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Abstract
We study I(T ), the number of inversions in a tree T with its vertices labeled uniformly at
random. We first show that the cumulants of I(T ) have explicit formulas. Then we consider
Xn, the normalized version of I(Tn), for a sequence of trees Tn. For fixed Tn’s, we prove a
sufficient condition for Xn to converge in distribution. For Tn being split trees [6], we show
that Xn converges to the unique solution of a distributional equation. Finally, when Tn’s are
conditional Galton–Watson trees, we show that Xn converges to a random variable defined in
terms of Brownian excursions. Our results generalize and extend previous work by Panholzer
and Seitz [20].

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms

Keywords and phrases inversions, random trees, split trees, Galton–Watson trees, permutation,
cumulant

Digital Object Identifier 10.4230/LIPIcs.AofA.2018.15

Funding This work was partially supported by the Knut and Alice Wallenberg Foundation, the
Swedish Research Council and the Ragnar Söderbergs Foundation.

Acknowledgements We want to thank Henning Sulzbach for helpful discussions.

© Xing Shi Cai, Cecilia Holmgren, Svante Janson, Tony Johansson, and Fiona Skerman;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 15; pp. 15:1–15:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xingshi.cai@math.uu.se
https://orcid.org/0000-0002-3768-8078
mailto:cecilia.holmgren@math.uu.se
https://orcid.org/0000-0003-0717-4671
mailto:svante.janson@math.uu.se
https://orcid.org/0000-0002-9680-2790
mailto:tony.johansson@math.uu.se
mailto:fiona.skerman@math.uu.se
https://orcid.org/0000-0003-4141-7059
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Inversions in Split Trees and Conditional Galton–Watson Trees

1 Introduction

1.1 Inversions in a fixed tree
Let σ1, . . . , σn be a permutation of {1, . . . , n}. If i < j and σi > σj , then the pair (σi, σj)
is called an inversion. The concept of inversions was introduced by Cramer [5] (1750) due
to its connection with solving linear equations. More recently, the study of inversions has
been motivated by its applications in the analysis of sorting algorithms ([15, Section 5.1]).
Many authors, e.g., Feller [7, pp. 256], have shown that the number of inversions in uniform
random permutations has a central limit theorem.

The concept of inversions can be generalized as follows. Consider an unlabeled rooted
tree T on node set V . Let ρ denote the root. Write u < v if u is a proper ancestor of v, i.e.,
the unique path from ρ to v passes through u and u 6= v. Write u ≤ v if u is an ancestor of
v, i.e., either u < v or u = v. Given a bijection λ : V → {1, . . . , |V |} (a node labeling), define
the number of inversions

I(T, λ) def=
∑
u<v

1λ(u)>λ(v).

Note that if T is a path, then I(T, λ) is nothing but the number of inversions in a permutation.
Our main object of study is the random variable I(T ), defined by I(T ) = I(T, λ) where λ is
chosen uniformly at random from the set of bijections from V to {1, . . . , |V |}.

The enumeration of trees with a fixed number of inversions has been studied by Mallows
and Riordan [16] and Gessel et al. [9] using the so called inversions polynomial. While
analyzing linear probing hashing, Flajolet et al. [8] noticed that the numbers of inversions in
Cayley trees with uniform random labeling converges to an Airy distribution. Panholzer and
Seitz [20] showed that this is true for conditional Galton–Watson trees, which encompasses
the case of Cayley trees.

For a node v, let zv denote the size of the subtree rooted at v. The following representation
of I(T ) is the basis of most of our results:

I Lemma 1. Let T be a fixed tree. Then

I(T ) d=
∑
v∈V

Zv,

where {Zv}v∈V are independent random variables, and Zv ∼ Unif{0, 1, . . . , zv − 1}.

We will generally be concerned with the centralized number of inversions, i.e., I(T )−
E [I(T )]. For any u < v we have P {λ(u) > λ(v)} = 1/2. Let h(v) denote the depth of v, i.e.,
the distance from v to the root ρ. It immediately follows that,

E [I(T )] =
∑
u<v

E
[
1λ(u)>λ(v)

]
= 1

2Υ(T ), (1.1)

where Υ(T ) def=
∑
v h(v) is called the total path length (or internal path length) of T .

