
ar
X

iv
:1

91
2.

10
71

5v
1 

 [
m

at
h.

PR
] 

 2
3 

D
ec

 2
01

9

ANALYSIS OF NON-REVERSIBLE MARKOV CHAINS VIA SIMILARITY ORBIT

MICHAEL C.H. CHOI AND PIERRE PATIE

ABSTRACT. In this paper, we develop an in-depth analysis of non-reversible Markov chains on denumer-

able state space from a similarity orbit perspective. In particular, we study the class of Markov chains

whose transition kernel is in the similarity orbit of a normal transition kernel, such as the one of birth-death

chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain

to belong to the similarity orbit of a birth-death one. As by-products, we obtain a spectral representation in

terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis

on the convergence rate, separation cutoff and L
2-cutoff of this class of non-reversible Markov chains. We

also look into the problem of estimating the integral functionals from discrete observations for this class.

In the last part of this paper, we investigate a particular similarity orbit of reversible Markov kernels, that

we call the pure birth orbit, and analyze various possibly non-reversible variants of classical birth-death

processes in this orbit.
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1. INTRODUCTION

The spectral theorem of normal operators is undoubtedly a powerful tool to deal with substantial and

difficult issues arising in the analysis of Markov chains. The intrusion of spectral theory to the analysis of

Markov chains dates back to the long line of work initiated by [40] and [32] who were among the first to

offer a detailed spectral analysis in the direction of reversible birth-death processes. Beyond eigenvalues

expansion, the spectral theorem also appears in the study of the rate of convergence to equilibrium,

mixing time, eigentime identity, separation cutoff and L2-cutoff, see e.g. [1, 9, 16, 19, 41, 45], to name

but a few. It is also central for their statistical estimations as it is demonstrated by the recent work of [2]

for the integral functionals of normal Markov chains.

However, the lack of spectral theorem for non-normal operators gives major difficulties for tackling

these fundamental topics in the context of general Markov chains, since the transition kernel P is a

non-normal linear operator in the weighted Hilbert space

ℓ2(π) =

{
f : X 7→ C; ||f ||2π =

∑

x∈X

|f(x)|2π(x) < ∞
}
,

with π being a reference (invariant or excessive) measure of P and π(x) > 0 for all x ∈ X . Not only

the non-reversibility property, or generally the non-normality of P , is a generic property from a theo-

retical perspective, it is also natural and becomes increasingly popular recently in various applications.

For instance, non-reversible Markov chains appear in the study of queueing networks and fluid approx-

imation in [26], hyperplane rearrangement in [53] and the very recent introduction of non-reversible

Metropolis-Hastings and its variants, see e.g. [6, 54].

To overcome the challenge of analyzing non-self-adjoint operators, a wide variety of intriguing ideas

has been elaborated to deal with specific issues. This includes, for example, the dilation concept devel-

oped by [33], reversiblizations techniques as in [24, 51] or recasting to a weighted-L∞ space [37, 38, 39].

In this paper, we propose an alternative remedy by resorting to the algebraic concept of similarity orbit

of normal Markov chains as defined in Definition 1.1 below. This identifies a class of transition kernels

of Markov chains, denoted by S, which is a subset of M, the set of Markov transition kernels acting on

a countable state space X . We emphasize that our approach offers an unifying framework to analyze all

substantial and classical topics for Markov kernels in S that were enumerated above for normal Markov

chains. This extends the work by the authors in [13] from skip-free Markov chains to general ones. It is

also in line with the papers by [47, 49] and [50] for the study of spectral theory of non-reversible Markov

processes and by [7, 17] and [15] for birth-death processes, which rely on the notion of intertwining

relationships. We proceed by recalling the definition of similarity orbit as introduced in [13].

Definition 1.1 (Similarity). We say that the transition kernel P ∈ M of a Markov chain X is similar to

the transition kernel Q of a Markov chain on X , and we write P ∼ Q, if there exists a bounded linear

operator Λ : ℓ2(πQ) → ℓ2(π) (πQ being a reference measure for Q) with bounded inverse such that

(1.1) PΛ = ΛQ.

We also write Λ̂ to be the adjoint operator of Λ. When needed we may write P
Λ∼ Q to specify the

intertwining or the link kernel Λ. Note that ∼ is an equivalence relationship on the set of transition

kernels M.

Remark 1.1. In the discrete-time setting, for n ∈ N, if P
Λ∼ Q, then P n Λ∼ Qn.

Remark 1.2. Note that this definition carries over when we study similarity on the level of infinitesimal

generator in the continuous-time setting. For example, we write L
Λ∼ G if L (resp. G) is the infinitesimal
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generator associated with the continuous-time Markov semigroup (Pt)t>0 (resp. (Qt)t>0). It follows

easily that if L
Λ∼ G then Pt

Λ∼ Qt for t > 0.

Remark 1.3. We compare our definition of similarity with other notions of intertwining in the literature.

In [47], both the link kernel Λ and Q are assumed to be Markovian, while in [7, 15], both P and Q are

assumed to be birth-death processes. In [17], the authors construct the strong stationary duality theory

for general Markov chains. However, in Definition 1.1 we do not require Λ to be a Markov operator, and

P,Q are general Markov operators instead of birth-death processes.

The S class is now defined as the similarity orbit in M consisting of all Markov transition kernels that

are similar to a normal transition kernel on X . Note that reversible Markov kernels are normal operators

in ℓ2(π). From now on, we write N to be the set of normal transition kernels Q on X , that is, QQ̂ = Q̂Q
in ℓ2(πQ) where ̂ denotes throughout the corresponding object for the time-reversal process.

Definition 1.2 (The S class). Suppose that Q ∈ N . The similarity orbit of Q (in M) is

S(Q) = {P ∈ M; P ∼ Q},
and the S class is the union over all possible orbits

S =
⋃

Q∈N

S(Q).

We point out that according to [60], the class S is also characterized as the class of Markov chain whose

transition kernel is a spectral scalar-type operator in the sense of [21, Section 3], see also [22, Page

1938, Definition 1]. As we will see in Section 2, this characterization will be crucial in proving many

of our later results. Note that we could also study a wider class of transition kernel S ′

in which Q is

not necessarily a Markov operator. However, we intend to focus our investigation on the class S in this

paper as it is the appropriate setting to extend various substantial results that have been developed for

reversible chains.

We now summarize the major contributions of this work in the analysis of general Markov chains

which also serve as an outline of the paper. In Section 2, we begin by showing how the concept of

similarity orbit is natural for developing the spectral decomposition of non-reversible Markov operators

in the class S. Indeed, each of its element admits a spectral representation with respect to non-self-adjoint

resolution of identity as introduced by [21], see also [22]. We also remark on the growing interest for non-

self-adjoint operators with real spectrum that arise in the study of pseudo-hermitian quantum mechanics,

see e.g. [30] and the references therein. As by-product, one can develop a functional calculus for this

class as for normal operators. Moreover, we obtain, under mild conditions, an eigenvalues expansion

expressed in terms of Riesz basis, a notion that generalizes orthogonal basis and was introduced in

non-harmonic analysis, see [61]. Another intriguing aspect of the similarity orbit analysis is that in the

continuous-time setting with L ∈ S(G) (see Remark 1.2 above), where G is the generator of a normal

Markov chain, then both the heat kernel (etL)t>0 and (etG)t>0 share the same eigentime identity, offering

new examples and insights to the sequence of work by [1, 16] and [45]. Added to the above, we obtain

a two-phase refinement for the convergence rate of the Markov kernels in the class S measured in the

Hilbert space topology or in total variation distance: recall that in the normal case the rate of convergence

in the Hilbert space topology is given by exactly the second largest eigenvalue in modulus; for class S
however, in small time we adapt the singular value upper bound of [24], while for large time, the decay

rate is the second largest eigenvalue in modulus modulo a constant which is the condition number of

the link kernel Λ. This offers an original spectral explanation of the hypocoercivity phenomenon that
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has been observed and studied intensively in the PDE literature, see for instance [59]. All these first

consequences of the spectral representation are stated and proved in Section 2. In view of the tractability

and the fascinating properties that the class S possesses, it will be very interesting to characterize this

class in terms of the one-step transition probabilities of P ∈ S. Although fundamental, this issue seems

to be very challenging. However, we manage to identify a set of sufficient conditions that defines what we

call the generalized monotonicity condition class GMC, such that the time-reversal P̂ intertwines with

a birth-death chain in Section 3. This GMC class rests on the assumption of stochastic monotonicity in

which Λ is the so-called Siegmund kernel. This readily generalizes the MC class introduced by [13] in

the context of skip-free chains. Note that the notion of stochastic monotonicity is studied by [57] and

[14] and intertwining between stochastic monotone birth-death chains, which are reversible chains, has

been previously investigated in detail by [17, 29] and [31]. Relying on the spectral decomposition as well

as the fastest strong stationary time result of general chains obtained by [25], we study the separation

cutoff phenomenon and demonstrate that the famous “spectral gap times mixing time” conjecture as

well as the proof in [19] carries over to the subclass GMC+ ⊂ GMC in Section 3. Next, building upon

the concept of the non-self-adjoint spectral measure and the Laplace transform cutoff criteria proposed

in [9] and further elaborated in [11], we illustrate that the usual L2-cutoff criteria for reversible chains

generalizes to the class S in Section 4.

Second, in Section 5, we would like to estimate integral functionals of the type

ΓT (f) =

∫ T

0

f(Xt) dt, T > 0,

where T is a fixed time and f is a function such that the integral ΓT (f) is well-defined, by the Riemann-

sum estimator given by, for n ∈ N,

Γ̂T,n(f) =
n∑

k=1

f(X(k−1)∆n
)∆n,

where we observe (Xt)t∈[0,T ] at discrete epochs t = (k − 1)∆n with k ∈ JnK := {1, . . . , n} and ∆n =
T/n. This work is motivated by the recent work of [2], in which they studied the same problem with

the outstanding assumption that the infinitesimal generator of the Markov process (Xt)t>0 is a normal

operator to yield interesting results on the estimator error bound by spectral theory. We demonstrate that

a number of their results can be readily generalized to the class S on the infinitesimal generator level.

