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Abstract

A perfect H-tiling in a graph G is a collection of vertex-disjoint copies of a graph
H in G that together cover all the vertices in G. In this paper we investigate perfect
H-tilings in a random graph model introduced by Bohman, Frieze and Martin [6] in
which one starts with a dense graph and then adds m random edges to it. Specifically,
for any fixed graph H, we determine the number of random edges required to add to
an arbitrary graph of linear minimum degree in order to ensure the resulting graph
contains a perfect H-tiling with high probability. Our proof utilises Szemerédi’s Regu-
larity lemma [29] as well as a special case of a result of Komlós [18] concerning almost
perfect H-tilings in dense graphs.

MSC2000: 5C35, 5C70, 5C80.

1 Introduction

Embedding problems form a central part of both extremal and random graph theory. Indeed,
many results in extremal graph theory concern minimum degree conditions that force some
spanning substructure. For example, a foundation stone in the subject is Dirac’s theorem [10]
from 1952 which states that every graph G on n ≥ 3 vertices and with minimum degree
δ(G) ≥ n/2 is Hamiltonian. More recently, an important paper of Böttcher, Schacht and
Taraz [9] resolved the Bollobás–Komlós conjecture; specifically, it provided a minimum degree
condition which ensures a graph contains every r-partite spanning subgraph of bounded
degree and small bandwidth.

Recall that the Erdős–Rényi random graph Gn,p consists of vertex set [n] := {1, . . . , n}
where each edge is present with probability p, independently of all other choices. In this
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setting, a key question is to establish the threshold at which Gn,p, with high probability,
contains some spanning subgraph. In the case of Hamilton cycles, Pósa [27] showed that
if p ≫ logn/n then asymptotically almost surely (a.a.s.) Gn,p is Hamiltonian whilst if
p ≪ log n/n a.a.s. Gn,p is not Hamiltonian. In general though few thresholds for embedding
a fixed spanning subgraph H in Gn,p are known.

Bohman, Frieze and Martin [6] introduced a model which in some sense connects the two
aforementioned questions together. Indeed, in their model one starts with a dense graph
and then adds m random edges to it. A natural problem in this setting is to determine
how many random edges are required to ensure that the resulting graph a.a.s. contains a
given graph H as a spanning subgraph. For example, the main result in [6] states that for
every α > 0, there is a c = c(α) such that if we start with an arbitrary n-vertex graph G of
minimum degree δ(G) ≥ αn and add cn random edges to it, then a.a.s. the resulting graph
is Hamiltonian. This result is best possible in the sense that there are graphs G of linear
minimum degree that require a linear number of edges to be added to become Hamiltonian
(for example, consider any complete bipartite graph with vertex classes of size an, bn where
0 < a < b < 1 and a + b = 1). Recently, Krivelevich, Kwan and Sudakov [21] proved
an analogous result where now we wish to embed a fixed spanning tree of bounded degree.
Other properties of this model (embedding a fixed subgraph, the diameter, connectivity,
Ramsey properties) have been studied, for example, in [5, 22]. In [20] the framework was
also generalised to hypergraphs and a number of exact results concerning perfect matchings
and cycles in hypergraphs and digraphs were proven. Further, since the paper was submitted,
a range of other results in the area have been obtained [3, 4, 7, 8, 14, 17, 26].

Krivelevich, Kwan and Sudakov [21] raised the question of determining an analogue of
the Böttcher–Schacht–Taraz theorem [9] in the setting of randomly perturbed dense graphs.
In this paper we consider an important subcase of this problem; perfect H-tilings.

1.1 Perfect tilings in graphs and random graphs

Given two graphs H and G, an H-tiling in G is a collection of vertex-disjoint copies of H in
G. An H-tiling is called perfect if it covers all the vertices of G. Perfect H-tilings are also
referred to as H-factors or perfect H-packings. A seminal result in extremal graph theory
is the celebrated Hajnal–Szemerédi theorem [13] which determines the minimum degree
threshold that ensures a graph contains a perfect Kr-tiling. Building on this result, Kühn
and Osthus [23, 24] characterised, up to an additive constant, the minimum degree which
ensures that a graph G contains a perfect H-tiling for an arbitrary graph H .

The perfect tiling problem for random graphs has also received significant attention. The
most striking result in the area is a theorem of Johansson, Kahn and Vu [16] which deter-
mines the threshold for the property that the Erdős–Rényi random graph Gn,p a.a.s. contains
a perfect H-tiling where H is any fixed strictly balanced graph. Recently, Gerke and McDow-
ell [12] determined the corresponding threshold in the case when H is a nonvertex-balanced
graph. A number of subcases for both of these aforementioned results had been earlier proved
e.g. in [1, 11, 15, 25]. Since it is instructive to compare both of these results to our main
result, we will formally state them below.
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Suppose that H is a graph on at least two vertices. We write e(H) and |H| for the
number of edges and vertices in G respectively. Define

d(H) :=
e(H)

|H| − 1
and d∗(H) := max{d(H ′) : H ′ ⊆ H, |H ′| ≥ 2}.

We say that H is strictly balanced if for every proper subgraph H ′ of H with at least two
vertices, d(H ′) < d(H). H is balanced if d∗(H) = d(H). For v ∈ V (H), let

d∗(v,H) := max{d(H ′) : H ′ ⊆ H, |H ′| ≥ 2, v ∈ V (H ′)}.

A graph H is vertex-balanced if, for all v ∈ V (H), d∗(v,H) = d∗(H).
Notice that if H is balanced then it is vertex-balanced. Further, if H is nonvertex-

balanced then it is not balanced and not strictly balanced. The following seminal result of
Johansson, Kahn and Vu [16] determines the threshold for the property that Gn,p a.a.s. con-
tains a perfect H-tiling where H is an arbitrary fixed strictly balanced graph.

Theorem 1.1 (Johansson, Kahn and Vu [16]). Let H be a strictly balanced graph with m
edges and let n ∈ N be divisible by |H|.

• If p ≫ n−1/d(H)(log n)1/m then a.a.s. Gn,p contains a perfect H-tiling.

• If p ≪ n−1/d(H)(log n)1/m then a.a.s. Gn,p does not contain a perfect H-tiling.

Note here (and elsewhere where we consider bounds on p), we write e.g. p ≪ n−1/d(H)(logn)1/m

to mean p = o(n−1/d(H)(logn)1/m). (Later we also use the ≪ notation in hierarchies of con-
stants; this is defined in Section 1.3.)

