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Abstract

Akbari and Alipour [1] conjectured that any Latin array of order n with at least n2/2 symbols
contains a transversal. We confirm this conjecture for large n, and moreover, we show that
n399/200 symbols suffice.

1 Introduction

A Latin square of order n is an n by n square with cells filled using n symbols so that every symbol
appears once in each row and once in each column. A transversal in a Latin square is a set of cells
using every row, column and symbol exactly once. The study of transversals in Latin squares goes
back to Euler in 1776; his famous ‘36 officers problem’ is equivalent to showing that there is no Latin
square of order 6 that can be decomposed into 6 transversals (this was finally solved by Tarry in
1900). An even more fundamental question is whether a Latin square always has a transversal. A
quick answer is ‘no’, as shown by the addition table of Z2k, but it remains open whether there is
always a transversal when n is odd (a conjecture of Ryser [10]) or whether there is always a partial
transversal size n − 1 (a conjecture of Brualdi [4] and Stein [11]). The best known positive result,
due to Hatami and Shor [6], is that there is always a partial transversal size n−O(log2 n).

Given the apparent difficulty of finding transversals in Latin squares, it is natural to ask if the
problem becomes easier in Latin arrays with more symbols (now we fill a square with any number
of symbols such that every symbol appears at most once in each row and at most once in each
column). This problem was considered by Akbari and Alipour [1], who conjectured that any Latin
array of order n with at least n2/2 symbols contains a transversal. Progress towards this conjecture
was independently obtained by Best, Hendrey, Wanless, Wilson and Wood [3] (who showed that
(2−

√
2)n2 symbols suffice) and Barát and Nagy [2] (who showed that 3n2/4 symbols suffice).

We will henceforth adopt the standard graph theory translation of the problem, where we consider
a Latin array of order n as a properly edge-coloured complete bipartite graph Kn,n, with one part
corresponding to rows, the other part to columns, and the colour of an edge is the symbol in the
corresponding cell of the array. In this language, the Akbari-Alipour conjecture is that if there are at
least n2/2 colours then there is a rainbow perfect matching. Our main result confirms this conjecture
for large n in a strong form.

Theorem 1.1. Suppose the complete bipartite graph Kn,n is properly edge-coloured using dn2 colours,
where n is sufficiently large and d > n−1/200. Then there is a rainbow perfect matching.
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Here the constant ‘200’ could be somewhat improved, but we have sacrificed some optimisations
for the sake of readability of our proof, as in any case the best bound we can obtain seems far from
optimal (it might even be true that n1+o(1) colours suffice!)

2 Proof

Here we give the proof of Theorem 1.1, assuming two lemmas that will be proved later in the paper.
Consider the complete bipartite graph Kn,n with parts A and B both of size n, and a proper edge-
colouring using at least dn2 colours, where n is sufficiently large and d > n−1/200.

Let G be any subgraph of Kn,n obtained by including exactly one edge of each colour. Then
e(G) ≥ dn2. We apply the following lemma, which will be proved in the next section, to find a pair
(A1, B1) that satisfies Hall’s condition for a perfect matching ‘robustly’, so that it will still satisfy
Hall’s condition after deleting small sets of vertices from each part. Note that as d > n−1/200 we
obtain |A1| = |B1| > n0.7/3.

Lemma 2.1. There is G1 = G[A1, B1] for some A1 ⊆ A and B1 ⊆ B with |A1| = |B1| ≥ d60n/3
such that G1 has minimum degree at least 10−3d|A1|, and for any S ⊆ A1 or S ⊆ B1 we have
|NG1(S)| ≥ min{2|S|, 2|A1|/3}.

We define a random subgraph Gr of Kn,n of ‘reserved colours’ as follows. Choose each colour
independently with probability p := n−0.32. Let Gr consist of all edges of all chosen colours. By
Chernoff bounds, whp |NGr(b)∩A1| = p|A1|±(p|A1|)2/3 and |NGr(b)\A1| = p|A\A1|±(p|A\A1|)2/3
for all b ∈ B, and similarly with A and B interchanged. Let G∗ := (Kn,n \ Gr) \ (A1 ∪ B1). Then
the minimum degree in G∗ satisfies δ(G∗) ≥ (1− p)(n− |A1|)− (pn)2/3.

