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Abstract. An oriented k-uniform hypergraph (a family of ordered k-sets) has the order-
ing property (or Property O) if for every linear order of the vertex set, there is some edge
oriented consistently with the linear order. We find bounds on the minimum number of
edges in a hypergraph with Property O.

1. Introduction

This note is motivated by two types of problems concerning hypergraphs. The first is well-
known and regards 2-colorable hypergraphs, also said to possess Property B. Several papers
have presented bounds on m(k), the minimum number of edges in a k-uniform hypergraph
that does not have Property B (see [1], [2], [5] and [6]). The second comes from Ramsey
theory, where appropriate properties of graphs containing a given graph with a fixed order
can be used to prove negative partition relations for unordered graphs (see [3] and [4] for
early papers on this topic).

We would like to determine the minimum number of edges in a oriented uniform hypergraph
needed to ensure that for every ordering of the vertex set, some edge is ordered in the same
way. Here are the required definitions followed by our results and a conjecture.

Fix a positive integer k ≥ 2 and a finite set V . An ordered k-set E is a k-tuple (x1, x2, . . . , xk)
of distinct elements of V ; we use E to denote the unordered set {x1, x2, . . . , xk}. Given a
family of ordered k-sets E ⊆ V k with no two k-tuples on the same k-element set, call
H = (V, E) an oriented k-uniform hypergraph, or, more briefly, an oriented k-graph. In
the case that E contains an ordered k-set for each k-element subset of V , call H a k-

tournament. So, a k-tournament is obtained from the complete k-uniform hypergraph K
(k)
n

by giving each k-set an orientation. For E ⊆ V and a linear order < on V , an ordered k-set
E = (x1, x2, . . . xk) is consistent with < if x1 < x2 < . . . < xk.

Here is the property that interests us.
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Definition. Given an oriented k-graph H = (V, E) we say that that H has the ordering
property, or Property O, if for every (linear) order < of V there exists E ∈ E that is consis-
tent with <. For an integer k ≥ 2, let

f(k) be the minimum number of edges in an oriented k-graph with Property O.

Here is what we know about bounds for f(k).

Theorem 1. The function f(k) satisfies k! ≤ f(k) ≤ (k2 ln k)k! where the lower bound
holds for all k and the upper bound for k ≥ k0.

The upper bound for f(k) is proven in Section 2. The lower bound k! ≤ f(k) follows from
a standard argument. Given any oriented k-graph H = ([n], E), clearly each E ∈ E is
consistent with

(n− k)!

(
n

k

)
=
n!

k!

orders on [n]. Consequently, if H has Property O then

|E| · n!

k!
≥ n!, so |E| ≥ k!.

We would like to decide if f(k) is bounded away from k!, in analogy with Property B.

Problem 1. Determine whether
f(k)

k!
→∞ as k →∞.

We are unable to improve the simple lower bound for f(k) at this point, however we can
show that for any function α(k)→ 0 as k →∞, almost all k-tournaments with(

n

k

)
= (1− α(k))(k1/2k!)

edges fail to have Property O. Let Tn,k denote the set of all k-tournaments on [n].

Theorem 2. Let 0 < α < 1 and let c = 2π/e1+e
2/2. If n = (cα(1 + o(1))1/k

(
k
e

)2
k3/2k then

for k sufficiently large at least (1− α)|Tn,k| members of Tn,k do not have Property O.

In the next section, we prove the upper bound of f(k) given in Theorem 1. In Section 3
we prove Theorem 2. In Section 4 we provide a construction of k-graphs with Property O,
investigate the situation for small values of n and k, and pose a few problems.

We close this section with an observation used in both Sections 2 and 3.

Fact. Let

(1) n =

(
k

e

)2

(1 + o(1)).
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Then

(2)

(
n

k

)
=
(
e−e

2/2
) nk
k!

(1 + o(1)).