Johansson, Kahn and Vu [16] conjectured that Theorem 1.1 can be generalised to all
vertex-balanced graphs H : Given any vertex v ∈ V (H), define

sv := min{e(H ′) : H ′ ⊆ H, |H ′| ≥ 2, v ∈ V (H ′) and d(H ′) = d∗(v,H)}

and let s be the maximum of the sv’s amongst all v ∈ V (H). They conjectured that
n−1/d∗(H)(log n)1/s is the threshold for the property that Gn,p a.a.s. contains a perfect H-
tiling where H is an arbitrary fixed vertex-balanced graph. Note that Theorem 1.1 is a
special case of this conjecture.

For nonvertex-balanced graphs, the following result determines the corresponding thresh-
old.

Theorem 1.2 (Gerke and McDowell [12]). Let H be a nonvertex-balanced graph and let
n ∈ N be divisible by |H|.

• If p ≫ n−1/d∗(H) then a.a.s. Gn,p contains a perfect H-tiling.

• If p ≪ n−1/d∗(H) then a.a.s. Gn,p does not contain a perfect H-tiling.
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1.2 Tilings in randomly perturbed dense graphs

The main result of this paper is to determine how many random edges one needs to add to a
graph of linear minimum degree to ensure it contains a perfect H-tiling for any fixed graph
H . Throughout the paper we assume that an n-vertex graph has vertex set [n] and if G and
G′ are n-vertex graphs then we define G ∪ G′ to be the n-vertex (simple) graph with edge
set E(G) ∪ E(G′). We are now ready to state our main result.

Theorem 1.3. Let H be a fixed graph with at least one edge and let n ∈ N be divisible by
|H|. For every α > 0, there is a c = c(α,H) > 0 such that if p ≥ cn−1/d∗(H) and G is
an n-vertex graph with minimum degree δ(G) ≥ αn then a.a.s. G ∪ Gn,p contains a perfect
H-tiling.

Theorem 1.3 is best-possible in the sense that, for any fixed graph H , there are n-vertex
graphs G of linear minimum degree such that if p ≪ n−1/d∗(H) then a.a.s. G ∪Gn,p does not
contain a perfect H-tiling. We explain this in more detail in Section 2.1.

In the case when H is strictly balanced notice that unlike Theorem 1.1, Theorem 1.3 does
not involve a logarithmic term. Thus comparing our model with the Erdős–Rényi model, we
see that starting with a graph of linear minimum degree instead of the empty graph saves a
logarithmic factor in terms of how many random edges one needs to ensure the resulting graph
a.a.s. contains a perfect H-tiling. This same phenomenon is also exhibited in the analogous
problems for Hamilton cycles [6] and spanning trees [21], as well as for matchings and loose
cycles in the hypergraph setting [20]. Further, if the Johansson, Kahn and Vu conjecture is
true then together with Theorem 1.3 this shows that the same phenomenon occurs for perfect
H-tilings for any vertex-balanced H . Interestingly though the threshold in Theorem 1.2 is
the same as that in Theorem 1.3. In other words, if H is nonvertex-balanced, starting with
a graph of linear minimum degree instead of the empty graph essentially provides no benefit
in terms of how many random edges one needs to ensure the resulting graph a.a.s. contains
a perfect H-tiling!

It is also instructive to compare Theorem 1.3 to the problem of finding an almost perfect
tiling in the random graph: We say that Gn,p has an almost perfect H-tiling if for every
ε > 0, the probability that the largest H-tiling in Gn,p covers less than (1 − ε)n vertices
tends to zero as n tends to infinity. Ruciński [28] proved that n−1/d∗(H) is the threshold for
Gn,p having an almost perfect H-tiling (for any fixed graph H). Thus, in Theorem 1.3 one
can already guarantee an almost perfect H-tiling without using any of the edges from G.
Hence (in the case when H is strictly balanced), the edges in G are necessary to ‘transform’
an almost perfect H-tiling in Gn,p into a perfect H-tiling in G ∪Gn,p.

The proof of Theorem 1.3 utilises Szemerédi’s Regularity lemma [29] as well as a special
case of a result of Komlós [18] concerning almost perfect H-tilings in dense graphs. We also
draw on ideas from [2, 21]. In Section 2.2 we give an overview of the proof.

1.3 Notation

Let G be a graph. We write V (G) for the vertex set of G, E(G) for the edge set of G and
define |G| := |V (G)| and e(G) := |E(G)|. Given a subset X ⊆ V (G), we write G[X ] for
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the subgraph of G induced by X . Given some x ∈ V (G) we write G − x for the subgraph
of G induced by V (G) \ {x}. The degree of x is denoted by dG(x) and its neighbourhood
by NG(x). Given a vertex x ∈ V (G) and a set Y ⊆ V (G) we write dG(x, Y ) to denote the
number of edges xy where y ∈ Y . Given disjoint vertex classes X, Y ⊆ V (G), we write
G[X, Y ] for the bipartite graph with vertex classes X and Y whose edge set consists of all
those edges in G with one endpoint in X and the other in Y ; we write eG(X, Y ) for the
number of edges in G[X, Y ]. Given a set X and t ∈ N, let

(

X
t

)

denote the set of all subsets
of X of size t.

We write 0 < α ≪ β ≪ γ to mean that we can choose the constants α, β, γ from right
to left. More precisely, there are increasing functions f and g such that, given γ, whenever
we choose some β ≤ f(γ) and α ≤ g(β), all calculations needed in our proof are valid.
Hierarchies of other lengths are defined in the obvious way. Throughout the paper we omit
floors and ceilings whenever this does not affect the argument.

The paper is organised as follows. In Section 2 we give an overview of the proof of
Theorem 1.3; we also give an example that shows the bound on p in Theorem 1.3 is best
possible up to a multiplicative constant. Szemerédi’s Regularity lemma is presented in
Section 3 and then we introduce some useful tools in Section 4. The proof of Theorem 1.3
is given in Section 5.

2 An extremal example and overview of the proof

2.1 An extremal example

In this subsection we prove that Theorem 1.3 is best-possible in the sense that, given any
graph H , there exist (sequences of) n-vertex graphs Gn with linear minimum degree so that,
if p ≪ n−1/d∗(H), then a.a.s. Gn∪Gn,p does not contain a perfect H-tiling. For this we require
the following result. Recall the definition

d∗(H) := max

{

e(H ′)

v(H ′) − 1
: H ′ ⊆ H, |H ′| ≥ 2

}

.

Theorem 2.1 ([15], part of Theorem 4.9). For every graph H with at least one edge and for
every 0 < ε < 1 there is a positive constant c = c(H, ε) such that if p ≤ cn−1/d∗(H),

lim
n→∞

P(Gn,p contains an H-tiling covering at least εn vertices) = 0.

