
ar
X

iv
:1

70
6.

05
42

3v
6

 [
m

at
h.

C
O

]
 5

 F
eb

 2
01

9

WEIGHTED COUNTING OF SOLUTIONS

TO SPARSE SYSTEMS OF EQUATIONS

Alexander Barvinok and Guus Regts

February 2019

Abstract. Given complex numbers w1, . . . , wn, we define the weight w(X) of a

set X of 0-1 vectors as the sum of w
x1

1 · · ·wxn
n over all vectors (x1, . . . , xn) in X.

We present an algorithm, which for a set X defined by a system of homogeneous
linear equations with at most r variables per equation and at most c equations per

variable, computes w(X) within relative error ǫ > 0 in (rc)O(lnn−ln ǫ) time provided

|wj | ≤ β(r
√
c)−1 for an absolute constant β > 0 and all j = 1, . . . , n. A similar

algorithm is constructed for computing the weight of a linear code over Fp. Applica-

tions include counting weighted perfect matchings in hypergraphs, counting weighted
graph homomorphisms, computing weight enumerators of linear codes with sparse

code generating matrices, and computing the partition functions of the ferromag-

netic Potts model at low temperatures and of the hard-core model at high fugacity
on biregular bipartite graphs.

1. Weighted counting of 0-1 vectors

(1.1) Weight of a set of 0-1 vectors. Let us fix complex numbers w1, . . . , wn,
referred to as weights in what follows. We define the weight w(x) of a 0-1 vector
x ∈ {0, 1}n by

w(x) = wξ11 · · ·wξnn =
∏

j: ξj=1

wj where x = (ξ1, . . . , ξn) .

Here we agree that 00 = 1, so that w(x) is a continuous function of w1, . . . , wn for
a fixed x.

We define the weight of a finite set X ⊂ {0, 1}n by

(1.1.1) w(X) =
∑

x∈X

w(x) =
∑

x∈X,
x=(ξ1,... ,ξn)

wξ11 · · ·wξnn .

1991 Mathematics Subject Classification. 68Q25, 68W25, 82B20, 52C07, 52B55.
Key words and phrases. partition function, complex zeros, 0-1 points, algorithm.

The research of the first author was partially supported by NSF Grant DMS 1361541. The
research of the second author was supported by a personal NWO Veni grant.

Typeset by AMS-TEX
1

http://arxiv.org/abs/1706.05423v6

Given X ⊂ {0, 1}n, the value of w(X) as a function of w1, . . . , wn is also known
as the partition function or generating function of X .

Our first main result is as follows.

(1.2) Theorem. Let A = (aij) be an m × n integer matrix and let us define
X ⊂ {0, 1}n by

X =
{
x ∈ {0, 1}n, x = (ξ1, . . . , ξn) :

n∑

j=1

aijξj = 0 for i = 1, . . . , m
}
.

Suppose that the number of non-zero entries in every row of A does not exceed r
for some r ≥ 2 and that the number of non-zero entries in every column of A does
not exceed c for some c ≥ 1. There is an absolute constant α > 0 such that if
w1, . . . , wn ∈ C are weights satisfying

|wj | ≤ α

r
√
c

for j = 1, . . . , n,

then
w(X) 6= 0.

One can choose α = 0.46.

Geometrically, the set X in Theorem 1.2 is the set of 0-1 vectors in a subspace.
We are interested in efficient algorithms to compute w(X) approximately. Theorem
1.2 implies that such an efficient algorithm exists for a non-trivial range of weights
w1, . . . , wn provided the matrix A is sufficiently sparse (that is, r and c are suffi-
ciently small), even when the dimension n of the ambient space is allowed to be
large. This connection between the sparsity condition for A (frequent in applica-
tions and easily verified) and the computational complexity of w(X) appears to be
new.

(1.3) Computing w(X). Theorem 1.2 implies that w(X) can be efficiently ap-
proximated as long as the weights wj satisfy a slightly stronger inequality,

(1.3.1) |wj | ≤ β

r
√
c

for j = 1, . . . , n

for any β < α, fixed in advance, so one can choose β = 0.45. We describe the
connection below, see also Section 1.2 of [Ba16].

Without loss of generality we assume that the matrix A has no zero rows and
no zero columns (although this assumption is not needed in this section, it will be
relevant later in Section 5). Indeed, zero rows of A can be ignored and if, say, the
n-th column of A is zero, we have

w(X) = (1 + wn)w
(
X̂
)
,

2

where X̂ ⊂ {0, 1}n−1
+ is the set defined by the system Âx = 0, where Â is the

m× (n− 1) matrix obtained from A by deleting the n-th column.
For a ζ ∈ C, let ζw1, . . . , ζwn be the scaling of the weights and let w(X ; ζ) be

the corresponding weight of X so that w(X ; 1) = w(X) while w(X ; 0) = 1 (note
that 0 ∈ X). Theorem 1.2 implies that as long as the weights wj satisfy (1.3.1), we
have

(1.3.2) w(X ; ζ) 6= 0 provided |ζ| ≤ α

β
=: γ.

Note that γ > 1.
Let us choose a continuous branch of f(ζ) = lnw(X ; ζ) for |ζ| ≤ γ and let

(1.3.3) Ts(ζ) = f(0) +

s∑

k=1

f (k)(0)

k!
ζk

be the Taylor polynomial of f of some degree s computed at ζ = 0. Since (1.3.2)
holds and w(X ; ζ) is a polynomial of degree at most n in ζ, we have

|f(1)− Ts(1)| ≤ n

(s+ 1)γs(γ − 1)
,

see Lemma 2.2.1 of [Ba16]. Using that γ > 1, we conclude that to approximate
f(1) = lnw(X) within an additive error ǫ > 0 by Ts(1), it suffices to choose
s = O (lnn− ln ǫ), where the implied constant in the “O” notation depends only
on γ. We say then that eTs(1) approximates w(X) within relative error ǫ.

We have f(0) = 0 and computing f (k)(0) for k = 1, . . . , s reduces to computing

(1.3.4)
dk

dζk
w(X ; ζ)

∣∣∣
ζ=0

for k = 1, . . . , s

in O(s2) time. Indeed, it is not hard to see that the values f (k)(0) are the solutions
of a non-degenerate triangular system of linear equations with right hand side given
by (1.3.4), see Section 2.2.2 of [Ba16]. Furthermore,

dk

dζk
w(X ; ζ)

∣∣∣
ζ=0

= k!
∑

x∈X,
x=(ξ1,... ,ξn):
ξ1+...+ξn=k

wξ11 · · ·wξnn ,

so computing (1.3.4) reduces to the inspection of all points x ∈ X , x = (ξ1, . . . , ξn),
satisfying ξ1 + . . . + ξn ≤ s, which can be done through the exhaustive search in
mnO(s) time. Given that s = O(lnn − ln ǫ), this produces an algorithm approxi-
mating w(X) within a relative error ǫ > 0 in quasi-polynomial nO(lnn−ln ǫ) time,
where the implied constant in the “O” notation depends only on γ in (1.3.2). In
Section 5 we show that we can compute f (k)(0) in (1.3.3) faster, in (rc)O(lnn−ln ǫ)

time. In particular, if r and c are fixed in advance, we obtain a polynomial time
approximation algorithm.

Next, we consider enumerating 0-1 vectors in affine subspaces, not necessarily
containing the origin.

3

(1.4) Non-homogeneous linear equations in 0-1 vectors. We interpret a
vector x = (ξ1, . . . , ξn) as a column n-vector. Let A be an m× n integer matrix as
above, let b be an integer m-vector and let

X =
{
x ∈ {0, 1}n : Ax = b

}

be the set of 0-1 vectors satisfying a system of linear equations with matrix A. In
general, it is an NP-hard problem to decide whether X is empty, so there is no
hope to compute w(X) efficiently.

Suppose, however, that we are presented with a point y ∈ X , y = (η1, . . . , ηn).
Every point x ∈ X can be uniquely written as x = y + z, z = (ζ1, . . . , ζn), where
Az = 0 and ζj ∈ {−1, 0} if ηj = 1 and ζj ∈ {0, 1} if ηj = 0. Let a1, . . . , an be the

columns of A and let Â be the matrix obtained from A by replacing aj with −aj
whenever ηj = 1. Let

Z =
{
z ∈ {0, 1}n : Âz = 0

}
.

Hence every point x ∈ X , x = (ξ1, . . . , ξn), can be uniquely written as ξj =
ηj + σjζj , where for z = (ζ1, . . . , ζn) we have z ∈ Z and

σj =

{
1 if ηj = 0,

−1 if ηj = 1.

Then, for the weight of Z, we have

(1.4.1)

w(Z) =
∑

z∈Z,
z=(ζ1,... ,ζn)

n∏

j=1

w
ζj
j =

∑

x∈X,
x=(ξ1,... ,ξn)

n∏

j=1

w
σj(ξj−ηj)
j

=
∑

x∈X,
x=(ξ1,... ,ξn)

∏

j:ξj 6=ηj

wj .

For x ∈ {0, 1}n, x = (ξ1, . . . , ξn), let

dist(x, y) = |{j : ξj 6= ηj}|

be the Hamming distance between x and y.
In particular, if we choose

w1 = . . . = wn = ω

for some ω, we get

(1.4.2) w(Z) =
∑

x∈X

ωdist(x,y).