Finally, in Section 6, we examine a particular similarity orbit of reversible Markov chains that we call

the pure birth orbit. More precisely, suppose that we start with a reversible generator G such that G
Λ∼ L

, where L is the generator of a contraction yet possibly non-Markovian semigroup (etL)t>0, we would

like to investigate various properties of L with Λ being a pure birth kernel. This idea is powerful enough

to allow us to generate completely new Markov or contraction kernel from known ones in which we

have precise control and exact expressions on the stationary distribution, eigenfunctions and the speed

of convergence. In particular, we perform an in-depth study on the pure birth variants of a constant rate

birth-death model.

2. SPECTRAL THEORY OF THE CLASS S AND ITS CONVERGENCE RATE TO EQUILIBRIUM

In this Section, we develop an original methodology to obtain the spectral decomposition in the Hilbert

space of the transition operator of Markov chains that belong to the class S, a subclass of M which is

defined in Definition 1.2. We write ‖·‖op to be the operator norm, i.e. ‖P‖op = sup||f ||π=1 ||Pf ||π, and
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Ja, bK := {a, a + 1, . . . , b− 1, b} for any a 6 b ∈ Z. We proceed by recalling that P has a time-reversal

P̂ , that is, for x, y ∈ X ,

π(x)P̂ (x, y) = π(y)P (y, x),

where π is a reference measure for P . We equip the Hilbert space ℓ2(π) with the usual inner product

〈·, ·〉π defined by

〈f, g〉π =
∑

x∈X

f(x)g(x)π(x), f, g ∈ ℓ2(π),

where g is the complex conjugate of g. A spectral measure (or resolution of identity) in the sense of [21,

Section 3] and [22, Page 1929 Definition 1] of a Hilbert space H on C is a family of bounded operators

E = {EB;B ∈ B(C)}, where B(C) is the Borel algebra on C, satisfying the following:

(1) E∅ = 0, EC = I .

(2) For all A,B ∈ B(C),
EA∩B = EAEB,

while for disjoint A,B,

EA∪B = EA + EB.

(3) There exists a constant C > 0 such that ‖EB‖op 6 C for all B ∈ B(C).
For normal operator Q ∈ N , its resolution of identity E is self-adjoint and hence E is a self-adjoint

orthogonal projection. We also denote E∗
B to be the adjoint of EB . Recall that by the spectral theorem

for normal operators the spectral resolution of Q is

Q =

∫

σ(Q)

λ dEλ,

where σ(Q) is the spectrum of Q. More generally, for M ∈ M, we write σ(M) (resp. σc(M), σp(M),
σr(M)) to be the spectrum (resp. continuous spectrum, point spectrum, residual spectrum) of M . We

proceed to recall the notion of Riesz basis, which will be useful when we derive the spectral decompo-

sition for compact P ∈ S in our main result Theorem 2.1 below. A basis (fk) of a Hilbert space H is a

Riesz basis if it is obtained from an orthonormal basis (ek) under a bounded invertible operator T , that

is, Tek = fk for all k. It can be shown, see e.g. [61, Theorem 9], that the sequence (fk) forms a Riesz

basis if and only if (fk) is complete in H and there exist positive constants A,B such that for arbitrary

n ∈ N and scalars c1, . . . , cn, we have

(2.1) A

n∑

k=1

|ck|2 6
∥∥∥∥∥

n∑

k=1

ckfk

∥∥∥∥∥

2

6 B

n∑

k=1

|ck|2.

If (gk) is a biorthogonal sequence to (fk), that is, 〈fk, gm〉π = δk,m, k,m ∈ N and δk,m is the Kronecker

symbol, then (gk) also forms a Riesz basis. We are now ready to state the main result of this paper in the

following, and the proof can be found in Section 2.1.

Theorem 2.1. Assume that P ∈ S with P
Λ∼ Q ∈ N . Then the following holds.
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(a) Denote the self-adjoint spectral measure ofQ by E = {EB; B ∈ B(C)}, then {FB := ΛEBΛ
−1; B ∈

B(C)} defines a spectral measure and P is a spectral scalar-type operator with spectral resolu-

tion given by

P =

∫

σ(P )

λ dFλ,

P̂ =

∫

σ(P̂ )

λ dF ∗
λ .

Note that

σ(P ) = σ(Q), σ(P ) = σ(P̂ ), σc(P ) = σc(Q), σp(P ) = σp(Q), σr(P ) = σr(Q),

and the multiplicity of each eigenvalue in σp(P ) is the same as that of σp(Q). For analytic and

single valued function f on σ(P ), we have

f(P ) =

∫

σ(P )

f(λ) dFλ.

In particular, if P is compact on X with distinct eigenvalues then for any f ∈ ℓ2(π) and n ∈ N,

P nf =
∑

k∈X

λn
k〈f, f ∗

k 〉πfk,

where the set (fk) are eigenfunctions of P associated to the eigenvalues (λk) and form a Riesz

basis of ℓ2(π), and the set (f ∗
k ) is the unique Riesz basis biorthogonal to (fk). For any x, y ∈ X

and n ∈ N, the spectral expansion of P is given by

P n(x, y) =
∑

k∈X

λn
kfk(x)f

∗
k (y)π(y).

(b) P
Λ∼ Q if and only if Q̂

Λ̂∼ P̂ .

(c) Suppose that Λ is an unitary operator, that is, Λ−1 = Λ̂. Then P is a normal (resp. self-adjoint)

operator in ℓ2(π) if and only if Q is a normal (resp. self-adjoint) operator in ℓ2(πQ).
(d) (Lattice isomorphism) Suppose that X is a finite state space. Λ is an invertible Markov kernel

on X with Λ−1 having non-negative entries if and only if Λ ∈ P , the set of permutation kernels.

We recall that Λ ∈ P if Λ = Λσ := (1y=σ(x))x,y∈X with σ : X 7→ X being a permutation of

the state space, and note that Λσ is an unitary Markov kernel. Moreover, for any Q ∈ M, the

permutation orbit SP(Q) of Q is given by SP(Q) = {P ∈ M;PΛ = ΛQ,Λ ∈ P} ⊂ M, where

M is the set of square matrices on X .

(e) Suppose that X is a finite state space and Q is the transition kernel of an irreducible birth-death

process, then P
Λ∼ Q if and only if P has real and distinct eigenvalues.

Remark 2.1. As suggested by item (c), we can generate new non-normal examples via non-unitary link

from known normal Markov chains such as birth-death processes. In Section 6, we investigate a partic-

ular non-unitary orbit that we call the pure birth orbit.

Remark 2.2. The result in Theorem 2.1(d) has also been obtained by Miclo using a different proof, see

Lemma 12 in [46].

Remark 2.3. The key to Theorem 2.1(e) lies on the simplicity of the spectrum of Q. In the context of

non-negative Jacobi matrices, the inverse eigenvalue problem has been studied by [27, Theorem 4].
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Remark 2.4. Theorem 2.1 can be generalized easily to the continuous-time setting, see also Remark 1.2.

Indeed, suppose that L ∈ S(G), where G is a normal generator with spectral measure E = {EB; B ∈
B(C)}, then for t > 0,

Pt =

∫

σ(L)

etλdFλ,

where {FB := ΛEBΛ
−1; B ∈ B(C)}.

As a first application of the spectral decomposition stated in Theorem 2.1, we derive accurate informa-

tion regarding the speed of convergence to stationarity for ergodic chains in S in both the Hilbert space

topology and in total variation distance. There has been a rich literature devoted to the study of con-

vergence to equilibrium for non-reversible chains by means of reversibilizations, see e.g. [1, 24, 41, 48]

and the references therein. Our approach reveals a natural extension to the non-reversible case of the

classical spectral gap that appears in the study of reversible chains. To state our result we now fix some

notations. We denote the second largest eigenvalue in modulus (SLEM) or the spectral radius of P in the

Hilbert space

ℓ20(π) = {f ∈ ℓ2(π); 〈f, 1〉π = 0},
by

λ∗ = λ∗(P ) = sup{|λi|; λi ∈ σ(P ), λi 6= 1},
then the absolute spectral gap is γ∗ = 1 − λ∗. For any two probability measures µ, ν on X , the total

variation distance between µ and ν is given by

||µ− ν||TV =
1

2

∑

x∈X

|µ(x)− ν(x)|.

For n ∈ N, the total variation distance from stationarity of X is

d(n) = max
x∈X

||δxP n − π||TV .

For g ∈ ℓ2(π), the mean of g with respect to π can be written as Eπ(g) = 〈g, 1〉π. Similarly, the variance

of g with respect to π is Varπ(g) = 〈g, g〉π − E
2
π(g). Finally, we recall that Fill in [24, Theorem 2.1]

obtained in the finite state space case the following bound valids for all n ∈ N0

d(n) 6
σn
∗ (P )

2

√
1− πmin

πmin
,(2.2)

where πmin = min
x∈X

π(x) and σ∗(P ) =

√
λ∗(PP̂ ) is the second largest singular value of P . We obtain

the following refinement for Markov chains in the class S. The proof is deferred to Section 2.2.

Corollary 2.2. Let P ∈ S with invariant distribution π, that is, πP = π, and assume that P is compact.

(1) For any n ∈ N0, we have

λn
∗ 6 ‖P n − π‖ℓ2(π)→ℓ2(π) 6 min (σn

∗ (P ), κ(Λ)λn
∗ ) = σn

∗ (P )1{n<n∗} + κ(Λ)λn
∗1{n>n∗},(2.3)

where n∗ = ⌈ lnκ(Λ)
lnσ∗(P )−lnλ∗

⌉ and κ(Λ) = ‖Λ‖ℓ2(πQ)→ℓ2(π) ‖Λ−1‖ℓ2(π)→ℓ2(πQ) > 1 is the condition

number of Λ. When X is a finite state space, a sufficient condition for which λ∗ < σ∗(P ) is given

by maxi∈X P (i, i) > λ∗. In such case, for n large enough, the convergence rate λ∗ given (2.3) is

strictly better than the reversibilization rate σ∗(P ).
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(2) Suppose that X is a finite state space. For any n ∈ N0,

d(n) 6
min (σn

∗ (P ), κ(Λ)λn
∗ )

2

√
1− πmin

πmin
,

where λ∗ 6 σ∗(P ).