Consider any fixed graph H with at least one edge and let b > a > 0 such that a+ b = 1
and b > a(|H| − 1). Set ε := b − a(|H| − 1) > 0 and define c = c(H, ε) as in Theorem 2.1.
Let n ∈ N be divisible by |H| and let Gn be the complete bipartite graph with vertex classes
X and Y of sizes an and bn respectively. Consider G′

n := Gn ∪Gn,p where p ≤ c(bn)−1/d∗(H).
Notice that if G′

n contains a perfect H-tiling, then Gn,p[Y ] ∼= Gbn,p must contain an H-tiling
covering at least εn > ε(bn) vertices. However, by the choice of c, Theorem 2.1 implies that
a.a.s. such an H-tiling in Gn,p[Y ] does not exist. Thus, a.a.s. G′

n does not contain a perfect
H-tiling. So we have indeed shown that the bound on p in Theorem 1.3 is best-possible.

5



The above example shows that if 0 < α < 1/|H| then we need the random edges with
p ≥ Cn−1/d∗(H) to force a perfect H-tiling. We also note that if α > 1 − 1

χ(H)
and n is

large then by a theorem of Komlós, Sárközy and Szemerédi [19], every n-vertex graph Gn

of minimum degree αn contains a perfect H-tiling and thus there is no need for the random
edges at all. More generally, given any graph H , Kühn and Osthus [23, 24] determined the
smallest α∗ = α∗(H) > 0 such that, given any α > α∗, every sufficiently large n-vertex
graph Gn of minimum degree at least αn contains a perfect H-tiling. It may be of interest to
investigate the following question: given fixed α with 1/|H| < α < α∗, how large must p be
to ensure that whenever Gn has minimum degree at least αn then Gn ∪Gn,p a.a.s. contains
a perfect H-tiling?

Another natural question is whether Theorem 1.3 holds if we replace αn with a sublinear
term. Note that the approach we use is not suitable for attacking this problem (since we
apply Szemerédi’s Regularity lemma).

2.2 Overview of the proof of Theorem 1.3

The first step of the proof is to obtain some special structure within G to help us embed the
perfect H-tiling. In particular, by applying Szemerédi’s Regularity lemma (Lemma 3.1) and
a theorem of Komlós (Theorem 4.1) we obtain a spanning subgraph of G which ‘looks’ like
the blow-up of a collection of stars. More precisely, there is a spanning subgraph G′ of G;
constants k, t ∈ N, and; a partition of V (G) into classes V0 and Wi,j (for all 0 ≤ i ≤ t and
1 ≤ j ≤ k), such that:

• V0 is ‘small’;

• Each cluster Wi,j has the same size;

• For all 1 ≤ i ≤ t, 1 ≤ j ≤ k, the pair (W0,j ,Wi,j)G′ is ‘super-regular’.

We remark that a similar structure was used in [21] (though the role of the blown-up stars
was different there).

If t = 1, then the aforementioned structure would consist of a collection of disjoint super-
regular pairs (W0,j ,W1,j)G′ and an ‘exceptional set’ V0. We could then obtain a perfect
H-tiling using the strategy described below.

The first step is to find a small H-tiling H that covers all of V0 but so that H only
intersects the super-regular pairs (W0,j ,W1,j)G′ in a very small number of vertices. To see
that such an H-tiling H in G∪Gn,p exists, note that given any v ∈ V0, NG(v) has linear size
so a.a.s, Gn,p contains many copies of H − x in NG(v) (for some x ∈ V (H)). In particular,
this implies that v lies in many copies of H in G ∪ Gn,p. Thus, this property allows us to
greedily construct H (though some care is needed to ensure we do not use too many vertices
in any one cluster Wi,j).

Now if we remove all the vertices lying in H we still have that each (W0,j,W1,j)G′ is
super-regular. This structure can then be used to find an H-tiling Hj in G ∪ Gn,p covering
precisely the vertices of W0,j ∪W1,j. Indeed, in this case we employ an approach very similar
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to that used in [2]. Then H, H1, . . . , Hk together form a perfect H-tiling in G ∪ Gn,p, as
desired.

In particular, note that roughly speaking the authors of [2] prove that if (A,B) is a
(very dense) super-regular pair in a graph G of small independence number, then there is
a triangle-tiling in G covering precisely the vertices of A ∪ B. Here the small independence
number ensures we have large matchings in both G[A] and G[B]; then the edges between A
and B can be used to extend such edges to triangles with at least one vertex in each class,
and thus ultimately (with significant care) one obtains the desired triangle-tiling. In our
setting, the edges from Gn,p ensure that, given any super-regular pair (A,B) in G, we have
large (H−x)-tilings in both Gn,p[A] and Gn,p[B] (for some x ∈ V (H)). We then (again with
some care) extend such copies of H − x to copies of H using the edges between A and B in
G, to obtain the desired H-tiling.

To employ the approach used in [2], we really do require that t = 1. That is, the
structure in G looks like a blow-up of disjoint edges. However, since the minimum degree of
G is typically very small we can only ensure a structure in G that looks like a blow-up of
stars, each of which contains a huge constant number of leaves (i.e. t is large).

Instead, we have to first carefully choose a large H-tiling H′ in G ∪ Gn,p so that what
remains uncovered by H′ is precisely a collection of clusters that, in G′, form disjoint super-
regular pairs. We then can proceed as described above. To construct a suitable H-tiling H′,
our proof heavily uses the blown-up star structure we found initially in G.

3 The Regularity lemma

In the proof of our main result we will make use of the Szemerédi’s Regularity lemma [29],
hence in this section we introduce the necessary notation and set-up for this lemma. The
density of a bipartite graph G with vertex classes A and B is defined as

dG(A,B) :=
e(A,B)

|A||B|
.

Given any ε > 0 we say that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A|
and |Y | ≥ ε|B| we have |dG(A,B) − dG(X, Y )| < ε. In this case we also say that (A,B)G is
an ε-regular pair. Given d ∈ [0, 1) we say that G is (ε, d)-super-regular if all sets X ⊆ A and
Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy dG(X, Y ) > d and moreover dG(a) > d|B|
and dG(b) > d|A| for all a ∈ A and b ∈ B.

The following degree form of the Regularity lemma can be easily derived from the classical
version and will be particularly useful for us.

Lemma 3.1 (Regularity lemma). For every ε > 0 and each integer ℓ0 there is an M =
M(ε, ℓ0) such that if G is any graph on at least M vertices and d ∈ [0, 1), then there exists
a partition of V (G) into ℓ + 1 classes V0, V1, . . . , Vℓ, and a spanning subgraph G′ ⊆ G with
the following properties:

(i) ℓ0 ≤ ℓ ≤ M , |V0| ≤ ε|G|, |V1| = . . . = |Vℓ| =: L;
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(ii) dG′(v) > dG(v) − (d + ε)|G| for all v ∈ V (G);

(iii) e(G′[Vi]) = 0 for all i ≥ 1;

(iv) for all 1 ≤ i < j ≤ ℓ the graph (Vi, Vj)G′ is ε-regular and has density either 0 or greater
than d.