4

Assuming that every row of A contains not more than r ≥ 2 non-zero entries and
every column of A contains not more than c ≥ 1 non-zero entries, we conclude that
the sum (1.4.2) can be computed within relative error ǫ > 0 in (rc)O(lnn−ln ǫ) time
provided

|ω| ≤ β

r
√
c
,

where β > 0 is an absolute constant (one can choose β = 0.45). If r and c are
fixed in advance, we have a polynomial time approximation algorithm of (n/ǫ)O(1)

complexity.
In the next section we consider combinatorial applications of our result. We first

consider a variation of Theorem 1.2 that applies to codes.

(1.5) Weight of a code. Let κ > 1 be an integer. We consider n-vectors x =
(ξ1, . . . , ξn) with coordinates ξj taking values in the set {0, . . . , κ − 1}, which we
interpret as the set Z/κZ of remainders modulo κ. Given n complex numbers
w1, . . . , wn, we define the weight w(x) of a vector x ∈ (Z/κZ)

n
by

w(x) =
∏

j: ξj 6=0

wj for x = (ξ1, . . . , ξn)

and the weight w(X) of a set X ⊂ (Z/κZ)
n
by

w(X) =
∑

x∈X

w(x)

(we agree that the weight of the zero vector is 1).
We obtain the following result.

(1.6) Theorem. Let A = (aij) be an m× n integer matrix and let us define a set
X ⊂ (Z/κZ)

n
by

X =
{
x ∈ (Z/κZ)

n
, x = (ξ1, . . . , ξn) :

n∑

j=1

aijξj ≡ 0 mod κ

for i = 1, . . . , m
}
.

Suppose that the number of non-zero entries in every row of A does not exceed r
for some r ≥ 2 and that the number of non-zero entries in every column of A does
not exceed c for some c ≥ 1. There is an absolute constant α > 0 such that if
w1, . . . , wn ∈ C are weights satisfying

|wj | ≤ α

(κ− 1)r
√
c

for j = 1, . . . , n,

then
w(X) 6= 0.

5

One can choose α = 0.46.

As in Section 1.3, we obtain an algorithm of (rc)O(lnκn−ln ǫ) complexity to ap-
proximate w(X) within relative error ǫ > 0 provided

|wj | ≤ β

(κ− 1)r
√
c

for j = 1, . . . , n,

where β < α is fixed in advance (we can choose β = 0.45). For r and c fixed in
advance, the algorithm has polynomial (κn/ǫ)O(1) complexity.

Organization. We deduce Theorem 1.2 and Theorem 1.6 from a general result
asserting that ∫

Tm

ep(z) dµ 6= 0,

for some Laurent polynomials p : Tm −→ C on the torus Tm endowed with a prod-
uct probability measure µ (see Theorem 3.2 and Corollary 3.3 below). After that,
the proofs of Theorems 1.2 and 1.6 are completed in a more or less straightforward
way in Section 4.

In Section 5, we provide details of an approximation algorithm for w(X). We do
not discuss an analogous algorithm for codes in Theorem 1.6 as it is very similar. We
first consider some concrete combinatorial applications of these results in Section 2
below.

2. Combinatorial applications

We apply Theorem 1.2 to weighted counting of perfect matchings in hypergraphs,
computing the partition function of the hard-core model at high fugacity for biregu-
lar bipartite graphs and to weighted counting of graph homomorphisms. We apply
Theorem 1.6 to computing weight enumerators of linear codes with sparse code
generating matrices and to computing the partition function of the ferromagnetic
Potts model at low temperatures.

(2.1) Perfect matchings in hypergraphs. A hypergraph H = (V,E) is a finite
set V of vertices together with a collection E of non-empty subsets V , called edges
of the hypergraph. The degree of a vertex v is the number of edges e ∈ E that
contain v. A perfect matching in H is a set of pairwise disjoint edges e1, . . . , en,
such that e1 ∪ . . .∪ en = V . Let us introduce a 0-1 variable xe for each e ∈ H. We
encode a collection of edges of H by a 0-1 vector, where

xe =

{
1 if e is in the collection

0 otherwise.

Then e1, . . . , en is a perfect matching if and only if

(2.1.1)
∑

e: v∈e

xe = 1 for all v ∈ V.

6

In the system (2.1.1) the number of variables per equation is the maximum degree
d of a vertex of H and the number of equations per variable is the maximum
cardinality k of an edge. It is an NP-complete problem to find if a given hypergraph
contains a perfect matching provided k ≥ 3, see, for example, Problem SP1 in
[A+99]. However, as follows from Section 1.4, given one perfect matching M0, we
can efficiently approximate a certain statistic over all perfect matchings M of H,
namely the sum

(2.1.2)
∑

M∈M(H)

ωdist(M0,M),

where M(H) is the set of all perfect matchings, dist(M0,M) is the Hamming dis-
tance between matchings, that is, the number of edges where the matchings differ
and

|ω| ≤ β

d
√
k
.

The complexity of the algorithm approximating (2.1.2) within relative error ǫ > 0
is (dk)O(ln |E|−ln ǫ). If d and k are fixed in advance, the algorithm achieves poly-
nomial (|E|/ǫ)O(1) complexity. This can be contrasted with the fact that knowing
one solution of a problem generally does not help to find another or to count all
solutions, cf. [Va79] and [VV86].

Is is shown in [Ba18] that if the hypergraph is uniform and k-partite, that is,
we have V = V1 ∪ . . . ∪ Vk with pairwise disjoint V1, . . . , Vk such that |V1| = . . . =
|Vk| = n and every edge e ∈ E contains exactly one vertex from each Vi, then one
can efficiently approximate (2.1.2) under the weaker condition

|ω| ≤ β√
d− 1

for any β < 1, fixed in advance.

(2.2) The hard-core model at high fugacity. Given an undirected graph G =
(V,E), a set S ⊂ V of vertices is called independent if no two vertices of S span
an edge of G (we agree that S = ∅ is always independent). The independence
polynomial of G is a univariate polynomial defined by

(2.2.1) pG(λ) =
∑

S⊂V
S is independent

λ|S|,

see for example, Chapter 6 of [Ba16]. It is also known the partition function of the
hard-core model. The parameter λ is known as the fugacity.

The problem of (approximately) computing the number of independent sets in
a bipartite graph is considered to be computationally hard. It is the basis of the
class of #BIS hard problems, and it is known that to approximate the pG(λ) on

7

bipartite graphs of maximum degree d is a #BIS hard problem, provided λ >
(d−1)d−1

(d−2)d
[C+16]. Moreover, as the authors of [C+16] informed us, it follows form

their construction that computing pG(λ) for sufficiently large λ remains a #BIS-
hard problem when restricted to bipartite d-regular graphs G.

In [J+19] it was however shown that for d ≥ 3 there exists λ∗ = λ∗(d) > 0
such that for all λ > λ∗ and all d-regular, bipartite, expander graphs G, the value
of pG(λ) can be approximated in polynomial time. Here we will use Theorem
1.2 to show that for each fixed d1, d2 ∈ N such that d2 − d1 ≥ 1, there exists
λ0 = λ0(d1, d2) > 0 such that for all λ > λ0 and any biregular, bipartite graph with
degrees d1, d2 we can approximate pG(λ) in polynomial time.

To this end, let us fix a biregular bipartite graph G = (V,E) with degrees d1
and d2 ≥ d1 + 1. We write V = L ∪R for the bipartition and we assume that each
vertex in L has degree d1 and each vertex in R has degree d2. For an independent
set I we write IL := I ∩ L and IR := I ∩R.

We wish to encode pG(λ) as the weight w(X) of a suitably defined set X . We
direct all edges from L to R, thus making G a directed graph. We associate to each
vertex v ∈ V a 0-1 variable xv and to each edge (u, v) ∈ E a 0-1 variable xuv. Let
X be the solution set to the following system of equations:

(2.2.2) −xu + xv + xuv = 0 for each directed edge (u, v) ∈ E.

Any x ∈ X uniquely corresponds to an independent set I of G. Indeed, let I be the
the sets of vertices u ∈ L for which xu = 0 and vertices v ∈ R for which xv = 1.
Then for u ∈ IL none of its neighbors will be contained in I since for each edge
(u, v), the value of xv is forced to be zero. Similarly, for any v ∈ IR, none of its
neighbors will be contained in I since for each edge (u, v), the value of xu is forced
to be 1. Hence the set I is independent. Conversely, if I is an independent set,
setting

xu =

{
0 if u ∈ IL,

1 if u ∈ L \ IL,
xv =

{
1 if v ∈ IR,

0 if v ∈ R \ IR
and

xuv =

{
0 if u ∈ IL or v ∈ IR,

1 if u ∈ L \ IL and v ∈ R \ IR,

gives a solution to (2.2.2).
Next, we introduce weights wu for the coordinates xu with u ∈ L, weights wv

for the coordinates xv with v ∈ R and weights wuv for the coordinates xuv with
(u, v) ∈ E as follows:

wu = ω(d2−d1)/2 for u ∈ L,

wv = ω(d2−d1)/2 for v ∈ R and

wuv = ω for (u, v) ∈ E.
8

For a solution x ∈ X corresponding to an independent set I, we then have

w(x) =


 ∏

v∈L\IL

ω(d2−d1)/2







∏

{u,v}∈E
u,v/∈I

ω




(
∏

u∈IR

ω(d2−d1)/2

)

= ω(d2−d1)(|L|−|IL|)/2 · ω|E|−d1|IL|−d2|IR| · ω(d2−d1)|IR|/2

= ω(d2−d1)|L|/2+|E| · ω−(d1+d2)|IL|/2 · ω−(d1+d2)|IR|/2

= ω(d1+d2)|L|/2ω−(d1+d2)|I|/2.