Remark 2.5. Recall that when P is reversible and compact then the sequence of eigenfunctions is or-

thonormal and thus an application of the Parseval identity yields the well-known result (see e.g. [9,

Section 4.3]) ‖P n − π‖ℓ2(π)→ℓ2(π) = λn
∗ and κ(Λ) = 1 which is a specific instance of item (1).

Remark 2.6. We also recall the discrete analogue of the notion of hypocoercivity introduced in [59],

i.e. there exists a constant C < ∞ and ρ ∈ (0, 1) such that, for all n ∈ N,

‖P n − π‖ℓ2(π)→ℓ2(π) 6 Cρn.

Note that, in general, these constants are not known explicitly. We observe that the upper bound in

(2.3) reveals that the ergodic chains in S satisfy this hypocoercivity phenomena. More interestingly, our

approach based on the similarity concept enables us to get on the one hand an explicit and on the other

hand a spectral interpretation of this rate of convergence. Indeed, it can be understood as a modified

spectral gap where the perturbation from the classical spectral gap is given by the condition number

κ(Λ) which can be interpreted as a measure of deviation from symmetry. In this vein, we mention the

recent work [49] where a similar spectral interpretation of the hypocoercivity phenomena is given for a

class of non-self-adjoint Markov semigroups.

Remark 2.7. Here we provide an alternative expression for the upper bound of (2.3). Let ℓ2(X ) be the

space of square summable functions on X equipped with the standard inner product 〈·, ·〉. Suppose that

P ∈ S(Q) with QU = UD, where D is a diagonal matrix and U is an isometry from ℓ2(X ) to ℓ2(πQ).
Then B = ΛU is an eigenbasis for P with κ(B) = κ(Λ), where κ(B) := ‖B‖ℓ2(X )→ℓ2(π) ‖B−1‖ℓ2(π)→ℓ2(X )

is the condition number of B, so the upper bound in (2.3) can be written as

‖P n − π‖ℓ2(π)→ℓ2(π) 6 κ(B)λn
∗ .

As a second application of Theorem 2.1, we first recall the celebrated eigentime identity studied by

[1, 16] and [45]: suppose that we sample two points x and y randomly from the stationary distribution

of the chain and calculate the expected hitting time from x to y, the expected value of this procedure is

the sum of the inverse of the non-zero (and negative of the) eigenvalues of the generator. Since similarity

preserves the eigenvalues (see Theorem 2.1 item (a)), we can easily see that both P and Q share the same

eigentime identity:

Corollary 2.3 (Eigentime identity). Suppose that X is a finite state space and (Qt)t>0 (resp. (Pt)t>0) has

generator G (resp. L) associated with the ergodic Markov chain (Xt)t>0 (resp. (Yt)t>0). If L ∈ S(G)
with G being a normal generator and common eigenvalues (−λi)i∈J|X |K, then (Pt)t>0 and (Qt)t>0 share

the same eigentime identity. That is, denote τQy := inf{t > 0;Xt = y} (resp. τPy := inf{t > 0; Yt = y}),

then

∑

x,y∈X

Ex(τ
Q
y )πQ(x)πQ(y) =

∑

x,y∈X

Ex(τ
P
y )π(x)π(y) =

|X |∑

i=1,λi 6=0

1

λi

.
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2.1. Proof of Theorem 2.1. We first show the item (a). Since E is a spectral measure, it follows easily

that {FB = ΛEBΛ
−1; B ∈ B(C)} is a spectral measure. The fact that the spectrum coincides and

σ(P ) = σ(Q), σ(P ) = σ(P̂ ), σc(P ) = σc(Q), σp(P ) = σp(Q), σr(P ) = σr(Q),

follows from Proposition 3.9 in [3]. Define P :=
∫
σ(P )

λ dFλ. We have

P =

∫

σ(P )

λ d(ΛEλΛ
−1) = Λ

(∫

σ(Q)

λ dEλ

)
Λ−1 = ΛQΛ−1 = P,

so the desired spectral resolution of P follows, thus it is a spectral scalar-type operator. The spectral

resolution of P̂ follows from that of P . The functional calculus of P follows immediately from that of

spectral scalar-type operator, see e.g. Theorem 1 in Chapter XV.5, Page 1941 of [22]. We proceed to

handle the case when P is compact. Denote (gk) to be the (orthogonal) eigenfunctions of the normal

transition kernel Q. Since fk = Λgk and Λ is bounded, (fk) is complete as (gk) is a basis. As Λ is

bounded from above and below, for any n ∈ N and arbitrary sequence (ck)
n
k=1, we have

A

n∑

k=1

|ck|2 6
∥∥∥∥∥

n∑

k=1

ckfk

∥∥∥∥∥

2

π

=

∥∥∥∥∥Λ
n∑

k=1

ckgk

∥∥∥∥∥

2

π

6 B

n∑

k=1

|ck|2,

where we can take A = ‖Λ−1‖−2
and B = ‖Λ‖2, so (2.1) is satisfied. It follows from [61, Theorem 9]

that there exists the sequence (f ∗
k ) being the unique Riesz basis biorthogonal to (fk), and, any f ∈ ℓ2(π)

can be written as

f =
∑

k∈X

ckfk,

where ck = 〈f, f ∗
k 〉π. Desired result follows by applying P n to f and using P nfk = λn

kfk. In particular,

if we take f = δy, the Dirac mass at y, and evaluate the resulting expression at x, we obtain the spectral

expansion of P . Next, we show item (b). If P
Λ∼ Q, then for f ∈ ℓ2(πQ) and g ∈ ℓ2(π),

〈f, Λ̂P̂ g〉πQ
= 〈PΛf, g〉π = 〈ΛQf, g〉π = 〈f, Q̂Λ̂g〉πQ

,

which shows that Q̂
Λ̂∼ P̂ . The opposite direction can be shown similarly. For item (c). Since Λ is unitary,

the spectral measures of P and Q are related by FB = ΛEBΛ̂, so FB is self-adjoint if and only if EB is

self-adjoint, which implies that P is normal if and only if Q is normal. If Q is self-adjoint, then item (b)

yields P
Λ∼ Q if and only if Q

Λ−1

∼ P̂ , which implies that P̂ = P in ℓ2(π). The opposite direction can be

shown similarly. Next, we show item (d). If Λ is a permutation link, then it is trivial to see that Λ is an

invertible Markov kernel. For the opposite direction, it is known (see e.g. [5, Section 3]) that Λ = DΛσ,

where D is a diagonal matrix. We then have 1 = Λ1 = DΛσ1 = D1, which gives D = I , and hence

Λ = Λσ. Let now Q ∈ M and P ∈ SP(Q), then since P = ΛQΛ−1 with Λ,Λ−1 ∈ P , we deduce readily

that P ∈ M. Finally, to show item (e), if P
Λ∼ Q, then P has real and distinct eigenvalues since Q has

real and distinct eigenvalues. Conversely, if P has real and distinct eigenvalues, P is diagonalizable, so

there exists an invertible Λ such that

P = ΛDΛ−1.

where D is the diagonal matrix storing the eigenvalues of P . Given the spectral data D, by inverse

spectral theorem, see e.g. [23, Section 5.8], one can always construct an ergodic Markov chain with

transition matrix Q such that

Q = V DV −1.
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2.2. Proof of Corollary 2.2. We first show the upper bound in item (1). Define the synthesis operator

T ∗ : ℓ2 → ℓ2(π) by α = (αi) 7→ T ∗(α) =
∑

i∈X αifi, where (fi) are the eigenfunctions of P and

(f ∗
i ) are the unique biorthogonal basis of (fi) as in Theorem 2.1. For i ∈ X , we take αi = αi(n) =

λn
i 〈g, f ∗

i 〉π, and denote (qi) to be the orthonormal eigenfunctions of Q ∈ N , where fi = Λqi. Note that

||T ∗||op 6 ||Λ||ℓ2(πQ)→ℓ2(π) < ∞, since

||T ∗(α)||ℓ2→ℓ2(π) =

∥∥∥∥∥
∑

i∈X

αiΛqi

∥∥∥∥∥
ℓ2→ℓ2(π)

6 ‖Λ‖ℓ2(πQ)→ℓ2(π)

∥∥∥∥∥
∑

i∈X

αiqi

∥∥∥∥∥
πQ

6 ||Λ||ℓ2(πQ)→ℓ2(π)||α||ℓ2.

For g ∈ ℓ20(π), we also have
∑

i∈X

|〈g, f ∗
i 〉π|2 =

∑

i∈X

|〈g, (Λ∗)−1qi〉π|2 =
∑

i∈X

|〈Λ−1g, qi〉πQ
|2 = ||Λ−1g||2πQ

6 ||Λ−1||2ℓ2(π)→ℓ2(πQ)||g||2π,

where the third equality follows from Parseval’s identity, which leads to

||P ng − πg||2π = ||T ∗(α)||2ℓ2→ℓ2(π) 6 ||Λ||2ℓ2(πQ)→ℓ2(π)||α||2l2 6 ||Λ||2ℓ2(πQ)→ℓ2(π)||Λ−1||2ℓ2(π)→ℓ2(πQ)λ
2n
∗ ||g||2π.

(2.4)

The desired upper bound follows from (2.4) and

‖P n − π‖ℓ2(π)→ℓ2(π) 6 λ∗(P̂P )n/2 = λ∗(PP̂ )n/2,

see e.g. [24]. The lower bound in (1) follows readily from the well-known result that the nth power

of the spectral radius λn
∗ is less than or equal to the norm of P n on the reduced space ℓ20(π). For the

sufficient condition in item (1), that is, maxi∈X P (i, i) > λ∗ implies λ∗ < σ∗(P ), it is a straightforward

consequence of the Sing-Thompson Theorem, see [58]. Next, we show item (2). Using (2.4), we get

Varπ

(
P̂ ng

)
6 κ(Λ̂)2λ2n

∗ Varπ(g) = κ(Λ)2λ2n
∗ Varπ(g), n ∈ N0,(2.5)

where we used the obvious identity κ(Λ) = κ(Λ̂) in the equality. This leads to

||δxP n − π||2TV =
1

4
E
2
π

∣∣∣∣
δxP

n

π
− 1

∣∣∣∣ 6
1

4
Varπ

(
δxP

n

π

)
=

1

4
Varπ

(
P̂ n δx

π

)
6

1

4
κ(Λ)2λ2n

∗ Varπ

(
δx
π

)

=
1

4
κ(Λ)2λ2n

∗

1− π(x)

π(x)
6

1

4
κ(Λ)2λ2n

∗

1− πmin

πmin

,

where the first inequality follows from Cauchy-Schwartz inequality. The proof is completed by combin-

ing the above bound with (2.2).