Let κk = κk(X) denote the k-th cumulant of a random variable X (provided it exists);
thus κ1(X) = E [X] and κ2(X) = Var (X). We now define Υk(T ), the k-total common
ancestors of T , which allows us to generalize (1.1) to higher cumulants of I(T ). For k nodes
v1, . . . , vk (not necessarily distinct), let c(v1, . . . , vk) be the number of ancestors that they
share, i.e.,

c(v1, . . . , vk) def= |{u ∈ V : u ≤ v1, u ≤ v2, . . . , u ≤ vk}| .
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We define

Υk(T ) def=
∑

v1,...,vk

c(v1, . . . , vk),

where the sum is over all ordered k-tuples of nodes in the tree. For a single node v,
h(v) = c(v)− 1, since v itself is counted in c(v). So Υ(T ) = Υ1(T )− |V |; i.e., we recover the
usual notion of total path length. Using Lemma 1, it is easy to show the following:

I Theorem 2. Let T be a fixed tree. Let κk(I(T )) be the k-th cumulant of I(T ). Then

E [I(T )] = κ1(I(T )) = 1
2Υ(T ) = 1

2(Υ1(T )− |V |),

Var (I(T )) = κ2(I(T )) = 1
12(Υ2(T )− |V |),

and, more generally, for k ≥ 1,

κ2k+1(I(T )) = 0, κ2k(I(T )) = B2k

2k (Υ2k(T )− |V |),

where Bk denotes the k-th Bernoulli number. Moreover, I(T ) has the moment generating
function

E
[
etI(T )

]
=
∏
v∈V

ezvt − 1
zv(et − 1) ,

and for the centralized variable we have the estimate

E
[
et(I(T )−E[I(T )])] ≤ exp

(
1
8 t2
∑
v∈T

(zv − 1)2
)
≤ exp

(
1
8 t2
∑
v∈T

z2
v

)
= exp

(
1
8 t2Υ2(T )

)
, t ∈ R.

1.2 Inversions in sequences of trees
The total path length Υ(T ) has been studied for random trees like split trees [3] and
conditional Galton–Watson trees [1, Corollary 9]. This leads us to focus on the deviation

Xn = I(Tn)− E [I(Tn)]
s(n) ,

under some appropriate scaling s(n), for a sequence of (random or fixed) trees Tn.

Fixed trees
The following theorem follows easily from Theorem 2:

I Theorem 3. Let Tn be a sequence of fixed trees on n nodes. Let

Xn = I(Tn)− E [I(Tn)]√
Υ2(Tn)

.

Assume that for all k ≥ 1,
Υ2k(Tn)
Υ2(Tn)k → ζ2k,

for some sequence (ζ2k). Then there exists a unique distribution X with

κ2k−1(X) = 0, κ2k(X) = B2k

2k ζ2k, k ≥ 1,

such that Xn
d−→ X and, moreover, E

[
etXn

]
→ E

[
etX
]
<∞ for every t ∈ R.

AofA 2018
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I Example 4. When Pn is a path of n nodes, we have for fixed k ≥ 1

Υk(Pn) ∼ 1
k + 1n

k+1.

Thus Υ2k(Pn)/Υ2(Pn)k → κ2k = 0 for k ≥ 2. So by Theorem 3, Xn converges to a normal
distribution, and we recover the central limit law for inversions in permutations. Also, the
vertices have subtree sizes 1, . . . , n and so we also recover from Theorem 2 the moment
generating function

∏n
j=1(ejt − 1)/(j(et − 1)) [22, 17].

Other examples where Theorem 2 can be easily applied include complete b-ary trees and
stars (a star is a tree containing only a root and leaves).

Random trees
We move on to random trees. We consider generating a random tree Tn and, conditioning
on Tn, labeling its nodes uniformly at random. The relation (1.1) is maintained for random
trees:

E [I(Tn)] = E [E [I(Tn) | Tn]] = 1
2E [Υ(Tn)] .

The deviation of I(Tn) from its mean can be taken to mean two different things. Consider
for some scaling function s(n),

Xn = I(Tn)− E [I(Tn)]
s(n) , Yn = I(Tn)− E [I(Tn) | Tn]

s(n) =
I(Tn)− 1

2 Υ(Tn)
s(n) .