In other words, for the weight of X , we have

w(X) = ω(d1+d2)|L|/2pG

(
1

ω(d1+d2)/2

)

for the independence polynomial pG defined by (2.2.1).
Now, since in (2.2.2) the number of variables per equation is 3 and the number

of equations per variable is at most d2, it follows from Theorem 1.2 that if

|λ| ≥
(
6.7
√
d2

)d1+d2
>

(
3
√
d2

0.45

)d1+d2
,

then pG(λ) 6= 0 and moreover that we can efficiently approximate pG (in polynomial
time if d2 is fixed in advance). We moreover note that with a similar argument, for
a d-regular bipartite graph G = (L∪R,E), we can efficiently approximate the sum

∑

I⊂L∪R
I is independent

λ|I∩L|

for large λ. This is somewhat similar in spirit to a result of van den Berg and
Steiff [BS94], who showed that for the integer lattice Zd, assigning λ1 > 0 to
vertices with even coordinate sum and λ2 > 0 to vertices with odd coordinate sum,
for all but a countable set of pairs (λ1, λ2) the associated Gibbs measure is unique.

(2.3) Weighted counting of graph homomorphisms. Let G1 = (V1, E1) be
an undirected graph without loops or multiple edges and let G2 = (V2, E2) be
an undirected graph without multiple edges, but possibly with loops. We assume
that V2 = {1, . . . , n} and assume that G1 and G2 are both connected. A map
φ : V1 −→ V2 is called a homomorphism if φ(u) and φ(v) span an edge of G2

whenever u and v span an edge of V1. If V2 is the complete graph without loops
then every homomorphism φ : G1 −→ G2 is naturally interpreted as a coloring of
the vertices of G1 with a set of n colors such that no two vertices spanning an edge

9

of G1 are colored with the same color (such colorings are called proper). For any
fixed n ≥ 3, it is an NP-complete problem to decide wether a given graph admits a
proper n-coloring, see for example, Problem GT5 in [A+99]. Our goal is to encode
all homomorphisms φ : G1 −→ G2 that map a fixed vertex a ∈ V1 to a fixed vertex,
say n, of G2 as the set of 0-1 solutions to a system of linear equations.

We say that vertices u, v ∈ V1 are neighbors if {u, v} ∈ E1. We orient the edges
of G1 arbitrarily, so that an edge of G1 is an ordered pair of neighbors (u, v). Let
us introduce 0-1 variables xuvij indexed by (now directed) edges (u, v) ∈ E1 and

ordered pairs 1 ≤ i, j ≤ n such that {i, j} ∈ E2 (we may have i = j). The idea is
to use the variables xuvij to encode a map φ : V1 −→ V2, so that

(2.3.1) xuvij =

{
1 if φ(u) = i and φ(v) = j,

0 otherwise.

For every ordered pair of neighbors (u, v) and every vertex i ∈ V2 we define the
sum

Su,vi =
∑

j: {i,j}∈E2

xuvij if (u, v) ∈ E1 and

Su,vi =
∑

j: {i,j}∈E2

xvuji if (v, u) ∈ E1

(2.3.2)

and for every u ∈ V1 and every i ∈ V2, we introduce the following equations:

(2.3.3) Fix u ∈ V1 \ {a} and i ∈ V2. The sums Su,vi , where v is a neighbor of u, are
all equal.

The idea, of course, is that the sums (2.3.2) are all equal to 1 if φ(u) = i and equal
to 0 if φ(u) 6= i. Next, we encode the condition φ(a) = n by the following system
of equations:

(2.3.4) For all neighbors v of a,

Sa,vn = 1 and Sa,vj = 0 for j 6= n.

Now we claim that for every 0-1 solution
{
xuvij
}
of the system (2.2.3)–(2.2.4), for

any vertex u ∈ V1, there is a unique vertex iu ∈ V2 such that the following equations
hold:

(2.3.5) For all neighbors v of u we have

Su,viu = 1 and Su,vj = 0 for j 6= iu.

Then for the map φ : V1 −→ V2 defined by φ(u) = iu the conditions (2.3.1) are
satisfied.

10

Clearly, if a choice u 7−→ iu exists, it is unique. Because of (2.3.4), the equations
(2.3.5) hold for u = a and iu = n. Since G1 is connected, it suffices to show that
whenever (2.3.5) holds for some vertex u then for every neighbor w of u we can
define iw ∈ V2 so that (2.3.5) holds with u replaced by w throughout. Indeed, let
w be a neighbor of u such that (u, w) ∈ E1. It follows by (2.3.5) that there exists
iw such that

xuwiuiw = 1 and xuwjk = 0 whenever j 6= iu or k 6= iw.

From (2.3.3) it follows that for any neighbor v of w, we have

Sw,viw
= Sw,uiw

= 1 and Sw,vj = Sw,uj = 0 for j 6= iw,

as required. The case of neighbors w of u such that (w, u) ∈ E1 is handled similarly.
This proves that 0-1 solutions

{
xuvij
}
, if any, of the system (2.3.3)–(2.3.4), are in

one-to-one correspondence with graph homomorphisms φ : G1 −→ G2 such that
φ(a) = n.

As we are interested in keeping the system (2.3.3)–(2.3.4) as sparse as possible, we
arrange the equations (2.3.3) as follows: for a given u ∈ V1, we list the neighbors v of
u in some order v1, . . . , vm and then equate Su,vki −Su,vk+1

i = 0 for k = 1, . . . , m−1.
When the chosen vertex a is a neighbor, we let v1 = a. This way the system (2.3.3)–
(2.3.4) has not more than 2d2 variables per equation, where d2 is the largest degree
of a vertex of G2, and not more than 4 equations per variable.

Suppose that we are given a homomorphism φ : G1 −→ G2 satisfying the con-
straint φ(a) = n for a fixed vertex a of G1 and a fixed vertex n of G2. As in Section
1.4, for an ω ∈ C we consider the sum

(2.3.6)
∑

ψ: ψ(a)=n

ω2 dist(φ,ψ),

where ψ ranges over all graph homomorphisms satisfying ψ(a) = n and dist(φ, ψ)
is the number of directed edges where φ and ψ disagree. As follows from Section

1.4, we can approximate (2.3.6) within relative error ǫ > 0 in d
O(ln |E1|+ln |E2|−ln ǫ)
2

time provided

(2.3.7) |ω| ≤ γ

d2

for some absolute constant γ > 0 (we can choose γ = 0.1). If the largest degree d2
of a vertex of G2 is fixed in advance, we obtain a polynomial time approximation
algorithm.

Suppose that G2 is the complete graph with n vertices and no loops, so that a
homomorphism G1 −→ G2 is interpreted as a proper n-coloring of G1 and d2 =
n−1. If n > d1, where d1 is the largest degree of a vertex of G1, it is trivial to come

11

up with a homomorphism (proper n-coloring) φ : G1 −→ G2 having a prescribed
value on a prescribed vertex. In this case, the sum (2.3.6) is taken over all proper
n-colorings ψ of G2 and each coloring is counted with weight exponentially small in
the number of edges of G1 whose coloring differ under φ and ψ. If we could choose
ω = 1 in (2.3.6), we would have counted all proper n-colorings of G1 with n > d1
colors, a notoriously difficult problem, see [Vi00] and [C+19] for a randomized
polynomial time approximation algorithm for counting n-colorings assuming that
n > (11/6)d1.

Given a pair of graphs G1 and G2, let us modify G2 to a graph Ĝ2 by adding
an extra vertex n + 1 with a loop and connected to all other vertices of G2. Then

there is always a homomorphism φ : G1 −→ Ĝ2 which sends every vertex of G1 to

the newly added vertex n+1. In this case the sum (2.3.6) with G2 replaced by Ĝ2

and n replaced by n + 1 is interpreted as the sum over all homomorphisms of the
induced subgraphs of G1 to G2.

(2.4) Computing weight enumerators of linear codes. If κ is a prime, the
set Z/κZ is identified with the finite field Fκ with κ elements and (Z/κZ)

n
is the

n-dimensional vector space over Fκ. A set X ⊂ Fnκ is called a code. The univariate
polynomial

pX(z) = 1 +

n∑

k=1

pk(X)zk,

where pk(X) is the number of vectors in X with exactly k non-zero coordinates, is
called the weight enumerator of X , see for example, Chapter 3 of [Li99].

Suppose that X ⊂ F
n
κ is defined by a system of linear equations

(2.4.1) X = {x ∈ F
n
κ : Ax = 0} ,

where A = (aij) is an m × n matrix with entries aij ∈ Fκ. Hence X ⊂ Fnκ is a
subspace, called a linear code. Generally, it is hard to compute pX(z) as it is hard
to determine the smallest k ≥ 1 with pk(X) 6= 0, see [B+78] and [BN90].