3. THE GMC CLASS AND SEPARATION CUTOFF

As Theorem 2.1 suggests, the class S is highly tractable and enjoys a number of attractive properties. It

will therefore be very interesting to characterize this class in terms of the one-step transition probabilities

of P , which is a fundamental yet challenging issue. However, we manage to identify a set of sufficient

conditions that we call the generalized monotonicity condition class GMC, generalizing the MC class

for skip-free chains as introduced in [13], such that the kernels in GMC has real and distinct eigenvalues

and the time-reversal P̂ intertwines with a birth-death chain with the link kernel Λ being related to the

Siegmund kernel HS(x, y) = 1{x6y}.

Definition 3.1 (The GMC class). We say that, for some r > 3, P ∈ GMCr if P ∈ M with X = J0, rK

and for every x ∈ J0, r− 1K, its time-reversal (X, P̂) satisfies
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(1) (stochastic monotonicity) P̂x+1(X1 6 x) 6 P̂x(X1 6 x) ,

(2) (strict stochastic monotonicity) P̂x+1(X1 6 x− 1) < P̂x(X1 6 x− 1), x 6= 0, and

(3) (strict stochastic monotonicity) P̂x+1(X1 6 x+ 1) < P̂x(X1 6 x+ 1), x 6= r− 1, and

(4) (restricted downward jump) P̂x+1(X1 6 x− k) = P̂x(X1 6 x− k), k ∈ J2, xK, and

(5) (restricted upward jump) P̂x+1(X1 6 x+ k) = P̂x(X1 6 x+ k), k ∈ J2, r− 1− xK.

Moreover, we say X ∈ GMC+
r

if X ∈ GMCr and for every x ∈ J0, r− 1K,

(6) (lazy Siegmund dual) P̂x(X1 6 x)− P̂x+1(X1 6 x) >
1

2
.

When there is no ambiguity of the state space, we write GMC = GMCr (resp. GMC+ = GMC+
r

). Note

that the upper-script of the plus sign in GMC+ means that this class has non-negative eigenvalues, see

Remark 3.4 below.

Remark 3.1. Recall that in [13], if P ∈ MC, that is, P is upward skip-free and satisfies (1), (3), (5),
then it is clear that MC ⊂ GMC, as item (2) and (4) in Definition 3.1 are automatically satisfied since

the time-reversal P̂ is downward skip-free.

Next, we formally state that a transformation of P ∈ GMC is contained in the similarity orbit of an

irreducible birth-death kernel. The proof can be found in Section 3.1. For any square matrix M on J0, rK,

we write M J0,r−1K to be the principal submatrix on J0, r− 1K.

Theorem 3.2. Let P ∈ GMC and write M := PΛ on J0, rK, where Λ = (HT
SDπ)

−1 and Dπ is the

diagonal matrix of π. Then (Λ−1)J0,r−1K(PΛ)J0,r−1K ∈ S(Q) with Q being an irreducible birth-death

transition kernel on J0, r− 1K.

Remark 3.2 (On the connection to the strong stationary duality theory by [17]). In this remark, we

would like to highlight the connection between Theorem 3.2 and the classical construction of strong

stationary duality (SSD) proposed by Diaconis and Fill. In [17, Theorem 5.5], writing π0 to be the initial

distribution at time 0, if π0(x)/π(x) is decreasing in x and the time-reversal is stochastically monotone,

then the SSD of a chain X can be derived as the Doob H-transform of the Siegmund dual of the time-

reversal of X , with H = HT
S π being the cumulative distribution function of π. As we shall see in the

proof of Theorem 3.2, our result bears a resemblance to the above construction by Diaconis and Fill,

with Q in Theorem 3.2 being a Doob transform of the state-restriction of the Siegmund dual of the time-

reversal. Note that both our result and the classical SSD construction require stochastic monotonicity

of the time-reversal, yet our GMC class requires more conditions (namely item (2) to (4) in Definition

3.1). While we apply the same Doob H-transform to the Siegmund dual, we apply a further Doob h̃-

transform for the state-restricted and Doob H-transformed Siegmund dual restricted to J0, r− 1K, where

h̃ is defined in (3.2) below.

We now give an example that illustrates the GMC class.

Example 3.3.

P̂ =




0.5 0.35 0.05 0.1
0.3 0.5 0.1 0.1
0.2 0.1 0.5 0.2
0.2 0.05 0.25 0.5


 , P =




0.5 0.2629 0.1157 0.1213
0.3994 0.5 0.0660 0.0346
0.0864 0.1515 0.5 0.2621
0.1648 0.1444 0.1907 0.5



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has eigenvalues 1, 0.54, 0.28, 0.18, and satisfies (1)− (6) in Definition 3.1. Note that

(Λ−1)J0,r−1K(PΛ)J0,r−1K =




0.2 0.1 0
0.05 0.5 0.05
0 0.1 0.3


 .

We proceed to investigate the separation cutoff phenomenon for the GMC class. For birth-death

chains, they have been studied in [19] and [10] while it has recently been extended to upward skip-free

chains by [42] and [13]. In order to establish the famous “spectral gap times mixing time” criteria (see

e.g. [52]) for this class, we will build upon the result of [25] to first analyze the fastest strong stationary

time of this class, followed by demonstrating that the proof in [19] carries over for this class of non-

reversible chains.

To this end, we recall the definition of separation distance of Markov chains, which is used as a

standard measure for convergence to equilibrium. For n ∈ N, the maximum separation distance s(n) is

defined by

s(n) = max
x,y∈E

[
1− P n(x, y)

π(y)

]
= max

x∈E
sep(P n(x, ·), π) = max

x∈E
sx(n).

One of its nice features is its connection to strong stationary times that we now describe. We say that a

randomized stopping time T for a Markov chain X with stationary distribution π is a strong stationary

time T , possibly depending on the initial starting position x, if, for all x, y ∈ E,

Px(T = n,XT = y) = Px(T = n)π(y).

It is well-known, see e.g. [41, Lemma 6.11], that the tail probability of a strong stationary time U
provides an upper bound on the separation distance, that is,

sx(n) 6 P(U > n).

The fastest strong stationary time T is a strong stationary time such that for all n ∈ N, sx(n) = P(T > n).
We now provide a description of the cutoff phenomenon for Markov chains. Recall that the separation

mixing times are defined, for any x ∈ E and ǫ > 0, as

T s(x, ǫ) = min{n > 0; sep(P n(x, ·), π) 6 ǫ}
and

T s(ǫ) = min{n > 0; s(n) 6 ǫ}.
A family, indexed by n ∈ N, of ergodic chains X(n) defined on Xn = J0, rnK with transition matrix Pn,

stationary distribution πn and separation mixing times Tn(ǫ) = T s
n(ǫ) or T s

n(x, ǫ), for some x ∈ E, is

said to present a separation cutoff if there is a positive sequence (tn) such that for all ǫ ∈ (0, 1),

lim
n→∞

Tn(ǫ)

tn
= 1.

The family has a (tn, bn) separation cutoff if the sequences (tn) and (bn) are positive, bn/tn → 0 and for

all ǫ ∈ (0, 1),

lim sup
n→∞

|Tn(ǫ)− tn|
bn

< ∞.

We now proceed to discuss the main results of this Section, with Theorem 3.4 addressing the case

of discrete time family of Markov chains and Theorem 3.5 discussing the continuized version. Recall

that the notation GMC+ introduced in Definition 3.1 represents the generalized monotonicity class with

non-negative eigenvalues. This is an important subclass since the eigenvalues of the transition kernel
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(resp. negative of the generator) are the parameters in the geometric distribution (resp. exponential dis-

tribution) of the fastest strong stationary time in Theorem 3.4 (resp. Theorem 3.5).

Theorem 3.4. For n > 1, suppose that Pn ∈ GMC+
rn

on the state space Xn = J0, rnK that started at

0. Let (θn,i)
rn

i=1 be the non-zero eigenvalues of I − Pn, and (cn,i)
rn

i=0 to be the mixture weights of the nth

chain defined in (3.3) in Lemma 3.6. Define

wn,i :=

rn∑

j>i

cn,j , tn :=

rn∑

i=1

wn,i

θn,i
, θn := min

16i6rn

θn,i , ρ2n :=

rn∑

i=1

w2
n,i

1− θn,i
θ2n,i

.

Then this family has a separation cutoff if and only if tnθn → ∞. Furthermore, if tnθn → ∞, then there

is a (tn,max{ρn, 1}) separation cutoff.

Remark 3.3. For discrete-time stochastically monotone birth-death chains which start at 0, we have

wi = 1 for i ∈ J1, rnK and cn,0 = 0, and hence we recover [19, Theorem 5.2].

Theorem 3.5. For n > 1, suppose that Ln = Pn − I is the infinitesimal generator with P ∈ GMC+
rn

on the state space Xn = J0, rnK that started at 0. Let (θn,i)
rn

i=1 be the non-zero eigenvalues of −Ln, and

(cn,i)
rn

i=0 to be the mixture weights defined in (3.4) in Remark 3.7. Define

wn,i :=
rn∑

j>i

cn,j , tn :=
rn∑

i=1

wn,i

θn,i
, θn := min

16i6rn

θn,i , ρ2n :=
rn∑

i=1

w2
n,i

θ2n,i
.

Then this family has a separation cutoff if and only if tnθn → ∞. Furthermore, if tnθn → ∞, then there

is a (tn, ρn) separation cutoff.

We will only prove Theorem 3.4 as the proof of Theorem 3.5 is very similar and thus omitted.

