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Abstract. We consider the behaviour of minimax recursions defined on random
trees. Such recursions give the value of a general class of two-player combinatorial
games. We examine in particular the case where the tree is given by a Galton-
Watson branching process, truncated at some depth 2n, and the terminal values
of the level-2n nodes are drawn independently from some common distribution.
The case of a regular tree was previously considered by Pearl, who showed that as
n → ∞ the value of the game converges to a constant, and by Ali Khan, Devroye
and Neininger, who obtained a distributional limit under a suitable rescaling.

For a general offspring distribution, there is a surprisingly rich variety of be-
haviour: the (unrescaled) value of the game may converge to a constant, or to a
discrete limit with several atoms, or to a continuous distribution. We also give
distributional limits under suitable rescalings in various cases.

We also address questions of endogeny. Suppose the game is played on a tree
with many levels, so that the terminal values are far from the root. To be confident
of playing a good first move, do we need to see the whole tree and its terminal
values, or can we play close to optimally by inspecting just the first few levels
of the tree? The answers again depend in an interesting way on the offspring
distribution.

We also mention several open questions.

1. Introduction

In this paper we consider the behaviour of minimax recursions defined on random
trees.

Consider a finite rooted tree with depth m. We will call the root “level 0”, the
children of the root “level 1”, and so on. Suppose every node at levels 0, 1, . . . ,m− 1
has at least one child; the nodes at level m are all leaves. Suppose every leaf node
(i.e. every node at level m) has some real value associated to it. Then recursively
propagate the values towards the root in a minimax way: each node at an odd level
gets a value which is the max of the values of its children, and each node at an even
level gets a value which is the min of the values of its children.

This minimax procedure has a natural interpretation in terms of a two player
game. Two players alternate turns; a token starts at the root, and a move of the
game consists of moving the token from its current node to one of the children of
that node. The leaf nodes are terminal positions; the outome of the game is the
value associated to the leaf node where the game ends. Player 1 is trying to minimise
this outcome, and player 2 is trying to maximise it. The outcome of the game with
“optimal play” is the value associated to the root.
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Suppose the terminal values are random, drawn independently from some common
distribution.

Pearl [10] considered the case where the tree is regular (every non-leaf node has
d children for some d ≥ 2) and the terminal values are independent and uniformly
distributed on the interval [0, 1]. For simplicity assume that the depth of the tree
is even; write W2n for a random variable representing the value at the root of a
tree of depth 2n. Pearl showed that W2n converges in distribution to a constant as
n→∞. This result was refined by Ali Khan, Devroye and Neininger [2], who derived
an asymptotic distribution for W2n after appropriate rescaling.

In this paper we consider the case where the tree is given by a Galton-Watson
branching process, truncated at level 2n. This generalisation leads to a surpsingly
rich variety of behaviour, depending on the offspring distribution of the branching
process. For example, the limiting distribution of W2n may be concentrated at a
single point (as in the regular case), or may now have several atoms, or may even be
continuous.

There is also a rich interplay between the two sources of randomness now present
in the model (the tree itself, and the terminal values at the leaves). Suppose we play
the game on a tree with many levels, so that the terminal values are far from the
root. In order to be confident of playing a good first move, do we need to see the
whole tree and terminal values, or can we play close to optimally by inspecting just
the structure of the first few levels of the tree? Such questions can be formulated
precisely in terms of the endogeny property for certain recursive tree processes, as
introduced by [1]. The answers again depend in an interesting way on the offspring
distribution.

Such questions concerning the relative importance of local tree structure and ter-
minal values are of considerable interest in understanding the effectiveness of certain
tree-search algorithms such as Monte Carlo tree search (MCTS) – see [6] for a sur-
vey. MCTS has famously been applied in recent years to games such as go, where it
provided a considerable increase in playing strength [7] even before being allied with
powerful deep learning techniques [12]. For some games, simple versions of these al-
gorithms, without local evaluation functions, and with only very crude input from the
terminal values (given for example by “random rollouts” through unexplored parts
of the tree), are nonetheless able to converge quickly towards good lines of play. Un-
derstanding which aspects of a game’s structure make such convergence possible is
an interesting challenge both in theoretical and in practical terms.

Our main resuts concerning distributional limits are presented in the next section.
In Section 2 we discuss a range of examples and mention some open problems. The
results about endogeny are given in Section 3. The main proofs are given in Section
4 and Section 5.

Before that we mention some recent related work. Broutin, Devroye and Fraiman
[4] consider recursive distributional equations (including those of minimax type) de-
fined on Galton-Watson trees conditioned to have a given total size n. Holroyd and
Martin [8] consider minimax-type games (and various misère and asymmetric vari-
ants) defined on (perhaps infinite) Galton-Watson trees, with particular emphasis
on the nature of phase transitions for the outcomes of the game as the underlying
offspring distribution varies (see Section 2 for further comments). Note that in both
[4] and [8], unlike in the case of this paper, the offspring distribution puts positive
weight at 0, so that there are leaves close to the root.
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Figure 1.1. An example of a minimax tree, with 4 levels. Here all
non-leaf nodes have 1, 2 or 3 children.

Similar questions arise in the context of random AND/OR trees and random
Boolean functions. For example the model of Pemantle and Ward [11] involves a reg-
ular tree in which each node independently is a max or a min with equal probability;
see Section 2.2 for comments on the relation to a particular case of our model. See
for example Broutin and Mailler [5] for a variety of recent results in a more general
setting, and many relevant references.

1.1. Main results. Consider a Galton-Watson tree with an offspring distribution
with mass function p1, p2, p3, . . . on {1, 2, 3, . . . } (note that every individual has at
least one child). Let G(x) =

∑∞
k=0 pkx

k be the probability generating function of the
offspring distribution (which is a strictly increasing function mapping [0, 1] to [0, 1]
bijectively). We will also write throughout

R(x) = 1−G(x)(1.1)

and

f(x) = R(R(x)).(1.2)

Truncate the tree at level 2n, so that all the vertices at level 2n are leaves. Let the
terminal values associated to the leaves be i.i.d. uniform on [0, 1] (independently of
the structure of the tree). Recursively, assign values to the internal nodes of the tree
(in particular, to the root) using the minimax procedure defined above. See Figure
1.1 for an illustration.

(Note that there is a nothing particularly special about uniform boundary con-
ditions. By a simple rescaling we can map between this case and the case of i.i.d.
boundary values from any other continuous distribution. Later we will also consider
discrete boundary values, for example those taking values only 0 and 1, where we can
interpret 0 as a win for the first player, and 1 as a win for the second player).

We denote by W2n the random variable associated with the root of a tree of depth
2n. The we have a distributional recursion:

(1.3) W2n
d
= min

1≤i≤M
max

1≤j≤Mi

W
(i,j)
2n−2,

where M and M1,M2,M3, . . . are i.i.d. draws from the offspring distribution, and

W
(i,j)
2n−2, i, j ∈ N, are i.i.d. copies of the random variable W2n−2, independent of M

and {Mi}.
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Then a simple generating function computation (see the beginning of Section 4)
gives

(1.4) P (W2n ≤ x) = f
(
P(W2n−2 ≤ x)

)
,

where f is defined at (1.2). So to look at the behaviour of the W2n for large n, we
will be interested in the function f and in particular its fixed points.

We begin with the results for the case of a regular tree.

Theorem 1.1. Suppose pd = 1 for some d ≥ 2.

(a) (Pearl [10])

W2n
d→ w as n→∞,

where q is the unique fixed point in (0, 1) of the function fd -reg defined by

(1.5) fd -reg(x) = 1−
(

1− xd
)d
.

(b) (Ali Khan, Devroye and Neininger[2]) Let ξ = f ′d -reg(q). Then

ξn (W2n − q)
d→W as n→∞,

where W has a continuous distribution function FW which satisfies FW (x) =
fd -reg(FW (x/ξ)).

Now we will consider general offspring distributions. Since G is increasing and
bijective as a function from [0, 1] to [0, 1], we have that R = 1−G is decreasing and
bijective. and f = R◦R is again increasing and bijective. Also G is analytic on [0, 1),
so that f is analytic on (0, 1).

We’ll be particularly interested in fixed points of the function f . The function R
itself has a single fixed point, which is obviously also a fixed point of f . Otherwise
the fixed points of f come in pairs: if q is one then so is R(q). One such pair are
the points 0 and 1. We will say that a fixed point q of f is unstable from the right
if q < 1 and lim

ε→0
lim
n→∞

fn(q + ε) > q; similarly unstable from the left if q > 0 and

lim
ε→0

lim
n→∞

fn(q − ε) < q.

For a regular tree, Theorem 1.1 tells us that the distribution of W2n converges to
a constant. For general distributions, we still have convergence in distribution, but
now we may have a “genuinely random outcome” in the limit as the tree becomes
large; the limiting distribution may have more than one atom (and in some surprising
cases, the distribution of W2n can simply be the same uniform distribution for all n).

Theorem 1.2. W2n
d→ W as n → ∞, for some random variable W . There are two

cases.

(a) If f is the identity function, then W2n ∼ U [0, 1] for all n.
(b) Otherwise, let Q be the set of fixed points of f which are unstable from at least

one side.
Then W is discrete and has atoms precisely at the elements of Q.
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For q ∈ Q, define

q− =

{
sup{x : x < q, x = f(x)}, if q > 0 and q is unstable from the left

q otherwise

q+ =

{
inf{x : x > q, x = f(x)}, if q < 1 and q is unstable from the right

q otherwise
.(1.6)

Then P(W = q) = q+ − q−.

It’s not hard to show that x ∈ Q if and only if R(x) ∈ Q. Hence again the atoms
of the distributional limit W come in pairs, with the possible exception of the fixed
point of R. In Section 2.1, we comment in particular on the case where W has atoms
at 0 and 1.