Suppose now that the number of non-zero entries in every row of A does not
exceed r ≥ 2 and the number of non-zero entries in every column of A does not
exceed c ≥ 1. Let us define weights

w1 = . . . = wn = z

for some z ∈ C. Then

w(X) = pX(z)

and Theorem 1.6 implies that pX(z) 6= 0 provided |z| ≤ α/(κ − 1)r
√
c and that

pX(z) can be approximated within relative error ǫ > 0 in (rc)O(lnκn−ln ǫ) time,
provided |z| ≤ β/(κ−1)r

√
c, where β < α is fixed in advance. Again, if r and c are

fixed in advance, we obtain an algorithm of polynomial m(κn/ǫ)O(1) complexity.
12

Linear codes X (typically binary, that is for κ = 2) for which the number of non-
zero entries in each row of the matrix A in (2.4.1) is small are called low-density
parity-check codes. They have many desirable properties and are of considerable
interest, cf. Section 11 of [MM09].

Let C = X⊥, C ⊂ Fnκ, be the subspace (linear code) spanned by the rows of A
(we say that A is the generator matrix of C). The MacWilliams identity for the
weight enumerators of pX and pC (see Theorem 3.5.3 of [Li99]) states that

pX(z) =
1

κdimC

(
1 + (κ− 1)z

)n
pC

(
1− z

1 + (κ− 1)z

)
.

It follows that

pC

(
1− z

1 + (κ− 1)z

)
6= 0 provided |z| ≤ α

(κ− 1)r
√
c

and that the value of

pC

(
1− z

1 + (κ− 1)z

)

can be efficiently approximated provided

|z| ≤ β

(κ− 1)r
√
c
.

In other words, the weight enumerator pC(z) of a linear code C with a sparse
code generator matrix is non-zero and can be efficiently approximated provided
|1− z| = O (1/r

√
c), where r is an upper bound on the number of non-zero entries

in every row, c is an upper bound on the number of non-zero entries in every
column of the matrix and the implied constant in the “O” notation is absolute (in
particular, it does not depend on κ).

One notable example of such a code with a sparse generating matrix is the binary
cut code consisting of the indicators of cuts in a given graphG = (V,E) with set V of
vertices and set E of edges, see Section 1.9 of [Di05] and [BN90], that is, indicators
of subsets ES ⊂ E consisting of the edges with one endpoint in S ⊂ V and the other
in V \S. The rows of the code generating matrix are parameterized by vertices v ∈ V
of the graph, the columns are parameterized by the edges e of the graph and the
(v, e) entry of the matrix is 1 if v is an endpoint of e and 0 otherwise (hence each row
is the indicator of the cut associated with the corresponding vertex). We observe
that the code generating matrix of a cut code contains at most d(G) non-zero
entries in every row, where d(G) is the largest degree of a vertex of G, and exactly
two non-zero entries in every column. The obtained algorithm for computing the
weight of a cut code achieves roughly the same approximation as the algorithms of
[PR17a] and of Chapter 7 of [Ba16], where we approach computing weights of cuts
via the graph homomorphism partition function.

13

(2.5) Ferromagnetic Potts model at low temperatures. Let G = (V,E) be
a connected undirected graph, without loops or multiple edges. Given a real β > 0
and an integer κ > 1, we consider the sum

(2.5.1) PG,κ(β) =
∑

φ:V−→{0,... ,κ−1}

exp



β

∑

{u,v}∈E

δφ(u)φ(v)



 ,

where

δij =

{
1 if i = j,

0 if i 6= j.

The expression (2.5.1) is known as the partition function of the ferromagnetic (since
β > 0) Potts model with κ colors, see, for example, [FV18]. Here the numbers
0, 1 . . . , κ− 1 are interpreted as colors: we color the vertices of G with κ colors in
all possible ways, and each edge of G with identically colored endpoints contributes
to the inner sum. The number β plays the role of the inverse temperature. Using
cluster expansions, it was shown in [H+18] that for some induced subgraphs G of
the lattice Zd the sum (2.5.1) can be approximated in polynomial time provided
β > β0(d, κ) for some constant β0 (that is, at sufficiently low temperatures). Here
we deduce this result for a wide family of graphs and an explicit bound on β0 from
our Theorem 1.6.

First, we rewrite (2.5.1) in the form

PG,κ(β) =e
β|E|

∑

φ:V−→{0,... ,κ−1}

∏

{u,v}∈E

w(φ(u), φ(v))

where w(i, j) = wβ(i, j) = eβ(δij−1).

(2.5.2)

Since β > 0, we have |w(i, j)| ≤ 1 and w(i, j) = 1 if and only if i = j.
Next, we write the sum in (2.5.2) in the form w(X), where X is the set in

Theorem 1.6. For that, we interpret colors 0, 1, . . . , κ− 1 as remainders modulo κ.
We direct the edges of G in an arbitrary way and with every, now directed, edge
(u, v) we associate a variable xuv taking values in Z/κZ. The intended meaning of
the variables xuv is that

(2.5.3) xuv ≡ φ(v)− φ(u) mod κ for all (u, v) ∈ E,

so that xuv ≡ 0 if and only if the endpoints of the edge {u, v} are colored with
the same color. Given a set {xuv : (u, v) ∈ E}, a solution φ : V −→ Z/κZ to the
system (2.5.3) exists, if and only if {xuv} satisfy the system of linear equations,
constructed as follows: we pick a cycle C in G, orient it arbitrarily, and write

(2.5.4)
∑

{u,v}∈C:
(u,v) is co-oriented with C

xuv −
∑

{u,v}∈C:
(u,v) is counter-oriented with C

xuv ≡ 0 mod κ.

14

Moreover, since G is connected, as long as the equations (2.5.4) are satisfied for
all cycles C, the system (2.5.3) has exactly κ solutions, that differ by a shift by an
element of Z/κZ. Indeed, if the equations (2.5.3) are satisfied then clearly (2.5.4)
holds. On the other hand, given a solution to (2.5.4), we pick a vertex v and assign
the value of φ(v) arbitrarily. Then for every vertex w, we choose a path connecting
w to v, assign values of φ to the vertices along the path (in a necessarily unique
way) so that the equations (2.5.3) are satisfied. Because of (2.5.4), the value of
φ(w) does not depend on the chosen path.

Let X ⊂ (Z/κZ)
E

be the set of solutions of the system (2.5.4). We introduce a
weight wuv = e−β for each coordinate xuv with (u, v) ∈ E and write (2.5.2) as

PG,κ(β) = κeβ|E|w(X),

where X is the set of solutions to the system (2.5.4).
The equations (2.5.4) are not independent: it suffices to write (2.5.4) for a set of

cycles C that generate the homology group H1(G;Z). In view of Theorem 1.6, we
would like to choose such a generating set C of H1(G;Z) so that the number of edges
in each cycle C ∈ C does not exceed some r ≥ 2 and the number of cycles C ∈ C
containing a given edge does not exceed some c ≥ 1, for the smallest possible values
of r and c. Then we can approximate the partition function PG,κ(β) of (2.5.1) –
(2.5.2) provided

β ≥ 0.8 + ln
(
(κ− 1)r

√
c
)
> − ln 0.45 + ln

(
(κ− 1)r

√
c
)
,

and for fixed r and c, we get a polynomial time approximation algorithm.
For example, suppose that G is an induced subgraph of the integer lattice Zd

(with d ≥ 2) constructed as follows. Given a point (a1, . . . , ad) ∈ Zd, we call the
set

{(x1, . . . , xd) : ak ≤ xk ≤ ak + 1 : k = 1, . . . , d}

an elementary cube. We take finitely many elementary cubes whose union U is a
simply connected subset of Rd and let G be the induced subgraph with vertices
in U . Then there is a system of generators, C, of H1(G;Z) consisting of cycles
with r = 4 edges each and such that every edge of C ∈ C belongs to at most
c = 2(d − 1) cycles (we choose the cycles on the boundary of 2-dimensional faces
of the elementary cubes comprising U). Hence for such a graph G, we obtain a
polynomial time approximation algorithm for PG,κ(β) provided

β ≥ 2.6 + ln
(
(κ− 1)

√
d− 1

)
> ln

4
√
2

0.45
+ ln

(
(κ− 1)

√
d− 1

)
.

3. Integrating over the torus

We begin our preparations to prove Theorems 1.2 and 1.6.
15

(3.1) Laurent polynomials on the torus. Let

S
1 = {z ∈ C : |z| = 1}

be the unit circle in the complex plane and let

T
m = S

1 × . . .× S
1

be the direct product of m copies of S1 (torus), endowed with the product measure
µ = µ1 × . . .× µm, where µi is a Borel probability measure on the i-th copy of S1.
We consider Laurent polynomials p : Tm −→ C,

(3.1.1) p (z1, . . . , zm) =
∑

a∈A

γaz
a

as random variables on T
m. Here A ⊂ Z

m is a finite set of integer vectors, γa ∈ C

for all a ∈ A and

za = zα1

1 · · · zαm
m provided a = (α1, . . . , αm) ,

where z0i = 1. We are interested in conditions on the coefficients γa which ensure
that E ep 6= 0.

