
On minimal Ramsey graphs and Ramsey equivalence in

multiple colours

Dennis Clemens ∗ Anita Liebenau † Damian Reding ‡

September 4, 2021

Abstract

For an integer q ě 2, a graph G is called q-Ramsey for a graph H if every q-colouring of
the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H, yet no proper
subgraph of G has this property then G is called q-Ramsey-minimal for H. Generalising
a statement by Burr, Nešetřil and Rödl from 1977 we prove that, for q ě 3, if G is a graph
that is not q-Ramsey for some graph H then G is contained as an induced subgraph in
an infinite number of q-Ramsey-minimal graphs for H, as long as H is 3-connected or
isomorphic to the triangle. For such H, the following are some consequences.

• For 2 ď r ă q, every r-Ramsey-minimal graph for H is contained as an induced
subgraph in an infinite number of q-Ramsey-minimal graphs for H.

• For every q ě 3, there are q-Ramsey-minimal graphs for H of arbitrarily large
maximum degree, genus, and chromatic number.

• The collection tMqpHq : H is 3-connected or K3u forms an antichain with respect
to the subset relation, whereMqpHq denotes the set of all graphs that are q-Ramsey-
minimal for H.

We also address the question which pairs of graphs satisfy MqpH1q “ MqpH2q, in
which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are
q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some
q ě 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected
graphs this implication may hold: Results by Nešetřil and Rödl and by Fox, Grinshpun,
Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any
other connected graph. We prove that this is the case for an arbitrary number of colours.

1 Introduction

A graph G is q-Ramsey for H, denoted by G Ñ pHqq, if every q-colouring of the edges of
G contains a monochromatic copy of H. Many interesting questions arise when we consider
those graphs G which are minimal with respect to GÑ pHqq. A graph G is q-Ramsey-minimal
for H (or q-minimal for H) if G Ñ pHqq and G1 Û pHqq for every proper subgraph G1 Ł G.
We denote the family of such graphs by MqpHq. The fact that MqpHq ‰ ∅ for every graph
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H and every integer q ě 2 is a consequence of Ramsey’s theorem [24]. Burr, Erdős, and
Lovász [7] initiated the study of properties of graphs in M2pKkq in 1976, where as usual Kk

denotes the complete graph on k vertices. Their seminal paper raised numerous questions
on minimal Ramsey graphs that were addressed by various mathematicians in subsequent
years [6, 9, 22, 5, 26].

Various graph parameters have been studied for graphs in MqpHq, the most prominent
being the Ramsey number rqpHq which is the smallest number of vertices of a graph in
MqpHq. When H is the complete graph we also write Rqpkq for rqpKkq. Estimating Rqpkq
or even R2pkq is one of the fundamental open problems in Ramsey theory. It is known that
2k{2`opkq ď R2pkq ď 22k´opkq where the best lower bound is due to Spencer [27] improving
a result by Erdős [11], and the best known upper bound is due to Conlon [10], improving
earlier bounds by Erdős and Szekeres [12], Rödl [18], and Thomason [29]. Quite surprisingly,
some other parameters could be determined precisely. Nešetřil and Rödl [23] showed, for
example, that the smallest clique number of a graph in MqpHq is exactly the clique number
of H, extending earlier work by Folkman [14]. Furthermore, the smallest chromatic number
and the smallest connectivity of a graph in MqpHq are known for all H and q ě 2, see [7]
and [9]. A parameter of ongoing interest is sqpHq, the smallest minimum degree of a graph
G PMqpHq. The value of s2pHq is known for some graphs H, including cliques [7], complete
bipartite graphs [17], trees and cycles [28], and complete graphs with a pendant edge [15].
The asymptotic behaviour of sqpKkq was considered when q Ñ8 in [16, 19], and when k Ñ8

in [20].
In this paper we are interested in the interplay betweenMqpHq andMrpH

1q when q ‰ r
or when H and H 1 are nonisomorphic. Clearly, every graph G that is a q-minimal graph for
some graph H is r-Ramsey for H, for all 2 ď r ď q, and thus contains an r-minimal graph as
an induced subgraph. Our first contribution complements this observation in the sense that
every r-minimal graph G can be obtained this way from a q-minimal graph G1, as long as H
satisfies some connectivity conditions. Following standard notation we write H – H 1 if H
and H 1 are isomorphic.

Theorem 1.1. Let H be a 3-connected graph or H – K3 and let q ą r ě 2 be integers. Then
for every F PMrpHq there are infinitely many graphs G PMqpHq such that F is an induced
subgraph of G.

In fact, this result is an immediate consequence of the following more general statement.