3.1. Proof of Theorem 3.2. We write P̃ the so-called Siegmund dual (or HS-dual) of P̂ . That is,

P̃ T = H−1
S P̂HS where HS = (HS(x, y))x,y∈X is defined to be HS(x, y) = 1{x6y} and its inverse

H−1
S = (H−1

S (x, y))x,y∈X is H−1
S (x, y) = 1{x=y} − 1{x=y−1}, see [57]. Since X ∈ GMC, then P̂ is

stochastically monotone, hence from [4, Proposition 4.1], we have that P̃ is a sub-Markovian kernel. For

x ∈ J0, r−2K, condition 2 and 3 in GMC yield, respectively, p̃(x, x+1) > 0, while for x ∈ J1, r−1K, we

have p̃(x, x− 1) > 0. Condition 4 and 5 in GMC guarantee that p̃(x, y) = 0 for each x ∈ J0, r− 3K and

y ∈ Jx+ 2, r− 1K and for each x ∈ J2, r− 1K and y ∈ J0, x− 2K. That is, P̃ is a (strictly substochastic)

irreducible birth-death chain when restricted to the state space J0, r − 1K. Denote P̃ bd the restriction of

P̃ to J0, r− 1K. By breaking off the last row and last column of P̃ , we can write

P̃ =

(
P̃ bd

v

0 1

)
= (H−1

S P̂HS)
T ,(3.1)

where 0 is a row vector of zero, and v is a column vector storing p̃(x, r) for x ∈ J0, r− 1K. Considering

the h-transform of P̃ with h = HT
S π > 0, see e.g. [29, Theorem 2], we see that

M = PΛ = ΛP̃ ,

where Λ = (HT
SDπ)

−1 (Dπ is the diagonal matrix of π). Observing that the last row of P̃ is zero except

the last entry, we have

M J0,r−1K = ΛJ0,r−1KP̃ bd.
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Note that P̃ bd is a strictly substochastic matrix with r as a killing boundary. Denote T̃ bd to be the lifetime

of Markov chain with transition kernel P̃ bd. However, defining, with the obvious notation, for any

x ∈ J0, r− 1K,

h̃(x) = Px(T̃
bd
r−1 < T̃ bd),(3.2)

we have, according to [13, Theorem 3.1], that h̃ is an harmonic function for P̃ bd, i.e. P̃ bdh̃ = h̃. Hence,

a standard result in Martin boundary theory, see e.g. [13, Theorem 2.2], entails that the Markov chain

with transition kernel Q, defined on J0, r − 1K × J0, r − 1K by Q(x, y) = h̃(y)

h̃(x)
P̃ bd(x, y), is an ergodic

birth-death chain, which completes the proof.

Remark 3.4. Note that condition (6) in GMC+ guarantees that P̃ is a lazy chain, that is P̃ (x, x) > 1/2
for all x ∈ X , and hence the class GMC+ possesses non-negative eigenvalues.

3.2. Proof of Theorem 3.4. Following the plan as outlined above in Section 3, we first analyze the

distribution of the fastest strong stationary time of the class GMC+ in Lemma 3.6, followed by detailing

the proof of Theorem 3.4.

Lemma 3.6. Suppose that X is an ergodic Markov chain on the state space X = J0, rK (and r > 3)

with transition matrix P and stationary distribution π which starts at 0. If P ∈ GMC+, then the fastest

strong stationary time is distributed as the c-mixture of convolution of geometric
∑

r

k=1 ckG(λ1, . . . , λk),
where i, j, k ∈ J0, rK,

Qk :=
(P − λ1I) . . . (P − λkI)

(1− λ1) . . . (1− λk)
, Γ(i, j) := Qi(0, j) , ck :=

Γ(k, r)− Γ(k − 1, r)

π(r)
,(3.3)

{λk}rk=1 are the non-unit eigenvalues of P in non-decreasing order and G(λ1, . . . , λk) is the convolution

of geometric distributions with success probabilities 1− λ1, . . . , 1− λk respectively.

Remark 3.5. We alert the readers that Qk are the so-called spectral polynomials and Γ(i, j) is Λ(i, j) of

[25, Theorem 5.2] (since Λ is used as the link kernel throughout this paper).

Remark 3.6 (On the fastest strong stationary time of P and the absorption time of Q). In this re-

mark, we would like to highlight the connection between the fastest strong stationary time T of P
and the absorption time to r of Q. According to Lemma 3.6, if P ∈ GMC+, then T is distributed as∑

r

k=1 ckG(λ1, . . . , λk). On the other hand, according to Theorem 3.2, Q is an irreducible birth-death

process on J0, τ − 1K, then using [44, Theorem 1.1] there exists a probability measure such that the

absorption time to τ of Q starting from 0 is distributed as, in our notations,
∑

r

k=1 akG(λ1, . . . , λk). In

these two distributions, the same eigenvalues appear as parameters in the geometric distributions. See

[44] for further connections with the class of phase-type distribution.

Proof. Suppose that PΛ = ΛQ. In view of [25] Theorem 5.2, it suffices to show that the ck > 0. First,

we show that (Q − λ1I) . . . (Q − λkI) are non-negative matrices, where Q is the Siegmund dual of P̂ .

We will prove this via induction on k. For k = 1, thanks to [43, Theorem 3.2], we have QBD −λ1I > 0,

where QBD := QJ0,r−1K is the restriction of Q except the last row and column, which leads to

Q− λ1I =

(
QBD − λ1I h

0
T 1− λ1

)
> 0 .
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Suppose that

k∏

i=1

(Q− λiI) =

( ∏k
i=1(Q

BD − λiI) n

0
T

∏k
i=1(1− λi)

)
> 0 ,

where n > 0 is a non-negative vector. Therefore,

k+1∏

i=1

(Q− λiI) =

( ∏k+1
i=1 (Q

BD − λiI)
∏k

i=1(Q
BD − λiI)h+ (1− λk+1)n

0
T

∏k+1
i=1 (1− λi)

)
> 0 ,

which completes the induction by using [43, Theorem 3.2] again on
∏k+1

i=1 (Q
BD − λiI). Define

Zk := (HT
S )

−1
k∏

i=1

Q− λiI

1− λi
HT

S .

Note that P = D−1
π (HT

S )
−1QHT

SDπ, so ck > 0 if and only if Zk(0, r) − Zk−1(0, r) > 0 if and only if

(here we make use of HT
S )

(
k∏

i=1

Q− λiI

1− λi

)
(0, r)−

(
k−1∏

i=1

Q− λiI

1− λi

)
(0, r) =

(
k−1∏

i=1

QBD − λiI

1− λi

h

)
(0) > 0 ,

which is true. �

When we have a handle on the fastest strong stationary time, we can then analyze the separation

cutoff phenomenon, and the rest of the proof follow the Chebyshev inequality framework introduced by

[19]. More precisely, denote P k
n to be the distribution of the nth chain at time k, πn to be the stationary

measure and Tn to be the fastest strong stationary time of the nth chain. We note that E(Tn) = tn and

Var(Tn) = ρ2n. The key to the proof is the following:

ρ2n = θ−2
n

rn∑

i=1

w2
n,i

(1− θn,i) θ
2
n

θ2n,i
6 θ−2

n

rn∑

i=1

wn,i
θn
θn,i

= θ−1
n tn ,

where we use θn,i > 0, θn/θn,i 6 1 and wi 6 1 in the first inequality. The rest of the proof follows as

that of [13, Theorem 8.1], which does not require reversibility of the chain.

Remark 3.7. The corresponding result of Lemma 3.6 in the continuous-time setting is stated in the

following in order to prove Theorem 3.5. Suppose that X is a continuous-time ergodic Markov chain

on the state space X = J0, rK (and r > 3) with generator L = P − I and stationary distribution π
which starts at 0. If P ∈ GMC+, then the fastest strong stationary time is distributed as the c-mixture of

convolution of exponential
∑

r

k=1 ckE(θ1, . . . , θk), where i, j, k ∈ J0, rK,

Qk :=
(L+ θ1I) . . . (L+ θkI)

θ1 . . . θk
, Γ(i, j) := Qi(0, j) , ck :=

Γ(k, r)− Γ(k − 1, r)

π(r)
,(3.4)

and {θk}rk=1 are the non-zero eigenvalues of −L in non-increasing order and E(θ1, . . . , θk) is the convo-

lution of exponential distributions with mean 1/θ1, . . . , 1/θk respectively.



16 MICHAEL C.H. CHOI AND PIERRE PATIE

4. L2-CUTOFF

The aim of this Section is to investigate the spectral criterion for the existence of L2-cutoff for the

class of Markov chains in a continuous-time setting with generator L and similarity on the generator

level. That is, in the notation of Definition 1.1 and 1.2, L ∈ S(G), where G is a reversible generator. We

denote the spectral gap λ = λ(L) of L by

λ = λ(L) = inf{〈−Lf, f〉π; f ∈ Dom(L), real valued,Eπ(f) = 0,Eπ(f
2) = 1}.(4.1)

This follows and generalizes the work of [8, 9, 11] who studied the L2-cutoff phenomena in the context

of normal Markov processes. Adapting the notations therein, we proceed to provide a quick review on

the notion of L2-cutoff.

Definition 4.1. For n > 1, let gn : [0,∞) 7→ [0,∞] be a non-increasing function vanishing at infinity.

Assume that

M = lim sup
n→∞

gn(0) > 0.

Then the family G = {gn : n > 1} is said to have

(1) A cutoff if there exists a sequence of positive numbers tn, known as the cutoff time, such that for

ǫ ∈ (0, 1),

lim
n→∞

gn((1 + ǫ)tn) = 0, lim
n→∞

gn((1− ǫ)tn) = M.

(2) A (tn, bn)-cutoff if tn > 0, bn > 0, where bn is known as the cutoff window, bn = o(tn) and

lim
c→∞

lim sup
n→∞

gn(tn + cbn) = 0, lim
c→−∞

lim inf
n→∞

gn(tn − cbn) = M.

If ηPt ≪ π with density f(t, η, ·), then the chi-squared distance is given by

D2(η, t)
2 =

∫

X

|f(t, η, x)− 1|2 π(dx).