Indeed, (1) implies that

(n)k
nk

=

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
= exp

k−1∑
j=1

ln(1− j/n)

 =

= exp

(1 + o(1))
k−1∑
j=1

−j/n

 = exp

(
(1 + o(1))

(
−
(
k

2

)
/n

))
=

= exp
(
(1 + o(1))

(
−e2/2

))
= (1 + o(1))e−e

2/2,

so (2) holds.

2. Proof of Theorem 1

We verify the upper bound in Theorem 1 by showing that for k large enough, there exists
a k-tournament with (k2 ln k)k! edges which has Property O. Indeed, we show that for an
appropriate choice of n, a randomly selected member of Tn,k has Property O with positive
probability.

Let H = ([n], E) ∈ Tn,k. For a fixed order < on [n] and a fixed E ∈ E , the probability that

E is not consistent with < is 1 − 1
k! . Since the edges of H are oriented independently, the

probability that no edge of H is consistent with < is (1 − 1
k!)

(nk). Taking the union bound
over all orders on V , we see that the probability that there exists an order < on V so that

no edge of H is consistent with < is at most n!(1− 1
k!)

(nk).

The upper bound follows once we verify (3) and (4), below, for k sufficiently large.

Let n =

(
k

e

)2 (
π · exp(e2/2) · k3 ln k

)1/k
. Then

(3)

(
n

k

)
1

k!
≤ k2 ln k, and

(4) n!

(
1− 1

k!

)(n
k

)
< 1.
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To prove (3), we apply the Fact and the Stirling approximation k! = (k/e)k
√

2πk(1 + o(1)):

(5)

(
n

k

)
1

k!
= e−e

2/2

(
(k/e)2k π · ee2/2 · k3 ln k

(k!)2

)
(1 + o(1)) =

1

2
k2 ln k(1 + o(1)).

Hence (3) holds for k sufficiently large.

Turning to inequality (4), we use the choice of n and (5) to infer that

(6) n lnn = 2

(
k

e

)2

ln k(1 + o(1)) <

(
n

k

)
1

k!
,

for k sufficiently large. We have

n!

(
1− 1

k!

)(n
k

)
≤ nn

(
1− 1

k!

)(n
k

)
≤ exp(n lnn) · exp

(
−
(
n

k

)
1

k!

)
= exp

(
n lnn−

(
n

k

)
1

k!

)
< 1.

where the last inequality follows from (6). This proves (4) and completes the proof of the
upper bound.

3. Randomly Oriented Tournaments

In this section we prove Theorem 2. For brevity, we set ω = (α/3e)k1/2(1 + o(1)).

Proof of Theorem 2. Let 0 < α < 1. We refine the Fact, that is, the estimate of the number
of edges of the k-tournaments in Tn,k. Since

n = (cα(1 + o(1))1/k
(
k

e

)2

k3/2k where c =
2π

3e
ee

2/2,

by Stirling’s formula we have

(7)

nk = cαk3/2
(
k

e

)2k

(1 + o(1))

=
ee

2/2

3e
α(k!)2k1/2(1 + o(1)).

On the other hand, by the Fact,

(8) nk = ee
2/2(n)k(1 + o(1)).
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Comparing the right hand sides of (7) and (8), we obtain

(9)

(
n

k

)
=

α

3e
k1/2k!(1 + o(1)) = ωk!

with ω as defined above.

We will show that if T is sampled from Tn,k, the set of all k-tournaments on [n], according
to the uniform distribution, the probability that T has Property O is at most α. It will
follow that at least (1− α)|Tn,k| members of Tn,k fail to have Property O.

The random sampling of T = ([n], E) from Tn,k is done in two phases. In the first phase we
will select k-tuples which are consistent with the natural order < on [n] and in the second
phase we will assign to the remaining k-tuples one of the k!− 1 remaining orientations.

Phase 1: Reveal the set C(T ) of the members of E that are oriented consistently with <.

For any K ∈ E , Pr(K ∈ C(T )) = 1/k! and thus, by (9),

E(|C(T )|) =

(
n

k

)
1

k!
= ω.

Let Aω be the event that |C(T )| ≤ 2
αω. By Markov’s inequality we have

Pr

(
|C(T )| > 2

α
ω

)
<

α

2
and so Pr(Aω) > 1− α

2
.