Then Xn and Yn each measure the deviation of I(Tn), unconditionally and conditionally.
They are related by the identity

Xn = Yn +Wn/2, (1.2)

where

Wn = Υ(Tn)− E [Υ(Tn)]
s(n) .

In the case of fixed trees Wn = 0 and Xn = Yn, but for random trees we consider the
sequences separately.

Split trees
The first class of random trees which we study are split trees. They were introduced by
Devroye [6] to encompass many families of trees that are frequently used in algorithm analysis,
e.g., binary search trees, m-ary search trees, digital search trees, etc.

A split tree can be constructed as follows. Consider a rooted infinite b-ary tree where each
node is a bucket of finite capacity s. We place n balls at the root, and the balls individually
trickle down the tree in a random fashion until no bucket is above capacity. Each node
draws a split vector V = (V1, . . . , Vb) from a common distribution, where Vi describes the
probability that a ball passing through the node continues to the ith child. The trickle-down
procedure is defined precisely in Section 2. Any node u such that the subtree rooted at u
contains no balls is then removed, and we consider the resulting tree Tn.

In the context of split trees we differentiate between I(Tn) (the number of inversions on
nodes), and Î(Tn) (the number of inversions on balls). In the former case, the nodes (buckets)
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are given labels, while in the latter the individual balls are given labels. For balls β1, β2,
write β1 < β2 if the node containing β1 is a proper ancestor of the node containing β2; if
β1, β2 are contained in the same node we do not compare their labels. Define

Î(Tn) =
∑
β1<β2

1λ(β1)>λ(β2).

Similarly define Υ̂(Tn) as the total path length on balls, i.e., the sum of the depth of all balls.
And let

X̂n =
Î(Tn)− E

[
Î(Tn)

]
n

, Ŷn = Î(Tn)− s0Υ̂(Tn)/2
n

, Ŵn =
Υ̂(Tn)− E

[
Υ̂(Tn)

]
n

. (1.3)

Here s0 is a fixed integer denoting the number of balls in any internal node, and we have
X̂n = Ŷn + s0Ŵn/2 (justified in Section 2). The following theorem gives the limiting
distributions of the random vector (X̂n, Ŷn, Ŵn). In a longer version of this paper [4], we also
have a similar result for (Xn, Yn,Wn) under stronger assumptions. Note that the concepts
are identical for any class of split trees where each node holds exactly one ball, such as binary
search trees and digital search trees.

Let d2 denote the Mallows metric, also called the minimal `2 metric (defined in Section
2). Let Md

0,2 be the set of probability measures on Rd with zero mean and finite second
moment.

I Theorem 5. Let Tn be a split tree and let V = (V1, . . . , Vb) be a split vector. Define

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) = 1
µ

b∑
i=1

Vi lnVi.

Assume that P {∃i : Vi = 1} < 1 and s0 > 0. Let (X̂, Ŷ , Ŵ ) be the unique solution inM3
0,2

for the system of fixed-point equations

X̂

Ŷ

Ŵ

 d=



b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj + s0

2 D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(Uj − 1/2)

b∑
i=1

ViŴ
(i) + 1 + D(V)


. (1.4)

Here (V1, . . . , Vb), U1, . . . , Us0 , (X̂(1), Ŷ (1), Ŵ (1)), . . . , (X̂(b), Ŷ (b), Ŵ (b)) are independent,
with Uj ∼ Unif[0, 1] for j = 1, . . . , s0, and

(
X̂

(i)
n , Ŷ

(i)
n , Ŵ

(i)
n

)
∼ (X̂, Ŷ , Ŵ ) for i = 1, . . . , b.

Then the sequence (X̂n, Ŷn, Ŵn) defined in (1.3) converges to (X̂, Ŷ , Ŵ ) in d2 and in moment
generating function within a neighborhood of the origin.

The proof of Theorem 5 uses the contraction method, introduced by Rösler [21] for finding
the total path length of binary search trees. The technique has been applied to d-dimensional
quad trees by Neininger and Rüschendorf [19] and to split trees in general by Broutin and
Holmgren [3].