The sets V1, . . . , Vℓ are called clusters, V0 is called the exceptional set and the vertices in
V0 exceptional vertices. We refer to G′ as the pure graph of G. The reduced graph R of G is
the graph whose vertices are V1, . . . , Vℓ and in which Vi is adjacent to Vj whenever (Vi, Vj)G′

is ε-regular and has density greater than d.
Next we see that given a regular pair we can approximate it by a super-regular pair. The

following lemma can be found in e.g. [30].

Lemma 3.2. If (A,B) is an ε-regular pair with density d in a graph G (where 0 < ε < 1/3),
then there exists A′ ⊆ A and B′ ⊆ B with |A′| ≥ (1 − ε)|A| and |B′| ≥ (1 − ε)|B|, such that
(A′, B′) is a (2ε, d− 3ε)-super-regular pair.

4 Some useful results

4.1 Almost perfect star tilings

An important result of Komlós [18] determines the minimum degree threshold that forces an
almost perfect H-tiling in a graph, for any fixed graph H . As hinted at in the proof overview,
we require that the reduced graph R of G contains an almost perfect tiling of stars. The
following special case of Komlós’ theorem ensures such a tiling exists.

Theorem 4.1 (Komlós [18]). Given any t ∈ N and ε > 0, there is an integer n0 = n0(t, ε)
so that, if n ≥ n0 and G is a graph on n vertices with

δ(G) ≥
n

(t + 1)
,

then G contains a K1,t-tiling that covers all but at most εn vertices.

4.2 Embedding H in random graphs

Let η > 0. Given an n-vertex graph G and a graph H we write G ∈ FH(η) if every induced
subgraph of G on at least ηn vertices contains H as a (not necessarily induced) subgraph.
The next theorem will allow us to find almost perfect H-tilings in large subgraphs of Gn,p.

Theorem 4.2 ([15], part of Theorem 4.9). For every graph H with at least one edge and for
every η > 0 there is a positive constant C = C(H, η) such that if p ≥ Cn−1/d∗(H),

lim
n→∞

P(Gn,p ∈ FH(η)) = 1.

8



Let γ > 0 and H be a graph. Consider a graph G with vertex set [n]. Let Hn be
a collection of copies of H in Kn (where we view Kn to have vertex set [n]). We write
G ∈ FH(γ,Hn) if every induced subgraph of G on at least γn vertices contains a copy of
H that is not an element of Hn. The next theorem can be proven in the same way as
Theorem 4.2 so we omit the proof. It allows us to find copies of H in Gn,p that avoid certain
edge sets.

Theorem 4.3. Let H be a graph with at least one edge and suppose 0 < γ1 ≪ γ2 ≪ 1/|H|.
Then there is a positive constant D = D(H, γ1, γ2) such that the following holds. Let Hn be
a collection of at most γ1

(

n
|H|

)

copies of H in Kn. If p ≥ Dn−1/d∗(H), then

lim
n→∞

P(Gn,p ∈ FH(γ2,Hn)) = 1.

We remark that the proof of Theorem 4.2 is just a simple application of Theorem 3.9
from [15]. To prove Theorem 4.3 one can follow precisely the same proof, however, by
instead applying a version of Theorem 3.9 from [15] in the setting where now some copies of
H are excluded; again to prove such a result one follows the proof of Theorem 3.9 from [15]
precisely.

Similarly to the above, given an n-vertex graph G and a graph H we write G ∈ F ′
H(η) if

for all ordered pairs of disjoint sets A,B ⊂ V (G) of size |A|, |B| ≥ ηn there exists a copy of
H in G with precisely one vertex in A and |H| − 1 vertices in B. Again, the same argument
as in the proof of Theorem 4.2 shows the following.

Theorem 4.4. For every graph H with at least one edge and for every η > 0 there is a
positive constant C = C(H, η) such that if p ≥ Cn−1/d∗(H),

lim
n→∞

P(Gn,p ∈ F ′
H(η)) = 1.

5 Proof of Theorem 1.3

Let H and α > 0 be as in the statement of the theorem. Note that it suffices to prove the
theorem in the case when α ≪ 1/|H|. Define additional constants φ, ℓ0, ε, ε1, ε2, ε3, ε4, ε5, d1, d
and apply the Regularity lemma (Lemma 3.1) with input ε, ℓ0 to obtain M = M(ε, ℓ0) and
define η > 0 such that η ≪ 1/M , so that we have

0 < η ≪ 1/M ≤ 1/ℓ0 ≪ ε ≪ ε1 ≪ ε2 ≪ ε3 ≪ ε4 ≪ φ ≪ ε5 ≪ d1 ≪ d ≪ α ≪ 1/|H|.
(5.1)

Set
t := ⌈2α−1⌉

and let H ′ be some fixed induced subgraph of H on |H|−1 vertices. Let c = c(η, ε2, ε3,M, t,H) =
c(α,H) be a positive constant such that: (i) on input H , η, the conclusion of both Theo-
rem 4.2 and Theorem 4.4 hold with c/4 playing the role of C and; (ii) c ≥ 4D(4Mt)1/d

∗(H)

where D is the output of Theorem 4.3 on input H ′, ε2 and ε3.
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Let G be a sufficiently large n-vertex graph with n divisible by |H| and δ(G) ≥ αn. Set

p := cn−1/d∗(H).

We wish to show that G ∪ Gn,p a.a.s. contains a perfect H-tiling. Our first step towards
proving this will be to switch our attention to an appropriate subgraph of G.

Claim 5.1. There is a k ∈ N, a partition of V (G) into classes V0 and Wi,j (for all 0 ≤ i ≤ t
and 1 ≤ j ≤ k), and a spanning subgraph G′ of G such that:

(i) ℓ0
2t

≤ k ≤ M
t+1

;

(ii) |V0| ≤ 2tεn;

(iii) Each cluster Wi,j has the same size L ∈ N where n/2M ≤ L ≤ n/ℓ0;

(iv) For all 1 ≤ i ≤ t, 1 ≤ j ≤ k, the pair (W0,j,Wi,j)G′ is (4ε, d/2)-super-regular;

(v) δ(G′) ≥ (α− 2d)n.

