A satisfy dF (x) ≤ k − 2. Let q be the number of vertices x ∈ A with

dF (x) ≤ r− 1. Then, by Proposition 2.3, F contains an independent set of size at

least q/r. From our assumption about hom(G), it follows that

q ≤ r hom(F ) ≤ r hom(G) <
rn

k − 1 + ε
;

therefore, there are at least ηn vertices x ∈ A with dF (x) ≥ r.

Let S1 be the set of vertices x ∈ A with dF (x) ≥ r. Let S2 be the set of those

x ∈ S1 which are A-dependent on some vertex y ∈ A with dF (y) ≥ k − 1; the

number of such y is at most L, so it follows that |S2| ≤ L(1+∆+∆(∆− 1)). If n

is sufficiently large, then the set S3 = S1 \ S2 contains at least 2ηn/3 vertices. For

every vertex x ∈ S3, there are at most (k−2)+(k−2)(k−3) ≤ k2−1 other vertices

y ∈ A such that x and y are A-dependent. Hence, we can greedily select a set

B ⊂ S3 of pairwise A-independent vertices of size at least |S3|/k2 > ηn/2k2. �

For 1 ≤ i ≤ m, let Bi ⊂ Ai be as guaranteed by Claim 4.3 and let Ai be

the event that there exists an integer di ≥ 0 and ri + 1 pairwise disjoint sets

Bi,0, Bi,1, . . . , Bi,ri ⊂ Bi ∩ U such that for all 0 ≤ s, t ≤ ri,

13



(1) |Bi,s| ≥ ηn/2k+1k3,

(2) dU∩Ai
(x) = dU∩Ai

(y) for all x, y ∈ Bi,s,

(3) dU∩Ai
(x) 6= dU∩Ai

(y) for all x ∈ Bi,s and y ∈ Bi,t with s 6= t, and

(4) dU∩(V \Ai)(x) = di for all x ∈ Bi,0 ∪Bi,1 ∪ · · · ∪Bi,ri.

We next prove the following bound.

Claim 4.4. For each 1 ≤ i ≤ m,

P(Ai) > 1− 1

3m
.

Proof. Fix 1 ≤ i ≤ m and suppose that all pairs of distinct vertices from Bi are

Ai-independent in G; the other case may be handled similarly by working with

vertex degrees in G instead of G.

For each W ⊂ V \ Ai, we shall prove that

P(Ai |U ∩ (V \ Ai) = W ) > 1− 1

3m
.

We fix W ⊂ V \ Ai and condition on the event U ∩ (V \ Ai) = W ; note that any

event that depends only on the vertices in Ai is independent of this event. If the

collection of degrees {dW (x)}x∈Bi
contains k distinct integers, then the subgraph

induced by Bi ∪ W has k different degrees, contradicting our assumption that

f(G) < k. Hence, there exists an integer di ≥ 0 for which there are least |Bi|/k
vertices x ∈ Bi with dW (x) = di; let Ci ⊂ Bi be the set of these vertices.

For a vertex x ∈ Ci and 0 ≤ s ≤ ri, let Ii(x, s) be the indicator of the event

{x ∈ U} ∩ {dU∩Ai
(x) = s} and define

Ii(s) =
∑

x∈Ci

Ii(x, s).

Observe that E[Ii(x, s)] ≥ 1/2k−1 since ri ≤ dAi
(x) ≤ k − 2 and consequently,

E[Ii(s)] ≥
|Ci|
2k−1

≥ ηn

2kk3
.

Also, the indicator random variables {Ii(x, s)}x∈Ci
are independent, so by Hoeffd-

ing’s inequality, we have

P

(

Ii(s) <
ηn

2k+1k3

)

<
1

3mk

for all sufficiently large n since m ≤ 104k/β. If Ii(s) ≥ ηn/2k+1k3 for each 0 ≤
s ≤ ri, then Ai clearly holds. Since ri ≤ k − 2, the claim follows by the union

bound. �
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Define the event A = A1 ∩ A2 ∩ · · · ∩ Am; it is clear from the previous claim

that P(A) > 2/3.

Let us remind the reader that D is the graph on U where x, y ∈ U are joined

by an edge if dU(x) = dU(y). Let b be the number of edges xy of D with x ∈ Ai

and y ∈ Aj for some 1 ≤ i < j ≤ m. As δ(x, y) > J for such a pair of vertices x

and y, it follows from Claim 3.1 that

P(xy ∈ E(D)) <
5√

J + 1

and hence, E[b] < 5n2/J1/2.

Let B be the event that b ≤ 15n2/J1/2. By Markov’s inequality, P(B) > 2/3.

We finish the proof of Theorem 1.2 by proving the following.

Claim 4.5. If both A and B hold, then G[U ] has at least k distinct degrees.

Proof. We know that D is the union of vertex disjoint cliques, one for each vertex

degree in G[U ]. If A holds, then for each 1 ≤ i ≤ m, the graph D[Ai ∩ U ]

contains at least ri+1 disjoint cliques Di,0, Di,1, . . . , Di,ri (which correspond to the

degrees in G[U ] of the vertices in Bi,0, Bi,1, . . . , Bi,ri) each of size at least ηn/2k+1k3.

Additionally, if B holds, then there are no edges in D between Di,s and Dj,t for

any 1 ≤ i < j ≤ m, 0 ≤ s ≤ ri and 0 ≤ t ≤ rj. Indeed, if not, then Di,s ∪ Dj,t

induces a clique in D and we arrive at a contradiction since we would then have

b ≥ |Di,s||Dj,t| ≥
η2n2

22k+2k6
>

15n2

√
J
;

here, the last inequality holds since J = 10424kk12/η4. Hence, for all 1 ≤ i ≤ m

and 0 ≤ s ≤ ri, the cliques Di,s all correspond to distinct degrees in G[U ]. Thus,

G[U ] has at least
∑m

i=1(ri + 1) different degrees. Since

(ri + 1)n

k − 1 + ε
≥ |Ai| − ηn,

it follows that
m
∑

i=1

(ri + 1) ≥ (1− β −mη)(k − 1 + ε) > k − 1;

here, the last inequality holds since β = ε/10k, η = εβ/105k and m ≤ 104k/β.

Since
∑m

i=1(ri + 1) is an integer, this sum is at least k. We conclude that if both

A and B hold, then G[U ] has at least k distinct degrees. �
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We know by the union bound that P(A∩B) > 0. Therefore, G[U ] has k distinct

degrees with positive probability, contradicting our assumption that f(G) < k; the

result follows. �

5. Conclusion

We conclude this note by discussing two of the questions we alluded to in the

introduction. First, as we mentioned earlier, we suspect that the following strength-

ening of Theorem 1.2 is true.

Conjecture 5.1. Fix a positive integer k ≥ 2. If n is sufficiently large, then

f(G) ≥ k for every n-vertex graph G with hom(G) < n/(k − 1).

It may be read out of the proof of Theorem 1.2 that if G is an n-vertex graph

with hom(G) > n/(100 logn), then f(G) = Ω(n/ hom(G)); for such graphs, this is

a significant improvement over Theorem 1.1. We believe that it should be possible

to prove a similar result for graphs with much smaller homogeneous sets.

Conjecture 5.2. If G is an n-vertex graph with hom(G) > n1/2, then f(G) =

Ω(n/ hom(G)).
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7. P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53

(1947), 292–294.
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