Assume that Aω occurs. For each K ∈ E , as before, let minK be the <-least element of K.
Define

M = {minK | K ∈ C(T )}
and note that

|M | ≤ |C(T )| ≤ 2

α
ω < k − 1.

Thus, for each K ∈ C(T ), K \M 6= ∅. Let W ⊆ [n] be obtained by selecting one element
from each K \M . We now define <′ to be the natural order < on each of W and [n] \W ,
and let u <′ v for u ∈W , v ∈ [n] \W .

We claim that no K ∈ C(T ) is consistent with <′. To see this, let v ∈ K ∩W . On the one
hand, minK 6∈ W by the way that we selected W . On the other hand, v <′ minK by the
definition of <′. However, K ∈ C(T ) means precisely that K is consistent with <, and so
v <′ minK is a contradiction.

Phase 2: Reveal the orientation on each K 6∈ C(T ).

For each K 6∈ C(T ) there are k!− 1 possible orientations of K in T – any one except that
given by the natural order <. Since T is chosen according to the uniform distribution, each
orientation is equally likely and at most one of these is consistent with <′. Thus,

Pr(K is consistent with <′) ≤ 1/(k!− 1).
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Also, if K ∩W = ∅, then < and <′ coincide on K, so K cannot be consistent with <′. Set
ω′ = 2

αω ≥ |W |.

Since the only k-tuples which may become consistent with <′ are those which have a
nonempty intersection with W , in view of (9),

Pr(∃ K 6∈ C(T ) consistent with <′ | Aω)

is bounded above by ω′∑
j=1

(
ω′

j

)(
n− ω′
k − j

) 1

k!− 1
=

 ω′∑
j=1

(
ω′

j

)(
n− ω′
k − j

) ω(
n

k

)(1 + o(1))

= ω
ω′∑
j=1

(ω′)j(n− ω′)k−jk!

j!(k − j)!(n)k
(1 + o(1))

≤ ω
ω′∑
j=1

(k)j(ω
′)j

j!(n)j
(1 + o(1)).(10)

The inequality in (10) holds because j ≤ ω′ and so
(n− ω′)k−j

(n)k
≤ 1

(n)j
.

It is straightforward to argue that for all numbers a, b, c satisfying 1 ≤ a, b < c,

(a− 1)(b− 1)

c− 1
<
ab

c
.

Repeated application of this shows that the expression in (10) is bounded above by

ω

ω′∑
j=1

1

j!

(
kω′

n

)j
(1 + o(1)) ≤ ω

(
ekω

′/n − 1
)

(1 + o(1))

≤ ω
kω′

n
(1 + o(1)) =

2kω2

αn
(1 + o(1)) <

α

2
.

The last inequality follows since ω = (α/3e)k1/2 and (k/e)2/2 ≤ n.

If T has Property O then either Aω does not occur, or Aω does occur and some K 6∈ C(T̃ )
is consistent with <′. Consequently, we have:

Pr(T has Property O) ≤ Pr(Acω) + Pr(Aω) Pr(∃ K 6∈ C(T ) consistent with <′ | Aω)

<
α

2
+
α

2
= α.

Hence the probability that T fails to have Property O is at least (1 − α). Since T is a
uniform selection from Tn,k, this is equivalent to saying at least (1 − α)|Tn,k| members of
Tn,k fail to have Property O. �
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4. A Construction, Small Values of n, and Problems

We have an upper bound for f(k), the minimum number of edges in k-graphs with Prop-
erty O, in Theorem 1: for k ≥ k0, f(k) ≤ (k2 ln k)k!. We have a construction of k-graphs
with Property O, for all k ≥ 2. While these k-graphs have edge sets that are larger than
the upper bound obtained by the probabilistic proof in Section 2, the hypergraphs are not
unreasonably large.

For each k ≥ 2 we construct an oriented k-graph Gk = (Vk, Ek) that has Property O, where

(11) |Vk| = 3k−1 and |Ek| = 22(k−2) · 3(k−1
2 )+1

.