For a ∈ A we define the support of a by

supp a = {i : αi 6= 0} where a = (α1, . . . , αm) .

Consequently, | supp a| is the number of non-zero coordinates of a ∈ Z
m. In this

section, we prove the following main result.

(3.2) Theorem. Let p : Tm −→ C be a Laurent polynomial as in (3.1.1). Suppose
that for some 0 ≤ θ1, . . . , θm < 2π/3, we have

(3.2.1) 2
∑

a∈A:
i∈supp a

|γa|
∏

j∈supp a

1

cos(θj/2)
≤ θi for i = 1, . . . , m.

Then
E ep 6= 0.

By choosing θi in a particular way, we obtain the following corollary.

(3.3) Corollary. There exists an absolute constant τ > 0 such that if p : Tm −→ C

is a Laurent polynomial as in (3.1.1) and

| supp a| ≤ c for all a ∈ A
16

and some c ≥ 1 and

∑

a∈A:
i∈supp a

|γa| ≤ τ√
c

for i = 1, . . . , m,

then

E ep 6= 0.

One can choose τ = 0.56.

The proof is somewhat similar to that of [Ba17] for E ep where p : {−1, 1}m −→
C is a polynomial on the Boolean cube.

We start with a simple lemma (a discrete version of this lemma was suggested
by Bukh [Bu15]).

(3.4) Lemma. Let f : Ω −→ C be a random variable and let 0 ≤ θ < 2π/3 be
a real number such that f(ω) 6= 0 for all ω ∈ Ω and the angle between any two
complex numbers f(ω1) 6= 0 and f(ω2) 6= 0 considered as vectors in R2 = C does
not exceed θ. Suppose further that E |f | < +∞. Then

|E f | ≥
(
cos

θ

2

)
E |f |.

Proof. First, we claim that 0 does not lie in the convex hull of vectors f(ω) ∈
C = R2. Otherwise we conclude by the Carathéodory Theorem that 0 is a convex
combination of some 3 vectors f(ω1), f(ω2) and f(ω3) and the angle between some
two of them is at least 2π/3, which is a contradiction. Hence the vectors f(ω) lie
in some convex cone (angle) K ⊂ C measuring at most θ and with vertex at 0. Let
L : R2 −→ R2 be the orthogonal projection onto the bisector of K. Then

|E f | ≥ |L(E f)| = |EL(f)| = E |L(f)| ≥ E

(
|f | cos θ

2

)
=

(
cos

θ

2

)
E |f |.

Here the first (reading from left to right) inequality follows since the length of the
orthogonal projection of a vector does not exceed the length of the vector; the next
identity follows since L is a linear operator; the next identity follows since for all
z ∈ K the vectors L(z) are non-negative multiples of each other; the next inequality
follows since

|L(z)| ≥
(
cos

θ

2

)
|z| for all z ∈ K;

and the final identity follows since the expectation is a linear operator. �

17

(3.5) Proof of Theorem 3.2. For a function f : T
m −→ C and a subset

I ⊂ {1, . . . , m}, we denote by E If the conditional expectation of f obtained by
integrating f over the variables zi with i ∈ I. Hence if f is a function of z1, . . . , zm
and I ⊂ {1, . . . , m} then hI = E If is a function of zi for i /∈ I. In particular,
hI = f if I = ∅ and hI = E f if I = {1, . . . , m}. If I consists of a single element i,
we write E if instead of E {i}f . We denote

I = {1, . . . , m} \ I

the complement of I. We will consider functions f = ep where p : Tm −→ C is a
Laurent polynomial.

For 0 ≤ θ1, . . . , θm < 2π/3, we denote by Pm (θ1, . . . , θm) the set of m-variate
Laurent polynomials p for which the inequalities (3.2.1) hold. Note that the condi-
tion p ∈ Pm (θ1, . . . , θm) is a finite system of linear inequalities for |γa|, a ∈ A.

Let us choose p ∈ Pm (θ1, . . . , θm), let us fix some values zi ∈ S1 for I ⊂
{1, . . . , m} and consider p as a function of zi for i /∈ I. It is not hard to see that
p ∈ Pm−|I| (θi : i /∈ I).

We prove by induction on m the following statements.

Statement 1m. For any p ∈ Pm (θ1, . . . , θm), we have E ep 6= 0. Moreover,
suppose that p, q ∈ Pm (θ1, . . . , θm) are two Laurent polynomials that differ in at
most one monomial, and the polynomial p is obtained from q by multiplying the
coefficient γb of some zb by some ζ ∈ S1. Then the angle between E ep 6= 0 and
E eq 6= 0 does not exceed

2|γb|
∏

i∈supp b

1

cos(θi/2)
.

Statement 2m. Let p ∈ Pm (θ1, . . . , θm) be a Laurent polynomial. Let I =
{1, . . . , m}\{i} for some 1 ≤ i ≤ m and let hI(zi) = E Ie

p. Then for any z′i, z
′′
i ∈ S

1,
we have hI(z

′
i) 6= 0, hI(z

′′
i) 6= 0 and the angle between the two complex numbers

does not exceed θi.

We start by proving Statement 21. Then

p(z) =
∑

a∈A

γaz
a for some finite A ⊂ Z

is a univariate Laurent polynomial. For any z ∈ S1, we have

∣∣∣arg ep(z)
∣∣∣ ≤ |ℑ p(z)| ≤ |p(z)| ≤

∑

a∈A

|γa| ≤ 1

2
θ1

and the result is immediate.
18

Next, we prove that Statements 2s for s ≤ m imply Statement 1m.
Let us choose p ∈ Pm (θ1, . . . , θm). For a set I ⊂ {1, . . . , m}, let

hI (zi : i /∈ I) = E Ie
p.

Assuming that I 6= {1, . . . , m}, let us pick an i /∈ I. Then

hI∪{i} = E ihI .

Let us fix variables zj ∈ S1 with j /∈ I ∪ {i} arbitrarily and consider p as a Laurent
polynomial from Pr (θk : k ∈ I ∪ {i}) with r = |I| + 1. Thus hI is a function of
a single variable zi ∈ S1 and by Statement 2r for any two z′i, z

′′
i ∈ S1, the angle

between hI (z
′
i) 6= 0 and hI (z

′′
i) 6= 0 does not exceed θi. It follows from Lemma 3.4

that hI∪{i} (zj : j /∈ I ∪ {i}) 6= 0 and, moreover,

∣∣hI∪{i}

∣∣ = |E ihI | ≥
(
cos

θi
2

)
E i |hI | > 0.

Iterating, we obtain

(3.5.1) |hI∪J | = |E JhI | ≥


∏

j∈J

cos
θj
2


E J |hI | > 0 provided J ∩ I = ∅.

In particular, choosing J = I, we obtain that E ep 6= 0.
Suppose now that p, q ∈ Pm (θ1, . . . , θm) where p is obtained from q by replacing

a single monomial γbz
b by γbζz

b for some ζ ∈ S1. Let us fix all the remaining
coefficients of p and q and consider E ep as a function of the coefficient γb of zb

as long as the resulting polynomial remains in Pm (θ1, . . . , θm) (note that the set
of admissible values of |γb| is convex and includes 0). Since E ep 6= 0 for all p ∈
Pm (θ1, . . . , θm), we can choose a continuous branch of lnE ep as a function of γb.
Then we have

∂

∂γb
lnE ep =

∂
∂γb

E ep

E ep
=

E
(
zbep

)

E ep
.

Let I = supp b. Then

∣∣E
(
zbep

)∣∣ =
∣∣E IE I

(
zbep

)∣∣ =
∣∣E I

(
zbE Ie

p
)∣∣ =

∣∣E Iz
bhI
∣∣ ≤ E I |hI | .

Similarly,

|E ep| = |E IE Ie
p| = |E IhI | ≥

(
∏

i∈I

cos
θi
2

)
E I |hI | > 0

19

by (3.5.1). Therefore, ∣∣∣∣
∂

∂γb
lnE ep

∣∣∣∣ ≤
∏

i∈supp b

1

cos(θi/2)

and hence

|lnE ep − lnE eq| ≤ 2|γb|
∏

i∈supp b

1

cos(θi/2)
.

Statement 1m now follows.
Next, we prove that Statement 1m implies Statement 2m+1.

Let p ∈ Pm+1 (θ1, . . . , θm+1) be a polynomial and let us choose an 1 ≤ i ≤ m+ 1.
Let I = {1, . . . , m + 1} \ {i} and let hI(zi) = E Ie

p. If we fix zi, we can consider
p as a Laurent polynomial in Pm (θj : j 6= i). Moreover, if we change the value of
zi = z′i to zi = z′′i then only the coefficients γa of p with i ∈ supp a are affected,
and each of those coefficients gets multiplied by some ζa ∈ S

1. Repeatedly applying
Statement 1m, we conclude that hI (z

′
i) 6= 0, hI (z

′′
i) 6= 0 and the angle between the

two complex numbers does not exceed

2
∑

a∈A:
i∈supp a

|γa|
∏

j∈suppa

1

cos(θj/2)
,

which does not exceed θi by the definition of Pm+1 (θ1, . . . , θm+1), and Statement
2m+1 follows.