AofA 2018
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Conditional Galton–Watson trees
A conditional Galton–Watson tree Tn is a Galton–Watson tree conditioned on having n
nodes, which we define in details in Section 3. It generalizes many uniform random tree
models, e.g., Cayley trees, Catalan trees, binary trees, b-ary trees, and Motzkin trees. For a
comprehensive survey, see Janson [12].

Aldous [1] showed that many asymptotic properties of conditional Galton–Watson trees,
such as the height and the total path length, can be derived from properties of Brownian
excursions. Our analysis of inversions follows a similar route. In particular, we relate I(Tn)
to the Brownian snake studied by e.g., Janson and Marckert [14].

In the context of Galton–Watson trees, Aldous [1, Corollary 9] showed that n−3/2Υ(Tn)
converges to an Airy distribution. We will see that the standard deviation of I(Tn)− 1

2 Υ(Tn)
is of order n5/4 � n3/2, which by the decomposition (1.2) implies that n−3/2I(Tn) converges
to the same Airy distribution, recovering one of the main results of Panholzer and Seitz [20,
Theorem 5.3]. Our contribution for conditional Galton–Watson trees is a detailed analysis of
Yn under the scaling function s(n) = n5/4.

Let e(s), s ∈ [0, 1] be the random path of a standard Brownian excursion, and define
C(s, t) def= C(t, s) def= 2 mins≤u≤t e(u) for 0 ≤ s ≤ t ≤ 1.

We define a random variable, see [11],

η
def=
∫

[0,1]2
C(s, t)ds dt = 4

∫
0≤s≤t≤1

min
s≤u≤t

e(u). (1.5)

I Theorem 6. Suppose Tn is a conditional Galton–Watson tree with offspring distribution ξ
such that E [ξ] = 1, Var (ξ) = σ2 ∈ (0,∞), and E

[
eαξ
]
<∞ for some α > 0, and define

Yn =
I(Tn)− 1

2 Υ(Tn)
n5/4 .

Then we have

Yn
d−→ Y

def= 1√
12σ
√
η N , (1.6)

where N is a standard normal random variable, independent from the random variable η
defined in (1.5). Moreover, E

[
etYn

]
→ E

[
etY
]
<∞ for all fixed t ∈ R.

In the rest of the paper, we outline the proofs of our main results, Theorem 5 and 6. The
proofs of Theorem 2 and 3 are omitted. The details of the proofs can be found in the longer
version of this paper [4].

2 A sequence of split trees

In this section we outline how one can apply the contraction method to prove Theorem 5.
We will now define split trees introduced by Devroye [6]. The random split tree Tn has

parameters b, s, s0, s1,V and n. The integers b, s, s0, s1 are required to satisfy the inequalities

2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (2.1)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b
i=1 Vi = 1. Consider an infinite

b-ary tree U . The split tree Tn is constructed by distributing n balls (pieces of information)
among nodes of U . For a node u, let nu be the number of balls stored in the subtree rooted
at u. Once nu are all decided, we take Tn to be the largest subtree of U such that nu > 0
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for all u ∈ Tn. Let the split vector V ∈ [0, 1]b be as before. Let Vu = (Vu,1, . . . , Vu,b) be the
independent copy of V assigned to u. Let u1, . . . , ub be the child nodes of u. Conditioning
on nu and Vu, if nu ≤ s, then nui

= 0 for all i; if nu > s, then

(nu1 , . . . , nub
) ∼ Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (2.1).
Note that

∑b
i=1 nui

≤ n (hence the “splitting”). Naturally for the root ρ, nρ = n. Thus the
distribution of (nu,Vu)u∈V (U) is completely defined.

Once all n balls have been placed in U , we obtain Tn by deleting all nodes u such that the
subtree rooted at u contains no balls. Note that an internal node of Tn contains exactly s0
balls, while a leaf contains a random amount in {1, . . . , s}. We assume, as previous authors,
that P {∃i : Vi = 1} < 1. We can assume that V has a permutation invariant distribution
without loss of generality, since a uniform random permutation of subtree order does not
change the number of inversions.

2.1 Outline
Recall that in (1.3), we define X̂n, Ŷn and Ŵn. Let n = (n1, . . . , nb) denote the vector of the
(random) number of balls in each of the b subtrees of the root. Broutin and Holmgren [3]
showed that, conditioning on n,

Ŵn
d=

b∑
i=1

ni
n
Ŵni + n− s0

n
+ D̂n(n), D̂n(n) def= −

E
[
Υ̂(Tn)

]
n

+
b∑
i=1

E
[
Υ̂(Tni

)
]

n
.