For q ∈ (0, 1), we may write (1.6) alternatively as q− = lim
ε→0

lim
n→∞

fn(q − ε) and

q+ = lim
ε→0

lim
n→∞

fn(q + ε) (this follows straightforwardly from the monotonicity and

continuity of f).
In the next results we consider fluctuations around the atoms of the limiting distri-

butions obtained in Theorem 1.2(b). The appropriate rescaling around a point q ∈ Q
depends on the derivative of ξ = f ′(q). If q ∈ Q then we must have ξ ≥ 1.

Theorem 1.3. Consider the model defined by (1.3). Assume that f is not the identity
function and let Q be the set of fixed points of f unstable from at least one side.

Let q ∈ Q. Define q− and q+ as at (1.6), and let ξ = f ′(q). Then:

(a) If 1 < ξ <∞, then

L (ξn(W2n − q) | W2n ∈ [q−, q+]) −→ L(V ) as n→∞,

where V is a random variable with a continuous distribution function.
(b) Suppose ξ = 1, and k ≥ 2 is such that f (r)(q) = 0 for 1 < r < k and f (k)(q) 6= 0.

Then

L
(
n

1
k−1 (W2n − q) | W2n ∈ [q−, q+]

)
−→ L(V ),

where for a =
(
k(k−2)!

f (k)(q)

) 1
k−1

we have V =

{
a w.p. q+−q

q+−q−
−a w.p. q−q−

q+−q−
.

(c) If ξ =∞, then q ∈ {0, 1}. Assume now that

E(MIM≤n) =
n∑
k=1

kpk ∼ cnρ as n→∞(1.7)

for some c > 0 and ρ ∈ (0, 1), where M is distributed according to the offspring
distribution of the Galton-Watson tree, and let K = min{i : pi 6= 0}. Then

K < 1/(1 − ρ), and |f(t) − q| ∼ C|t − q|K(1−ρ) as t → q for some C > 0.
Moreover,

L(−[K(1− ρ)]n log |W2n − q| | W2n ∈ [q−, q+]) −→ L(Y ),

where Y is a random variable such that P(Y ∈ (0,∞)) = 1.

The scaling limits in part (a) are the closest ones to the result for the regular tree
from Theorem 1.1. Note that when q is an endpoint of the interval, the limiting
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distribution V is now one-sided, supported on (0,∞) when q = 0 and on (−∞, 0)
when q = 1.

For part (b), recall that f is analytic on (0, 1) so certainly if q ∈ (0, 1), such a k
exists. Conceivably, there might be no such k in some cases where q = 0 or q = 1
(although we know of no example where analyticity fails at 0 or 1 except when the
derivative is infinite).

On the other hand, many cases with ξ =∞ are not covered by part (c). It seems
challenging to describe all possible asymptotics; however, the assumption (1.7) is sat-
isfied for an important class of power-law distributions with infinite mean, satisfying
P(X > x) ∼ x1−α with α ∈ (1, 2).

2. Examples, discussion and open questions

Our final main results, concerning the endogeny property, will be stated in Section
3. Before that, we discuss a variety of examples illustrating the results of Theorems
1.2 and 1.3.

First consider a case where each node has 1 or 3 children. This simple family
already displays an interesting range of behaviours. Let p1 = p and p3 = 1 − p, for
p ∈ [0, 1]. In Figure 2.1, we plot the function f(x) − x for x ∈ [0, 1], for a variety
of values of p. Fixed points of f correspond to zeros of the curve. A crossing from
negative to positive corresponds to an unstable fixed point.

Figure 2.1. The function f(x) − x for x ∈ [0, 1] for the family of
distributions with p1 = p and p3 = 1 − p, with (a) p = 0.45, (b)
p = 0.5, (c) p = 0.55, (d) p = 0.598, and (e) p = 0.7.

When p < 0.5, the points 0 and 1 are stable and there is a unique unstable fixed
point in (0, 1), just as in the case of a regular tree; W2n converges to a constant.
At p = 0.5, we have f ′(0) = f ′(1) = 1; the slope of f ′(x) − x at 0 and 1 is 0, but
the points are still stable. For p > 0.5, the points 0 and 1 are unstable, and the
limiting distribution W in Theorem 1.2 puts positive mass at 0 and 1. At first, there
is also positive mass at another fixed point in (0, 1). However above a critical point
at roughly p = 0.598, two of the fixed points disappear, leaving only a stable fixed
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point in (0, 1), and the limiting distribution is concentrated only on the points 0 and
1.

Some further illustrative examples are shown in Figure 2.2. For these distributions

Figure 2.2. The function f(x) − x for x ∈ [0, 1] in three further
cases: (a) p1 = 0.5, p2 = 0.25, p4 = 0.25; (b) p2 = 0.783, p30 = 0.217,
and (c) p2 = 0.705 and p12 = 0.295.

(the second and third are only approximate), we see points q ∈ Q with f ′(q) = 1, and
so the rescalings of Theorem 1.3(b), which are polynomial rather than exponential,
apply. In Figure 2.2(a) the relevant fixed points are at 0 and 1, and in Figure 2.2(a),
they appear as “touchpoints” in the graph of f(x)− x and so are unstable from one
side only; in these cases only one of the points a and −a in Theorem 1.3(b) receives
positive mass. By contrast, in Figure 2.2(c), the point of inflection gives a fixed point
which is unstable on both sides.

In passing, we mention briefly another interesting aspect of some of the above
examples, concerning phase transitions. As we vary the offspring distribution, we
see points where, for example, the number of atoms of the limiting distribution W
changes. Often, the transition can be continuous: as the offspring distribution is
varied, an existing atom may split into several new atoms (as may happen when a
point of inflection occurs as in Figure 2.1(d) or Figure 2.2(c)), or new atoms may
appear whose weight grows continously from 0 (such as happens at the points 0 and
1 in Figure 2.1(b)). On the other hand, we can also see discontinuous transitions in
cases such as Figure 2.2(b); one can perturb the offspring distribution in an arbitrarily
small way to remove the “touchpoints” seen there, so that the atoms of W inside (0, 1)
disappear and all there mass jumps to the endpoints 0 and 1. Such ideas, expressed
only vaguely here, are studied in a closely related context in [8].

2.1. Atoms at endpoints. The limiting distribution W in Theorem 1.2 may have
atoms at 0 and 1. We note the following simple criterion:

Proposition 2.1. Let µ be the mean of the offspring distribution.

(i) If p1µ < 1 then P(W = 0) = P(W = 1) = 0.
(ii) If p1µ > 1 (including the case p1 > 0 and µ = ∞) then P(W = 0) > 0 and

P(W = 1) > 0.

If p1µ = 1, or if p1 = 0 and µ =∞, either case is possible. The proof of the result is
straightforward. Since f = R◦R we have f ′(x) = R′(R(x))R′(x). Then sinceR(0) = 1
and R(1) = 0, and since R′ = −G′, we have f ′(0) = f ′(1) = G′(0)G′(1) = µp1

(assuming µ < ∞); and we know that a fixed point q of f is an atom of W if
f ′(q) > 1, and not if f ′(q) < 1.
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There is a rather direct interpretation of the condition p1µ > 1 in terms of the
Galton-Watson tree and the play of the game. Consider the set of paths in the tree,
starting at the root, with the following property: every vertex along the path at an
odd level has only one child. The union of these paths gives a subtree containing
the root. For a vertex at an even level (such as the root), the expected number of
grandchildren in the subtree is p1µ, since the vertex itself has an average of µ children,
and each of those has precisely one child with probability p1. Considering only even
levels, this then gives a branching process with mean offspring p1µ; if p1µ > 1, then
this branching process is supercritical and survives for ever with positive probability.
In that case, by keeping the game within this tree, the first player can ensure that
the second player never has any choice at all; all the second player’s moves are forced.
For the game truncated at level 2n, the first player can choose between all the nodes
at level 2n which are within the subtree; from this it can be shown that P(W = 0) is
at least as big as the probability that this branching process survives.

2.2. The case f(x) ≡ x, and related open questions. Suppose the offspring
distribution is such that f is the identity function. Then from (1.4), if we put in-
dependent values at the leaves from any given distribution, then the value at the
root has that same distribution (hence the statement in Theorem 1.2(a)). Perhaps
surprisingly, this property is not restricted to the trivial case where p1 = 1.

Here are some families of examples where f = R ◦ R = (1 − G) ◦ (1 − G) is the
identity (i.e. R is an involution):

(a) Any geometric distribution. If pk = p(1 − p)k−1 for p ∈ (0, 1), then G(x) =
p

1−(1−p)x and so R(x) = 1−x
1−(1−p)x , and one can check f(x) = x.

(b) Let G(x) =
[
1− (1− x)1/n

]n
, for n = 1, 2, 3, . . . . Via a binomial expansion,

one can express G has a power series expansion with non-negative coefficients,
and G(1) = 1, so G is indeed a probability generating function. The coefficient
of xk is non-zero for k ≥ n.

(c) Let G(x) = 1 − (1− xn)1/n, for n = 1, 2, 3, . . . . Again G has a power series
expansion with non-negative coefficients summing to 1. The coefficient of xk

is non-zero when k is a multiple of n.

These are far from the only cases. For a general source of examples, consider
function S(x, y) from [0, 1]2 to [0, 1] which is symmetric, increasing in each coordinate,
and has S(1, 0) = S(0, 1) = 0. If we define a function R by setting S(x, y) = 0 and
writing y = R(x), then R is indeed an involution. Some such functions R have
power series expansions, and in some of those cases G = 1 − R has all coefficients
positive, as needed for a probability generating function. For example, S(x, y) =

y2 + y + x2 + x − 2 = 0 gives R(x) = [
√

9− 4x− 4x2 − 1]/2, in which case one can
obtain straightforwardly that G = 1−R is a generating function.

