EXACT DISTANCE COLORING IN TREES

NICOLAS BOUSQUET, LOUIS ESPERET, ARARAT HARUTYUNYAN, AND RÉMI DE JOANNIS DE VERCLOS

Abstract

For an integer $q \geq 2$ and an even integer d, consider the graph obtained from a large complete q-ary tree by connecting with an edge any two vertices at distance exactly d in the tree. This graph has clique number $q+1$, and the purpose of this short note is to prove that its chromatic number is $\Theta\left(\frac{d \log q}{\log d}\right)$. It was not known that the chromatic number of this graph grows with d. As a simple corollary of our result, we give a negative answer to a problem of Van den Heuvel and Naserasr, asking whether there is a constant C such that for any odd integer d, any planar graph can be colored with at most C colors such that any pair of vertices at distance exactly d have distinct colors. Finally, we study interval coloring of trees (where vertices at distance at least d and at most $c d$, for some real $c>1$, must be assigned distinct colors), giving a sharp upper bound in the case of bounded degree trees.

1. Introduction

Given a metric space X and some real $d>0$, let $\chi(X, d)$ be the minimum number of colors in a coloring of the elements of X such that any two elements at distance exactly d in X are assigned distinct colors. The classical Hadwiger-Nelson problem asks for the value of $\chi\left(\mathbb{R}^{2}, 1\right)$, where \mathbb{R}^{2} is the Euclidean plane. It is known that $5 \leq \chi\left(\mathbb{R}^{2}, 1\right) \leq 7$ [1] and since the Euclidean plane \mathbb{R}^{2} is invariant under homothety, $\chi\left(\mathbb{R}^{2}, 1\right)=\chi\left(\mathbb{R}^{2}, d\right)$ for any real $d>0$. Let \mathbb{H}^{2} denote the hyperbolic plane. Kloeckner [3] proved that $\chi\left(\mathbb{H}^{2}, d\right)$ is at most linear in d (the multiplicative constant was recently improved by Parlier and Petit [6]), and observed that $\chi\left(\mathbb{H}^{2}, d\right) \geq 4$ for any $d>0$. He raised the question of determining whether $\chi\left(\mathbb{H}^{2}, d\right)$ grows with d or can be bounded independently of d. As noticed by Kahle (see [3]), it is not known whether $\chi\left(\mathbb{H}^{2}, d\right) \geq 5$ for some real $d>0$. Parlier and Petit [6] recently suggested to study infinite regular trees as a discrete analog of the hyperbolic plane. Note that any graph G can be considered as a metric space (whose elements are the vertices of G and whose metric is the graph distance in G), and in this context $\chi(G, d)$ is precisely the minimum number of colors in a vertex coloring of G such that vertices at distance d apart are assigned different colors. Note that $\chi(G, d)$ can be equivalently defined as the chromatic number of the exact d-th power of G, that is, the graph with the same vertex-set as G in which two vertices are adjacent if and only if they are at distance exactly d in G.

Let T_{q} denote the infinite q-regular tree. Parlier and Petit [6] observed that when d is odd, $\chi\left(T_{q}, d\right)=2$ and proved that when d is even, $q \leq \chi\left(T_{q}, d\right) \leq(d+1)(q-1)$. A

[^0] 16-CE40-0009-01) and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and LabEx CIMI.
similar upper bound can also be deduced from the results of Van den Heuvel, Kierstead, and Quiroz [2], while the lower bound is a direct consequence of the fact that when d is even, the clique number of the exact d-th power of T_{q} is q (note that it does not depend on d). In this short note, we prove that when $q \geq 3$ is fixed,
$$
\frac{d \log (q-1)}{4 \log (d / 2)+4 \log (q-1)} \leq \chi\left(T_{q}, d\right) \leq(2+o(1)) \frac{d \log (q-1)}{\log d}
$$
where the asymptotic $o(1)$ is in terms of d. A simple consequence of our main result is that for any even integer d, the exact d-th power of a complete binary tree of depth d is of order $\Theta(d / \log d)$ (while its clique number is equal to 3).

The following problem (attributed to Van den Heuvel and Naserasr) was raised in [4] (see also [2] and [5]).

