
ar
X

iv
:1

70
1.

03
78

0v
2 

 [
m

at
h.

C
O

] 
 2

3 
M

ar
 2

01
8

Generalised Majority Colourings of Digraphs

António Girão∗ Teeradej Kittipassorn† Kamil Popielarz‡

March 26, 2018

Abstract

We almost completely solve a number of problems related to a concept called majority
colouring recently studied by Kreutzer, Oum, Seymour, van der Zypen and Wood. They
raised the problem of determining, for a natural number k, the smallest number m = m(k)
such that every digraph can be coloured with m colours where each vertex has the same
colour as at most a 1/k proportion of its out-neighbours. We show that m(k) ∈ {2k −
1, 2k}. We also prove a result supporting the conjecture that m(2) = 3. Moreover, we
prove similar results for a more general concept called majority choosability.

For a natural number k ≥ 2, a 1
k
-majority colouring of a digraph is a colouring of the

vertices such that each vertex receives the same colour as at most a 1/k proportion of its
out-neighbours. We say that a digraph D is 1

k
-majority m-colourable if there exists a 1

k
-

majority colouring of D using m colours. The following natural question was recently raised
by Kreutzer, Oum, Seymour, van der Zypen and Wood [6].

Question 1. Given k ≥ 2, determine the smallest number m = m(k) such that every digraph

is 1
k
-majority m-colourable.

In particular, they asked whether m(k) = O(k). Let us first observe that m(k) ≥ 2k − 1.
Consider a tournament on 2k − 1 vertices where every vertex has out-degree k − 1. Any 1

k
-

majority colouring of this tournament must be a proper vertex-colouring, and hence it needs
at least 2k − 1 colours. Conversely, we prove that m(k) ≤ 2k.

Theorem 2. Every digraph is 1
k
-majority 2k-colourable for all k ≥ 2.

This is an immediate consequence of a result of Keith Ball (see [3]) about partitions of
matrices. We shall use a slightly more general version proved by Alon [1].

Lemma 3. Let A = (aij) be an n × n real matrix where aii = 0 for all i, aij ≥ 0 for all

i 6= j, and
∑

j aij ≤ 1 for all i. Then, for every t and all positive reals c1, . . . , ct whose sum is

1, there is a partition of {1, 2, . . . , n} into pairwise disjoint sets S1, S2, . . . , St, such that for

every r and every i ∈ Sr, we have
∑

j∈Sr
aij ≤ 2cr.
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Proof of Theorem 2. Let D be a digraph on n vertices with vertex set {v1, v2, . . . , vn} and
write d+(vi) for the out-degree of vi. Let A = (aij) be an n× n matrix where aij =

1
d+(vi)

if

there is a directed edge from vi to vj and aij = 0 otherwise. We apply Lemma 3 with t = 2k
and ci =

1
2k for 1 ≤ i ≤ 2k obtaining a partition of {1, 2, . . . , n} into sets S1, S2, . . . , S2k, such

that for every r and every i ∈ Sr,
∑

j∈Sr
aij ≤

1
k
. Equivalently, the number of out-neighbours

of vi that have the same colour as vi is at most d+(vi)
k

where the colouring of D is defined by
the partition S1 ∪ S2 ∪ · · · ∪ S2k.

Question 1 has now been reduced to whether m(k) is 2k − 1 or 2k.

Question 4. Is every digraph 1
k
-majority (2k − 1)-colourable?

Surprisingly, this is open even for k = 2. Kreutzer, Oum, Seymour, van der Zypen and
Wood [6] gave an elegant argument showing that every digraph is 1

2 -majority 4-colourable
and they conjectured that m(2) = 3.

Conjecture 5. Every digraph is 1
2-majority 3-colourable.

We provide evidence for this conjecture by proving that tournaments are almost 1
2 -majority

3-colourable.

Theorem 6. Every tournament can be 3-coloured in such a way that all but at most 205
vertices receive the same colour as at most half of their out-neighbours.