Suppose that we have a family of measurable spaces (Xn,Bn)n∈N. For n ∈ N, we denote pn(t, ηn, ·)
defined on (Xn,Bn) to be the transition function with initial probability law ηn ≪ πn and t > 0. We

denote fn to be the L2-density of ηn with respect to πn. The family {pn(t, ηn, ·) : t ∈ [0,∞)} has an

L2-cutoff (resp. (tn, bn) L
2-cutoff) if {gn(t) = Dn,2(ηn, t) : n > 1} has a cutoff (resp. (tn, bn)-cutoff) as

in Definition 4.1, where Dn,2(ηn, t) is the chi-squared distance of the nth chain.

Our main result in Theorem 4.2 gives the spectral criterion for L2-cutoff to the family of process with

Ln ∈ S(Gn), where Gn is a reversible generator. We denote the (non-self-adjoint) spectral measure of

Ln of the nth chain by Fn,B for B ∈ B(C), and Hn,B = Fn,BF
∗
n,B. We use the following notation: for

δ, C > 0 and B ∈ B(C), we set, for any n ∈ N,

Vn(B) = 〈Hn,Bfn, fn〉πn
, tn(δ) = inf{t : Dn,2(ηn, t) 6 δ},

λn(C) = inf{λ : Vn([λn, λ]) > C}, τn(C) = sup

{
log(1 + Vn([λn, λ]))

2λ
: λ > λn(C)

}
,

γn = λn(C)−1 and bn = λn(C)−1 log(λn(C)τn(C)).

Theorem 4.2. Suppose that Ln ∈ S(Gn) for each member in the family {pn(t, ηn, ·) : t ∈ [0,∞)},

where Gn is a reversible generator. If πn(f
2
n) → ∞, then the following are equivalent.

(1) {pn(t, ηn, ·) : t ∈ [0,∞)} has an L2-cutoff.
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(2) For some positive constants C, δ, ǫ,

lim
n→∞

tn(δ)λn(C) = ∞, lim
n→∞

∫

[λn,λn(C)]

e−ǫγtn(δ)dVn(γ) = 0.

(3) For some positive constants C, ǫ,

lim
n→∞

τn(C)λn(C) = ∞, lim
n→∞

∫

[λn,λn(C)]

e−ǫγτn(C)dVn(γ) = 0.

If (2) (resp. (3)) holds, then {pn(t, ηn, ·) : t ∈ [0,∞)} has a (tn(δ), γn) L
2-cutoff (resp. (τn(C), bn)

L2-cutoff).

Remark 4.1. If Ln is reversible, then Hn,B = Fn,BF
∗
n,B = F 2

n,B = Fn,B since Fn,B is a self-adjoint

projection in this case. The above result then retrieves exactly Theorem 4.6 of [9].

4.1. Proof of Theorem 4.2. To prove Theorem 4.2, it relies on the following lemma that relates the

chi-squared distance to the spectral decomposition of the infinitesimal generator −L, which allows us to

connect with the Laplace transform of the spectral measure HB = FBF
∗
B .

Lemma 4.3. Let X be a Markov process with X0 ∼ η, generator L ∈ S(G), where G is a reversible

generator, such that η ≪ π with L2(π)-density f and spectral gap λ > 0. Denote {FB : B ∈ B(C)} to

be the non-self-adjoint spectral measure for −L, and we define, for B ∈ B(C),
HB = FBF

∗
B.

Then, for t > 0,

D2(η, t)
2 =

∫

[λ,∞)

e−2γt d〈Hγf, f〉π .

Proof. By the definition of chi-square distance D2 and π(f) = 1, we have

D2(η, t)
2 =

∥∥∥P̂tf − π(f)
∥∥∥
2

π
=

∫

[λ,∞)

e−2γt d〈Hγf, f〉π,

where the last equality follows from [30, second half of the proof of Lemma 3.19 on page 1542]. �

Lemma 4.3 reveals that the problem of L2-cutoff reduces to the cutoff phenomenon of the Laplace

transform. We proceed to complete the proof of Theorem 4.2. By Lemma 4.3, we take gn(t) =
Dn,2(ηn, t) in Definition 4.1, and the desired result follows from the Laplace transform cutoff criteria

in Theorem 3.5 and Theorem 3.8 of [9]. Precisely, the chi-squared distance is of the form

Dn,2(ηn, t)
2 =

∫

[λn,∞)

e−2γt dVn(λ).

This is exactly the form of function considered in [9, equation (3.1)], and consequently we can invoke

Theorem 3.5 and Theorem 3.8 of the aforementioned paper.

Remark 4.2. As mentioned in Remark 4.1, if Ln is reversible, then our Theorem 4.2 retrieves exactly

Theorem 4.6 of [9] whose proof is a combination of the results of theorems 3.5, 3.8 and 4.4 therein. The

strategy of the proof is as follows: Theorem 4.4 claims that the chi-squared distance to stationarity of a

reversible Markov process is a Laplace transform, thus the Laplace transform cutoff results of theorems

3.5 and 3.8 can be applied. In our proof of Theorem 4.2, we follow the same strategy. We first show

Lemma 4.1 (which is the parallel version of [9, Theorem 4.4]), which states that for L ∈ S(G) with G
being reversible, the chi-squared distance to stationarity of L is also a Laplace transform. Consequently,

the Laplace transform cutoff results of theorems 3.5 and 3.8 of [9] can be applied in our setting.
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4.2. Lp-cutoff. We proceed by investigating the Lp-cutoff for fixed p ∈ (1,∞) for the class S. Recall

that Chen and Saloff-Coste [8, Theorem 4.2, 4.3] have shown that for a family of normal ergodic tran-

sition kernel Pn, the max-Lp cutoff is equivalent to the spectral gap times mixing time going to infinity.

We can extend their result to the case of the non-normal chains in S as follows, using similar techniques

as in [13] for the class of skip-free chains similar to birth-death chains.

Theorem 4.4 (Max-Lp cutoff). Suppose that, for each n > 1, Ln ∈ S(Gn) with Gn being a reversible

generator, transition kernel P t
n = etLn

Λn∼ Qt
n = etGn on Xn and spectral gap of Gn given by λn =

λn(Gn), where we recall the definition of spectral gap in (4.1). Assume that the condition numbers

κ(Λn) of the link kernels are uniformly bounded, that is,

sup
n>1

κ(Λn) < ∞.

Fix p ∈ (1,∞) and ǫ > 0. Consider the max-Lp distance to stationarity

fn(t) = sup
x∈Xn

(∫

Xn

|pn(t, δx, y)− 1|p πn(dy)

)1/p

and define

tn = inf{t > 0; fn(t) 6 ǫ}, F = {fn; n = 1, 2, . . .}.
Assume that each n, fn(t) → 0 as t → ∞ and tn → ∞. Then the family F has a max-Lp cutoff if and

only if tnλn → ∞. In this case there is a (tn, λ
−1
n ) cutoff.

The proof in [8, Theorem 4.2, 4.3] works nicely as long as we have Lemma 4.5 below, which gives a

two-sided control on the Lp(π) norm of P t − π. The following lemma is then the key to the proof.

Lemma 4.5. Suppose that L ∈ S(G) with G being a reversible generator, transition kernel P t = etL
Λ∼

Qt = etG and the spectral gap of G is λ = λ(G), where we recall the definition of spectral gap in (4.1).

Fix p ∈ (1,∞). Then, for any t > 0, we have

2−1+θpe−λtθp 6
∥∥P t − π

∥∥
Lp(π)→Lp(π)

6 2|1−2/p|(κ(Λ)e−λt)1−|1−2/p|,(4.2)

where θp ∈ [1/2, 1] and κ(Λ) = ‖Λ‖L2(πQ)→L2(π) ‖Λ−1‖L2(π)→L2(πQ).

Proof. By the Riesz-Thorin interpolation theorem, see e.g. [8, equation 3.4], we have
∥∥P t − π

∥∥
Lp(π)→Lp(π)

6 2|1−2/p|
∥∥P t − π

∥∥1−|1−2/p|

L2(π)→L2(π)
,

which when combined with Corollary 2.2 gives the upper bound of (4.2). Next, to show the lower bound

in (4.2), we use another version of the Riesz-Thorin interpolation theorem, see e.g. [8, Lemma 4.1], to

get ∥∥P t − π
∥∥
Lp(π)→Lp(π)

> 2−1+θp
∥∥P t − π

∥∥θp
L2(π)→L2(π)

> 2−1+θpe−λtθp ,

where we use Corollary 2.2 in the second inequality. This completes the proof. �

5. NON-ASYMPTOTIC ESTIMATION ERROR BOUNDS FOR INTEGRAL FUNCTIONALS

In this Section, we would like to estimate integral functionals of the type

ΓT (f) =

∫ T

0

f(Xt) dt, T > 0,
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where T is a fixed time and f is a function such that the integral ΓT (f) is well-defined. This follows the

line of work of [2], who studied the same problem with the assumption that the infinitesimal generator

of the Markov process is a normal operator. This type of integral functionals appear in a number of

applications. For instance, if we take f = 1B, the indicator function of the Borel set B, then ΓT (f) is

the occupation time of the process in B. As another example, it is not hard to see that such functional

appears in the study of path-dependent derivatives in mathematical finance, see e.g. [12]. In practice

however, one often only have access to a sample path of the Markov process at discrete time point. A

natural estimator for ΓT (f), known as the Riemann-sum estimator, is given by

Γ̂T,n(f) =
n∑

k=1

f(X(k−1)∆n
)∆n,

where we observe (Xt)t∈[0,T ] at discrete epochs t = (k − 1)∆n with k ∈ JnK and ∆n = T/n, with the

idea that we approximate ΓT (f) by its Riemann-sum.

For a stationary Markov process and f ∈ L2(π), both ΓT (f) and Γ̂T,n(f) are π-a.s. defined everywhere

in L2(P). If L ∈ S(G), we identify by Riesz theorem a linear self-adjoint operator A such that for

f, g ∈ L2(π),

〈Af, g〉π =

∫

σ(L)

|λ|2 d〈H∗
λf, g〉π,

where we recall H∗
λ = F ∗

λFλ is a self-adjoint operator and Fλ is the spectral measure of −L. For

s > 0, we define the space Ds(A) = Dom(As) ⊂ L2(π) by functional calculus on A with the seminorm

‖f‖Ds(A) =
∥∥As/2f

∥∥
π
.