Problem 1.1 (Problem 11.1 in [4]). Is there a constant C such that for every odd integer d and every planar graph G we have $\chi(G, d) \leq C$?

We will show that our result on large complete binary trees easily implies a negative answer to Problem 1.1. More precisely, we will prove that the graph U_{3}^{d} obtained from a complete binary tree of depth d by adding an edge between any two vertices with the same parent gives a negative answer to Problem 1.1 (in particular, for odd d, the chromatic number of the exact d-th power of U_{3}^{d} grows as $\Theta(d / \log d)$). We will also prove that the exact d-th power of a specific subgraph Q_{3}^{d} of U_{3}^{d} grows as $\Omega(\log d)$. Note that U_{3}^{d} and Q_{3}^{d} are outerplanar (and thus, planar) and chordal (see Figure 24).

Kloeckner [3] proposed the following variant of the original problem: For a metric space X, an integer d and a real $c>1$, we denote by $\chi(X,[d, c d])$ the smallest number of colors in a coloring of the elements of X such that any two elements of X at distance at least d and at most $c d$ apart have distinct colors. Considering as above the natural metric space defined by the infinite q-regular tree T_{q}, Parlier and Petit [6] proved that

$$
q(q-1)^{\lfloor c d / 2\rfloor-\lfloor d / 2\rfloor} \leq \chi\left(T_{q},[d, c d]\right) \leq(q-1)^{\lfloor c d / 2+1\rfloor}(\lfloor c d\rfloor+1)
$$

We will show that $\chi\left(T_{q},[d, c d]\right) \leq \frac{q}{q-2}(q-1)^{\lfloor c d / 2\rfloor-d / 2+1}+c d+1$, which implies that the lower bound of Parlier and Petit [6] (which directly follows from a clique size argument) is asymptotically sharp.

2. Exact distance coloring

Throughout the paper, we assume that the infinite q-regular tree T_{q} is rooted in some vertex r. This naturally defines the children and descendants of a vertex and the parent and ancestors of a vertex distinct from r. In particular, given a vertex u, we define the ancestors u^{0}, u^{1}, \ldots of u inductively as follows: $u^{0}=u$ and for any i such that u^{i} is not the root, u^{i+1} is the parent of u^{i}. With this notation, u^{d} can be equivalently defined as the ancestor of u at distance d from u (if such a vertex exists). For a given vertex u in T_{q}, the depth of u, denoted by depth (u), is the distance between u and r in T_{q}. For a vertex v and an integer ℓ, we define $L(v, \ell)$ as the set of descendants of v at distance exactly ℓ from v in T_{q}.

We first prove an upper bound on $\chi\left(T_{q}, d\right)$.
Theorem 2.1. For any integer $q \geq 3$, any even integer d, and any integer $k \geq 1$ such that $k(q-1)^{k-1} \leq d$, we have $\chi\left(T_{q}, d\right) \leq(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}+\frac{d}{k}+1$. In particular, $\chi\left(T_{q}, d\right) \leq d+q+1$, and when q is fixed and d tends to infinity, $\chi\left(T_{q}, d\right) \leq(2+o(1)) \frac{d \log (q-1)}{\log d}$.
Proof. A vertex of T_{q} distinct from r and whose depth is a multiple of k is said to be a special vertex. Let v be a special vertex. Every special vertex u distinct from v such that $u^{k}=v^{k}$ is called a cousin of v. Note that v has at most $q(q-1)^{k-1}-1$ cousins (at most $(q-1)^{k}-1$ if $\left.v^{k} \neq r\right)$. A special vertex u is said to be a relative of v if u is either a cousin of v, or u has the property that u and v^{k} have the same depth and are at distance at most k apart in T_{q}. Two vertices a, b at distance at most k apart and at the same depth must satisfy $a^{\lfloor k / 2\rfloor}=b^{\lfloor k / 2\rfloor}$, and so the number of vertices u such that u and v^{k} have the same depth and are at distance at most k apart in T_{q} is $(q-1)^{\lfloor k / 2\rfloor}$. It follows that if $v^{k}=r$, then v has at most $q(q-1)^{k-1}-1$ relatives and otherwise v has at most $(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}-1$ relatives.