Let M2 be a maximum size rainbow matching in G∗ := (Kn,n \ Gr) \ (A1 ∪ B1). Let A2 =
V (M2) ∩ A and B2 = V (M2) ∩ B. By a result of Gyárfás and Sárközy [5, Theorem 2] we have
|A2| = |B2| ≥ δ(G∗)− 2δ(G∗)2/3 ≥ (1− 2p)(n− |A1|), as pn = n0.68 � n2/3.

Let G′1 be obtained from G1 by deleting any edges that use a colour used by M2 and restricting
to some subsets A′1 ⊆ A1 and B′1 ⊆ B with |A′1| = |B′1| = (1− 10−4d)|A1| so that G′1 has minimum
degree at least (10−3 − 2 · 10−4)d|A1|. To see that this is possible, note that we delete at most n
edges from G′1, so each of A1 and B1 has at most 104n/d|A1| < 10−4d|A1| vertices at which we delete
more than 10−4d|A1| edges.

Let A0 = A \ (A′1 ∪ A2) and B0 = B \ (B′1 ∪ B2). Note that |A0| = |B0| < 2 · 10−4d|A1|, as
pn = n0.68 � d|A1|. The form of our intended rainbow matching is illustrated by the black and/or
vertical edges in Figure 1 (the coloured diagonal edges illustrate the augmentation algorithm used
in Section 4).

Let A′0 be the set of vertices a in A0 such that at least |B′1|/2 of the edges between a and B′1 have
a colour used by M2. Define B′0 similarly, interchanging A and B. We prove the following lemma in
section 4.

Lemma 2.2. Both A′0 and B′0 have size at most p|A1|/4.

Now we apply a greedy algorithm to construct a rainbow matching M2 ∪M0 where each edge of
M0 joins A0 ∪B0 to A′1 ∪B′1. We start by choosing these edges for vertices in A′0 ∪B′0 using colours
in Gr. This is possible as the number of choices at each step is at least p|A1|− (p|A1|)2/3 > 3p|A1|/4,
and at most 3 · p|A1|/4 choices are forbidden due to using a colour or a vertex used at a previous
step. Then we continue the greedy algorithm to choose these edges for the remainder of A0 ∪ B0.
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Figure 1: Proof by picture

This is possible as the number of choices at each step is at least |A′1|/2, of which at most 3|A0| are
forbidden due to using a colour or a vertex used at a previous step.

Finally, consider G3 = G[A3, B3] obtained from G′1 by deleting all vertices covered by M0 and all
edges that share a colour with M0. Then |A3| = |B3| = |A′1| − |A0| > (1 − 10−3d)|A1| and G3 has
minimum degree at least 10−3d|A1| − |A0| − |M0| ≥ 10−3d|A1|/2.

We claim that G3 has a perfect matching. To see this we check Hall’s condition. Suppose for a
contradiction there is S ⊆ A3 with |N(S)| < |S|. By the minimum degree we have |S| ≥ 10−3d|A1|/2.
Now we cannot have |S| ≤ |A1|/2, as then |NG3(S)| ≥ min{2|S|, 2|A1|/3} − 2|A0| > |S|. However,
letting T = B3 \N(S) we have N(T ) ⊆ A3 \ S, so |N(T )| = |A3| − |S| < |B3| − |N(S)| = |T |. The
same argument as for S gives |T | > |A1|/2, contradiction. Therefore G3 has a perfect matching M3.
Now M2 ∪M0 ∪M3 is a rainbow perfect matching in G, which completes the proof of Theorem 1.1.

3 A robustly matchable pair

In this section we prove Lemma 2.1. LetG be a bipartite graph with partsA andB. We sayG is (ε, δ)-
dense if for any A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B| we have eG(A′, B′) ≥ δ|A′||B′|.
We start by applying the following result of Peng, Rödl and Ruciński [9, Theorem 1.3] with ε = 1/10,
c = 0.24 and c′ = 1/50.1

Lemma 3.1. Suppose c, c′ ∈ (0, 1) with 4c + c′ ≤ 1. Then there are A′ ⊆ A and B′ ⊆ B with
|A′| = |B′| ≥ d2/ log2(1+cε)n/2 so that G′ = G[A′, B′] is (ε, c′d)-dense.

Let G1 = G[A1, B1] be obtained from G′ by the following algorithm. Initially, A1 = A′ and
B1 = B′. At any step of the algorithm, we update G1 by deleting a vertex or set of vertices of one
of the following types (choosing arbitrarily if there is a choice).

i. v ∈ A1 or v ∈ B1 with dG1(v) ≤ 10−3d|A′|,
ii. S ⊆ A1 or S ⊆ B1 with |S| < ε|A′| and |NG1(S)| ≤ 2|S|.