Proof. Apply the Regularity lemma (Lemma 3.1) to G with parameters ε, d and ℓ0 to obtain
a partition V0, V1, . . . , Vℓ of V (G), pure graph G′ of G and the reduced graph R of G. So
|V0| ≤ εn and (1 − ε)n/ℓ ≤ L′ := |Vi| = |Vj| ≤ n/ℓ for all i, j ≥ 1. It is a well-known
fact that the reduced graph R of G ‘almost’ inherits the minimum degree of G (see e.g. [30,
Lemma 3.7]). In particular, since δ(G) ≥ αn and ε ≪ d ≪ α we have that

δ(R) ≥
αℓ

2
≥

ℓ

t + 1
.

By (5.1), ℓ ≥ ℓ0 is sufficiently large compared to 1/ε and t. Thus, Theorem 4.1 implies that
R contains a K1,t-tiling K that covers all but at most εℓ vertices of R. Let k denote the size
of K. Hence,

ℓ0
2t

≤
(1 − ε)ℓ

t + 1
≤ k ≤

ℓ

t + 1
≤

M

t + 1
.

Move to V0 all those vertices that lie in clusters uncovered by K. Hence

|V0| ≤ εn + εℓ× L′ ≤ εn + εℓ×
n

ℓ
= 2εn.

Consider a copy K ′
1,t of K1,t in K. In G′, this copy of K1,t corresponds to a collection

of t + 1 clusters Vi0, Vi1 , . . . , Vit such that for all 1 ≤ j ≤ t the pair (Vi0 , Vij)G′ is ε-regular
and has density greater than d. By repeatedly applying Lemma 3.2 it is easy to check that
we can remove precisely εt|Vij | = εtL′ vertices from Vij (for each 0 ≤ j ≤ t) so that now
(Vi0 , Vij)G′ is (4ε, d/2)-super-regular for each 1 ≤ j ≤ t. Add the vertices removed from these
clusters into V0. Repeat this process for all copies of K1,t in K. Thus, now

|V0| ≤ 2εn + εtL′ℓ ≤ 2tεn.
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Given the jth copy of K1,t in K we relabel the clusters so that the root of this K1,t is W0,j

and the leaves are W1,j, . . . ,Wt,j . Hence (iv) holds. Further, each of the clusters Wi,j has
the same size L ∈ N where

n

2M
≤

(1 − ε)(1 − εt)n

ℓ
≤ L = (1 − εt)L′ ≤

n

ℓ
≤

n

ℓ0
,

so (iii) holds. Note that (v) holds by Lemma 3.1(ii) and as ε ≪ d.

So far we have only used the deterministic edges, i.e. edges in G, but recall that we are
aiming to find a perfect H-tiling in G ∪ Gn,p. Next we will use these random edges to find
copies of H ′ := H − x (for some x ∈ V (H)) in the neighbourhood of vertices in V0. To
simplify the later calculations we now use the standard trick of decomposing the random
edges into a few ‘buckets’. That is, let G1, G2, G3, G4 be independently chosen elements of
Gn,p/4 and observe that G1∪G2∪G3∪G4 has the same distribution as Gn,p′ for some p′ ≤ p.
Hence it suffices to consider the graph G∪ (G1∪G2∪G3∪G4) instead of the graph G∪Gn,p.
Define W := {Wi,j : 0 ≤ i ≤ t and 1 ≤ j ≤ k} and k′ := |W| = k(t + 1).

Claim 5.2. Asymptotically almost surely there is a set Z ⊆ V (G) such that:

(i) (G′ ∪G1)[Z] contains a perfect H-tiling H1;

(ii) V0 ⊆ Z, and for all Wi,j ∈ W we have that |Z ∩Wi,j| ≤ ε1L.

Proof. Define an auxiliary bipartite graph Q with vertex classes V0 and W in which a vertex
v ∈ V0 is adjacent to a cluster Wi,j precisely if dG′(v,Wi,j) ≥ αL/4. For each v ∈ V0,
dG′(v) ≥ (α− 2d)n and is adjacent to at most 2tεn vertices in V0. Therefore,

3αn/4
(5.1)

≤ dG′(v) − 2tεn ≤ LdQ(v) + k′αL/4 ≤ LdQ(v) + αn/4,

and so dQ(v) ≥ αk′/2.
Hence we can find an assignment f : V0 → W such that vf(v) is an edge in Q for all

v ∈ V0 and for any Wi,j ∈ W,

|f−1(Wi,j)| ≤
4tεn

αk′

(5.1)

≤
ε1L

|H|
. (5.2)

Here in the first inequality we use that |V0| ≤ 2tεn and dQ(v) ≥ αk′/2 for all v ∈ V0; in the
last inequality we use that k′L = n− |V0| ≥ (1 − 2tε)n.

Enumerate the vertices v1, . . . , vs of V0. For each such vi, we will obtain a copy Hi of H
in G ∪G1 so that:

• Hi contains vi for each 1 ≤ i ≤ s, and all the other vertices in Hi lie in the cluster
f(vi) ∈ W;

• Hi and Hj are vertex-disjoint for all 1 ≤ i 6= j ≤ s.

11



Note that finding such copies of H would immediately prove the claim. Indeed, we then
define Z to consist of all the vertices in the Hi. In particular, (5.2) then implies that
|Z ∩Wi,j | ≤

ε1L
|H|

× (|H| − 1) ≤ ε1L for each Wi,j ∈ W.
Suppose for some 1 ≤ j < s we have constructed H1, . . . , Hs−1 as desired. Consider

vs ∈ V0 and let Wis,js := f(vs). Then by the definition of Q and f , there is a set W ⊆ Wis,js

so that |W | ≥ αL/4 − ε1L ≥ αL/5; W is disjoint from H1, . . . , Hs−1 and; W ⊆ NG′(vs).
Note that H ′ := H − x (for some x ∈ V (H)) either consists of isolated vertices or

0 < d∗(H ′) ≤ d∗(H). Further ηn ≤ αn/(10M) ≤ αL/5 by (5.1) and Claim 5.1(iii). So
Theorem 4.2 implies that a.a.s, G1[W ] contains a copy of H ′. Since in G′, vs is adjacent to
every vertex in W , this yields the desired copy Hs of H in G ∪G1.

For all i, j set
Vi,j := Wi,j \ Z.