The first step is to define a coloring C of the special vertices of T_{q}. This will be used later to define the desired coloring of T_{q}, i.e. a coloring such that vertices of T_{q} at distance d apart are assigned distinct colors (in this second coloring, the special vertices will not retain their color from C).

We greedily assign a color $C(v)$ to each special vertex v of T_{q} as follows: we consider the vertices of T_{q} in a breadth-first search starting at r, and for each special vertex v we encounter, we assign to v a color distinct from the colors already assigned to its relatives, and from the set of ancestors $v^{i k}$ of v, where $2 \leq i \leq \frac{d}{k}+1$ (there are at most $\frac{d}{k}$ such vertices). Note that if $v^{k}=r$, the number of colors forbidden for v is at most $q(q-1)^{k-1}-1$ and if $v^{k} \neq r$ the number of colors forbidden for v is at most $(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}+\frac{d}{k}-1$. Since $k(q-1)^{k-1} \leq d$, in both cases v has at most $(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}+\frac{d}{k}-1$ forbidden colors, therefore we can obtain the coloring C by using at most $(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}+\frac{d}{k}$ colors.

For any special vertex v, the set of descendants of v at distance at least $d / 2-k$ and at most $d / 2-1$ from v is denoted by $K(v, k)$. We now define the desired coloring of T_{q} as follows: for each special vertex v, all the vertices of $K(v, k)$ are assigned the color $C(v)$. Finally, all the vertices at distance at most $d / 2-1$ from r are colored with a single new color (note that any two vertices in this set lie at distance less than d apart). The resulting vertex-coloring of T_{q} is called c. Note that c uses at most $(q-1)^{k}+(q-1)^{\lfloor k / 2\rfloor}+\frac{d}{k}+1$ colors, and indeed every vertex of T_{q} gets exactly one color.

We now prove that vertices at distance d apart in T_{q} are assigned distinct colors in c. Assume for the sake of contradiction that two vertices x and y at distance d apart were assigned the same color. Then the depth of both x and y is at least $d / 2$. We can assume by symmetry that the difference t between the depth of x and the depth of y is such that $0 \leq t \leq d$ since otherwise they would be at distance more than d. Let u be the unique (special) vertex of T_{q} such that $x \in K(u, k)$ and v be the unique (special) vertex such that $y \in K(v, k)$. By the definition of our coloring c, we have $C(u)=C(v)$. Note that u and v are distinct; indeed, otherwise x and y would not be at distance d in T_{q}. Assume first that
u and v have the same depth. Then since u and x (resp. v and y) are distance at least $d / 2-k$ apart, u and v are cousins (and thus, relatives), which contradicts the definition of the vertex-coloring C. We may, therefore, assume that the depths of u and v are distinct. Moreover, since u and v are special vertices, we may assume that their depths differ by at least k. In particular, u lies deeper than v in T_{q}.

First assume that the depths of u and v differ by at least $2 k$. Then v is not an ancestor of u in T_{q}. Indeed, for otherwise we would have $v=u^{i k}$ for some integer $2 \leq i \leq \frac{d}{k}+1$, which would contradict the definition of C. This implies that the distance between x and y is at least $d / 2-k+d / 2-k+2 k+2=d+2$, which is a contradiction. Therefore, we can assume that the depths of u and v differ by precisely k. Since v is not a relative of u, we have that $v \neq u^{k}$ and the distance between u^{k} and v is more than k. Moreover, since u and x (resp. v and y) are at distance at least $d / 2-k$ apart, this implies that the distance between x and y is more than $d / 2-k+k+k+d / 2-k=d$, a contradiction.

Thus, c is a proper coloring.
By taking $k=1$ we obtain a coloring c using at most $(q-1)^{1}+(q-1)^{\lfloor 1 / 2\rfloor}+\frac{d}{1}+1=q+d+1$ colors, and by taking $k=\left\lfloor\frac{\log d-\log \log d+\log \log (q-1)}{\log (q-1)}\right\rfloor$, we obtain a coloring c using at most

$$
\frac{d \log (q-1)}{\log d}+\sqrt{\frac{d \log (q-1)}{\log d}}+\frac{d \log (q-1)}{\log d-\log \log d+\log \log (q-1)-\log (q-1)}+1=(2+o(1)) \frac{d \log (q-1)}{\log d}
$$

colors.
For $k=1$, the proof above can be optimized to show that $\chi\left(T_{q}, d\right) \leq q+\frac{d}{2}$ (by simply noting that vertices at even depth and vertices at odd depth can be colored independently). Since we are mostly interested in the asymptotic behaviour of $\chi\left(T_{q}, d\right)$ (which is of order $\left.O\left(\frac{d}{\log d}\right)\right)$, we omit the details.