We note several questions that it might be interesting to understand further:

(1) Can one describe in some nice way the class of all distributions for which f is
the identity? For the class of examples described in the previous paragraph,
can one describe nicely which functions S(x, y) lead to functions R which have
power series expansions, and then which of those yield a generating function
G?

(2) Are the geometric distributions in example (a) above the only such distribu-
tions with finite mean? More generally, what types of tail decay are possible?
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For (a), the tail
∑∞

r=k pr of course decays exponentially in k, while for (b)

and (c) it decays as k−1/n.
(3) Are there direct probabilistic arguments explaining the fact that f becomes

the identity in these cases, in terms of the underlying process on the tree?
One case where it’s possible to make such an argument is the n = 2 case in

(b) above. Here pk is the probability that the cluster containing the origin has
size k for critical percolation on the binary tree (these coefficients are closely
related to the Catalan numbers). Having made this identification, one can
connect the minimax recursion on our random tree to an analogous recursion
in the model studied by Pemantle and Ward [11], of a binary tree in which
each node independently is a max or a a min with probability 1/2 each.

We end this section with two further open questions about the form of f in more
general cases:

(4) Can f have an arbitrarily large number of fixed points in [0, 1]?
(5) Can f have infinitely many fixed points in [0, 1] (without being equal to the

identity)? Since f is analytic on (0, 1), this would require the set of fixed
points to accumulate at 0 and at 1.

3. Endogeny

Suppose we play the game on a tree where the depth 2n is large, so that the
boundary values are far from the root. To be confident of making a good first move,
do we need to see a large part of the structure of the tree, and the boundary values? –
or can we play close to optimally by inspecting just the structure of the first few levels
of the tree? This is a so-called endogeny question [1]. The answer to this question
again depends on the offspring distribution and the distribution of the boundary
values.

To formalise the question, first define an operator on distributions corresponding to
the recursion given by (1.3). For a distribution µ on [0, 1], let T (µ) be the distribution

of the left-hand side of (1.3) when the random variables W
(i,j)
2n−n on the right-hand side

are i.i.d. with distribution µ. Equivalently, rewriting (1.4), T (µ)[0, y] = f(µ[0, y]) for
all y.

We will be interested in fixed points of T . For example, for offspring distributions
such that f is the identity, every µ is a fixed point of T . For more general offspring
distributions, whenever x is a fixed point of f , the Bernoulli distribution which puts
mass x at 0 and 1 − x at 1 is a fixed point of µ; for a game with Bernoulli terminal
values, there are only two possible values of the outcome and we can interpret 0 as a
win and 1 as a loss (from the perspective of the first player).

Suppose indeed that µ is a fixed point of the operator T . Consider a tree of depth
2n (given by the Galton-Watson tree truncated at level 2n) with the terminal values
drawn independently from µ. Then the distribution of the value at the root is also µ.
More generally, consider the structure of the first k levels of the tree; the distribution
of these first k levels is the same for any n (such that k ≤ 2n).

As a consequence of this consistency over different values of n, we may let n→∞
and, applying Kolmogorov’s extension theorem, obtain a distribution of the entire
infinite Galton-Watson tree along with values attached to each node which obey the
minimax recursions (min at even levels, max at odd levels).
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This gives a stationary recursive tree process in the language of [1]. The relevant
stationarity property is the following: condition on the structure of the first two levels
of the tree, and write v1, . . . , vr for the level-2 nodes. Conditional on the structure
of the first two levels, the structure of the subtrees rooted at v1, . . . , vr, along with
the values associated to the nodes of those subtrees, are given by r i.i.d. copies of
the original tree process. (More precisely, we might describe the tree process as “2-
periodic” rather than stationary, since even and odd levels differ; we can recover a
genuinely stationary process by considering only even levels.)

For a more formal and more general set-up, see for example [1] or [9].
We have defined a joint distribution of the structure of the tree and the values

associated to each node of the tree. Now the recursive tree process is said to be
endogenous if the value associated to the root is measurable with respect to the
structure of the tree. Note that for the same offspring distribution, this endogeny
property may hold for some fixed point distributions µ and not for others.

Being measurable with respect to the structure of the tree is equivalent to being
approximable to any given degree of accuracy using the information only of some
finite portion of the tree. That is, for any random variable X (in particular, the root
value), X is measurable with respect to the structure of the tree if, for any x and any
ε > 0, there exists k such that with probability 1−ε, the conditional probability of the
event {X ≤ x}, given the structure of the first k levels of the tree is in [0, ε]∪ [1−ε, 1],
where X denotes the value at the root.

For a more concrete interpretation, we can concentrate only on the case of finite
trees, truncated at some level 2n. Then the property in the previous paragraph can
be reformulated to say that the value at the root can be approximated arbitrarily
closely using information from the structure of some appropriate number of levels at
the top of the tree, uniformly in the value of n.

Note that endogeny does not indicate that the value at the root is insensitive to
arbitrary changes in the boundary conditions. In our case, that would be trivially
false. Rather, for a given distribution of boundary conditions, endogeny expresses the
property that, if the boundary is far away, the root is typically not much affected by
the difference between various realisations drawn from that distribution. In particular,
endogeny may hold for some boundary distributions and not for others, as is indeed
the case for our model.

Consider in particular the Bernoulli (“win/loss”) boundary conditions described
above.

Theorem 3.1. Let x ∈ (0, 1) be a fixed point of f , and consider the stationary
recursive tree process with Bernoulli(1 − x) marginals for the values at even levels.
The process is endogenous if and only if f ′(x) ≤ 1.

So, approximately speaking, the endogenous processes with Bernoulli marginals
correspond to the stable fixed points of the function f , which are those fixed points
which do not appear as atoms in the distribution of the limiting random variable W
in Theorem 1.2. (An exception may occur when the derivative of f at a fixed point
is precisely 1; further, in the cases x = 0 and x = 1 the values are constant and the
process is trivially endogenous.)

To prove Theorem 3.1, we use a characterisation of endogeny in terms of uniqueness
of bivariate distributions, introduced by Aldous and Bandyopadhyay in [1] and proved
in somewhat more generality by Mach, Sturm and Swart [9]. See Section 5 for details.
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For offspring distributions where f is the identity, any distribution µ gives rise to
a recursive tree process. In particular, we can take µ to be the uniform distribution
on [0, 1], as we did in previous sections. We have the following corollary of Theorem
3.1:

Corollary 3.2. Suppose f is the identity. Then for any µ, the recursive tree process
with marginals µ for the values at even levels is endogenous.

4. Proofs: convergence and scaling limits

First, we show how (1.4) follows from the recursive distributional equation (1.3).
As at (1.3), let M and M1,M2,M3 be i.i.d. draws from the offspring distribution, and

W
(i,j)
2n−2 i.i.d. copies of the random variable W2n−2, independent of M and {Mi, i ≥ 1}.
Note that for any given i,

P
(

max
1≤j≤Mi

W
(i,j)
2n−2 > x

)
= 1− P

(
W

(i,j)
2n−2 ≤ x for j = 1, . . . ,Mi

)
= 1−

∑
m

pmP (W2n−2 ≤ x)m

= R
(
P(W2n−2 ≤ x)

)
.(4.1)

So from (1.3) we have

P (W2n ≤ x) = P
(

min
1≤i≤M

max
1≤j≤Mi

W
(i,j)
2n−2 ≤ x

)
= 1− P

(
max

1≤j≤Mi

W
(i,j)
2n−2 > x for all j = 1, . . . ,Mi

)
= 1−

∑
m

pm [R (P (W2n−2 ≤ x))]m

= R
(
R
(
P(W2n−2 ≤ x)

))
= f

(
P(W2n−2 ≤ x)

)
,

giving (1.4) as desired.

Proof of Theorem 1.2. From the previous line and the monotonicity of f we see that
limn→∞ P(W2n ≤ x) = limn→∞ f

n(x) exists for all x, and therefore W2n indeed
converges in distribution as n → ∞, to a limit W with the distribution function
FW (x) = limn→∞ f

n(x).
Part (a) is immediate from (1.4). For part (b), note that since f is analytic in

(0, 1) and f is not the identity function, the set of fixed points of f cannot have an
accumulation point in (0, 1). Therefore, this set of fixed points of f defines a partition
of the interval (0, 1) into a disjoint union of open intervals plus the set of fixed points,
each of which is an endpoint of exactly two intervals from the partition. Since f
is monotone and continuous, FW (x) = limn→∞ f

n(x) is constant on those intervals;
therefore W can have atoms only at fixed points of f .

Suppose q ∈ (0, 1) is such a fixed point. Then

P(W = x) = lim
ε→0

P(q − ε < W ≤ x+ ε)

= lim
ε→0

lim
n→∞

fn(q + ε)− lim
ε→0

lim
n→∞

fn(q − ε).(4.2)
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Since f is monotone and continuous, the quantity above is equal to 0 precisely if and
only if the fixed point q is stable. Hence indeed W has an atom at q precisely if q is
unstable from at least one side. As commented immediately after Theorem 1.2, the
right-hand side of (4.2) is equal to q+ − q−, as required.

The cases where q = 0 or q = 1 follow in a similar way. �

The rest of this section is devoted to the proof of Theorem 1.3.

4.1. Proof of Theorem 1.3(a): 1 < f ′(q) < ∞. Firstly we assume that q is the
unique fixed point of f in (0, 1) and that it is unstable from both sides. In the second
part of the proof we show how Lemma 4.1 below implies the general case.