Since (G′ ∪ G1)[Z] contains a perfect H-tiling H1, it suffices to prove that, a.a.s, there is
an H-tiling in G′ ∪ G2 ∪ G3 ∪ G4 that covers precisely the vertices in V (G) \ Z. Note that
by Claim 5.1(iv) and Claim 5.2(ii) we have that (V0,j , Vi,j)G′ is (5ε, d/3)-super-regular for all
1 ≤ i ≤ t and 1 ≤ j ≤ k. Further,

(1 − ε1)L ≤ |Vi,j| ≤ L (5.3)

for all 0 ≤ i ≤ t and 1 ≤ j ≤ k.
For each 1 ≤ j ≤ k, randomly partition V0,j into t vertex classes S1,j, . . . , St,j such that

|Si,j| =
|V0,j|

t
(5.4)

for all 1 ≤ i ≤ t. For every 1 ≤ i ≤ t and 1 ≤ j ≤ k, randomly partition Vi,j into two vertex
classes V ′

i,j and T ′
i,j so that

|T ′
i,j| =

|Vi,j|

t
. (5.5)

Roughly speaking, the rest of the proof now proceeds as follows: For each of the clusters
V ′
i,j we will find an almost perfect H-tiling in G2[V

′
i,j ]. This will ensure that almost all of

the uncovered vertices in V (G) lie in the clusters Si,j and T ′
i,j (for all i, j). However, as

the next claim shows, each (Si,j, T
′
i,j)G′ is ‘super-regular’. Then by modifying each of the

super-regular pairs slightly, this structure will allow us to cover all remaining vertices in
V (G) with an H-tiling, thereby completing our perfect H-tiling.

Claim 5.3. The following conditions hold a.a.s:

(i) Let 1 ≤ i ≤ t and 1 ≤ j ≤ k. For all sets X ⊆ Si,j and Y ⊆ T ′
i,j with |X| ≥ ε1|Si,j|

and |Y | ≥ ε1|T
′
i,j|, we have that dG′(X, Y ) ≥ d/3;

(ii) Let 1 ≤ j ≤ k. For every vertex v ∈ V0,j, dG′(v, T ′
i,j) > d|T ′

i,j|/4 for all 1 ≤ i ≤ t;
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(iii) Let 1 ≤ i ≤ t and 1 ≤ j ≤ k. For every v ∈ Vi,j, dG′(v, Si,j) > d|Si,j|/4.

In particular, (i)–(iii) imply that (Si,j, T
′
i,j)G′ is (ε1, d/4)-super-regular for all 1 ≤ i ≤ t and

1 ≤ j ≤ k.

Proof. For (i), note that X ⊆ V0,j and Y ⊆ Vi,j where |X| ≥ ε1|Si,j|
(5.4)
= ε1|V0,j|/t

(5.1)

≥
5ε|V0,j| and |Y | ≥ 5ε|Vi,j|. So as (V0,j, Vi,j)G′ is (5ε, d/3)-super-regular, (i) follows immedi-
ately.

For (ii) note that such a v ∈ V0,j satisfies dG′(v, Vi,j) ≥ d|Vi,j|/3 for all 1 ≤ i ≤ t. Thus
by applying a Chernoff bound for the hypergeometric distribution (e.g. [15, Theorem 2.10]),
a.a.s. (ii) holds. (iii) holds similarly.

We will now obtain an H-tiling H2 in G2 that covers almost all of the vertices in the
classes V ′

i,j. Fix 1 ≤ i ≤ t and 1 ≤ j ≤ k. By repeatedly applying Theorem 4.2 to G2, we
obtain an H-tiling Hi,j in G2[V

′
i,j] that covers all but at most ηn of the vertices in V ′

i,j. Let
H2 denote the H-tiling in G2 obtained by taking the disjoint union of all of the Hi,j , and
write Z ′ := V (H2).

For each 1 ≤ i ≤ t and 1 ≤ j ≤ k, let Ti,j be obtained from T ′
i,j by adding to it

all the vertices in V ′
i,j that are uncovered by Hi,j. Thus, |Ti,j| ≤ |T ′

i,j| + ηn. Note that

|T ′
i,j|

(5.5)
= |Vi,j|/t

(5.3)

≥ (1 − ε1)L/t. On the other hand, ηn ≤ ε(1 − ε1)L/t by (5.1) and

Claim 5.1(iii). Hence, |Ti,j| ≤ (1 + ε)|T ′
i,j|

(5.3),(5.5)

≤ (1 + ε)L/t. Together with Claim 5.3(i)–
(iii) this implies that (Si,j, Ti,j)G′ is (2ε1, d/5)-super-regular. To summarise, so far we have
proved the following.

Claim 5.4. Asymptotically almost surely, there is a partition of V (G) into classes Z, Z ′ and
Si,j, Ti,j for each 1 ≤ i ≤ t and 1 ≤ j ≤ k, such that:

(i) There is a perfect H-tiling H1 in (G′ ∪G1)[Z] and a perfect H-tiling H2 in G2[Z
′];

(ii) Each (Si,j, Ti,j)G′ is (2ε1, d/5)-super-regular;

(iii) (1 − ε1)L/t ≤ |Si,j|, |Ti,j| ≤ (1 + ε)L/t.

To finish the proof of Theorem 1.3 we wish to prove that a.a.s. there is a perfect H-
tiling in each of the graphs (G′ ∪G4)[Si,j ∪ Ti,j]. However, for this we need that |H| divides
|Si,j ∪ Ti,j|. So we first modify the clusters Si,j, Ti,j slightly to ensure this.

Suppose that 1 ≤ i ≤ t and 1 ≤ j ≤ k are such that |Si,j ∪ Ti,j| is not divisible by
|H|. Then, since |H| divides n, there are 1 ≤ i′ ≤ t and 1 ≤ j′ ≤ k with (i, j) 6= (i′, j′) so
that |Si′,j′ ∪ Ti′,j′| is also not divisible by |H|. Recall |Si,j|, |Si′,j′| ≫ ηn. Thus, by repeated
applications of Theorem 4.4, a.a.s. we can find a collection Si,j of at most |H| − 1 disjoint
copies of H in G3 so that: each such H has one vertex in Si,j and |H| − 1 vertices in Si′,j′

and; after removal of the vertices in Si,j we now have that |Si,j ∪ Ti,j | is divisible by |H|.
Continuing in this way, we obtain an H-tiling H3 in G3 so that: H3 only covers vertices in
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the clusters Si,j ; |H3| ≤ |H|kt and; after removal of all those vertices in H3 from each of the
Si,j we have that |Si,j ∪ Ti,j| is divisible by |H| for all 1 ≤ i ≤ t and 1 ≤ j ≤ k.

In particular, we now have the following updated version of Claim 5.4.

Claim 5.5. Asymptotically almost surely, there is a partition of V (G) into classes Z, Z ′,
Z ′′ and Si,j, Ti,j for each 1 ≤ i ≤ t and 1 ≤ j ≤ k, such that:

(i) There is a perfect H-tiling H1 in (G′ ∪G1)[Z]; a perfect H-tiling H2 in G2[Z
′] and; a

perfect H-tiling H3 in G3[Z
′′];

(ii) Each (Si,j, Ti,j)G′ is (3ε1, d/6)-super-regular;

(iii) (1 − 2ε1)L/t ≤ |Si,j|, |Ti,j| ≤ (1 + ε)L/t;

(iv) |Si,j ∪ Ti,j | is divisible by |H| for all 1 ≤ i ≤ t and 1 ≤ j ≤ k.