We now prove a simple lower bound on $\chi\left(T_{q}, d\right)$. Let T_{q}^{d} be the rooted complete $(q-1)$ ary tree of depth d, with root r. Note that each node has $q-1$ children, so this graph is a subtree of T_{q}.
Theorem 2.2. For any integer $q \geq 3$ and any even d, $\chi\left(T_{q}^{d}, d\right) \geq \log _{2}\left(\frac{d}{4}+q-1\right)$.
Proof. Consider any coloring of T_{q}^{d} with colors $1,2, \ldots, C$, such that vertices at distance precisely d apart have distinct colors. For any vertex v at depth at most $\frac{d}{2}+1$ in T_{q}^{d}, the set of colors appearing in $L\left(v, \frac{d}{2}-1\right)$ is denoted by S_{v}. Observe that if v and w have the same parent, then S_{v} and S_{w} are disjoint since for any $x \in L\left(v, \frac{d}{2}-1\right)$ and $y \in L\left(w, \frac{d}{2}-1\right)$, x and y are at distance d.

Fix some vertex u at depth at most $\frac{d}{2}$ in T_{q}^{d} and some child v of u. We claim that:
Claim 2.3. For any integer $1 \leq k \leq \frac{\operatorname{depth}(u)}{2}$, there is a color of $S_{u^{2 k-1}}$ that does not appear in S_{v}.

To see that Claim 2.3 holds, observe that in the subtree of T_{q}^{d} rooted in u^{k}, there is a vertex of $L\left(u^{2 k-1}, \frac{d}{2}-1\right)$ at distance d from all the elements of $L\left(v, \frac{d}{2}-1\right)$. The color of such a vertex does not appear in S_{v}, therefore Claim 2.3 holds.

In particular, Claim 2.3 implies that all the sets $\left\{S_{u^{2 k-1}} \mid 1 \leq k \leq d / 4\right\}$ and $\left\{S_{w} \mid w\right.$ is a child of $\left.u\right\}$ are pairwise distinct. Since there are $\frac{d}{4}+q-1$ such sets, we have $\frac{d}{4}+q-1 \leq 2^{C}$ and therefore $C \geq \log _{2}\left(\frac{d}{4}+q-1\right)$, as desired.

It was observed by Stéphan Thomassé that the proof of Theorem 2.2 only uses a small fraction of the graph T_{q}^{d}. Consider for simplicity the case $q=3$, and define P_{3}^{d} as the graph obtained from a path $P=v_{0}, v_{1}, \ldots, v_{d}$ on d edges, by adding, for each $1 \leq i \leq d$, a path on i edges ending at v_{i} (see Figure 11). This graph is an induced subgraph of T_{q}^{d} and the proof of Theorem 2.2 directly shows the following ${ }^{11}$.

Corollary 2.4. For any even integer $d, \chi\left(P_{3}^{d}, d\right) \geq \log _{2}(d+8)-2$.

Figure 1. The graph P_{3}^{4}.

The proof of Theorem 2.2 can be refined to prove the following better estimate for T_{q}^{d}, showing that the upper bound of Theorem 2.1 is (asymptotically) tight within a constant multiplicative factor of 8 .

Theorem 2.5. For any integer $q \geq 3$ and every even integer $d \geq 2, \chi\left(T_{q}^{d}, d\right) \geq$ $\frac{d \log (q-1)}{4 \log (d / 2)+4 \log (q-1)}$.

Proof. Consider any coloring of T_{q}^{d} with colors $1,2, \ldots, C$, such that vertices at distance precisely d apart have distinct colors. We perform a random walk $v_{0}, v_{1}, \ldots, v_{d}$ in T_{q}^{d} as follows: we start with $v_{0}=r$, and for each $i \geq 1$, we choose a child of v_{i} uniformly at random and set it as v_{i+1}. Note that the depth of each vertex v_{i} is precisely i.