Suppose ξ = f ′(q) > 1. An example of this case is in Figure 2.1(a), where p1 = 0.45
and p3 = 0.55.

We will prove the following result:

Lemma 4.1. Consider the recursion (1.4) and assume that q is the unique fixed point
of f in (0, 1) and that it is unstable from both sides. Set ξ = f ′(q). If ξ > 1, then

ξn(W2n − q)
d−→ V as n→∞,

where the distribution function FV of V is continuous and satisfies

FV (x) = f(FV (x/ξ)), x ∈ R.

Lemma 4.1 extends the result of Ali Khan, Devroye and Neininger [2] to the case of
random trees. Note that Lemma 4.1 corresponds directly to the part (a) of Theorem
1.3 for f having a unique fixed point in (0, 1) which is unstable, as then q− = 0 and
q+ = 1.

Proof of Lemma 4.1. We follow the lines of [2] but in our case the analysis is slightly
more complicated because of the more general form that f can admit. We first prove
that there exists a pointwise limit of distribution functions of ξn(W2n − q), which
is not identical to 0 or 1, and then show that it is continuous, which completes the
proof. Define

gn(x) = P (ξn(W2n − q) ≤ x) , x ∈ R

Therefore, for each x for sufficiently large n (such that 0 ≤ q + x
ξn ≤ 1),

gn(x) = P
(
W2n ≤ q +

x

ξn

)
= fn

(
q +

x

ξn

)
.

Note that gn(0) = q for all n. We need some local uniform bound for gn around
x = 0. This will be supplied by the following lemma:

Lemma 4.2. Under the assumptions of Lemma 4.1, let k be the smallest number
larger than 1 such that f (k)(q) 6= 0. Denote h1(x) = q + x and h2(x) = q + x + cxk

for x ∈ R. Then there exist c and an ε > 0 such that for all n and |x| ≤ ε, either
h1(x) ≤ gn(x) ≤ h2(x) or h2(x) ≤ gn(x) ≤ h1(x).

Note that such a number k exists since we assumed that f is not the identity
function and f is analytic at q.
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Proof of Lemma 4.2. Take any c such that c has the same sign as f (k)(q) and |c| >∣∣∣ f (k)(q)
k!ξ(ξk−1−1)

∣∣∣. From analyticity of f , f (k)(x) does not change the sign on some neigh-

bourhood of q.
For simplicity assume that k is even and f (k)(q) > 0. We would generally need

to consider four cases depending on the parity of k and the sign of f (k)(q). For the
other three cases the steps of the proof of the lemma are identical modulo the change
of sign in the inequalities.

The proof is by induction on n and makes use of Taylor’s formula up to order k.
For n = 0 the assertion is true, as we have

h1(x) = q + x = g0(x) ≤ h2(x).

Note that the above holds for all ε, thus we will chose ε later. Assume now that

h1(x) ≤ gn−1(x) ≤ h2(x)

for some n− 1 ≥ 0, |x| ≤ ε and ε > 0. Since
∣∣∣xξ ∣∣∣ ≤ ε, as |x| ≤ ε and ξ > 1, and f is

increasing, we have

gn(x) = fn
(
q +

x

ξn

)
= f

(
fn−1

(
q +

x/ξ

ξn−1

))
= f (gn−1 (x/ξ)) ≥ f (h1 (x/ξ)) ,

and analogously

gn(x) ≤ f (h2 (x/ξ)) .

The induction proof will be completed if we can show that for some ε > 0, for |x| ≤ ε,

h1(x) ≤ f (h1 (x/ξ)) , f (h2 (x/ξ)) ≤ h2(x).(4.3)

Taking the Taylor expansion of f around q at points q + x/ξ and q + x/ξ + c (x/ξ)k,
we obtain

f(h1(x/ξ)) = q + x+
1

k!

1

ξk

(
f (k)(q)

)
xk + o(xk),

f(h2(x/ξ)) = q + x+
1

k!

1

ξk

(
f (k)(q) + ξk!c

)
xk + o(xk).

Since

0 <
1

k!

1

ξk

(
f (k)(q) + ξk!c

)
=

f (k)(q)

k!ξ(ξk−1 − 1)

ξk−1 − 1

ξk−1
+ c

1

ξk−1
< c

and by assumption f (k)(q) > 0, we are therefore able to pick ε > 0 such that (4.3)
holds for |x| ≤ ε. This ends the proof of Lemma 4.2. �

Note that if we show that for some g, gn(x)→ g(x) for all x, then the above lemma
will imply that g(x) is continuous and differentiable at x = 0 with g′(0) = 1. We now
claim that for each x, (gn(x)) is a monotone sequence for n > nx. This is implied by
the following lemma:

Lemma 4.3. Under the assumptions of Lemma 4.1, for each M there exists nM such
that for |x| ≤M , (gn(x)) is a monotone sequence for n ≥ nM .
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Proof of Lemma 4.3. As in the proof of Lemma 4.2, we consider the case where k is
even and f (k)(q) > 0 – the other cases are identical. Using Taylor expansion up to
order k, there exists ε > 0 such that for |y| ≤ ε,

f (q + y) ≥ f(q) + f ′(q)y(4.4)

(recall that f (i)(q) = 0 for 1 < i < k). Now let nM = dlogξ
(
M
ε

)
e and note that for

any |x| ≤M and n ≥ nM , |x/ξn| < ε and therefore by (4.4),

f

(
q +

x

ξn

)
≥ f(q) + f ′(q)

x

ξn
= q +

x

ξn−1
.

Finally, since fn−1 is monotone increasing,

gn(x) = fn
(
q +

x

ξn

)
= fn−1

(
f

(
q +

x

ξn

))
≥ fn−1

(
q +

x

ξn−1

)
= gn−1(x).

This proves the claim. �

Since gn(x) ≤ 1, by Lemma 4.3 gn(x) converges for all x – we denote the limit by
g(x). The continuity of f and the fact that gn(x) = f(gn−1(x/ξ)) imply that

g(x) = f(g(x/ξ)).(4.5)

Therefore, from the continuity of f and the monotonicity of g, limx→−∞ g(x) and
limx→∞ g(x) are fixed points of f . Using the fact that {0, q, 1} are the only fixed points
of f , g is non-decreasing, g(0) = q and g′(0) = 1, we deduce that limx→−∞ g(x) = 0
and limx→∞ g(x) = 1. When we show that g is continuous at all x, it will then imply
that FV = g.

We apply the following strategy to show that g is continuous: we showed that g(x)
is continuous at 0 and now we show separately that it is continuous on some (−ε, 0)
and on some (0, ε). The identity (4.5), together with the continuity of f , then implies
that g is continuous on all of R (since ξ > 1).

We still work under the assumption that f (k)(q) > 0, where k ≥ 2 is such that

f (r)(q) = 0 for 1 < r < k and f (k)(q) 6= 0, and that k is even (if k is odd then
reasoning in the two cases below should be swapped). Note that to prove that g is
continuous on some interval I, it is sufficient to show that

sup
y∈I

sup
n≥0

g′n(y) <∞.(4.6)

By the chain rule we obtain

g′n(x) =
1

ξn

n−1∏
i=0

f ′
(
f i
(
q +

x

ξn

))
.(4.7)

We consider first g′n(y) for y < 0. Since f (k)(q) > 0, there exists an ε > 0 such that
f ′(q + y) < ξ for y ∈ (−ε, 0). Since f(q) = q and ξ > 1, this implies that for i < n

q > f i
(
q +

y

ξn

)
> q + ξi

y

ξn
> q − ε,

hence f ′
(
f i
(
q + y

ξn

))
< ξ. By (4.7) we conclude that g′n(y) < 1 for all n and

y ∈ (−ε, 0). This implies that (4.6) holds with I = (−ε, 0), hence g is continuous on
(−ε, 0).
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Now we turn to the case of y > 0. The function f is non-decreasing, and ξ > 1;
hence for all 0 < i < n and all 0 ≤ y ≤ x,

q ≤ f i
(
q +

y

ξn

)
≤ f i

(
q +

x

ξn

)
.(4.8)

Note also that

f i
(
q +

x

ξn

)
≤ f i

(
q +

x

ξi

)
= gi(x).(4.9)

Now by the assumption f (k) > 0 there exists an ε > 0 such that f ′(q + x) is strictly
increasing for x ∈ (0, ε). By the continuity of g at 0, there exists γ > 0 such that
g(x) < q + ε for x ∈ (0, γ). By Lemma 4.3, there exists nγ such that for 0 < x ≤ γ,

(gi(x)) is a monotone sequence (an increasing one, since we assume f (k)(q) > 0) for
i > nγ . Therefore, for i ≥ nγ , and for 0 < x < γ,

gi(x) ≤ g(x) < q + ε.(4.10)

On the other hand, for i < nγ ∧ n, since f(q + x) > q + x for x ∈ (0, 1− q),

f i
(
q +

x

ξn

)
≤ fnγ

(
q +

x

ξn

)
≤ fnγ (q + x) .(4.11)

fnγ is continuous and non-decreasing, hence we may pick γ̃ > 0 such that for 0 <
x < γ̃,

fnγ (q + x) < q + ε.(4.12)

Finally, combining (4.8) – (4.12), we obtain that for all 0 < i < n and for all 0 ≤ y ≤
x ≤ γ ∧ γ̃,

q ≤ f i
(
q +

y

ξn

)
≤ f i

(
q +

x

ξn

)
≤ q + ε.(4.13)

Recall that ε was chosen to be such that f ′ is strictly increasing on (q, q + ε). Com-
bining this with (4.7) and (4.13) we obtain that

g′n(y) ≤ g′n(x).(4.14)

We are now going to use (4.14) to show that (4.6) holds for all for I = (0, ε) with
ε = 1

2(γ ∧ γ̃). For each z ∈ (ε, 2ε) and all n ≥ 0, by (4.14) we have

sup
y∈(0,ε)

g′n(y) ≤ g′n(z).