We derive similar recursions for X̂n and Ŷn. Conditioning on n, Î(Tn) satisfies the
recursion

Î(Tn) d= Ẑρ +
b∑
i=1

Î(Tni
),

where Ẑρ denotes the number of inversions involving balls contained in the root ρ. Therefore,
still conditioning on n, we have

X̂n
d=

b∑
i=1

ni
n
X̂ni

+ Ẑρ
n
−

E
[
Î(Tn)

]
n

+
b∑
i=1

E
[
Î(Tni

)
]

n

=
b∑
i=1

ni
n
X̂ni + Ẑρ

n
− s0

2

E
[
Υ̂(Tn)

]
n

+ s0

2

b∑
i=1

E
[
Υ̂(Tni

)
]

n

=
b∑
i=1

ni
n
X̂ni

+ Ẑρ
n

+ s0

2 D̂n(n),

where we use that

E
[
Î(Tn) | Tn

]
= s0

2 Υ̂(Tn). (2.2)

It follows also from (2.2) that X̂n = Ŷn + s0
2 Ŵn and

Ŷn
d=

b∑
i=1

ni
n
Ŷni + Ẑρ

n
− s0

2
n− s0

n
.

AofA 2018



15:8 Inversions in Split Trees and Conditional Galton–Watson Trees

It is not difficult to see that

Ẑρ
n

L2

−→ U1 + · · ·+ Us0 ,

where U1, . . . , Us0 are independent and uniformly distributed in [0, 1]. Broutin and Holmgren
[3] have shown that D̂n(n) a.s.−→ D(V), where

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) = 1
µ

b∑
i=1

Vi lnVi.

Together with (n1/n, . . . , nb/n) a.s.−→ (V1, . . . , Vb) (by the law of large number), we arrive at
the fixed-point equations (1.4) presented in Theorem 5.

For a random vectorX ∈ Rd, let ‖X‖ be the Euclidean norm ofX. Let ‖X‖2
def=
√

E
[
‖X‖2].

Recall thatMd
0,2 denotes the set of probability measures on Rd with zero mean and finite

second moment. The Mallows metric onMd
0,2 is defined by

d2(ν, λ) = inf {‖X − Y ‖2 : X ∼ λ, Y ∼ ν} .

Using the contraction method, Broutin and Holmgren [3] proved that Ŵn
d2−→ Ŵ , the unique

solution of the last equation of (1.4) inM1
0,2.

We can apply the same contraction method to show that the vector (X̂n, Ŷn, Ŵn) d2−→
(X̂, Ŷ , Ŵ ), the unique solution of (1.4) in M3

0,2. Assume that the independent vectors(
X̂(i), Ŷ (i), Ŵ (i)

)
, i = 1, . . . , b share some common distribution µ ∈M3

0,2. Let F (µ) ∈M3
0,2

be the distribution of the random vector given by the right hand side of (1.4). Using a
coupling argument, we can show that for all ν, λ ∈M3

0,2,

d2(F (ν), F (λ)) < cd2(ν, λ),

where c ∈ (0, 1) is a constant. Thus F is a contraction and by Banach’s fixed point theorem,
(1.4) must have a unique solution (X̂, Ŷ , Ŵ ) ∈M3

0,2. Finally, we can use a similar coupling
argument to show that (X̂n, Ŷn, Ŵn) d2−→ (X̂, Ŷ , Ŵ ).

Note that in [4], instead of carrying out the above argument in details, we actually used
a result by Neininger [18] which gives us a shortcut.

3 A sequence of conditional Galton–Watson trees

Let ξ be a random variable with E [ξ] = 1, Var ξ = σ2 < ∞, and E
[
eαξ
]
< ∞ for some

α > 0, (The last condition is used in the proof below, but is presumably not necessary.) Let
Gξ be a (possibly infinite) Galton–Watson tree with offspring distribution ξ. The conditional
Galton–Watson tree T ξn on n nodes is given by

P
{
T ξn = T

}
= P

{
Gξ = T

∣∣ Gξ has n nodes
}

for any rooted tree T on n nodes. The assumption E [ξ] = 1 is justified by noting that if ζ is
such that P {ξ = i} = cθiP {ζ = i} for all i ≥ 0 then T ξn and T ζn are identically distributed;
hence it is typically possible to replace an offspring distribution ζ by an equivalent one with
mean 1, see [12, Sec. 4].