From now on we fix a color $c \in\{1, \ldots, C\}$. For any vertex v of T_{q}^{d}, the set of vertices contained in the subtree of T_{q}^{d} rooted in v is denoted by V_{v}, and we set $A_{v}=\{\operatorname{depth}(u) \mid u \in$ V_{v} and u has color $\left.c\right\}$. When $v=v_{i}$, for some integer $0 \leq i \leq d$, we write A_{i} instead of $A_{v_{i}}$.

Claim 2.6. Assume that for some even integers i and j with $2 \leq i<j \leq d$, and for some vertex v at depth $\frac{i+j-d}{2}$, the set A_{v} contains both i and j. Then v has precisely one child u such that A_{u} contains i and j, and moreover all the children w of v distinct from u are such that A_{w} contains neither i nor j.

[^1]To see that Claim 2.6 holds, simply note that $\frac{i+j-d}{2}<i<j$ and if two vertices u_{1}, u_{2} colored c are respectively at depths i and j, and their common ancestor is v, then they are at distance d in T_{q}^{d} (which contradicts the fact that they were assigned the same color). Indeed, the distance of u_{1} to v is $i-\frac{i+j-d}{2}$ and the distance of u_{2} to v is $j-\frac{i+j-d}{2}$. This proves the claim.

We now define a family of graphs $\left(G_{k}\right)_{0 \leq k \leq d / 2}$ as follows. For any $0 \leq k \leq \frac{d}{2}$, the vertexset $V\left(G_{k}\right)$ of G_{k} is the set $A_{k} \cap 2 \mathbb{N} \cap(d / 2, d]$, and two (distinct) even integers $i, j \in A_{k}$ are adjacent in G_{k} if and only if $\frac{i+j-d}{2}<k$. For each $0 \leq k \leq \frac{d}{2}$ we define the energy \mathcal{E}_{k} of G_{k} as follows: $\mathcal{E}_{k}=\sum_{i \in V\left(G_{k}\right)}(q-1)^{\operatorname{deg}(i)}$, where $\operatorname{deg}(i)$ denotes the degree of the vertex i in G_{k}.

Note that each graph G_{k} depends on the (random) choice of $v_{1}, v_{2}, \ldots, v_{k}$.
Claim 2.7. For any $0 \leq k \leq \frac{d}{2}-1, \mathbb{E}\left(\mathcal{E}_{k+1}\right) \leq \mathbb{E}\left(\mathcal{E}_{k}\right)$.
Assume that $v_{1}, v_{2}, \ldots, v_{k}$ (and therefore also G_{k}) are fixed. Observe that G_{k+1} is obtained from G_{k} by possibly removing some vertices and adding some edges. Thus, \mathcal{E}_{k+1} can be larger than \mathcal{E}_{k} only if G_{k+1} contains edges that are not in G_{k}. Therefore, it suffices to consider the contributions of those pairs of nonadjacent vertices in G_{k} which could become adjacent in G_{k+1} (since these correspond to pairs i, j with $k=\frac{i+j-d}{2}$, these pairs are pairwise disjoint), and prove that these contributions are, in expectation, equal to 0 . Fix a pair of even integers $i<j$ in $V\left(G_{k}\right)$ with $k=\frac{i+j-d}{2}$ (and note that i and j are not adjacent in G_{k}). By Claim 2.6, either v_{k+1} is such that A_{k+1} contains i and j (this event occurs with probability $\frac{1}{q-1}$), or A_{k+1} contains neither i nor j (with probability $1-\frac{1}{q-1}$). As a consequence, for any $i<j$ in $V\left(G_{k}\right)$ with $k=\frac{i+j-d}{2}$, with probability $\frac{1}{q-1}$ we add the edge $i j$ in G_{k+1} and with probability $1-\frac{1}{q-1}$ we remove vertices i and j from G_{k+1}. This implies that for any $i, j \in V\left(G_{k}\right), i<j$, with $k=\frac{i+j-d}{2}$, with probability $\frac{1}{q-1}$ we have contribution at most $(q-1)^{\operatorname{deg}(i)+1}+(q-1)^{\operatorname{deg}(j)+1}-(q-1)^{\operatorname{deg}(i)}-(q-1)^{\operatorname{deg}(j)}=(q-2)\left((q-1)^{\operatorname{deg}(i)}+(q-1)^{\operatorname{deg}(j)}\right)$ to \mathcal{E}_{k+1} (where deg refers to the degree in G_{k}) and with probability $1-\frac{1}{q-1}$ we have a contribution of at most $-(q-1)^{\operatorname{deg}(i)}-(q-1)^{\operatorname{deg}(j)}$ to \mathcal{E}_{k+1}. Thus, the expected contribution of such a pair i, j is at most $\frac{1}{q-1}(q-2)\left((q-1)^{\operatorname{deg}(i)}+(q-1)^{\operatorname{deg}(j)}\right)-\frac{q-2}{q-1}\left((q-1)^{\operatorname{deg}(i)}+(q-1)^{\operatorname{deg}(j)}\right)=0$.