Therefore,

sup
n≥0

sup
y∈(0,ε)

g′n(y) ≤ sup
n≥0

1

ε

∫ 2ε

ε
g′n(z)dz

≤ sup
n≥0

1

ε
(gn(2ε)− gn(ε)

≤ 1

ε
,

where the last inequality follows since each gn is a distribution function. This proves
that g(y) is continuous on (0, ε). This completes the proof of Lemma 4.1.

�
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Multiple atoms. In the previous section we found the correct order of fluctuations
when f had a single fixed point in the interval (0, 1). When f has more than one
fixed point in the interval (0, 1), we cannot simply consider the quantity W2n−q, since
the limiting distribution has multiple atoms, but it turns out that we can condition
on W2n being close enough to one of the atoms and straightforwardly apply Lemma
4.1. Note that the set of fixed points of f cannot have an accumulation point in the
interval (0, 1). To see this, recall that f is a composition of functions analytic in (0, 1).
Therefore, f(x) − x is also analytic in (0, 1) and we justify the claim using the fact
that zeros of an analytic function not identical to 0 cannot have any accumulation
points in the domain in which the function is analytic.

The case of multiple atoms of V is summarized in the following lemma:

Lemma 4.4. Consider the recursion (1.4) and assume that q−, q, q+ are fixed points
of f satisfying the following conditions:

• q ∈ (0, 1) is unstable and f ′(q) > 1,
• q− < q < q+,
• q is the only unstable from at least one side point of f in the interval (q−, q+).

Then,

L (ξn(W2n − q) | W2n ∈ [q−, q+]) −→ L(V ),

where ξ = f ′(q) and V is a random variable with a continuous distribution function.

Note first that since f ′(q) > 1, the definitions of q− and q+ coincide with those
given in (1.6).

Proof of Lemma 4.4. Fix x ∈ [0, 1]. Then

P

(
W2n − q−
q+ − q−

≤ x

∣∣∣∣∣W2n ∈ [q−, q+]

)
=

P(q− ≤W2n ≤ x(q+ − q−) + q−)

P(q− ≤W2n ≤ q+)

=
f(P(W2n−2 ≤ x(q+ − q−) + q−)− q−

q+ − q−

=
f
(
P
(
W2n−2−q−
q+−q− ≤ x

))
− q−

q+ − q−

= f̃

(
P

(
W2n−2 − q−
q+ − q−

≤ x

∣∣∣∣∣W2n−2 ∈ [q−, q+]

))
,

(4.15)

where

f̃(x) =
f(x(q+ − q−) + q−)− q−

q+ − q−
.

Furthermore, f̃(x) is a continuous bijective mapping from [0, 1] to [0, 1] with a single

fixed point q̃ = q−q−
q+−q− in (0, 1) and

f̃ ′(q̃) = f ′(q) = ξ,

f̃ (k)(q̃) = f (k)(q)(q+ − q−)k−1.
(4.16)
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Consider a sequence of random variables (W̃2n)∞n=0 such that

W̃2n
d
=

(
W2n − q−
q+ − q−

∣∣∣∣∣ W2n ∈ [q−, q+]

)
.

We check that W̃0 ∼ U(0, 1), P(W̃2n ≤ x) = f̃(P(W̃2n−2 ≤ x). Combining this with

(4.16), we may apply Lemma 4.1 to (W̃2n)∞n=0 to conclude that

L (ξn(W2n − q) | W2n ∈ [q−, q+]) −→ L((q+ − q−)V ),

where W is a random variable with a continuous distribution function g̃ that satisfies
g̃(x) = f̃(g̃(x)). Finally, we note that the distribution function of (q+ − q−)V is also
continuous, which ends the proof. �

Boundary fixed points. To finish the proof of part (a) of Theorem 1.3 we need to
consider the case when one of q−, q+ is equal to q. This may happen either if q
is at the boundary (i.e. q ∈ {0, 1}) or when q ∈ (0, 1), but q is stable from one
side. These cases can be treated simultaneously by repeating the reasoning from the
proofs of Lemma 4.1 and Lemma 4.4. Note that the limiting distribution V is now
concentrated on either the positive or negative half-line.

4.2. Proof of Theorem 1.3(b): f ′(q) = 1. We have already described the fluc-
tuations of W2n when we know that it converges to some fixed point q of f with
f ′(q) ∈ (1,∞). If the point was unstable from both sides, we obtained a two-sided
continuous limiting distribution.

If q is a fixed point of f such that f ′(q) = 1, it may be unstable, stable or unstable
from one side and stable from the other. In this case it is more convenient to consider
each side of q separately. For simplicity, we state and prove a lemma for the case
where q is unstable from the right and then comment on the general case.

Note that the set of fixed points doesn’t have an accumulation point in (0, 1), but
it is not known whether this behaviour may be exhibited at the boundary, hence the
additional assumption in the lemma.

Lemma 4.5. Consider the recursion (1.4) and assume that q is a fixed point of f ,
that it is unstable from the right and let q+ = inf{x : x > q, x = f(x). Suppose that

f ′(q) = 1 and k is such that f (r)(q) = 0 for 1 < r < k and f (k)(q) 6= 0. If q+ 6= q,
then

L
(
n

1
k−1 (W2n − q) | W2n ∈ [q, q+]

)
→ δa,

where a =
(
k(k−2)!

f (k)(q)

) 1
k−1

.

Figure 2.2(a) gives an example where Lemma 4.5 applies.

Proof of Lemma 4.5. We are going to show that the distribution function of n
1

k−1 W2n−q
q+−q

conditioned on the event W2n ∈ [q, q+] converges to some limit as n tends to infinity.
Define

gn(x) := P
(
n

1
k−1

W2n − q
q+ − q

≤ x
∣∣∣∣ W2n ∈ [q, q+]

)
.(4.17)
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By calculations similar to those (4.15) in the proof of Lemma 4.4, we obtain that for
x ∈ [0, 1],

P
(
W2n − q
q+ − q

≤ x
∣∣∣∣ W2n ∈ [q, q+]

)
= f̃

(
P
(
W2n − q
q+ − q

≤ x
∣∣∣∣ W2n−2 ∈ [q, q+]

))
,

where

f̃(x) =
f(x(q+ − q) + q)− q

q+ − q
.

Note that

f̃(0) = 0,

f̃(1) = 1,

f̃ ′(0) = f ′(q) = 1,

f̃ (i)(0) = (q+ − q)i−1f (i)(q),

and f̃ has no fixed points in (0, 1). Since for every x > 0, for sufficiently large n,
x

n
1

k−1
∈ [0, 1], for such n we have

gn(x) = P
(
W2n − q
q+ − q

≤ xn−
1

k−1

∣∣∣∣ W2n ∈ [q, q+]

)
= f̃n

(
P
(
W0 − q
q+ − q

≤ xn−
1

k−1

∣∣∣∣ W0 ∈ [q, q+]

))
= f̃n

(
xn−

1
k−1

)
.

(4.18)

The proof consists of two parts:

I We show that for each x < a, for sufficiently large n, (gn(x)) forms a decreasing
sequence, and for each x > a, for sufficiently large n, (gn(x)) forms an increasing
one,

II we show that for x < a, gn(x)→ 0, and for x > a, gn(x)→ 1.

Part I. Fix x 6= 0. Using Taylor’s expansion, we may expand f̃(x) as follows:

f̃(x) = f̃(0) + x+
f̃ (k)(0)

k!
xk + rk(x)xk,

where limx→0 rk(x) = 0. Therefore,

f̃

(
x

n
1

k−1

)
<

x

(n− 1)
1

k−1

(4.19)

is equivalent to

x

n
1

k−1

+
f̃ (k)(0)

k!

(
x

n
1

k−1

)k
+ rk

(
x

n
1

k−1

)(
x

n
1

k−1

)k
<

x

(n− 1)
1

k−1

,

and to

f̃ (k)(0)

k!
xk−1 + rk

(
x

n
1

k−1

)
xk−1 < n

((
n

n− 1

) 1
k−1

− 1

)
.
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Letting n→∞, the right-hand side of the last formula converges to 1
k−1 , whereas the

left-hand one converges to f̃ (k)(0)
k! xk−1. Therefore, the last inequality is satisfied for

large n if

x <

(
k(k − 2)!

f (k)(q)

) 1
k−1 1

q+ − q
,

and similarly

f̃

(
x

n
1

k−1

)
>

x

(n− 1)
1

k−1

(4.20)

for large n if

x >

(
k(k − 2)!

f (k)(q)

) 1
k−1 1

q+ − q
.

This yields the claim, as f̃n−1 is a strictly increasing function, hence recalling (4.18),
the inequality (4.19) is equivalent to

gn(x) = f̃n
(

x

n
1

k−1

)
< f̃n−1

(
x

(n− 1)
1

k−1

)
= gn−1(x),

and the inequality (4.20) is equivalent to

gn(x) = f̃n
(

x

n
1

k−1

)
> f̃n−1

(
x

(n− 1)
1

k−1

)
= gn−1(x).