To begin, let G2 = (V2, E2) be an oriented 3-cycle. It is clear that G2 has Property O and
its vertex and edge sets have the sizes given in (11).

Here is the induction hypothesis: Gk = (Vk, Ek) is an oriented k-graph with Property O
and satisfies the conditions in (11). Let X,Y and Z be three disjoint copies of Vk and
let GX = (X, EX),GY = (Y, EY ) and GZ = (Z, EZ) each be isomorphic to Gk. Define
Gk+1 = (Vk+1, Ek+1) as follows. (See Figure 1.)

• Let Vk+1 = X ∪ Y ∪ Z.

• Let Ek+1 be comprised for these four types of (k + 1)−tuples:

T1:= {(x, y1, y2, . . . , yk) : x ∈ X and (y1, y2, . . . , yk) = y ∈ EY };

T2:= {(z, x) : z ∈ EZ and x ∈ X};

T3:= {(y, z) : y ∈ EY and z ∈ Z};

T4:= {(x, y) : x ∈ EX and y ∈ Y }.

To see that Gk+1 has Property O, let < be any linear order on Vk+1. We find a member of
Ek+1 consistent with < as follows.

(1) Suppose there is x ∈ X such that x < minY . Since GY has Property O there is
some y ∈ EY consistent with <. Thus, (x, y) ∈ T1 is consistent with <.

(2) Suppose there is x ∈ X such that maxZ < x. Since GZ has Property O there is
some z ∈ EZ consistent with <. Thus, (z, x) ∈ T2 is consistent with <.

By (1) and (2), we may assume that

for all x ∈ X there exist yx ∈ Y and zx ∈ Z such that yx < x < zx.

Let x0 = maxX. Then x ≤ x0 < zx0 for all x ∈ X.
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GZ

z

GY

GXx0 x1

y0

z0

(y, z0) 2 T3

(z, x0) 2 T2

(x, y0) 2 T1

(x1, y
0) 2 T4

x

y0

y

1

Figure 1. Constructing Gk+1 from Gk.

(3) Suppose all y ∈ Y satisfy y < zx0 . Since GY has Property O there is some y ∈ EY
consistent with <. Then (y, zx0) ∈ T3 is consistent with <.

(4) Suppose some y ∈ Y satisfies zx0 < y. Then for all x ∈ X, x < y. Since GX has
Property O there is some x ∈ EX consistent with <. Then (x, y) ∈ T4 is consistent
with <.

Therefore, Gk+1 has Property O. (Note that (1) - (4) use all types of edges.)

Let us see that Gk+1 = (Vk+1, Ek+1) satisfies the conditions in (11). First, |Vk+1| = 3|Vk| =
3 · 3k−1 = 3k. Second,

|Ek+1| = 4 · |Ek| · |Vk| = 4 · 22(k−2) · 3(k−1
2 )+1

· 3k−1 = 22k · 3(k2)+1

.

Let n(k) be the minimum number of vertices in a k-tournament with Property O. We have
already seen that for any oriented k-graph to have Property O, it must have at least k!
edges. Since

(
n
3

)
≥ 3! forces n ≥ 5, we have n(3) ≥ 5. An exhaustive computer search shows

that there are no 3-tournaments on 5 vertices with Property O. However, the case where
n = 6 is already much more time consuming. On the other hand, from the construction
above, we have an oriented 3-graph on 9 vertices which has Property O. Thus n(3) ≤ 9. It
remains an open question as to whether there exists a 3-tournament with Property O on
n = 6, 7 or 8 vertices. So, it is natural to pose this:

Problem 2. Find the minimum number of vertices n(3) in a 3-tournament with Property O.
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Returning to the function f(k), we would like to determine f(3), the minimum number
of edges in an oriented 3-graph with Property O. It is easily seen that f(3) > 6. For k
in general, it would be interesting to find a construction that improves the upper bound
in Theorem 1. Finally, we would like to settle Problem 1, that is, to determine whether
f(k)/k!→∞.
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