Summing over all such pairs i, j, we obtain $\mathbb{E}\left(\mathcal{E}_{k+1}\right) \leq \mathbb{E}\left(\mathcal{E}_{k}\right)$. This proves Claim 2.7.
Since $2 \leq i<j \leq d$, we have $\frac{i+j-d}{2} \leq \frac{d}{2}-1$, and in particular it follows that $G_{d / 2}$ is a (possibly empty) complete graph, whose number of vertices is denoted by $\omega \geq 0$. Note that the energy \mathcal{E} of a complete graph on ω vertices is equal to $\omega(q-1)^{\omega-1}$, while the energy \mathcal{E}_{0} of G_{0} is equal to $\left|A_{0} \cap 2 \mathbb{N} \cap(d / 2, d]\right| \leq \frac{d}{4}$. For a vertex $u \in L\left(r, \frac{d}{2}\right)$, let $\omega_{u}=\left|A_{u} \cap 2 \mathbb{N} \cap(d / 2, d]\right|$ (this is the number of distinct even depths at which a vertex colored c appears in the subtree of height $\frac{d}{2}$ rooted in u). It follows from Claim 2.7 that the average of $\omega_{u}(q-1)^{\omega_{u}-1}$, over all vertices $u \in L\left(r, \frac{d}{2}\right)$, is at most $\frac{d}{4}$. Let a be the average of ω_{u}, over all vertices $u \in L\left(r, \frac{d}{2}\right)$. By Jensen's inequality and the convexity of the function $x \mapsto x(q-1)^{x-1}$ for $x \geq 0$, we have that $a(q-1)^{a-1} \leq \frac{d}{4}$, and thus $a \leq \frac{\log (d / 2)}{\log (q-1)}+1$.

Note that a depends on the color c under consideration (to make this more explicit, let us now write a_{c} instead of a). Since there are $\frac{d}{4}$ even depths between depth $\frac{d}{2}$ and depth d, there is a color $c \in\{1, \ldots, C\}$ such that $a_{c} \cdot C \geq \frac{d}{4}$ and thus, $C \geq \frac{d}{4 a_{c}} \geq \frac{d \log (q-1)}{4 \log (d / 2)+4 \log (q-1)}$, as desired.

We now explain how the results proved above give a negative answer to Problem 1.1. Let U_{3}^{d} (resp. Q_{3}^{d}) be obtained from T_{3}^{d} (resp. P_{3}^{d}) by adding an edge $u v$ for any pair of vertices u, v having the same parent. Note that for any d, U_{3}^{d} and Q_{3}^{d} are outerplanar (and thus, planar) and chordal, and Q_{3}^{d} has pathwidth $2\left(U_{3}^{3}\right.$ and Q_{3}^{5} are depicted in Figure 2) and the original copies of T_{3}^{d} and P_{3}^{d} are spanning trees of U_{3}^{d} and Q_{3}^{d}, respectively. In the remainder of this section, whenever we write T_{3}^{d}, we mean the original copy of T_{3}^{d} in U_{3}^{d}.

Figure 2. The graphs U_{3}^{3} (left) and Q_{3}^{5} (right). The bold edges represent the original copies of T_{3}^{3} and P_{3}^{5}, respectively.