Whenever we delete some vertices from A1 or B1 we delete an arbitrary set of the same size from
the other, so that we always maintain |A1| = |B1|. We stop if no deletion is possible or if we have
deleted at least 2ε|A′| vertices from each side.

We claim that the latter option is impossible. Indeed, then without loss of generality we deleted
ε|A′| vertices from A′ of type (i) or (ii) as above (at least half of the deleted vertices are deleted for
a reason other than maintaining equal part sizes). Let DA = DA

i ∪DA
ii be the deleted vertices in A′

according to deletions of type (i) or (ii). Note that |DA| < 3ε|A′|, and |NG1(DA
ii )| ≤ 2|DA

ii | < 6ε|A′|.
1 This result follows from their proof; they state the case c = 1/8, c′ = 1/2 and use log2(1 + ε/8) ≥ ε/6.
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Let B0 = B1 \ NG1(DA
ii ), so |B0| > (1 − 9ε)|A′| = ε|A′|. Now eG′(D

A, B0) ≤ |DA
i | · 10−3d|A′| <

d
50 |D

A||B0| contradicts (ε, d/50)-density of G′, which proves the claim.

Thus the algorithm stops with |A1| = |B1| > (1 − 3ε)|A′| ≥ d60n/3 (using 2/ log2(1.024) < 60),
minimum degree at least 10−3d|A′| and |NG1(S)| ≥ 2|S| for any S ⊆ A1 or S ⊆ B1 with |S| < ε|A′|.
Furthermore, for any S ⊆ A1 or S ⊆ B1 with |S| ≥ ε|A′|, by (ε, d/50)-density of G′ we have
|NG1(S)| ≥ |B1| − ε|A′| ≥ 2|A1|/3. This proves Lemma 2.1.

4 Augmentation algorithm

In this section we prove Lemma 4.5, which will complete the proof of Theorem 1.1. Suppose it is not
true, say |A′0| > p|A1|/4. We will iteratively construct R = RA∪RB ⊆M2, where we think of RA and
RB as ‘reachable’ from A0 and B0. At some point RA and RB will intersect, which will contradict
M2 being a maximum size rainbow matching in G∗. Let θ := n−0.66, and note that θ|A1| > n0.04/3.

Algorithm 4.1. Let RA = RB = ∅ and let C be the set of colours not used by M2. At step i ≥ 1:

i. if RA ∩ RB 6= ∅ stop, otherwise let RA
i be the set of all uv ∈ M2 where v ∈ B2 \ V (RB) such

that at least θ|A1| edges in G∗ from v to A0 use a colour in C, let CA
i be the set of colours

used by RA
i , update RA by adding RA

i and C by adding CA
i ,

ii. if RA ∩ RB 6= ∅ stop, otherwise let RB
i be the set of all uv ∈ M2 where u ∈ A2 \ V (RA) such

that at least θ|A1| edges in G∗ from u to B0 use a colour in C, let CB
i be the set of colours

used by RB
i , update RB by adding RB

i and C by adding CB
i .

Claim 4.2. |RA
1 | ≥ |A1|/4.

To see this, we consider the number X of edges in G∗ with colour in C between A′0 and B2. We
have X ≤ |RA

1 ||A′0|+|B2|θ|A1| by definition of RA
1 . Also, by definition of A′0, every vertex in A′0 has at

least (1−2p)|B2|− (|M2|− |B′1|/2) ≥ |A1|/3 edges in G∗ to B2 with colour in C, so X ≥ |A′0| · |A1|/3.
As |A′0| ≥ p|A1|/4 and p−1θn = n0.66 � pn � |A1|, we deduce |RA

1 | ≥ |A1|/3 − |A′0|−1|B2|θ|A1| ≥
|A1|/3− 4p−1θn ≥ |A1|/4, as claimed.

Claim 4.3. For i ≥ 1, we have |RB
i | ≥ |RA| − 3pn and |RA

i+1| ≥ |RB| − 3pn.

To see this, we first note that as RA ∩ RB = ∅, any vertex in B0 has at least (1 − 2p)|A2| −
|RB| − |M2 \ (RA ∪ RB)| = |RA| − 2p|A2| edges in G∗ to A2 \ RB with colour in C. Double-
counting such edges as in the previous claim gives |B0|(|RA| − 2p|A2|) ≤ |RB

i ||B0| + |B2|θ|A1|, so
|RB

i | ≥ |RA| − 2p|A2| − |B0|−1|B2|θ|A1| ≥ |RA| − 3pn. The proof of the second inequality is similar,
so the claim holds.