The main results are the following error bounds, in which the proof is similar as that of [2, Theorem

2.2, Corollary 2.3, Theorem 2.4] and is deferred to Section 5.1. Note that (5.2) gives the error bound on

the space average of X with the finite-time and finite-sample estimator T−1Γ̂T,n(f), while (5.3) offers

the error bound for the non-stationary Markov process such that X0 ∼ η.

Theorem 5.1. Let X be a Markov process with X0 ∼ π and generator L ∈ S(G). There exists a

constant C such that for all T > 0, 0 6 s 6 1, f ∈ Ds(A), f0 ∈ Dom(A−1) with f0 = f −
∫
f dπ,

∥∥∥ΓT (f)− Γ̂T,n(f)
∥∥∥
L2(P)

6 C
√
‖f‖Ds(A) ‖f‖π T∆1+s

n ,(5.1)

∥∥∥∥T
−1Γ̂T,n(f)−

∫
f dπ

∥∥∥∥
L2(P)

6
C√
T

(√
‖f‖Ds(A) ‖f‖π ∆n +

√
‖A−1f0‖π ‖f0‖π

)
.(5.2)

If X0 ∼ η such that η ≪ π with density dη/dπ, then there exists a constant C such that for all T > 0,

0 6 s 6 1 and f ∈ Ds(A),

∥∥∥ΓT (f)− Γ̂T,n(f)
∥∥∥
L2(P)

6 C

∥∥∥∥
dη

dπ

∥∥∥∥
1/2

∞,π

√
‖f‖Ds(A) ‖f‖π T∆1+s

n ,(5.3)

where ‖·‖∞,π is the sup-norm in L∞(π).

Remark 5.1. When L is reversible, then A can be identified as |L|2, where we can then retrieve the results

of [2].
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5.1. Proof of Theorem 5.1. We first state a lemma (see [30, first half of the proof of Lemma 3.19 on

page 1542]) which will be used repeatedly in the proof.

Lemma 5.2. For f ∈ Ds(A),

∣∣∣∣
∫

σ(L)

λs d〈Fλf, f〉π
∣∣∣∣ 6

(∫

σ(L)

|λ|2s d〈H∗
λf, f〉π

)1/2

‖f‖π = ‖f‖Ds(A) ‖f‖π .(5.4)

Proof. For sake of completeness, we repeat the arguments of [30, first half of the proof of Lemma 3.19
on page 1542]. Let [α, β] be a bounded interval and (∆k)

n
k=1 be a family of disjoint intervals whose

union is [α, β]. For every k, we choose λk ∈ ∆k. Fix f ∈ L2(π). For the Cauchy sums defining the

integrals using triangle inequality and Cauchy-Schwartz inequality we have
∣∣∣∣∣

n∑

k=1

λs
k 〈F∆k

f, f〉π

∣∣∣∣∣ 6
n∑

k=1

|λk|s |
〈
F∆k

f, F ∗
∆k

f
〉
π
|

6

(
n∑

k=1

|λk|2s〈F∆k
f, F∆k

f〉π
)1/2( n∑

k=1

〈F ∗
∆k

f, F ∗
∆k

f〉π
)1/2

6

(
n∑

k=1

|λk|2s〈H∗
∆k

f, f〉π
)1/2

‖f‖π.

The inequality (5.4) holds on every finite interval and the desired result follows by taking limits. �

We now proceed to give the proof of Theorem 5.1. We first prove (5.1) and consider

∥∥∥ΓT (f)− Γ̂T,n(f)
∥∥∥
2

L2(P)
= E



(

n∑

k=1

∫ k∆n

(k−1)∆n

(
f(Xr)− f(X(k−1)∆n

)
)
dr

)2



=

n∑

k,l=1

∫ k∆n

(k−1)∆n

∫ l∆n

(l−1)∆n

E
[(
f(Xr)− f(X(k−1)∆n

)
) (

f(Xh)− f(X(l−1)∆n
)
)]

drdh ,

then we proceed to bound the diagonal (k = l) and off-diagonal (k 6= l) terms. For the diagonal terms,

by stationarity we have for (k − 1)∆n 6 r 6 h 6 k∆n,

E
[(
f(Xr)− f(X(k−1)∆n

)
) (

f(Xh)− f(X(k−1)∆n
)
)]

= 〈(Ph−r−I)f+(I−Ph−(k−1)∆n
)f+(I−Pr−(k−1)∆n

)f, f〉π,
so by symmetry in r and h we have

n∑

k=1

∫ k∆n

(k−1)∆n

∫ k∆n

(k−1)∆n

E
[(
f(Xr)− f(X(k−1)∆n

)
) (

f(Xh)− f(X(k−1)∆n
)
)]

drdh

= 2n

〈(∫ ∆n

0

∫ h

0

(Ph−r − I) drdh+∆n

∫ ∆n

0

(I − Ph) dh

)
f, f

〉

π

= 〈Φ(L)f, f〉π

=

∫

σ(L)

Φ(λ) d〈Fλf, f〉π,
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where the last equality follows from the functional calculus of L in Theorem 2.1 and for λ ∈ σ(L),

Φ(λ) = 2n

(∫ ∆n

0

∫ h

0

(eλ(h−r) − 1) drdh+∆n

∫ ∆n

0

(1− eλh) dh

)
.

From [2, Page 15], we know that |Φ(λ)| 6 4n∆2+s
n |λ|s with fixed 0 6 s 6 1. Now, we apply Lemma

5.2 to arrive at
∣∣∣∣
∫

σ(L)

Φ(λ) d〈Fλf, f〉π
∣∣∣∣ 6 4T∆1+s

n ‖f‖π
(∫

σ(L)

|λ|2s d〈H∗
λf, f〉π

)1/2

= 4T∆1+s
n ‖f‖π ‖f‖Ds(A) .

Next, we bound the off-diagonal terms, in which

2

n∑

k>l

∫ k∆n

(k−1)∆n

∫ l∆n

(l−1)∆n

E
[(
f(Xr)− f(X(k−1)∆n

)
) (

f(Xh)− f(X(l−1)∆n
)
)]

drdh

= 2

〈(∫ ∆n

0

∫ ∆n

0

(
n∑

k>l=1

P(k−l)∆n−r

)
(Ph − I)(I − Pr) drdh

)
f, f

〉

π

= 〈Φ̃(L)f, f〉π

=

∫

σ(L)

Φ̃(λ) d〈Fλf, f〉π,

where the last equality follows again from the functional calculus of L in Theorem 2.1 and for λ ∈ σ(L),

Φ̃(λ) = 2

(∫ ∆n

0

∫ ∆n

0

(
n∑

k>l=1

eλ((k−l)∆n−r)

)
(eλh − 1)(1− eλr) drdh

)
.

Using [2, (16)] there exists a universal constant C̃ < ∞ such that |Φ̃(λ)| 6 C̃T∆1+s
n |λ|s, and together

with Lemma 5.2 yield
∣∣∣∣
∫

σ(L)

Φ̃(λ) d〈Fλf, f〉π
∣∣∣∣ 6 C̃T∆1+s

n ‖f‖π
(∫

σ(L)

|λ|2s d〈H∗
λf, f〉π

)1/2

= C̃T∆1+s
n ‖f‖π ‖f‖Ds(A) .

Next, we prove (5.2). By (5.1) and triangle inequality,∥∥∥∥T
−1Γ̂T,n(f)−

∫
f dπ

∥∥∥∥
L2(P)

6 T−1
∥∥∥Γ̂T,n(f)− ΓT (f)

∥∥∥
L2(P)

+

∥∥∥∥T
−1ΓT (f)−

∫
f dπ

∥∥∥∥
L2(P)

6
C√
T

√
‖f‖Ds(A) ‖f‖π ∆n +

∥∥T−1ΓT (f0)
∥∥
L2(P)

.

We proceed to bound ‖T−1ΓT (f0)‖L2(P), in which

∥∥T−1ΓT (f0)
∥∥2
L2(P)

= 2T−2

∫ T

0

∫ h

0

〈Ph−rf0, f0〉π drdh

=

∫

σ(L)

Φ(λ) d〈Fλf0, f0〉π,

where Φ is defined by, for λ ∈ σ(L),

Φ(λ) = 2T−2

∫ T

0

∫ h

0

eλ(h−r) drdh = 2
(λT )−1(eλT − 1)− 1

λT
,
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and there exists a constant C̃ such that |Φ(λ)| 6 C̃

|λ|T . Using Lemma 5.2 gives

∥∥T−1ΓT (f0)
∥∥2
L2(P)

6
C̃

T

∣∣∣∣
∫

σ(L)

|λ|−1 d〈Fλf0, f0〉π
∣∣∣∣

6
C̃

T

(∫

σ(L)

|λ|−2 d〈H∗
λf0, f0〉π

)
‖f0‖π =

C̃

T

∥∥A−1f0
∥∥
π
‖f0‖π .

Finally, it follows from a standard change of measure argument to give (5.3).

6. SIMILARITY ORBIT OF REVERSIBLE MARKOV CHAINS

In this Section, our aim is to provide several illuminating examples for Theorem 2.1 and we will work

in the continuous-time setting as this result generalizes easily to this setting, see Remark 1.2 and 2.4.

More precisely, suppose that we start with a reversible generator G with transition semigroup (Qt)t>0,

we would like to characterize the family of Markov chains with generator L associated with G under the

similarity transformation GΛ = ΛL with Λ being a bounded invertible Markov link. This idea allows

us to generate Markov or contraction kernel from known ones in which the spectral decomposition,

stationary distribution and eigenfunctions are linked by Λ. In addition, the so-called eigentime identity is

preserved under intertwining as the spectrum is invariant under such transformation as stated in Theorem

2.1. We will illustrate this approach by studying the pure birth link in particular. While we consider

univariate examples in the subsequent Section, nonetheless we can still handle the orbits of multivariate

reversible Markov chains (e.g. [28, 34, 35] and [62]) by considering the link kernel to be the tensor

product from univariate link and analyze the corresponding tensorized orbits.