Theorem 1.2. Let H be a 3-connected graph or H – K3, let q ě 2 be an integer and let F
be a graph which is not q-Ramsey for H. Then there are infinitely many graphs G PMqpHq
such that F is an induced subgraph of G.

For the assertions of Theorems 1.1 and 1.2 to hold it is clearly necessary that H is Ramsey
infinite, that is MqpHq is infinite. Some graphs including, for example, star forests with
an odd number of edges, are known not to be Ramsey infinite. Faudree [13] provided a
full characterization of forests that are Ramsey infinite. Furthermore, it follows from [25,
Corollary 4] by Rödl and Ruciński that H is Ramsey infinite if H contains a cycle. It may
well be possible that the assertions of Theorems 1.1 and 1.2 hold for all graphs H that are
Ramsey infinite.

The 2-colour version of Theorem 1.2 was proved by Burr, Nešetřil and Rödl [9], extending
earlier work by Burr, Faudree and Schelp [8] who proved the statement for q “ 2 and when

2



H is a complete graph. Yet, it is this multi-colour version which implies Theorem 1.1 as a
corollary. As in [9] for q “ 2, Theorem 1.2 also implies the existence of multicolour Ramsey-
minimal graphs with arbitrarily large maximum degree, genus and chromatic number. Indeed,
it is well-known that, for a fixed graph H containing a cycle and for a fixed integer k, the
uniform random graph Gpn, pq does not contain H as a subgraph and has maximum degree,
genus and chromatic number at least k with probability tending to 1 as n Ñ 8, for some
p “ Θp1{nq. Take F in Theorem 1.2 to be such a graph drawn from Gpn, pq.

Another implication of Theorem 1.2 that we find noteworthy is the following.

Corollary 1.3. Let H be a 3-connected graph or H – K3 and let q ě 2 be an integer. Suppose
that MqpHq ĎMqpH

1q for some arbitrary graph H 1. Then MqpHq “MqpH
1q.

We provide the short argument in Section 3. Another way to view Corollary 1.3 is that if
both H and H 1 are 3-connected or isomorphic to K3 then the two sets MqpHq and MqpH

1q

are either equal or incomparable with respect to the subset relation, i.e. the set tMqpHq :
H is 3-connected or K3u forms an antichain with respect to the subset relation. We find it
instructive to note at this point that for such H,H 1, in fact, MqpHq “ MqpH

1q is only
possible if H is isomorphic to H 1.

Theorem 1.4. Let H and H 1 be non-isomorphic graphs that are either 3-connected or iso-
morphic to K3. Then MqpHq ‰MqpH

1q for all q ě 2.

It is now natural to ask which pairs of graphs H and H 1 do satisfyMqpHq “MqpH
1q. For

an integer q ě 2 let us call two graphs H and H 1 q-Ramsey equivalent (or just q-equivalent)
if MqpHq “ MqpH

1q. The notion was introduced by Szabó, Zumstein and Zürcher [28] in
the case of two colours to capture the fact that s2pHq “ s2pH

1q for some graphs H and H 1

merely becauseM2pHq “M2pH
1q. We are particularly interested in the relationship between

2-colour equivalence and multi-colour equivalence, i.e. what can we infer from known results
for 2 colours to more colours?

To briefly survey which pairs of graphs are known to be 2-equivalent, let H ` sH 1 denote
the graph formed by the vertex disjoint union of a copy of H and s copies of H 1, where
we omit s when s “ 1. It is straight-forward to see that Kk is 2-equivalent to Kk ` sK1

if and only if s ď Rpkq ´ k, see e.g. [28]. For k ě 4, Kk and Kk ` K2 are known to be
2-equivalent. In fact, Szabó, Zumstein and Zürcher [28] proved that for 2 ď t ď k ´ 2 and
s ă pRpk ´ t ` 1, kq ´ 2pk ´ tqq{2t the graphs Kk and Kk ` sKt are 2-equivalent, where
Rpk, `q denotes the smallest integer n such that every red/blue-colouring of the edges of Kn

contains a red copy of Kk or a blue copy of K`. For the case t “ k´ 1, Bloom and the second
author [3] show that Kk and Kk ` Kk´1 are 2-equivalent for all k ě 4. (The requirement
k ě 4 is necessary in both [28] and [3]. Furthermore, the result in [28] is optimal up to a
factor of roughly 2, the result in [3] is optimal in the sense that Kk`Kk´1 cannot be replaced
by Kk ` 2Kk´1. We comment on these non-equivalence results further below.) Axenovich,
Rollin, and Ueckerdt [1] provide a tool to lift these 2-equivalence results to q-equivalence.

Theorem 1.5 (Theorem 10 in [1]). If two graphs H and H 1 are 2-equivalent and H Ď H 1

then H and H 1 are q-equivalent for every q ě 3.