Now all that remains to prove is that there is a perfect H-tiling in each of the graphs
(G′ ∪G4)[Si,j ∪ Ti,j ]. Let (S, T )G′ be one of our super-regular pairs and recall that H ′ is an
induced subgraph of H on h := |H| − 1 vertices.

Call an h-set {v1, . . . , vh} ∈
(

T
h

)

good if |S ∩ NG′(v1) ∩ . . . ∩ NG′(vh)| ≥ d1|S|, otherwise

we say {v1, . . . , vh} ∈
(

T
h

)

is bad.

Claim 5.6. At least (1 − 4ε1)
h−1

(

|T |
h

)

h-sets in
(

T
h

)

are good.

Proof. Pick any vertex v1 ∈ T and let N1 := NG′(v1) ∩ S. Since (S, T )G′ is (3ε1, d/6)-super-
regular, we have that |N1| ≥ d|S|/6 and every set Y ⊆ T of size at least 3ε1|T | contains
at least one vertex v2 with |NG′(v2) ∩ N1| ≥ d|N1|/6. So in particular at least (1 − 4ε1)|T |
vertices v2 in T are such that |N2| ≥ d|N1|/6 ≥ d2|S|/36 where N2 := NG′(v2) ∩ N1.
Pick such a vertex v2. Similarly, there are at least (1 − 4ε1)|T | vertices v3 in T such that
|NG′(v3)∩N2| ≥ d|N2|/6 ≥ d3|S|/216. Continuing in this way we conclude that there are at
least

|T | × (1 − 4ε1)
h−1|T |h−1 ×

1

h!
≥ (1 − 4ε1)

h−1

(

|T |

h

)

h-sets {v1, . . . , vh} in
(

T
h

)

so that |S ∩ NG′(v1) ∩ . . . ∩ NG′(vh)| ≥ dh|S|/6h
(5.1)

≥ d1|S|, as
required.

Call a good h-set {v1, . . . , vh} ∈
(

T
h

)

excellent if in G4 they span a copy of H ′. We now
claim that a.a.s. every subset of T of size at least ε3|T | contains an excellent h-set. If H ′

consists of isolated vertices then every good set is excellent. So we may assume that H ′

contains an edge. Recall that G4
∼= Gn,p/4 and note that 0 < d∗(H ′) ≤ d∗(H). So

p

4
≥

c

4
n−1/d∗(H) ≥ D

( n

4Mt

)−1/d∗(H)

≥ D|T |−1/d∗(H′).

The latter inequality holds since |T | ≥ n
4Mt

by Claim 5.5(iii) and Claim 5.1(iii). Let K ′
|T | be

a copy of K|T | on vertex set T . By Claim 5.6 there are at most ε2
(

|T |
h

)

copies of H ′ in K ′
|T |
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whose vertex set is a bad h-set. Thus, applying Theorem 4.3 to G4[T ] ∼= G|T |,p/4, implies that
a.a.s. every subset of T of size at least ε3|T | contains an excellent h-set. We may similarly
define a good, bad and excellent h-set in

(

S
h

)

and conclude a.a.s. every subset of S of size at
least ε3|S| contains an excellent h-set.

Let G∗ := (G′∪G4)[S, T ]. We say that a copy H∗ of H in G∗ is an S-copy if H∗ contains
precisely one vertex x from T and H∗ − x is a copy of H ′. Similarly define a T -copy of H
to be a copy of H in G∗ intersecting T in a copy of H ′ and S in one vertex. Set N := L/t;
so (1 − 2ε1)N ≤ |S|, |T | ≤ (1 + ε)N by Claim 5.5(iii). The following two claims finish our
proof of Theorem 1.3 - the first deals with the case where H is a single edge and the second
deals with general H . The latter claim is an analogue of Lemma 3.1 in [2], and indeed the
proof is very similar; we include it for completeness.

Claim 5.7. If H = K2 is a single edge then a.a.s. there exists a perfect H-tiling in G∗.

Proof. Without loss of generality we may assume |S| ≤ |T |. Let z := |T |− |S| and note that
by Claim 5.5(iv) we have that z is even. By Theorem 4.2 we know that in G4 a.a.s. every set
Q ⊂ T of size |Q| = ηn < |T |/2 contains an edge. Hence we may greedily form a matching
M in G4[T ] consisting of z/2 edges. Let T ′ := T \ V (M) so that |T ′| = |S|.

Since |V (M)| ≤ 3ε1|T | and G′[S, T ] is (3ε1, d/6)-super-regular, we have that G′[S, T ′] is
(ε2, d/8)-super-regular. As ε2 ≪ d, it is easy to see that Hall’s condition is satisfied and thus
G′[S, T ′] contains a perfect matching M ′. Then M ∪M ′ forms the desired perfect H-tiling
in G∗.

Claim 5.8. If |H| ≥ 3 the following statements hold a.a.s:

(a) Provided |S \Q| + |T | + ⌊φε5N⌋ is divisible by |H|, for every Q ⊆ S of size |Q| = φN
there is an H-tiling in G∗ which covers every vertex of (S ∪ T ) \ Q and which covers
precisely ⌊φε5N⌋ vertices of Q. Moreover, the same assertion holds if one replaces T
with any subset T ′ ⊆ T where |T \ T ′| ≤ ε5N .

(b) G∗ contains a perfect H-tiling.

Proof. For (a), let z := ⌊φε5N⌋, t := ⌊z/h⌋ and z′ := z − ht ∈ {0, 1, . . . , h − 1}. We will
construct an H-tiling in G∗ that covers all of (S \ Q) ∪ T and precisely z = ht + z′ vertices
of Q.

Let T ′
1 ⊆ T consist of all vertices in T with fewer than d1|Q| neighbours in Q. Note

G′[S, T ] is (ε2, d1)-super-regular so we have that |T ′
1| ≤ 2ε2N . Form T1 by adding at most

h arbitrarily selected vertices from T \ T ′
1 to T ′

1 so that |T \ T1| − t is divisible by |H|.
Since G′[S, T ] is (ε2, d1)-super-regular, every vertex of T1 has at least d1|S| − |Q| ≥ d1N

2
>

h|T1| + 2ε3N neighbours in S \ Q. As every subset of S of size 2ε3N contains an excellent
h-set, we may greedily form an H-tiling T1 of S-copies in G∗ of size |T1| which covers every
vertex of T1 and does not use any vertex from Q.