Proof. The proof relies on an observation that in a tournament T , the set Si = {x ∈ V (T ) :
2i−1 ≤ d+(x) < 2i} has size at most 2i+1. Indeed, the sum of the out-degrees of the vertices
of Si is at least

(|Si|
2

)

, the number of edges inside Si. On the other hand, this sum is at most

(2i − 1)|Si| by the definition of Si. Therefore,
(|Si|

2

)

≤ (2i − 1)|Si| and hence, |Si| ≤ 2i+1 − 1.

We proceed by randomly assigning one of three colours to each vertex independently with
probability 1/3. Given a vertex x, let Bx be the number of out-neighbours of x which receive
the same colour as x. We say that x is bad if Bx > d+(x)/2. Trivially E(Bx) = d+(x)/3, and
hence by a Chernoff-type bound, it follows that, for x ∈ Si,

P(x is bad) = P(Bx > d+(x)/2) = P (Bx > (1 + 1/2)E(B(x)))

≤ exp

(

−
(1/2)2

3
E(Bx)

)

= exp(−d+(x)/36) ≤ exp(−2i−1/36).

Notice that if i ≥ 11 then P(x is bad) ≤ 2−(2i−7). Let X denote the total number of bad
vertices. Since the vertices of out-degree 0 cannot be bad,

E(X) =
∑

i≥1

∑

x∈Si

P(x is bad) ≤

10
∑

i=1

2i+1 exp(−2i−1/36) +
∑

i≥11

2i+12−(2i−7)

≤ 205 +
∑

i≥11

2−i+8 = 205 +
1

4
< 206.

Hence, there is a 3-colouring such that all but at most 205 vertices receive the same colour
as at most half of their out-neighbours.
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Observe also that the same argument proves a special case of Conjecture 5.

Theorem 7. Every tournament with minimum out-degree at least 210 is 1
2 -majority 3-colour-

able.

We remark that Theorem 6 can be strengthened (205 can be replaced by 7) by solving a
linear programming problem. Recall that the expected number of bad vertices of out-degree
at least 1024 is at most 1/4. We shall use linear programming to show that the expected
number of bad vertices of out-degree less than 1024 is less than 7.75. Let Vi be the set of
vertices of out-degree i for i ∈ {1, 2, . . . , 1023} and note that the expected number of bad
vertices of out-degree at most 1023 is f(v1, v2, . . . , v1023) =

∑1023
i=1 vipi where vi = |Vi| and

pi =
∑i

j=⌈ i+1

2
⌉

(

i
j

)

(1/3)j(2/3)i−j . As before, observe that the number of vertices of degree

at most i is at most 2i + 1, and therefore,
∑i

j=1 vi ≤ 2i + 1, leading to the following linear
program.

Maximize: f(v1, v2, . . . , v1023)

Subject to:

i
∑

j=1

vj ≤ 2i+ 1, for i ∈ {1, 2, . . . , 1023}

Subject to: vi ≥ 0, for i ∈ {1, 2, . . . , 1023}.

See Appendix A for the source code. Similarly, we can replace 210 in Theorem 7 by 55, by
using the same linear program to show that the expected number of bad vertices of out-degree
in [55, 1023] is less than 3/4.

Let us now change direction to a more general concept of majority choosability. A digraph
is 1

k
-majority m-choosable if for any assignment of lists of m colours to the vertices, there

exists a 1
k
-majority colouring where each vertex gets a colour from its list. In particular, a 1

k
-

majority m-choosable digraph is 1
k
-majority m-colourable. Kreutzer, Oum, Seymour, van der

Zypen and Wood [6] asked whether there exists a finite number m such that every digraph is
1
2 -majority m-choosable. Anholcer, Bosek and Grytczuk [2] showed that the statement holds
with m = 4. We generalise their result as follows.