We fix some ξ and drop it from the notation, writing Tn = T ξn.
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In a fixed tree T with root ρ and n total nodes, for each node v 6= ρ let Qv ∼
Unif(−1/2, 1/2), all independent, and let Qρ = 0. For each node v define

Φv
def=
∑
u≤v

Qu, and let J(T ) def=
∑
v∈T

Φv.

In other words, Φu is the sum of Qv for all v on the path from the root to u. For each v 6= ρ

also define Zv = b(Qv + 1/2)zvc, where zv denotes the size of the subtree rooted at v. Then
Zv is uniform in {0, 1, . . . , zv − 1}, and by Lemma 1, the quantity

I∗(T ) def=
∑
v 6=ρ

(
Zv − E [Zv]

)
is equal in distribution to the centralized number of inversions in the tree T , ignoring
inversions involving ρ. The main part (1.6) of Theorem 6 will follow from arguing that for a
conditional Galton–Watson tree Tn,

J(Tn)
n5/4

d−→ Y
def= 1√

12σ
√
ηN . (3.1)

Indeed, under the coupling of Qv and Zv above,

J(Tn) =
∑
v

Φv =
∑
v

∑
u:u≤v

Qu =
∑
u

Qu
∑
v:u≤v

1 =
∑
u

Quzu

≤
∑
u 6=ρ

(
Zu −

zu
2 + 1

)
< n+ I∗(Tn),

and similarly J(Tn) > I∗(Tn)− n. As ρ contributes at most n inversions to I(Tn), it follows
from the triangle inequality that |J(Tn)− (I(Tn)−Υ(Tn)/2)| ≤ 2n = o(n5/4). Thus (3.1),
once proved, will imply that

Yn
def= I(Tn)−Υ(Tn)/2

n5/4 = o(1) + J(Tn)
n5/4

d−→ Y.

The quantity J(Tn) and the limiting distribution (3.1) have been considered by several
authors. In the interest of keeping this section self-contained, we will now outline the proof
of (3.1) which relies on the concept of a discrete snake, a random curve which under proper
rescaling converges to a Brownian snake, a curve related to a standard Brownian excursion.
This convergence was shown by Gittenberger [10], and later in more generality by Janson
and Marckert [14], whose notation we use.

Define f : {0, . . . , 2(n − 1)} → V by saying that f(i) is the location of a depth-first
search (under some fixed ordering of nodes) at stage i, with f(0) = f(2(n− 1)) = ρ. Also
define Vn(i) = d(ρ, f(i)) where d denotes distance. The process Vn(i) is called the depth-first
walk, the Harris walk or the tour of Tn. For non-integer values t, Vn(t) is given by linearly
interpolating adjacent values. See Figure 1.

Finally, define Rn(i) def= Φf(i) to be the value at the vertex visited after i steps. For
non-integer values t, Rn(t) is defined by linearly interpolating the integer values. Also define
R̃n(t) by R̃n(t) def= Rn(t) when t ∈ {0, 1, . . . , 2n}, and

R̃n(t) def=

 Rn(btc), if Vn(btc) > Vn(dte),
Rn(dte), if Vn(btc) < Vn(dte).

AofA 2018
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ρ

v1 v2

v11 v12 v21

v121

1 8

2 3 4 7

5 6

9 12

10 11

Vn(t)

t

v11

v121

v1

v21

v2

Figure 1 The depth-first walk Vn(t) of a fixed tree.