We now select uniformly at random a subset T2 ⊆ T \ T1 of size |T2| = t. Since every
vertex in S has at least d1|T |− |T1| ≥

d1N
2

neighbours in T \T1, Chernoff’s inequality for the
hypergeometric distribution implies that, with probability 1− o(1), every vertex of S has at
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least φε5d1
5h

N neighbours in T2. Fix a choice of T2 for which this event occurs. Let Q′ be an
arbitrarily selected subset of Q of size z′, so that |Q′| ≤ h−1 and let S ′ := (S\(Q∪V (T1)))∪Q

′

and T ′ := T \ (T1 ∪ T2). Recall that, by assumption, |S \Q| + |T | + z is divisible by |H|, so

|S ′| + |T ′| = |S \Q| + z′ + |T | − |T2| − |V (T1)| = (|S \Q| + |T | + z) − (|H|t + |V (T1)|)

is divisible by |H|. Since |T ′| is divisible by |H| by our selection of T1 and T2, it follows that
|S ′| is divisible by |H| as well.

Let t2 := ⌊φε5d1
10h2 N⌋, a := h

(h−1)|H|
|S ′| − 1

(h−1)|H|
|T ′| and b := h

(h−1)|H|
|T ′| − 1

(h−1)|H|
|S ′| − t2.

Note that since |H| ≥ 3 both a and b are positive.

Subclaim 5.9. There is an H-tiling T2 in G∗[S ′ ∪ T ′] which consists of a S-copies and
b T -copies. In particular, S ′′ := S ′ \ V (T2) and T ′′ := T ′ \ V (T2) have sizes precisely
|S ′′| = |S ′| − (ha + b) = t2 and |T ′′| = |T ′| − (a + hb) = ht2.

Proof. Note G′[S ′, T ′] is (2ε2, d1/2)-super-regular. The copies of H in T2 may be chosen
greedily. Indeed, suppose that we have already chosen an H-tiling T in G∗[S ′, T ′] consisting
of at most a S-copies and b T -copies, then T covers at most ha + b vertices of S, and at
most a + hb vertices of T . Taking S∗ := S ′ \ V (T ) and T ∗ := T ′ \ V (T ), we find that
|S∗| ≥ t2 ≥ ε4N and |T ∗| ≥ ht2 ≥ ε4N . Since G′[S ′, T ′] is (2ε2, d1/2)-super-regular, it
follows that there is some vertex x ∈ S∗ having at least d1ε4N/2 > 2ε3N neighbours in T ∗.
Since every set of size at least 2ε3N in T ∗ contains an excellent h-set this gives a T -copy
which can be added to T . The same argument with the roles of S∗ and T ∗ reversed yields
instead an S-copy which may be added to T . This proves the claim.

Since by the choice of T2 each vertex of S ′′ has at least φε5d1
5h

N > h|S ′′|+2ε3N neighbours
in T2, we may greedily form an H-tiling T3 in G∗[S ′′ ∪ T2] consisting of t2 T -copies which
covers every vertex of S ′′ and which covers precisely ht2 vertices of T2. At this point we have
obtained an H-tiling T1 ∪ T2 ∪ T3 in G∗ which covers every vertex of S except for those in
Q \ Q′ and every vertex of T except for the precisely ht2 vertices in T ′′ and the precisely
t− ht2 vertices in T2 \ V (T3). Therefore, in total, precisely t vertices of T remain uncovered,
each of which has at least d1|Q| − |Q′| > ht + 2ε3N neighbours in Q \ Q′ by the choice of
T1. We may therefore greedily form an H-tiling T4 of S-copies in G∗ which covers all the
remaining uncovered vertices in T and precisely ht vertices of Q \Q′. Then T1 ∪T2 ∪T3 ∪T4

is the desired H-tiling.
The moreover part of (a) follows by observing that since G′[S, T ] is (3ε1, d/6)-super-

regular, G′[S, T ′] is (ε2, d1)-super-regular for any subset T ′ ⊆ T where |T \T ′| ≤ ε5N . Thus,
the precise argument above, with T ′ playing the role of T , implies we have the desired
H-tiling.

For (b), we may assume without loss of generality that |T | ≥ |S|. Since every set of at
least 2ε3N vertices of T contains an excellent h-set we may greedily form an H ′-tiling M of
size at least (|T | − 2ε3N)/h ≥ N/(h + 1) in G4[T ] such that the vertex set of each of these
copies of H ′ are excellent. Fix such an H ′-tiling M , and form an auxiliary bipartite graph
K with vertex classes S and M where a ∈ S and e = (x1x2 . . . xh) ∈ M are adjacent if and
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only if a ∈ NG∗(x1) ∩ . . . ∩NG∗(xh). Note that for every H ′-copy e = (x1x2 . . . xh) ∈ M we
have that

dK(e) = |NG∗(x1) ∩ . . . ∩NG∗(xh) ∩ S| ≥ d1|S|

by the definition of an excellent h-set, so K has density at least d1. We now apply the
following lemma from [2].

Lemma 5.10 ([2], Lemma 2.6). Suppose that 1/n ≪ φ′ ≪ ε′ ≪ d′ ≪ 1/h′. Let F be a
bipartite graph with vertex classes A and B such that n/h′ ≤ |A|, |B| ≤ n and dF (A,B) ≥ d′.
Then there exist subsets X ⊆ A and Y ⊆ B of sizes |X| = φ′n and |Y | = (1 − ε′)φ′n such
that F [X ′, Y ] contains a perfect matching for every subset X ′ ⊆ X with |X ′| = |Y |.

We remark that this lemma is not precisely as stated in [2], but this version can easily
be deduced from the original.

Hence we may choose subsets X ⊆ S and M ′ ⊆ M such that |X| = φN , |M ′| = (1−ε5)φN
and such that K[X ′,M ′] contains a perfect matching for every subset X ′ ⊆ X with |X ′| =
|M ′|. Let T ′ := T \ V (M ′). Then, since φ ≪ ε5 we may apply (a) to G∗[S ∪ T ′] with X
playing the role of Q to obtain an H-tiling T1 in G∗ which covers every vertex of G∗ except
for the vertices of V (M ′) and precisely (1 − ε5)φN vertices of X . So, taking X ′ to be the
vertices of X not covered by T1, we have |X ′| = |M ′|. By the choice of X and M ′ it follows
that K[X ′,M ′] contains a perfect matching, which corresponds to a perfect H-tiling T2 in
G∗[X ′ ∪ V (M ′)]. This gives a perfect H-tiling T1 ∪ T2 in G∗.
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its Applications vol. II 4 (1970), 601–623.

[14] J. Han and Y. Zhao, Hamiltonicity in randomly perturbed hypergraphs, submitted.

[15] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, Wiley, 2000.
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