This concludes the induction and proves that E ep 6= 0. �

(3.6) Proof of Corollary 3.3. Let us choose

θ1 = . . . = θm =
δ√
c

for some 0 < δ < 2π/3 to be determined later. To have the conditions of Theorem
3.2 satisfied, it suffices to have

2
∑

a∈A:
i∈supp a

|γa|
(
cos

δ

2
√
c

)−c

≤ δ√
c

for i = 1, . . . , m.

Since (
cos

δ

2
√
c

)c
≥ cos

δ

2
for 0 ≤ δ ≤ π,

see [Ba17], it suffices to have
∑

a∈A:
i∈supp a

|γa| ≤ δ cos(δ/2)

2
√
c

for i = 1, . . . , m.

Optimizing over δ, we choose δ = 1.72 and

τ =
δ cos(δ/2)

2
≈ 0.561,

which concludes the proof. �

20

4. Proofs of Theorems 1.2 and 1.6

First, we prove Theorem 1.2.
Let Tm = S1 × . . . × S1 be the torus as in Section 3 and let us choose µi to

be the rotation invariant (Haar) probability measure on the i-th copy of S1. Let
µ = µ1 × . . .× µm be the Haar probability measure on T

m.

(4.1) Lemma. Let X ⊂ {0, 1}n be a set and w1, . . . , wn be complex weights as in
Theorem 1.2. Let aj, j = 1, . . . , n, be the columns of the matrix A, considered as
integer m-vectors and let us define a Laurent polynomial q : Tm −→ C by

q (z1, . . . , zm) =
n∏

j=1

(1 + wjz
aj) ,

where
za = zα1

1 · · · zαm
m provided a = (α1, . . . , αm) .

Then
w(X) = E q.

Proof. Since for a ∈ Zm, we have

Eza =

{
1 if a = 0,

0 if a 6= 0,

expanding the product that defines q, we get

E q =
∑

ξ1,... ,ξn∈{0,1}:
ξ1a1+...+ξnan=0

wξ11 · · ·wξnn = w(X).

�

(4.2) Proof of Theorem 1.2.
Let q (z1, . . . , zm) be the Laurent polynomial of Lemma 4.1, so that w(X) = E q.
Assuming that |wj | < 1 for j = 1, . . . , n, we write

ln q =
n∑

j=1

ln (1 + wjz
aj) =

n∑

j=1

∞∑

k=1

(−1)k−1
wkj z

kaj

k
.

For a positive integer N , let us define a Laurent polynomial

pN (z1, . . . , zm) =

n∑

j=1

N∑

k=1

(−1)k−1
wkj z

kaj

k
,

21

which is just a truncation of the series expansion for ln q. Let γa 6= 0 be the
coefficient of the Laurent monomial za in pN . Then

|supp a| ≤ c

and for i = 1, . . . , m, we have

∑

a: i∈supp a

|γa| ≤
∑

j: aij 6=0

N∑

k=1

|wj |k
k

≤ r max
j=1,... ,n

− ln(1− |wj |) ≤ 0.56√
c

as long as

(4.2.1) |wj | ≤ 0.46

r
√
c

for j = 1, . . . , n.

(We use that − ln(1 − x) ≤ 1.2x for 0 ≤ x ≤ 0.3 and that r ≥ 2.) Therefore, by
Corollary 3.3, E epN 6= 0 as long as (4.2.1) holds. On the other hand, E epN is an
analytic function of w1, . . . , wn in the polydisc (4.2.1) and E epN converges to E q
uniformly on compact subsets of the polydisc. By the Hurwitz Theorem, see for
example, Section 7.5 of [Kr92], we have either E q 6= 0 in the polydisc or E q ≡ 0
in the polydisc. Since for w1 = . . . = wn = 0, we have E q = 1, we conclude that
E q 6= 0 provided (4.2.1) holds. �

(4.3) Proof of Theorem 1.6. We modify the choice of the probability measure
µ on Tm as follows: we choose µi to be the uniform probability measure on the
roots of unity of degree κ and let µ = µ1 × . . . × µm. We note that for a ∈ Zm,
a = (α1, . . . , αm), we have

Eza =

{
1 if αi ≡ 0 mod κ for i = 1, . . . , m,

0 otherwise.

Given an m× n integer matrix A = (aij), we define q (z1, . . . , zm) by

q (z1, . . . , zm) =
n∏

j=1

(
1 + wjz

aj + . . .+ wjz
(κ−1)aj

)
.

Then

E q =
∑

ξ1,... ,ξn:
ai1ξ1+...+ξnain≡0 mod κ

for i=1,... ,m,
ξj∈{0,1,... ,κ−1}

for j=1,... ,n

∏

j: ξj 6=0

wj = w(X).

22

Assuming that |wj | < (κ− 1)−1 for j = 1, . . . , n, we expand

ln q =
n∑

j=1

ln
(
1 + wjz

aj + . . .+ wjz
(κ−1)aj

)

=

n∑

j=1

∞∑

s=1

(−1)s
(
wjz

aj + . . .+ wjz
(κ−1)aj

)s

s
.

For a positive integer N , let us define a Laurent polynomial

pN (z1, . . . , zm) =

n∑

j=1

N∑

s=1

(−1)s
(
wjz

aj + . . .+ wjz
(κ−1)aj

)s

s
.

For every Laurent monomial za which appears in pN with a coefficient γa 6= 0,
we have | supp a| ≤ c. If i ∈ supp a, then the coefficient of za in the polynomial(
zaj + . . .+ z(κ−1)aj

)s
is non-zero only if aij 6= 0. Hence for i = 1, . . . , m, we have

∑

a: i∈supp a

|γa| ≤
∑

j: aij 6=0

N∑

s=1

(
(κ− 1)|wj|

)s

s
≤ r max

j=1,... ,n
− ln

(
1− (κ− 1)|wj |

)

≤ 0.56√
c

provided

|wj | ≤ 0.46

(κ− 1)r
√
c

for j = 1, . . . , n.

The proof is then concluded as in Section 4.2. �

5. Approximating w(X) faster

Let X ⊂ {0, 1}n be the set defined in Theorem 1.2. We assume that the m× n
matrix A has no zero rows or columns, see Section 1.3. Recall that r ≥ 2 is an
upper bound on the number of non-zero entries in a row of A and c ≥ 1 is an upper
bound on the number of non-zero entries in a column of A. As in Section 1.3, we
define a univariate polynomial w(X ; ζ), that is the weight of the set X under the
scaled weights ζw1, . . . , ζwn, so w(X ; ζ) is a polynomial of some degree d ≤ n. We
let f(ζ) = lnw(X ; ζ) for ζ in a neighborhood of 0.

Our goal is to show that the term f (k)(0) in the Taylor expansion (1.3.3) can be
computed in n(rc)O(k) time, where we assume the standard RAM machine model
with logarithmic-sized words, and additionally we assume that given a column
index j of the matrix A = (aij) we can in time O(c) compute the row indices i

such that aij 6= 0 (otherwise the running time is bounded by nm(rc)O(k)). We note
that in this section, all the implied constants in the “O” notation are absolute. In
particular, if k = O(lnn− ln ǫ) as in Section 1.3, and r and c are fixed beforehand
we obtain an algorithm of a polynomial in n/ǫ complexity.

Our algorithm heavily relies on the ideas of [PR17a], see also [L+17].
23

(5.1) The idea of the algorithm. Since w(X ; 0) = 1, we can write

w(X ; ζ) =
d∏

i=1

(
1− ζ

ζi

)
,

where ζ1, . . . , ζd 6= 0 for some d ≤ n are the roots of w(X ; ζ), listed with multiplicity.
Then

f(ζ) =
d∑

i=1

ln

(
1− ζ

ζi

)

and

f (k)(0)

k!
= −1

k

d∑

i=1

ζ−ki .

We introduce the power sums

(5.1.1) σk(A,w) = ζ−k1 + . . .+ ζ−kd .

Hence our goal is to compute σk(A,w) in n(rc)
O(k) time.

The crucial feature of the power sums σk(A,w) is that they are additive functions
of A as is explained below.

In what follows, we consider the set M of integer matrices A with rows and
columns indexed by non-empty finite subsets of the set N of positive integers and
without zero rows or columns. For non-empty finite subsets R,C ⊂ N, an R × C
integer-valued matrix A ∈ M is a function A : R × C −→ Z and we write the
(i, j)-th entry of A as A(i, j) for i ∈ R and j ∈ C. We fix complex weights wj and
define

(5.1.2) XA =
{(
ξj : j ∈ C

)
∈ {0, 1}C :

∑

j∈C

A(i, j)ξj = 0 for i ∈ R
}
.

Similarly, we define univariate polynomials

(5.1.3) w (XA; ζ) =
∑

x∈XA

x=(ξj : j∈C)

∏

j∈C

(ζwj)
ξj

and define power sums σk(A,w) by (5.1.1) where ζ1, . . . , ζd are the roots of
w (XA; ζ), listed with multiplicity.

Let A1, A2 ∈ M be respectively R1 × C1 and R2 × C2 matrices. Suppose that
R1 ∩R2 = ∅ and C1 ∩C2 = ∅. We define the direct sum A = A1 ⊕A2 as the R×C
matrix, where R = R1 ∪R2, C = C1 ∪ C2 and

A(i, j) =





A1(i, j) if i ∈ R1 and j ∈ C1,

A2(i, j) if i ∈ R2 and j ∈ C2,

0 elsewhere.
24

Clearly, A ∈ M.
Let A1, A2 ∈ M be matrices such that A = A1 ⊕A2 is defined. We observe that

w (XA; ζ) = w (XA1
; ζ)w (XA2

; ζ)

and hence

(5.1.4) σk (A1 ⊕ A2, w) = σk(A1, w) + σk(A2, w).