Observe that for any two vertices u and v distinct from the root of T_{3}^{d}, u and v are at distance d in T_{3}^{d} if and only if they are at distance $d-1$ in U_{3}^{d} (since the depth of T_{3}^{d} is d, the fact that u and v differ from the root and are at distance d apart implies that none of the two vertices is an ancestor of the other). The same property holds for Q_{3}^{d} and P_{3}^{d}. As a consequence, for any odd integer $d, \chi\left(U_{3}^{d+1}, d\right)$ and $\chi\left(T_{3}^{d+1}, d+1\right)$ differ by at most one, and $\chi\left(Q_{3}^{d+1}, d\right)$ and $\chi\left(P_{3}^{d+1}, d+1\right)$ also differ by at most one. Using this observation, we immediately obtain the following corollary of Theorem 2.5 and Corollary 2.4, which gives a negative answer to Problem 1.1.

Corollary 2.8. For any odd integer d,

$$
\chi\left(U_{3}^{d+1}, d\right) \geq \frac{(d+1) \log (2)}{4 \log ((d+1) / 2)+4 \log (2)}-1 \text { and } \chi\left(Q_{3}^{d+1}, d\right) \geq \log _{2}(d+8)-3
$$

The graphs U_{3}^{d+1} and its exact d-th power have $n=2^{d+2}$ vertices, and thus the chromatic number of the exact d-th power of U_{3}^{d+1} grows as $\Omega\left(\frac{\log n}{\log \log n}\right)$. The graphs Q_{3}^{d+1} and its exact d-th power have $n=\binom{d+2}{2}$ vertices, and thus the chromatic number of the exact d-th power of Q_{3}^{d+1} grows as $\Omega(\log n)$. It is not difficult (using Theorem 2.1 for U_{3}^{d+1}) to show that these bounds are asymptotically tight.

It was recently proved by Quiroz [8] that if G is a chordal graph of clique number at most $t \geq 2$, and d is an odd number, then $\chi(G, d) \leq\binom{ t}{2}(d+1)$. By Corollary 2.8, the
graph U_{3}^{d} shows that this is asymptotically best possible (as d tends to infinity), up to a $\log d$ factor.

3. Interval coloring

For an integer d and a real $c>1$, recall that $\chi\left(T_{q},[d, c d]\right)$ denotes the smallest number of colors in a coloring of the vertices of T_{q} such that any two vertices of T_{q} at distance at least d and at most $c d$ apart have distinct colors. Parlier and Petit [6] proved that

$$
q(q-1)^{\lfloor c d / 2\rfloor-\lfloor d / 2\rfloor} \leq \chi\left(T_{q},[d, c d]\right) \leq(q-1)^{\lfloor c d / 2+1\rfloor}(\lfloor c d\rfloor+1)
$$

In this final section, we prove that their lower bound (which is proved by finding a set of vertices of this cardinality that are pairwise at distance at least d and at most $c d$ apart in T_{q}) is asymptotically tight.

Theorem 3.1. For any integers $q \geq 3$ and d and any real $c>1, \chi\left(T_{q},[d, c d]\right) \leq \frac{q}{q-2}(q-$ 1) ${ }^{\lfloor c d / 2\rfloor-d / 2+1}+c d+1$.

Proof. The proof is similar to the proof of Theorem 2.1. We consider any ordering e_{1}, e_{2}, \ldots of the edges of T_{q} obtained from a breadth-first search starting at r. Then, for any $i=$ $1,2, \ldots$ in order, we assign a color $c\left(e_{i}\right)$ to the edge e_{i} as follows. Let $e_{i}=u v$, with u being the parent of v, and let $\ell=\lfloor c d / 2\rfloor-d / 2$. We assign to $u v$ a color $c(u v)$ distinct from the colors of all the edges $x y$ (with x being the parent of y) such that x is at distance at most ℓ from u^{k} (where k is the minimum of ℓ and the depth of u), or x is an ancestor of u at distance at most $c d$ from u (and y lies on the path from u to x). There are at most $c d+\sum_{j=0}^{\ell} q(q-1)^{j} \leq \frac{q}{q-2}(q-1)^{\ell+1}+d-1$ such edges, so we can color all the edges following this procedure by using a total of at most $\frac{q}{q-2}(q-1)^{\ell+1}+c d$ colors.