Claim 4.4. The algorithm terminates at some step i = i+ < log n.

To see this, we show inductively that if RA ∩ RB = ∅ at step i then |RB
i | ≥ f(i)|A1|/3 and

|RA
i | ≥ (f(i) − 2−3)|A1|/3 where f(i) = 2i−4 + 2−1. First note that f(1) = 5/8 and for i ≥ 2

we have
∑i−1

j=1(f(j) − 2−3) = 2−4(2i − 1) + (i − 1)(2−1 − 2−3) ≥ f(i) − 3/16. At step 1 we have

|RA
1 | ≥ |A1|/4 > (f(1) − 2−3)|A1|/3 and |RB

1 | ≥ |RA| − 3pn > 0.21|A1| > f(1)|A1|/3. Supposing
the statement at step i − 1 ≥ 1, we have |RA

i | ≥ (
∑i−1

j=1 |RB
j |) − 3pn ≥ (

∑i−1
j=1 f(j))|A1|/3 − 3pn ≥

(f(i) − 1/16)|A1|/3 − 3pn ≥ (f(i) − 2−3)|A1|/3 and |RB
i | ≥ (

∑i
j=1 |RA

j |) − 3pn ≥ (
∑i

j=1 f(j) −
2−3)|A1|/3− 3pn ≥ (f(i+ 1)− 3/16)|A1|/3− 3pn ≥ f(i)|A1|/3. Thus the required bounds hold by
induction. While RA ∩RB = ∅ we deduce (2f(i)− 2−3)|A1|/3 < |M2| < n, so i+ < log n, as claimed.
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The algorithm terminates by finding some edge ab ∈ RA ∩ RB where a ∈ A2 and b ∈ B2. We
will obtain a contradiction by modifying M2 to obtain a larger rainbow matching in G∗. Given two
colours c and c′ in C, we say that c is earlier than c′ if c was added to C before c′. We start by
applying the definition of RA and RB to find edges a0b and ab0 of G∗ with a0 ∈ A0 and b0 ∈ B0

where the colours of a0b and ab0 are in C and earlier than that of ab. We modify M2 to obtain
M ′2 by deleting ab and adding a0b and ab0. Thus we obtain a larger matching, but M ′2 may not be
rainbow, due to repeating the colours of a0b and ab0. While the current matching M ′2 is not rainbow,
we apply the following ‘trace back’ algorithm (similar to that of [5]).

Algorithm 4.5. At step i ≥ 1 we have at most two ‘active’ edges, which are edges of M ′2 having
some colour in C shared with some edge that is still present from M2. At step 1 these are a0b and
ab0. If there is an active edge at step i, we choose one arbitarily, call it aibi, and let a′ib

′
i be the edge

of M2 of the same colour c ∈ C. By construction of C, one of a′i or b′i, say a′i, has at least θ|A1|
edges to B0 or A0 using an earlier colour than c in C. We modify M ′2 by deleting a′ib

′
i and adding

some such edge a′ib
i
0 where bi0 ∈ B0 is distinct from all previous choices. We say that aibi is no longer

active. We make a′ib
i
0 active if its colour is shared with some edge that is still present from M2.

Algorithm 4.5 is illustrated in Figure 1: the thick black edge represents the edge ab ∈ RA ∩RB,
at step 1 the green and blue diagonals are active, at step 2 the blue diagonal is active, at step 3 the
red diagonal is active, at step 4 the pink diagonal is active, at step 5 there are no active edges so
the algorithm terminates. To see that the algorithm succeeds, note that there are at most 4 log n
steps of replacing an active edge by another, and each choice has at least θ|A1| > n0.04/3 > 4 log n
options. Thus we obtain a rainbow matching M ′2 in G∗ with |M ′2| > |M2|. This contradiction proves
Lemma 4.5.

Postscript. The Akbari-Alipour conjecture was proved independently and simultaneously by Mont-
gomery, Pokrovskiy and Sudakov [8]. Our proof is much simpler than theirs, and gives a better bound
on the number of symbols required, whereas their proof applies in a much more general setting, and
so has several further applications. Results similar to those in [8] (but not including the Akbari-
Alipour conjecture) were independently and simultaneously obtained by Kim, Kühn, Kupavskii and
Osthus [7].
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