Given an R × C matrix A ∈ M and an R1 × C1 matrix B ∈ M, we define the
index ind(B,A) = 1 if R1 ⊂ R, C1 ⊂ C,

A(i, j) = B(i, j) for all i ∈ R1 and all j ∈ C1

and
A(i, j) = 0 for all i ∈ R \R1 and all j ∈ C1.

Otherwise, we say that ind(B,A) = 0.
We define a filtration

M1 ⊂ M2 ⊂ . . . ⊂ Mk ⊂ . . . ,

where Mk ⊂ M consists of the matrices with at most k columns.
In Lemma 5.3 below we show that we can write

(5.1.5) σk(A;w) =
∑

B∈Mk

ind(B,A)µk(B,w) for all A ∈ M

and some complex numbers µk(B,w). Although the sum in (5.1.5) contains infin-
itely many terms, for each A ∈ M, only finitely many terms are non-zero, so (5.1.5)
is well-defined.

We say that a matrix B ∈ M is connected if it cannot be represented as a direct
sum B = B1 ⊕ B2 for some matrices B1, B2 ∈ M and disconnected otherwise. In
Corollary 5.5 below, we deduce from the additivity property (5.1.4) that µk(B,w) =
0 in (5.1.5) unless B is connected. In Section 5.6 we show for any givenm×n matrix
A with at most r non-zero entries in each row and at most c non-zero entries in each
column the number of connected matrices B ∈ Mk with ind(B,A) = 1 is at most
n(rc)O(k) and that all such matrices B can be found in n(rc)O(k) time. Finally, in
Section 5.7 we show that for each connected B ∈ Mk, one can compute µk(B,w)
in cn2O(k) time. This produces an algorithm of n(rc)O(k) complexity for computing
σk(A,w).

Next, we supply the necessary details. We start with a technical result describing
how the function ind(B, ·) behaves under multiplication. Let B1 ∈ M be an R1×C1

matrix and let B2 ∈ M be an R2×C2 matrix. If the restrictions of B1 and B2 onto
25

(R1 ∩R2)× (C1 ∩C2) coincide, we define the connected sum B = B1#B2, B ∈ M,
as the (R1 ∪R2)× (C1 ∪ C2) matrix such that

B(i, j) =





B1(i, j) if i ∈ R1 and j ∈ C1,

B2(i, j) if i ∈ R2 and j ∈ C2,

0 otherwise.

In particular, if R1 ∩R2 = ∅ and C1 ∩C2 = ∅ then B1#B2 = B1 ⊕B2 is the direct
sum of B1 and B2.

(5.2) Lemma. Let B1 ∈ M be an R1 ×C1 matrix and let B2 ∈ M be an R2 ×C2

matrix.
Suppose that the following conditions (1) – (3) are satisfied:

(1) For all i ∈ R1 ∩R2 and all j ∈ C1 ∩ C2 we have B1(i, j) = B2(i, j);
(2) For all i ∈ R1 \R2 and all j ∈ C1 ∩ C2 we have B1(i, j) = 0;
(3) For all i ∈ R2 \R1 and all j ∈ C1 ∩ C2 we have B2(i, j) = 0.

Then B = B1#B2 is defined and

ind(B1, A) ind(B2, A) = ind(B,A) for all A ∈ M.

If any of the conditions (1)–(3) is violated then

ind(B1, A) ind(B2, A) = 0 for all A ∈ M.

Proof. Clearly, if (1) is violated then ind(B1, A) ind(B2, A) = 0 for all A ∈ M.

Suppose that (2) is violated. We assume that R1 ⊂ R, for ind(B1, A) = 0
otherwise. If ind(B2, A) = 1 then A(i, j) = 0 for all i ∈ R1 \R2 and all j ∈ C1 ∩C2

and hence ind(B1, A) = 0 so that ind(B1, A) ind(B2, A) = 0. Similarly, if (3) is
violated then ind(B1, A) ind(B2, A) = 0 for all A ∈ M.

Hence it remains to consider the case when (1)–(3) hold. Without loss of gen-
erality we assume that R1 ∪ R2 is a subset of the rows of A and that C1 ∪ C2 is a
subset of the columns of A.

If ind(B1, A) = 0 for some A ∈ M then either B1(i, j) 6= A(i, j) for some
i ∈ R1 and some j ∈ C1 or A(i, j) 6= 0 for some i /∈ R1 and some j ∈ C1. In
either case ind(B,A) = 0. Similarly, if ind(B2, A) = 0 then ind(B,A) = 0. If
ind(B1, A) = ind(B2, A) = 1 then B(i, j) = A(i, j) for all i ∈ R1 ∪ R2 and all
j ∈ C1 ∪ C2 while A(i, j) = 0 for all i /∈ R1 ∪ R2 and all j ∈ C1 ∪ C2 and hence
ind(B,A) = 1 as well. �

If the conditions (1)–(3) of Lemma 5.2 are satisfied, we say that the matrices
B1 and B2 are compatible and denote it B1 ∼ B2. Now we are ready to prove the
existence of a decomposition (5.1.5).

26

(5.3) Lemma. For a positive integer k and a matrix B ∈ Mk one can define
complex numbers µk(B,w) so that (5.1.5) holds for all A ∈ M.

Proof. We write the polynomial (5.1.3) in the monomial basis. Assuming that A is
an R × C matrix, we have

w (XA; ζ) = 1 +

n∑

k=1

πk(A,w)ζ
k

where
πk(A,w) =

∑

x=(ξj : j∈C):
x∈XA,∑
j∈C ξj=k

∏

j∈C

w
ξj
j ,

where XA is defined by (5.1.2).
We say that a set S ⊂ C is the support of a vector x ∈ XA, x = (ξj : j ∈ C),

provided ξj 6= 0 if and only if j ∈ S. Clearly, the support of a vector x contributing
to πk(A,w) is a set S ⊂ C satisfying |S| ≤ k and the vector xS = (ξj : j ∈ S)
satisfies ASxS = 0, where AS is the R × S matrix consisting of the columns of A
with indices in S.

This allows us to write

(5.3.1) πk(A,w) =
∑

B∈Mk

ind(B,A)λk(B,w)

where for R1 × C1 matrix B we have

(5.3.2) λk(B,w) =
∑

x=(ξj : j∈C1):
x∈XB ,

support of x is C1,∑
j∈C1

ξj=k

∏

j∈C1

w
ξj
j .

Although formally the sum (5.3.1) is infinite, for each A ∈ M we have ind(B,A) 6= 0
for only finitely many B ∈ M, so (5.3.1) is well-defined.

We observe that

πk(A,w) = (−1)kek
(
ζ−1
1 , . . . , ζ−1

d

)
,

where ek is the k-th elementary symmetric function and ζ1, . . . , ζd are the roots of
w (XA; ζ), listed with their multiplicities (recall that the constant term of w (XA; ζ)
is 1). Therefore, the Newton identities imply that

(5.3.3) kπk(A,w) = −
k∑

i=1

πk−i(A,w)σi(A,w) for all k ≥ 1,

27

where we define
π0(A,w) = 1.

We define
µ1(B,w) = −λ1(B,w) for B ∈ M1.

Assuming that µi(B,w) are defined for B ∈ Mi and i = 1, . . . , k− 1, for k ≥ 2 we
define for B ∈ Mk

(5.3.4)

µk(B,w) =− kλk(B,w)

−
∑

B1∈Mk−i,B2∈Mi

for 1≤i≤k−1:
B1∼B2 and B1#B2=B

λk−i(B1, w)µi(B2, w).

Here the sum is taken over all distinct ordered pairs of compatible matrices (B1, B2)
such that B1#B2 = B (in particular, we may have B1 = B2). We observe that for
each B the sum contains only finitely many terms, so µk(B,w) is well-defined. The
identity (5.1.5) now follows from (5.3.1), (5.3.3) and Lemma 5.2. �

Our next goal is to show that in (5.1.5) we have µk(B,w) 6= 0 only for connected
matrices B. We start with a general structural result, very similar in spirit to
Lemma 4.2 of [CS16], see also [PR17a].

(5.4) Lemma. Let us consider a function f : M −→ C defined by

f(A) =
∑

B∈S

µB ind(B,A),

where S ⊂ M is a (possibly infinite) set and µB ∈ C \ {0} for all B ∈ S (for each
A ∈ M only finitely many summands are non-zero, so f is well-defined). Suppose
that

f(A1 ⊕A2) = f(A1) + f(A2)

for any two matrices A1, A2 ∈ M such that A1 ⊕ A2 is defined. Then each B ∈ S
is connected, that is, cannot be written as B = B1 ⊕B2 for some B1, B2 ∈ M.