Before detailing the examples, we introduce the following notation that will be used throughout. Let

G be a reversible birth-death generator with respective to πG on X = J0, rK. Let

(6.1) G(x, x− 1) = dx, G(x, x) = −(dx + bx) and G(x, x+ 1) = bx,

where dx (resp. bx) is the death (resp. birth) rate at state x, and eigenvalues-eigenvectors denoted by

(−λj , φj)
N
j=0, where φj are orthonormal in l2(πG). We assume that d0 = br = 0. Write (Qt)t>0 for its

transition semigroup, then the spectral decomposition of Qt is given by

(6.2) Qt(x, y) =

r∑

j=0

e−λjtφj(x)φj(y)πG(y).

For further details on various birth-death models and their connections with orthogonal polynomials, we

refer interested readers to [20, 32, 36, 55, 56, 62] and the references therein.

6.1. Pure birth link on finite state space. In this Section, we specialize into the case of X = J0, rK,

with the link being the pure birth link as introduced by [25] to study the distribution of hitting time and

fastest strong stationary time, generated by birth-death processes with birth and death rates to be bx and

dx respectively. The particular pure birth link Λpb that we study is of the form

Λpb(x, y) = 1/2, x ∈ J0, r− 1K, y ∈ {x, x+ 1},Λpb(r, r) = 1,(6.3)

Λpb(x, y) = 0 otherwise.(6.4)

A special feature in the pure birth orbit is that the heat kernel Pt := etL of L need not be Markovian, yet

it still converges to πL exponentially fast as illustrated in Proposition 6.1 below. Yet, we give sufficient

conditions on a birth-death generator G to guarantee L to be Markov generator.
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Proposition 6.1. Suppose that G
Λpb∼ L and denote by (Pt)t>0 being the transition semigroup associated

with L. Note that (Pt)t>0 need not be Markov under Λpb. For any t > 0 and j, x, y ∈ J0, rK, Pt admits

the following spectral decomposition

Pt(x, y) =

r∑

j=0

e−λjtfj(x)f
∗
j (y)πL(y),

where f ∗
j (y)πL(y) =

φj(y−1)πG(y−1)

2
1y−1>0+φj(y)πG(y)

(
1y 6=r

2
+ 1y=r

)
, fj(x) =

∑
r−1
k=x(−2)k−xφj(k)+

φj(r), and,

||Pt − πL||TV 6
κ(Λpb)e

−λ1t

2

√
1− π∗

L

π∗
L

,(6.5)

where πL(y) = πG(y − 1)

(
1y−1>0

2

)
+ πG(y)

(
1y 6=r

2
+ 1y=r

)
and recall that π∗

L = miny∈J0,rK πL(y).

Moreover, note that for all x ∈ J0, rK,

L(x, x) = −bx − dmax {x+1,r}

(
1x+1>r

2
+ 1x+1<r

)
< 0,

for x > y + 1, L(x, y) = 0 and for x < r

L(x+ 1, x) = (21x+16=r + 1x+1=r)
dx+1

2
> 0.

If r > 4, for y ∈ J1, r− 1K,

L(y − 1, y) = −dy−1 + by + dy+11y<r−1 +
dy+1

2
1y+1=r > 0 and L(r − 1, r) = −dr−1 + br−1 + dr > 0,

for x ∈ J0, y − 2K and y ∈ J2, r− 1K,

L(x, y) = (−1)x+y

(
by−2 + dy−1 − by − dy+1 +

dr

2
1y=r−1

)
> 0,

and for x ∈ J0, r− 2K

L(x, r) = (−1)x+r

(
br−2 + dr−1 − br−1 −

dr

2

)
> 0,

then L is a Markov generator.

Remark 6.1. We can see that πL is the distribution at time 1 of the Markov chain with transition matrix

Λpb under the initial law πG.

Proof. We first observe that the inverse of Λpb is given by

Λ−1
pb (x, y) = (−1)y−x(21y 6=r + 1y=r) for x 6 y, x, y ∈ J0, rK,(6.6)

Λ−1
pb (x, y) = 0 otherwise.(6.7)
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Upon expanding Pt = Λ−1
pb QtΛpb, we get

Pt(x, y) =
r∑

k=x

(−1)k−x(21k 6=r + 1k=r)

(
Qt(k, y − 1)

(
1y−1>0

2

)
+Qt(k, y)

(
1y 6=r

2
+ 1y=r

))

=
r∑

j=0

e−λjt

(
r∑

k=x

(−1)k−x(21k 6=r + 1k=r)φj(k)

)

×
(
φj(y − 1)πG(y − 1)

(
1y−1>0

2

)
+ φj(y)πG(y)

(
1y 6=r

2
+ 1y=r

))
,

where the second equality follows from substituting the spectral expansion of (Qt)t>0. The bound (6.5)

follows directly from Corollary 2.2. To show that L is a Markov generator under the proposed conditions

on birth and death rates, we need to impose sufficient conditions such that L(x, x) < 0 for all x ∈ X
and L(x, y) > 0 for all x 6= y ∈ X , see e.g. [41, Chapter 20]. We proceed by calculating GΛpb, and the

entries not mentioned below are all zero. We have

2GΛpb(x, x− 1) = dx, x ∈ J1, rK,

2GΛpb(x, x) = −bx − dr1x=r, x ∈ J0, rK,

2GΛpb(x, x+ 1) = −dx + br−11x=r−1, x ∈ J0, r− 1K,

2GΛpb(x, x+ 2) = bx, x ∈ J0, r− 2K.

Using the form of GΛpb described above, we first note that L(x, x) < 0 is automatically satisfied since

L(x, x) = −bx − dmax {x+1,r}

(
1

2
1x+1>r + 1x+1<r

)
< 0.

It remains to check L(x, y) > 0 for all x 6= y. Indeed, we have

L(x, y) =

min {y+1,r}∑

k=max {x,y−2}

(−1)k−x(21k 6=r + 1k=r)GΛpb(k, y).

For x > y + 1, L(x, y) = 0. For x = y + 1,

L(y + 1, y) = (21y+16=r + 1y+1=r)
1

2
dy+1 > 0.

Thus, it boils down to check L(x, y) > 0 for x ∈ J0, y − 1K. For y ∈ J1, r− 1K and x = y − 1,

L(x, y) = −dy−1 + by + dy+11y<r−1 +
dy+1

2
1y+1=r.

For y = r and x = r− 1,

L(r − 1, r) = 2GΛpb(r− 1, r)−GΛpb(r, r) = −dr−1 + br−1 + dr.

For y ∈ J2, r− 1K and x ∈ J0, y − 2K, since r > 4,

L(x, y) = (−1)x+y (2GΛpb(y − 2, y)− 2GΛpb(y − 1, y) + 2GΛpb(y, y)− 2GΛpb(y + 1, y))

= (−1)x+y

(
by−2 + dy−1 − by − dy+1 +

dr

2
1y=r−1

)
,

and for y = r and x ∈ J0, y − 2K,



ANALYSIS OF NON-REVERSIBLE MARKOV CHAINS VIA SIMILARITY ORBIT 25

L(x, r) = (−1)x+r (2GΛpb(r− 2, r)− 2GΛpb(r− 1, r) +GΛpb(r, r))

= (−1)x+r

(
br−2 + dr−1 − br−1 −

dr

2

)
.

�

Example 6.2. The pair

G =




−1 1 0 0 0
0.5 −1 0.5 0 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0 1 −1




, L =




−1.5 1 0.5 0 0
0.5 −1 0.5 0 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0 0.5 −0.5




satisfies the assumption Proposition 6.1, where L is a non-reversible Markov generator since πL =
(0.0625, 0.1875, 0.25, 0.25, 0.25) and πL(0)L(0, 1) 6= πL(1)L(1, 0).

Example 6.3 (Pure birth variants of constant rate birth-death processes with reflection at 0 and r). A

more general example is that bx = dx = λ for x ∈ J1, r − 1K and b0 = dr = 2λ for some λ > 0. The

stationary distribution πG is πG(x) =
1
r

for x ∈ J1, r − 1K and πG(0) = πG(r) =
1
2r

, and the associated

eigenvalues and orthogonal polynomials are, for j, x ∈ J0, rK,

λj = 2λ (1− cos(θj))

φj(x) = cos(θjx+ c),

where (θj)
r

j=0 and c are determined by the boundary values cos(θx+ c) = cos(θ) cos(c) and cos(θ(N −
1)+ c) = cos(θ) cos(θN + c) and are arranged such that (cos(θj))

r

j=0 is in non-increasing order, see [18,

Proposition 22] and [62]. We proceed to check that the conditions in Proposition 6.1 are fulfilled: for

y ∈ J1, r− 1K,

L(y − 1, y) = −dy−1 + by + dy+11y<r−1 +
dy+1

2
1y+1=r = λ1y<r−1 +

λ

2
1y+1=r > 0,

and

L(r− 1, r) = −dr−1 + br−1 + dr = 2λ > 0.

For x = 0 and y = 2,

L(0, 2) = λ,

and otherwise for y ∈ J3, r− 1K and x ∈ J0, y − 2K,

(−1)x+y

(
by−2 + dy−1 − by − dy+1 +

dr

2
1y=r−1

)
= 0 > 0,

and for y = r and x ∈ J0, y − 2K,

(−1)x+r

(
br−2 + dr−1 − br−1 −

dr

2

)
= 0 > 0,



26 MICHAEL C.H. CHOI AND PIERRE PATIE

so L is a Markov generator, with spectral decomposition given by

Pt(x, y) =
r∑

j=0

e−2λ(1−cos(θj))tfj(x)f
∗
j (y)πL(y),

||Pt − πL||TV 6
κ(Λpb)e

−2λ(1−cos(θ1))t

2

√
1− π∗

L

π∗
L

= O(e−2λ(1−cos(θ1))t), where

π∗
L =

1

4r
,

fj(x) =

r∑

k=x

(−1)k−x(21k 6=r + 1k=r) cos(θjk + c),

f ∗
j (y)πL(y) = cos(θj(y − 1) + c)πG(y − 1)

(
1y−1>0

2

)

+ cos(θjy + c)πG(y)

(
1y 6=r

2
+ 1y=r

)
.
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