This ends the proof of the claim.
Part II. Since each gn is a distribution function, and by Part I above for each x,
(gn(x)) is a monotone sequence for large n (decreasing for x < a and increasing for
x > a), hence the limit g(x) = limn→∞ gn(x) exists for all x. To show that for x < a,
g(x) = 0, assume that for some 0 < x < a, g(x) = ε > 0. This implies that

f̃n
(

x

n
1

k−1

)
≥ ε > 0(4.21)

for large n. Take y ∈ R, l ∈ N such that y = x
(

l
l−1

) 1
k−1

< a. Note also that g(y) ≤ 1,

but since (gn(y)) is a strictly decreasing sequence, the inequality is in fact sharp, thus

lim
n→∞

gn(y) < 1.(4.22)

On the other hand,

lim
n→∞

gn(y) = lim
n→∞

gnl(y) = lim
n→∞

f̃nl

(
y

(nl)
1

k−1

)

= lim
n→∞

f̃n ◦ f̃n(l−1)

 y
(
l−1
l

) 1
k−1

(n(l − 1))
1

k−1


= lim

n→∞
f̃n ◦ f̃n(l−1)

(
x

(n(l − 1))
1

k−1

)
,

(4.23)
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and by (4.21),

lim
n→∞

f̃n ◦ f̃n(l−1)

(
x

(n(l − 1))
1

k−1

)
≥ lim

n→∞
f̃n(ε) = 1,

as 1 is the only stable fixed point of f̃ in the interval [0, 1]. But this contradicts (4.22)
and thus g(x) = 0.

Similarly, to show that for x > a, g(x) = 1, fix any such x and take y ∈ R, l ∈ N
such that y =

(
l−1
l

) 1
k−1 x > a. By calculations similar to (4.23),

lim
n→∞

gn(x) = lim
n→∞

gnl(x) = lim
n→∞

f̃nl

(
x

(nl)
1

k−1

)

= lim
n→∞

f̃n ◦ f̃n(l−1)

(
y

(n(l − 1))
1

k−1

)
= lim

n→∞
f̃n ◦ gn(l−1)(y),

but since (gn(y)) is a strictly increasing sequence for large n, for these n, gn(y) ≥ δ
for some δ > 0, hence

lim
n→∞

f̃n ◦ gn(l−1)(y) ≥ lim
n→∞

f̃n(δ) = 1,

as again, 1 is the only stable fixed point of f̃ in [0, 1].
Recall now the definition of gn(x) (4.17). Parts I and II prove that

L
(
n

1
k−1

W2n − q
q+ − q

∣∣∣∣ W2n ∈ [q, q+]

)
→ δa,

and thus

L
(
n

1
k−1 (W2n − q)

∣∣∣∣ W2n ∈ [q, q+]

)
→ δa(q+−q),

where

a(q+ − q) =

(
k(k − 2)!

f (k)(q)

) 1
k−1

.

This completes the proof of Lemma 4.5. �

To finish the proof of part (b) of Theorem 1.3 we apply Lemma 4.5 and its coun-
terpart for points unstable from the left to [q, q+] and [q−, q] respectively. Checking
that for each n

P (W2n ∈ [q, q+] | W2n ∈ [q−, q+]) =
q+ − q
q+ − q−

,

P (W2n ∈ [q−, q] | W2n ∈ [q−, q+]) =
q − q−
q+ − q−

,

shows that the masses in the formulation of the theorem are chosen appropriately,
hence ends the proof.
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4.3. Proof of Theorem 1.3(c): f ′(q) =∞. Note first that f ′(q) =∞ can happen
only at q ∈ {0, 1}.

We start by describing behaviour of f near 0. The first step is supplied by the
following technical lemma:

Lemma 4.6. There exist functions H(x) and b(x) defined on (−1, 1) such that f(x) ∼
H(x) as x→ 0 and

H ′(x) ∼

( ∞∑
n=1

npnb(x)n−1

)
KpKx

K−1,

where 1− b(x) ∼ pKxK as x→ 0.

Proof of Lemma 4.6. By simple calculations,

f(x) = R(R(x)) =
R(R(x))

1−R(x)
(1−R(x)) =

1−
∑∞

n=1 pnR(x)n

1−R(x)

∞∑
n=1

pnx
n

=

∑∞
n=1 pn(1−R(x)n)

1−R(x)

∞∑
n=1

pnx
n =

∞∑
n=1

(
pn

n−1∑
i=0

R(x)i

) ∞∑
n=1

pnx
n

=
∞∑
i=0

(
R(x)i

∞∑
n=i+1

pn

) ∞∑
n=1

pnx
n =

∞∑
i=0

[
R(x)iP(M > i)

] ∞∑
n=1

pnx
n,

(4.24)

where M is a random variable with law P(M = i) = pi. Furthermore, recalling that
K = min{i : pi 6= 0},

R(x)

1− x
=

∑∞
n=1 pn(1− xn)

1− x
=
∞∑
n=1

pn

n−1∑
i=0

xi =
∞∑
i=0

xi
∞∑

n=i+1

pn

=
∞∑
i=0

xiP(M > i) = 1 + x+ . . .+ xK−1 + xK
∞∑
i=K

xi−KP(M > i).

(4.25)

Therefore, substituting (4.25) into (4.24),

f(x) =

∞∑
i=0

[
(1− x)(1 + x+ . . .+ xK−1 + xKh(x))

]i P(M > i)

∞∑
n=1

pnx
n,(4.26)

where

h(x) =
∞∑
i=K

xi−KP(M > i)→ P(M > K) = 1− pK as x→ 0.(4.27)

Observe that h′(x)→ P(M > K + 1) as x→ 0. Now for any b < 1,

∞∑
i=0

biP(M > i) =

∞∑
n=1

pn

n−1∑
i=0

bi =
1

1− b

(
1−

∞∑
n=1

pnb
n

)
,

and thus, setting

b(x) = (1− x)(1 + x+ . . .+ xK−1 + xKh(x)) = 1− xK + xKh(x)− xK+1h(x),
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from (4.26) we obtain

f(x) =
1

1− b(x)

(
1−

∞∑
n=1

pnb(x)n

) ∞∑
n=1

pnx
n.(4.28)

Observe that

1− b(x) = xK(1− h(x)) + xK+1h(x),

hence by (4.27),

1− b(x) ∼ pKxK as x→ 0.

Moreover, from (4.28),

f(x) =
1

xK(1− h(x)) + xK+1h(x)

(
1−

∞∑
n=1

pnb(x)n

) ∞∑
n=1

pnx
n =

=
1

1− h(x) + xh(x)

(
1−

∞∑
n=1

pnb(x)n

) ∞∑
n=K

pnx
n−K .

Note that as x→ 0, the first fraction on the right-hand side converges to 1
pK

, and the

final sum converges to pK . Thus

f(x) ∼

(
1−

∞∑
n=1

pnb(x)n

)
as x→ 0. Therefore, denoting H(x) := (1−

∑∞
n=1 pnb(x)n), we have

f(x) ∼ H(x)(4.29)

and, recalling that limx→0 and limx→0 h
′(x) = P(M > K + 1),

H ′(x) =

(
1−

∞∑
n=1

pnb(x)n

)′
∼

( ∞∑
n=1

npnb(x)n−1

)
KpKx

K−1

as x→ 0+ which ends the proof of the lemma. �

Equipped with the relation from Lemma 4.6 we may now connect f with the
underlying offspring distribution via Karamata’s Tauberian Theorem for Power Series
(a proof may be found e.g. in [3]). Recall first the theorem:

Theorem 4.7 (Karamata’s Tauberian Theorem). If an ≥ 0 and the power series
A(s) =

∑∞
n=0 ans

n converges for s ∈ [0, 1), then for c, ρ ≥ 0 the following are equiva-
lent:

n∑
k=0

ak ∼ cnρ as n→∞

and

A(s) ∼ cΓ(1 + ρ)

(1− s)ρ
as s ↑ 1.
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Recall the assumption (1.7) of Theorem 1.3: for some ρ ∈ (0, 1),

E(MIM≤n) =

n∑
k=1

kpk ∼ cnρ.

By Theorem 4.7 applied to ak = kpk and (1.7) we obtain that as we let x → 0
(which implies b(x)→ 1),

1

KpKxK−1
H ′(x) ∼

∞∑
n=1

npnb(x)n−1 ∼ cΓ(1 + ρ)

(1− b(x))ρ
∼ cΓ(1 + ρ)

pρK

1

xKρ
.

Therefore,

H(t) =

∫ t

0
H ′(x)dx ∼

∫ t

0

cΓ(1 + ρ)

pρK

1

xKρ
KpKx

K−1dx =
cΓ(1 + ρ)p1−ρ

K

1− ρ
tK−Kρ,

(4.30)

as t→ 0, hence, by (4.29) and (4.30),

f(t) ∼
cΓ(1 + ρ)p1−ρ

K

1− ρ
tK(1−ρ)

as t→ 0. This implies that for f ′(0) =∞ to hold it is necessary that K < 1
1−ρ .

To provide the criterion for q = 1, we are interested in the behaviour of the quantity
1− f(t) when t→ 1. Now

1− f(t) = 1−R(R(t)) = G(R(t)) ∼ pKR(t)K .(4.31)

By definition, R(x) = 1−
∑∞

k=1 pkx
k, thus

R′(x) = −
∞∑
k=1

kpkx
k−1,

and again by Theorem 4.7 applied to ak = kpk and (1.7),

R′(x) ∼ −cΓ(1 + ρ)

(1− x)ρ

as x→ 1, and thus

R(t) = R(1)−
∫ 1

t
R′(x)dx =

cΓ(1 + ρ)

1− ρ
(1− t)1−ρ .(4.32)

Substituting (4.32) into (4.31) we obtain that

1− f(t) ∼ pK
(
cΓ(1 + ρ)

1− ρ

)K
(1− t)K(1−ρ)

as t→ 1. Thus again, for f ′(1) =∞ to hold it is necessary that K(1− ρ) < 1.