Proof. Seeking a contradiction, assume that there is a disconnected B ∈ S. We
observe that if B ∈ M is connected, then

ind(B,A1 ⊕A2) = ind(B,A1) + ind(B,A2)

for any two A1, A2 ∈ M such that A1 ⊕ A2 is defined (since B is connected, we
cannot have ind(B,A1) = ind(B,A2) = 1 provided A1 ⊕A2 is defined). Therefore,
without loss of generality, we assume that all B ∈ S are disconnected. Let us choose
a D ∈ S that has the smallest number of columns. Hence we have D = D1 ⊕D2

for some D1 and D2. Then

f(Di) =
∑

B∈S

µB ind(B,Di) = 0 for i = 1, 2

28

since Di has fewer columns than any matrix B ∈ S. Therefore,

f(D) = f(D1) + f(D2) = 0.

On the other hand, ind(B,D) = 0 for all B ∈ S \ {D} and

f(D) = µD ind(D,D) = µD 6= 0,

which is a contradiction. �

(5.5) Corollary. In the expansion (5.1.5), we have µk(B,w) = 0 whenever B is
disconnected.

Proof. Follows by (5.1.4) and Lemma 5.4. �

(5.6) Enumerating connected matrices. Given an integer k ≥ 1 and an R×C
matrix A ∈ M with at most r non-zero entries in each row and at most c non-zero
entries in each column, we want to compile a list of all connected matrices B ∈ Mk

such that ind(B,A) = 1. First, we observe that an R1 × C1 matrix B ∈ M such
that ind(B,A) = 1 is uniquely determined by its set of columns C1 ⊂ C since
R1 ⊂ R is then the set of rows of A whose restriction onto C1 are not zero.

We define a graph G = (C,E). The vertices of G are the columns of A and two
vertices c1 and c2 span an edge of G if and only if there is a row of A with non-zero
entries in columns c1 and c2. We note that the degree of each vertex of G does not
exceed d = rc. To enumerate connected matrices B ∈ Mk such that ind(B,A) = 1
is to enumerate sets of vertices of cardinality at most k in C that induce a connected
subgraph of G. This is done as in [PR17b]. The crucial observation is that as long
as one vertex c is chosen, there are at most

k−1

(
kd

k − 1

)
≤ (ed)k−1

2
,

connected induced subgraphs with k ≥ 2 vertices containing c, see Lemma 2.1
of [B+13]. Consequently, there are ndO(k) induced connected subgraphs with at
most k vertices in G. Once the vertex c is chosen, the subgraphs are enumerated
with dO(k) complexity, by successively exploring adjacent vertices, see [PR17b] for
details.

(5.7) Summary of the algorithm. Given an m×n matrix A without zero rows
and columns, we interpret it as an R × C matrix A ∈ M, where R = {1, . . . , m}
and C = {1, . . . , n}. Given a positive integer k, as in Section 5.6 we compile a
list C of all connected matrices B ∈ Mk such that ind(B,A) = 1. We define the
filtration

C1 ⊂ C2 ⊂ . . . ⊂ Ck−1 ⊂ Ck = C,
where Ci is the set of matrices B ∈ C with at most i columns.

29

Given complex numbers w1, . . . , wn, from Lemma 5.3 and (5.3.2) in particular,
we obtain

µ1(B,w) = −λ1(B,w) = 0 for B ∈ C1,
since by our assumption B has no zero rows.

Suppose that we have computed µi(B,w) for i = 1, . . . , k − 1 and all B ∈ Ck−1

for k ≥ 2. To compute µk(B,w) for all B ∈ Ck, we use formula (5.3.4). Since every
matrix B ∈ Ck has at most k columns, there are not more than 4k pairs of matrices
B1 ∈ Mk−i and B2 ∈ Mi such that B1#B2 = B and all such pairs can be found
by inspection in O(4k) time. We then use (5.3.2) to compute the terms λk−i(B1, w)

for i = 0, . . . , k − 1. We note that there are
(
k−i−1
|S|−1

)
≤ 2k−i non-negative integer

vectors with support S and the sum k − i of the coordinates, so each λk−i(B1, w)
is computed in c(k − i)n2O(k−i) time.

This gives us the list of values µk(B,w) for all B ∈ Ck. We then compute

σk(A,w) =
∑

B∈Ck

µk(B,w),

as desired.

Acknowledgments

The authors are grateful to Martin Dyer for pointing out to possible connections
with [Va79] and [VV86], to Alex Samorodnitsky for pointing out to possible con-
nections with low-density parity-check codes, to Prasad Tetali for pointing us to
[BS94] and to Matthew Jenssen for telling us how to improve the degree dependence
from d2 − d1 ≥ 2 to d2 − d1 ≥ 1 in Section 2.6. We thank the authors of [C+16] for
pointing out that their construction implies that computing the partition function
in the hard-core model at high fugacity is a #BIS-hard problem in the class of reg-
ular bipartite graphs. We thank the anonymous referee for catching an inaccuracy
in one of our estimates.

References

[A+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Pro-

tasi, Complexity and Approximation. Combinatorial Optimization Problems and their

Approximability Properties, Springer–Verlag, Berlin, 1999.

[Ba16] A. Barvinok, Combinatorics and Complexity of Partition Functions, Algorithms and
Combinatorics, 30, Springer, Cham, 2016.

[Ba17] A. Barvinok, Computing the partition function of a polynomial on the Boolean cube, A
Journey through Discrete Mathematics, Springer, Cham, 2017, pp. 135–164.

[Ba18] A. Barvinok, Computing permanents of complex diagonally dominant matrices and ten-

sors, preprint arXiv:1801.04191, to appear in Israel Journal of Mathematics (2018).

[BS94] J. van den Berg, J. and J.E. Steif, Percolation and the hard-core lattice gas model,

Stochastic Processes and their Applications 49(2) (1994), 179–197.

[B+78] E.R. Berlekamp, R.J. McEliece and H.C.A. van Tilborg, On the inherent intractability of

certain coding problems, IEEE Transactions on Information Theory 24 (1978), 384–386.

30

[B+13] C. Borgs, J. Chayes, J. Kahn and L. Lovász, Left and right convergence of graphs with

bounded degree, Random Structures & Algorithms 42 (2013), no. 1, 1–28.

[BN90] J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing, IEEE

Transactions on Information Theory 36 (1990), no. 2, 381–385.
[Bu15] B. Bukh, personal communication (2015).

[C+16] J.-Y. Cai, A. Galanis, L. A. Goldberg, H. Guo, M. Jerrum, D. Štefankovič, and E.

Vigoda, # BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the

tree non-uniqueness region, Journal of Computer and System Sciences, 82 (5) (2016),
690–711.

[C+19] S. Chen, M. Delcourt, A. Moitra, G. Perarnau and L. Postle, Improved bounds for ran-

domly sampling colorings via linear programming, Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 2216–2234.

[CS16] P. Csikvári and P.E. Frenkel, Benjamini-Schramm continuity of root moments of graph

polynomials, European Journal of Combinatorics 52, part B (2016), 302–320.

[Di05] R. Diestel, Graph Theory. Third edition, Graduate Texts in Mathematics, 173, Springer–

Verlag, Berlin, 2005.
[FV18] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems. A concrete mathe-

matical introduction, Cambridge University Press, Cambridge, 2018.
[H+18] T. Helmuth, W. Perkins and G. Regts, Algorithmic Pirogov-Sinai theory, preprint

arXiv:1806.11548 (2018).

[J+19] M. Jenssen, P. Keevash and W. Perkins, Algorithms for #BIS-hard problems on expander

graphs, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SIAM, 2019, pp. 2235–2247.

[Kr92] S.G. Krantz, Function Theory of Several Complex Variables. Second edition,
The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Ad-

vanced Books & Software, Pacific Grove, CA, 1992.
[Li99] J.H. van Lint, Introduction to Coding Theory. Third edition, Graduate Texts in Mathe-

matics, 86, Springer–Verlag, Berlin, 1999.

[L+17] J. Liu, A. Sinclair and P. Srivastava, The Ising partition function: zeros and determin-

istic approximation, preprint arXiv:1704.06493, Journal of Statistical Physics, online

first articles, https://doi.org/10.1007/s10955-018-2199-2 (2017).

[MM09] M. Mézard and A. Montanari, Information, Physics, and Computation, Oxford Graduate
Texts, Oxford University Press, Oxford, 2009.

[PR17a] V. Patel and G. Regts, Deterministic polynomial-time approximation algorithms for

partition functions and graph polynomials, SIAM Journal of Computing 46 (2017), no.

6, 1893–1919.

[PR17b] V. Patel and G. Regts, Computing the number of induced copies of a fixed graph in

a bounded degree graph, preprint arXiv:1707.05186, Algorithmica, online first articles,

https://doi.org/10.1007/s00453-018-0511-9 (2017).

[Va79] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science
8 (1979), no. 2, 189–201.

[VV86] L.G. Valiant and V.V. Vazirani, NP is as easy as detecting unique solutions, Theoretical
Computer Science 47 (1986), no. 1, 85–93.

[Vi00] E. Vigoda, Improved bounds for sampling colorings, Probabilistic techniques in equilib-

rium and nonequilibrium statistical physics, Journal of Mathematical Physics 41 (2000),
no. 3, 1555–1569.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043,

USA

E-mail address: barvinok@umich.edu

Korteweg de Vries Institute for Mathematics, University of Amsterdam

E-mail address: guusregts@gmail.com

31