As in the proof of Theorem 2.1, we now define our coloring of the vertices of T_{q} as follows: first color all the vertices at distance at most $\frac{d}{2}-1$ from r with a new color that does not appear on any edge of T_{q}, then for each vertex v with parent u, we color all the vertices of $L\left(v, \frac{d}{2}-1\right)$ with color $c(u v)$. In this vertex-coloring, at most $\frac{q}{q-2}(q-1)^{\ell+1}+c d+1$ colors are used.

Assume that two vertices s and t, at distance at least d and at most $c d$ apart, were assigned the same color. This implies that $c\left(s^{d / 2-1} s^{d / 2}\right)=c\left(t^{d / 2-1} t^{d / 2}\right)$. Assume without loss of generality that the depth of s is at least the depth of t, and consider first the case where $t^{d / 2-1}$ is an ancestor of s. Then $t^{d / 2}$ is an ancestor of $s^{d / 2}$ at distance at most $c d$ from $s^{d / 2}$ (and $t^{d / 2-1}$ lies on the path from $s^{d / 2}$ to $t^{d / 2}$), which contradicts the definition of our edge-coloring c. Thus, we can assume that $t^{d / 2-1}$ is not an ancestor of s. This implies that $t^{d / 2-1} t^{d / 2}$ lies on the path between s and t, and therefore $t^{d / 2}$ is at distance at most $\ell=\lfloor c d / 2\rfloor-d / 2$ from the ancestor of $s^{d / 2}$ at distance ℓ from $s^{d / 2}$ (or simply from r, if the depth of $s^{d / 2}$ is at most ℓ). Again, this contradicts the definition of our coloring c. We obtained a coloring of the vertices of T_{q} with at most $\frac{q}{q-2}(q-1)^{\ell+1}+c d+1$ colors in which each pair of vertices at distance at least d and at most $c d$ apart have distinct colors, as desired.

Acknowledgement

We are very grateful to Lucas Pastor, Stéphan Thomassé, and an anonymous reviewer for their excellent observations and comments.

References

[1] A.D.N.J. de Grey, The chromatic number of the plane is at least 5, Manuscript, arXiv:1804.02385, 2018.
[2] J. van den Heuvel, H.A. Kierstead, and D. Quiroz, Chromatic Numbers of Exact Distance Graphs, Manuscript, arXiv:1612.02160, 2016.
[3] B.R. Kloeckner, Coloring distance graphs: a few answers and many questions, Geombinatorics 24(3) (2015), 117-134.
[4] J. Nešetřil and P. Ossona de Mendez, Sparsity - Graphs, Structures, and Algorithms, Springer-Verlag, Berlin, Heidelberg, 2012.
[5] J. Nešetřil and P. Ossona de Mendez, On low tree-depth decompositions, Graphs Combin. 31 (2015), 1941-1963.
[6] H. Parlier and C. Petit, Chromatic numbers for the hyperbolic plane and discrete analogs, Manuscript, arXiv:1701.08648, 2017.
[7] H. Parlier and C. Petit, Chromatic numbers of hyperbolic surfaces, Indiana Univ. Math. J. 65(4), 1401-1423.
[8] D. Quiroz, Colouring exact distance graphs of chordal graphs, Manuscript, arXiv:1703.07008, 2017.
Univ. Grenoble Alpes, CNRS, G-SCOP, Grenoble, France
E-mail address: nicolas.bousquet@grenoble-inp.fr
Univ. Grenoble Alpes, CNRS, G-SCOP, Grenoble, France
E-mail address: louis.esperet@grenoble-inp.fr
LAMSADE, University of Paris-Dauphine, Paris, France
E-mail address: ararat.harutyunyan@dauphine.fr
Radboud University Nijmegen, Netherlands
E-mail address: r.deverclos@math.ru.nl

[^0]: The authors were partially supported by ANR Projects STINT (ANR-13-BS02-0007) and GATO (ANR-

[^1]: ${ }^{1}$ Stéphan Thomassé noticed that this can also be deduced from the fact that the vertices at depth at least $\frac{d}{2}$ and at most d in the exact d-th power of P_{3}^{d} induce a shift graph.