We’ve shown that f(t) ∼ C0t
K(1−ρ) as t → 0 and 1 − f(t) ∼ C1(1 − t)K(1−ρ) as

t→ 1 for some positive constants C0, C1 that we determined explicitly. Note that

C1 = Ck0 p
1−K(1−ρ)
K

and since K(1 − ρ) < 1, at least one of the constants C0, C1 is different from 1.
The proof of Proposition 1.3(c) is completed by the following two lemmas applied as
follows: Lemma 4.8 applied with α = K(1− ρ) proves existence of the distributional
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limit at either point q with Cq 6= 1, and Lemma 4.9 shows that the limit exists at
q = 0 if and only if it exists at q = 1.

Lemma 4.8. Consider the recursion (1.4);

(1) Assume that f(t) ∼ Ctα with C 6= 1 and α ∈ (0, 1) as t→ 0. Let q+ = inf{x :
x > 0, x = f(x)}. Then

L (αn logW2n | W2n ∈ [0, q+])
d−→ V0,(4.33)

where V0 is a random variable with P(V0 ∈ (−∞, 0)) = 1.
(2) Assume that 1 − f(t) ∼ C(1 − t)α with C 6= 1 and α ∈ (0, 1) as t → 1. Let

q− = sup{x : x < 1, x = f(x)}. Then

L (αn log(1−W2n) | W2n ∈ [q−, 1])
d−→ V1,(4.34)

where V1 is a random variable with P(V1 ∈ (−∞, 0)) = 1.

Lemma 4.9. Consider the recursion (1.3). For α ∈ (0, 1) convergence (4.33) holds
for some V0 with P(V0 ∈ (−∞, 0)) = 1 if and only if convergence (4.34) holds for
some V1 with P(V1 ∈ (−∞, 0)) = 1.

Note that in Lemma 4.9 we do not assume anything about f ; in particular we do
not assume that C 6= 1.

Proof of Lemma 4.8. Firstly we show how the second part can be obtained from the
first one and then we prove the first part of Lemma 4.8, which corresponds to q = 0.

Assume that 1− f(t) ∼ C(1− t)α and set W̃2n = 1−W2n and f̃(t) = 1− f(1− t).
Then,

P(W̃2n ≤ x) = P(1−W2n ≤ x) = 1− P(W2n ≤ 1− x) = 1− f(P(W2n−2 ≤ 1− x))

= 1− f(1− P(W̃2n−2 ≤ x)) = f̃(P(W̃2n−2 ≤ x)) = . . . = fn(P(W̃0 ≤ x))

= f̃n(x)

and f̃(t) = 1 − f(1 − t) ∼ Ctα as t → 0. Hence it is enough to prove the result for
the case q = 0.

Fix some x < 0. Note that for n large enough exp
(
x
αn

)
≤ q+, hence for these n,

P(αn logW2n ≤ x | W2n ∈ [0, q+]) = P
(
W2n ≤ exp

( x
αn

) ∣∣∣ W2n ∈ [0, q+]
)

=

=
1

q+
fn
(

exp
( x
αn

))
.

(4.35)

Define

g(y) = log(f(exp(y))),

and observe that

gn(y) = log(fn(exp(y))).(4.36)

The idea behind g(y) is to linearize f(y): note that g is a monotone function,
g(log q+) = log q+ and that

g(y) = αy +O(1)

as y → −∞, hence there exist constants D̃, Ẽ such that for y ≤ log q+ < 0,

D̃ + αy ≤ g(y) ≤ Ẽ + αy.(4.37)
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x

y

h1(x)

h2(x)

log q+

D̃
1−α

Ẽ
1−α

g(x)

Figure 4.1. h1(x), g(x), h2(x) together with their (stable) fixed

points D̃
1−α , log q+,

Ẽ
1−α respectively. For x ≤ log q+, h1(x) ≤ g(x) ≤

h2(x). The dashed line represents the identity function.

In the first part of the proof we show (assuming that the limit (4.33) exists) that
P(V ∈ (−∞, 0)) = 1. Define

h1(y) = D̃ + αy,

h2(y) = Ẽ + αy.

Now

lim
n→∞

hn1

( y

αn

)
= y +

D̃

1− α
,

lim
n→∞

hn2

( y

αn

)
= y +

Ẽ

1− α
,

(4.38)

where D̃
1−α , Ẽ

1−α are the (unique) fixed points of h1 and h2 respectively.

Equations (4.35), (4.36), (4.37) and (4.38) together imply that

lim sup
n→∞

P(αn logW2n ≤ x|W2n ∈ [0, q+]) ≤ 1

q+
exp

(
x+

Ẽ

1− α

)
,

and therefore

lim
x→−∞

lim sup
n→∞

P(αn logW2n ≤ x | W2n ∈ [0, q+]) = 0.

We shall now show that

lim
x→0−

lim inf
n→∞

P(αn logW2n ≤ x | W2n ∈ [0, q+]) = 1.(4.39)

To do so, note first that by (4.35) and (4.36)

P(αn logW2n ≤ x | W2n ∈ [0, q+]) =
1

q+
exp

(
gn
( x
αn

))
,

hence (4.39) is equivalent to

lim
x→0−

lim inf
n→∞

gn
( x
αn

)
= log q+.(4.40)
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Note that log q+ is a fixed point of g(x). (4.40) indicates that the scaling αn is not
strong enough to compensate the attraction of the fixed point log q+ of g.

Let kx,n be the smallest k such that hk1
(
x
αn

)
≥ D̃

1−α − 1. Note that kx,n is properly

defined as D̄
1−α is the only fixed point of h1 and is stable. Moreover, by (4.38) we

have that for x ∈ (−1, 0),

lim
n→∞

hn1

( x
αn

)
= x+

D̄

1− α
≥ D̃

1− α
− 1,

hence for these x, n− kx,n ≥ 0 for large n. Define also

Kx = lim inf
n→∞

(n− kx,n)

and note that since

lim
x→0−

lim
n→∞

hn1

( x
αn

)
=

D̃

1− α
,

and the right-hand side is a fixed point of h1, we obtain that

lim
x→0−

Kx =∞.

Now define similarly k̃x,n to be the smallest k such that gk
(
x
αn

)
> D̃

1−α − 1. Since

g(y) ≥ h1(y) for y ≤ log q+, we have kx,n ≥ k̃x,n, and therefore

lim
x→0−

lim inf
n→∞

(n− k̃x,n) =∞.

This implies that

lim
x→0−

lim inf
n→∞

gn
( x
αn

)
= lim

x→0−
lim inf
n→∞

gn−kx,n
(
gkx,n

( x
αn

))
≥ lim

x→0−
lim inf
n→∞

gn−kx,n

(
D̃

1− α
− 1

)
= log q+.

To finish the proof it is now enough to justify that the limit limn→∞ P(αn logW2n ≤
x|W2n ∈ [0, q+]) exists for all x; recalling (4.35) it is enough to check that the sequence
fn
(
exp

(
x
αn

))
is monotone for large n. Since f is a strictly monotone function, the

statements

fn+1
(

exp
( x

αn+1

))
≥ fn

(
exp

( x
αn

))
and

f
(

exp
( x

αn+1

))
≥ exp

( x
αn

)
.(4.41)

are equivalent. We set y = x
αn+1 and z = exp(y) (therefore y → −∞ corresponds to

z → 0) obtaining that (4.41) is equivalent to:

f(z) ≥ zα.

Therefore, if f(z) ∼ Czα for C 6= 1 we observe that for each x < log q+ the sequence

fn
(

exp
(

x
(α)n

))
is monotone for n large enough which yields existence of the limit.

This ends the proof of Lemma 4.8. �
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Up to now we only defined Wm for even m. Before we prove Lemma 4.9 we extend
to odd m. Define the distribution of a random variable W2n−1 as follows:

W2n−1
d
= max

1≤i≤M
W

(i)
2n−2,

where M is a random variable from drawn the tree’s offspring distribution and W
(i)
2n−2

are independent copies of W2n−2 (independent of M). The quantity W2n−1 corre-
sponds to the value at the root of a height 2n − 1, with levels alternating between
max and min, starting and ending with a max. One has similarly

W2n
d
= min

1≤i≤M
W

(i)
2n−1.

Lemma 4.10 below provides a useful identity which we are going to apply in the proof
of Lemma 4.9.

Lemma 4.10. W2n−1
d
= G−1(1−W2n−2).

Proof of Lemma 4.10. G is the probability generating function of the offspring dis-
tribution of the tree, so G(t) = P(max1≤i≤M Ui ≤ t) where Ui are independent uni-
form random variables and M follows the offspring distribution (independently of
(Ui, i ≥ 1)). Decomposing the minimax tree of height 2n− 1 with maximum at levels
1 and 2n − 1, we see that random variables at level 2n − 2 (i.e. one level above the
leaves) are distributed as max1≤i≤M Ui. Therefore

W2n−1
d
= Wmax,G

2n−2 ,(4.42)

where Wmax,G
2n−2 is a random variable corresponding to a max-min tree (i.e. with

maximum at the even levels and minimum at the odd ones) where at the leaves instead
of uniform random variables we put random variables with distribution function G.
Noting that if U is a uniform random variable then G−1(U) has distribution function
G, we see that

Wmax,G
2n−2

d
= G−1(Wmax

2n−2).(4.43)

Now, since

max
1≤i≤M

Ui = 1− min
1≤i≤M

(1− Ui)
d
= 1− min

1≤i≤M
Ui

and

min
1≤i≤M

Ui = 1− max
1≤i≤M

(1− Ui)
d
= 1− max

1≤i≤M
Ui,

we obtain that

Wmax
2n−2

d
= 1−W2n−2.(4.44)

Finally, combining (4.42), (4.43) and (4.44) completes the proof. �

We are now ready to prove Lemma 4.9.