Theorem 8. Every digraph is 1
k
-majority 2k-choosable for all k ≥ 2.

Theorem 8 was independently proved by Fiachra Knox and Robert Šámal [5]. We prove
Theorem 8 using a slight modification of Lemma 3 whose proof is very similar to that of
Lemma 3.

Lemma 9. Let A = (aij) be an n×n real matrix where aii = 0 for all i, aij ≥ 0 for all i 6= j,
and

∑

j aij ≤ 1 for all i. Then, for every m and subsets L1, L2, . . . , Ln ⊂ N of size m, there

is a function f : {1, 2, . . . , n} → N such that, for every i, f(i) ∈ Li and
∑

j∈f−1(r) aij ≤ 2
m

where r = f(i).

Proof. By increasing some of the numbers aij , if needed, we may assume that
∑

j aij = 1 for
all i. We may also assume, by an obvious continuity argument, that aij > 0 for all i 6= j.
Thus, by the Perron–Frobenius Theorem, 1 is the largest eigenvalue of A with right eigenvector

3



(1, 1, . . . , 1) and left eigenvector (u1, u2, . . . , un) in which all entries are positive. It follows

that
∑

i uiaij = uj . Define bij = uiaij , then
∑

i bij = uj and
∑

j bij = ui

(

∑

j aij

)

= ui.

Let f : {1, 2, . . . , n} → N be a function such that f(i) ∈ Li and f minimises the sum
∑

r∈N

∑

i,j∈f−1(r) bij. By minimality, the value of the sum will not decrease if we change f(i)

from r to l where l ∈ Li. Therefore, for any i ∈ f−1(r) and l ∈ Li, we have
∑

j∈f−1(r)

(bij + bji) ≤
∑

j∈f−1(l)

(bij + bji).

Summing over all l ∈ Li, we conclude that

m
∑

j∈f−1(r)

(bij + bji) ≤
∑

j∈f−1(Li)

(bij + bji) ≤

n
∑

j=1

(bij + bji) = 2ui.

Hence,
∑

j∈f−1(r) uiaij =
∑

j∈f−1(r) bij ≤
∑

j∈f−1(r)(bij + bji) ≤ 2ui

m
. Dividing by ui, the

desired result follows.

Proof of Theorem 8. The proof is the same as that of Theorem 2, using Lemma 9 instead of
Lemma 3.

In fact, the same statement also holds when the size of the lists is odd.

Corollary 10. Every digraph is 2
m
-majority m-choosable for all m ≥ 2.

This statement generalises a result of Anholcer, Bosek and Grytczuk [2] where they prove the
case m = 3 which says that, given a digraph with colour lists of size three assigned to the
vertices, there is a colouring from these lists such that each vertex has the same colour as at
most two thirds of its out-neighbours.

We have established that the 1
k
-majority choosability number is either 2k − 1 or 2k. Let us

end this note with an analogue of Question 4.

Question 11. Is every digraph 1
k
-majority (2k − 1)-choosable?
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Appendix A Linear program

We use the toolkit [4] to solve the linear program with the following source code:

param N := 1024;

param comb ’n choose k ’ {n in 0 . .N, k in 0 . . n} :=
i f k = 0 or k = n then 1 e l s e comb [ n−1,k−1] + comb [ n−1,k ] ;

param prob ’ p r obab i l i t y ’ {n in 0 . .N} :=
sum{k in ( f l o o r (n /2)+1) . . n} comb [ n , k ]∗ ( ( 1/3 )ˆ k )∗ ( ( 2/3 )ˆ ( n−k ) ) ;

var x { 1 . .N} , i n t ege r , >= 0 ;

sub j e c t to con s t r a i n t { i in 1 . .N} : sum{ j in 1 . . i } x [ j ] <= 2∗ i +1;

maximize expec tat i on : sum{ i in 1 . .N} x [ i ]∗ prob [ i ] ;

s o l v e ;

end ;
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