In other words, R̃n(t) takes the value of node f(btc) or f(dte), whichever is further from the
root. We can recover J(Tn) from R̃n(t) via

2J(Tn) =
∫ 2(n−1)

0
R̃n(t)dt.

Indeed, for each non-root node v there are precisely two unit intervals during which R̃n(t)
draws its value from v, namely the two unit intervals during which the parent edge of v is
being traversed. Now, since Qv ∼ Unif(−1/2, 1/2) we have |Rn(i)−Rn(i− 1)| ≤ 1/2 for all
i > 0 and

J(Tn)
n5/4 = 1

2n5/4

∫ 2(n−1)

0
R̃n(t)dt = 1

2n5/4

∫ 2(n−1)

0
Rn(t)dt+O(n−1/4) =

∫ 1

0
rn(s)ds+o(1),

where rn(s) def= n−1/4Rn(2(n− 1)s). Also normalize vn(s) def= n−1/2Vn(2(n− 1)s). Theorem 2
of [14] (see also [10]) states that (rn, vn) d−→ (r, v) in C[0, 1]×C[0, 1], with r, v to be defined
shortly.

Before defining r and v, we will briefly motivate what they ought to be. Firstly, as
the offspring distribution ξ of Tn satisfies E [ξ] = 1, we expect the tour Vn to be roughly
a random walk with zero-mean increments, conditioned to be non-negative and return to
the origin at time 2(n− 1), and the limiting law v ought to be a Brownian excursion (up to
a constant scale factor). Secondly, consider a node u and the path ρ = u0, u1 . . . , ud = u,
where d is the depth of u. We can define a random walk Φu(t) for t = 0, . . . , d by Φu(0) = 0
and Φu(t) =

∑t
i=1 Qui

for t > 0, noting that Φu = Φu(d). Under rescaling, the random
walk Φu(t) will behave like Brownian motion. For any two nodes u1, u2 with last common
ancestor at depth m, the processes Φu1 ,Φu2 agree for t = 0, . . . ,m, while any subsequent
increments are independent. Hence Cov(Φu1 ,Φu2) = cm for some constant c > 0. Now, for
any i, j ∈ {0, . . . , 2(n − 1)}, the nodes f(i), f(j) at depths Vn(i), Vn(j) have last common
ancestor f(k), where k is such that Vn(k) is minimal in the range i ≤ k ≤ j. Hence r(s)
should be normally distributed with variance given by v(s), and the covariance of r(s), r(t)
proportional to mins≤u≤t v(u).

We now define r, v precisely. If Var ξ = σ2, then v(s) def= 2σ−1e(s), where e(s) is a standard
Brownian excursion, as shown by Aldous [1, 2]. Conditioning on v, we define r as a centered



X. S. Cai, C. Holmgren, S. Janson, T. Johansson, and F. Skerman 15:11

Gaussian process on [0, 1] with

Cov(r(s), r(t) | v) = 1
12 min

s≤u≤t
v(u) = 1

12σC(s, t), s ≤ t.

The constant 1/12 appears as the variance of the random increments Qv. Again, Theorem 2
of [14] states that (rn, vn) d−→ (r, v) in C[0, 1]2. We conclude that

lim
n→∞

J(Tn)
n5/4 =

∫ 1

0
rn(t)dt+ o(1) d−→

∫ 1

0
r(t)dt def= Y.

This integral is the object of study in [13], wherein it is shown that

Y
def=
∫ 1

0
r(t)dt d= 1√

12σ
√
η N ,

where N is a standard normal variable, η is given by

η =
∫

[0,1]2
C(s, t)ds dt,

and η,N are independent. The odd moments of Y are zero, as this is the case for N , and by
[13, Theorem 1.1], for k ≥ 0

E
[
Y 2k] = 1

(12σ)k
(2k!)

√
π

2(9k−4)/2Γ((5k − 1)/2)
ak,

where a1 = 1 and for k ≥ 2,

ak = 2(5k − 4)(5k − 6)ak−1 +
k−1∑
i=1

aiak−i.

In particular ([13, Theorem 1.2]),

E
[
Y 2k] ∼ 1

(12σ)k
2π3/2β

5 (2k)1/2(10e3)−2k/4(2k) 3
4 ·2k,

as k →∞, where β = 0.981038 . . . . Further analysis of the moments of η and Y , including
the moment generating function and tail estimates, can be found in [13].

The last bit of Theorem 6 which remains to be proved is that E
[
etYn

]
→ E

[
etY
]
for all

fixed t ∈ R. Since we have already shown Yn
d−→ Y , we can apply the Vitali convergence

theorem once we have shown that the sequence etYn is uniformly integrable. See Section 5.1
of [4] for details.
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