Proof of Lemma 4.9. The convergence (4.33) is equivalent to the convergence of

lim
n→∞

P(αn logW2n ≤ x | W2n ∈ [0, q+]).(4.45)
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at all the continuity points of the corresponding limiting distribution function and
similarly the convergence (4.34) is equivalent to the convergence of

lim
n→∞

P(αn log(1−W2n) ≤ x | W2n ∈ [q−, 1]).(4.46)

at all the continuity points of the corresponding limiting distribution function. Fix
x < 0. For large n,

P(αn logW2n ≤ x | W2n ∈ [0, q+]) =
1

q+
P(αn logW2n ≤ x, W2n ∈ [0, q+])

=
1

q+
P(W2n ≤ exp(x/αn), W2n ∈ [0, q+])

=
1

q+
P(W2n ≤ exp(x/αn)).

Now by the branching structure of the tree,

P(W2n ≤ exp(x/αn)) = 1−G(P(W2n−1 > exp(x/αn))).

Since G is a continuous function, the convergence (4.45) is equivalent to the conver-
gence

lim
n→∞

P(W2n−1 > exp(x/αn)).

By Lemma 4.10,

P(W2n−1 > exp(x/αn)) = P(G−1(1−W2n−2) > exp(x/αn))

= P(1−W2n−2 > G(exp(x/αn)))

= P(αn−2 log(1−W2n−2) > αn−2 log(G(exp(x/αn))))

= 1− P(αn−2 log(1−W2n−2) ≤ αn−2 log(G(exp(x/αn)))).

Since G(t) ∼ pKtK as t→ 0, we observe that

αn−2 log(G(exp(x/αn))) = αn−2 log(pK exp((xK)/αn) + o(1) =
xK

α2
+ o(1).

This implies that if the convergence (4.45) holds at some point xK
α2 which is a contin-

uous point of the limiting distribution function, then the convergence (4.46) holds at
x. Similarly, if the convergence (4.46) holds at some point x which is a continuous
point of the limiting distribution function, then the convergence (4.45) holds at xK

α2 .
Since the set of discontinuity points of any distribution function is at most countable,
this ends the proof. �

5. Proof of the endogeny result

To prove Theorem 3.1 we use the idea of bivariate uniqueness introduced by Aldous
and Bandyopadhyay [1].

Informally, the idea is as follows: suppose we allow two values at each node. Each
coordinate evolves separately, according to the minimax recursions (and using the
same realisation of the tree structure). If we put bivariate values at the leaves of the
tree, we then get a bivariate value at the root of the tree. Let us consider the moment
the case where the values are discrete (as for the Bernoulli case in Theorem 3.1). If
the process is endogenous, and the tree is large, then with high probability the two
components at the root agree with each other. On the other hand, if the process is
not endogenous, then the probability that they disagree stays bounded away from



MINIMAX FUNCTIONS ON GALTON-WATSON TREES 29

zero as the size of the tree goes to infinity, and in fact we can obtain a bivariate
process on the infinite tree which is two-periodic and non-degenerate (in the sense
that the two components are not identically the same).

To formalise this we rewrite some of the ideas around (1.3) in new notation.
Let µ be a distribution on [0, 1]. We defined T (µ) be the distribution of the LHS

of (1.3), given that the random variables W
(i,j)
2n−2 on the RHS of (1.3) are i.i.d. with

distribution µ.
So T is a map from P to P, where P is the space of distributions on [0, 1]. For

Theorem 3.1 we assume that the Bernoulli(1− x) distribution is a fixed point of T .

Now consider the space P(2) of distributions on [0, 1]2. Define the map T (2) from

P(2) to itself as follows. As before let M and M1,M2, . . . be i.i.d. draws from the

offspring distribution. Let (Xi,j
1 , Xi,j

2 ), for each i, j, be i.i.d. with distribution µ(2)

(and independent ofM and {Mi}). Then let T (2)(µ(2)) be the distribution of (X1, X2),
where

X1 = min
1≤i≤M

max
1≤j≤Mi

X
(i,j)
1 ,

X2 = min
1≤i≤M

max
1≤j≤Mi

X
(i,j)
2 .

Note particularly that the recursions for X1 and X2 use the same realisation of M
and {Mi}.

If µ ∈ P then we can define a diagonal distribution µ↗ on P(2) by µ↗ = dist(X,X)
if µ = dist(X).

If µ is a fixed point of T , then certainly µ↗ is a fixed point of T (2). The question
is whether there can be any fixed point of T (2), whose marginals are equal to µ, and
which is not of the form of the diagonal distribution µ↗. Mach, Sturm and Swart
[9, Theorem 1], refining Aldous and Bandyopadhyay [1, Theorem 11], show that the
recursive tree process is endogenous if and only if there are no such non-degenerate
bivariate fixed points (i.e. if the “bivariate uniqueness property” holds).

Proof of Theorem 3.1. We apply Theorem 1 of [9] (or indeed Theorem 11 of [1], since

the additional technical condition relating to continuity of the operator T (2) does in
fact hold in this setting). To prove our result it is enough to show that the bivariate
uniqueness property holds if and only if f ′(x) ≤ 1.

Let us write µ for the Bernoulli(1 − x) distribution on {0, 1}. We look for a

distribution µ(2) on {0, 1}2 which is a fixed point of T (2), and whose marginals are
both µ, but which is not the diagonal distribution µ↗. Once these marginals are
specified, we only need to specify one further parameter, say b = µ(2)(1, 0), since then

we can deduce µ(2)(1, 1) = 1− x− µ(2)(1, 0) = 1− x− b, and similarly µ(2)(0, 1) = b

and µ(2)(0, 0) = x− b. Note b ∈ [0,min(x, 1− x)].

To show that µ(2) is a fixed point of T (2), again it suffices to check just one entry
of T (2)(µ(2)). To look at this we can consider a random tree with two levels, with

bivariate marginals according to µ(2) at level 2 of the tree; we wish to see distribution
µ(2) again at the root. Then write also ν(2) for the corresponding distribution of the
marginals at level 1. Let us write o for the root and ι for a typical level-1 node.

So consider the probability of seeing values (1, 0) at the root. For this to happen,
all children of the root must have 1 in the first coordinate, but at least one child of
the root must have 0 in the second coordinate. That is, all children have values (1, 0)
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or (1, 1), but not all of them have values (1, 1). We obtain

P
(
values(1, 0) at o

)
= G

(
ν(2)(1, 0) + ν(2)(1, 1)

)
−G

(
ν(2)(1, 1)

)
= R

(
ν(2)(1, 1)

)
−R

(
ν(2)(1, 0) + ν(2)(1, 1)

)
.(5.1)

We examine both the terms on the RHS. First note that ν(2)(1, 0) + ν(2)(1, 1) is the
probability that ι has value 1 in the first coordinate. This is the probability that at
least one child of ι has value 1 in the first coordinate, i.e. that not all the children of
ι have value 0 in the first coordinate. Hence

ν(2)(1, 0) + ν(2)(1, 1) = 1−G(µ(0, 1) + µ(0, 0))

= 1−G(x)

= R(x).(5.2)

Similarly, for ι to have values (1, 1), we need to exclude the two events that all its
children have value 0 in the first coordinate or that all its children have value 0
in the second coordinate. Both of these events have probability G(x), while their
intersection, i.e. that all children have values (0, 0), has probability G(x − b). So
applying inclusion-exclusion,

ν(2)(1, 1) = 1−G(x)−G(x) +G(x− b)
= 2R(x)−R(x− b).(5.3)

Combining (5.1), (5.2) and (5.3), we have that if the probability of values (1, 0)
at level 2 is b ∈ [0,min(x, 1 − x)], then the probability of values (1, 0) at the root is
h(b) ∈ [0,min(x, 1− x)], where

(5.4) h(b) := R(2R(x)−R(x− b))−R(R(x)).

For µ(2) to be a fixed point of T (2), we therefore need b = h(b). Also µ(2) is diagonal
iff b = 0. So non-endogeny is equivalent to the existence of a fixed point of h in the
interval (0,min(x, 1− x)].

From (5.4) we have h(0) = 0, and differentiating with respect to b we get

h′(b) = R′(R(x)− [R(x− b)−R(x)])R′(x− b)(5.5)

so that

h′(0) = R′(R(x))R′(x)

=
d

dx
R(R(x))

= f ′(x).

Differentiating once more we obtain

(5.6) h′′(b) = R′′
(
2R(x)−R(x− b)

)
R′(x− b)2 −R′

(
2R(x)−R(x− b)

)
R′′(x− b).

Since R is positive, decreasing and strictly concave, it follows that (5.5) is positive
and (5.6) is negative, hence that h is increasing and strictly concave.

So if f ′(x) ≤ 1, giving h′(0) ≤ 1, then h(u) < u for all u > 0. In that case the
only non-negative fixed point of h is 0, and we must obtain b = 0. In that case the
distribution µ(2) must be a diagonal distribution, and we have bivariate uniqueness
(and hence endogeny).
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On the other hand, suppose that f ′(x) > 1, so that h′(0) > 1. Then for sufficiently
small ε > 0, h(ε) > ε. Starting from some such ε and iterating h repeatedly gives
an increasing sequence which is bounded above by min(x, 1− x). Its limit is a fixed
point of h which lies in (0,min(x, 1− x)]. Hence in this case there does exist a non-
degenerate bivariate fixed point, and the process is non-endogenous, as required. �

Proof of Corollary 3.2. Since f ′(x) = 1 everywhere, Theorem 3.1 tells us that all the
processes with Bernoulli marginals are endogenous. This implies that for any µ, for
the process with marginals µ, the event {Y ≤ y} is measurable with respect to the
structure of the tree, for any y, where Y is the value at the root. But then in fact
the random variable Y is measurable with respect to the structure of the tree, as
required. �
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