In particular, the pairs Kk and Kk ` sKt are q-equivalent for every q ě 3 whenever they
are 2-equivalent. It would be desirable to remove the condition H Ď H 1 from Theorem 1.5. In
general, the following lifts 2-equivalence (without the subgraph requirement) to q-equivalence
for even q.
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Observation 1.6. Let a, b, q, r be non-negative integers such that q, r ě 2. If H and H 1 are
q- and r-equivalent then they are paq ` brq-equivalent.

Indeed, the result follows by induction on a ` b ě 1 with the case a ` b “ 1 given by
assumption. Without loss of generality suppose that H and H 1 have been shown to be n-
equivalent, where n “ pa´ 1qq ` br. Now suppose G is a graph such that GÑ pHqn`q. We
claim that then G Ñ pH 1qn`q as well. Fix an pn ` qq-colouring c : EpGq Ñ rn ` qs of the
edges of G, where rms denotes the set t1, . . . ,mu, and consider the (uncoloured) subgraphs
G1 given by the q colour classes 1, . . . , q and G2 given by the n colour classes q` 1, . . . , q`n.
Note that we must have G1 Ñ pHqq or G2 Ñ pHqn since we could otherwise recolour G
with n ` q colours without a monochromatic copy of H, a contradiction. By equivalence
in n and q colours we then have that G1 Ñ pH 1qq or G2 Ñ pH 1qn and hence the original
colouring of G admits a monochromatic copy of H 1, so G Ñ pH 1qn`q as claimed. Similarly,
every graph G that is pn`qq-Ramsey for H 1 needs to be pn`qq-Ramsey for H, which implies
Mn`qpHq “Mn`qpH

1q.
Observation 1.6 implies in particular that if two graphs H and H 1 are 2- and 3-equivalent,

then they are q-equivalent for every q ě 2. We wonder whether it is true that two graphs H
and H 1 are 3-equivalent if they are 2-equivalent and whether this can be shown using ad-hoc
methods.

So far, we have investigated what we can deduce for q ě 3 colours when we know that
H and H 1 are 2-equivalent. What can we deduce when H and H 1 are not 2-equivalent? To
examine this question let us return to the example of disjoint cliques from above. It is easy
to see that K6 is 2-Ramsey for K3, yet fails to be Ramsey for the triangle and a disjoint
edge, see e.g. [28]. This shows that K3 and K3`K2 are not 2-equivalent. The following then
implies that, in general, nothing can be deduced from non-2-equivalence.

Theorem 1.7. The graphs K3 `K2 and K3 are q-equivalent for all q ě 3.

In fact, there are infinitely many pairs of graphs that are not 2-equivalent, yet they are q-
equivalent for some q ě 3. To see this let us first mention how the criterion in [28] generalises
to more than two colours. For integers q, k1, . . . , kq ě 2 let Rpk1, . . . , kqq denote the smallest
integer n such that any colouring of the edges of Kn with colours rqs contains a monochromatic
copy of Kki in colour i, for some i P rqs. We write Rqpk1, k2, . . . , k2q when k2 “ k3 “ . . . “ kq.

Theorem 1.8. Let k, t, q be integers such that q ě 2 and k ą t ě 2. If s ă pRqpk ´ t `
1, k, . . . , kq ´ qpk ´ tqq{qt then Kk and Kk ` sKt are q-equivalent.

For q “ 2 and t ď k ´ 2 this is Corollary 5.2 (ii) in [28], and the argument easily
generalises to q ě 3 colours. We provide the proof for completeness in Section 4. For q “ 2,
Theorem 1.8 is known to be best possible up to a factor of roughly 2. Specifically, Fox,
Grinshpun, Person, Szabó and the second author [15] show that for k ą t ě 3 the graphs
Kk and Kk ` sKt are not 2-equivalent if s ą pRpk ´ t ` 1, kq ´ 1q{t. This result implies
the optimality of the equivalence of Kk and Kk ` Kk´1 in [3] and the optimality up to a
factor of roughly 2 in [28] mentioned above. The consequence of this non-equivalence result
in [15] and Theorem 1.8 is that, for given k ą t ě 3, the graphs Kk and Kk ` sKt are
not 2-equivalent, but they are q-equivalent for some large enough q, if we take s such that
pRpk ´ t` 1, kq ´ 1q{t ă s ă pRqpk ´ t` 1, k, . . . , kq ´ qpk ´ tqq{qt.

The previous discussion shows that in general we cannot deduce non-q-equivalence for q ě
3 from non-2-equivalence. However, all of the examples above that witness this phenomenon
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have at least one of H, H 1 being disconnected. When both graphs H and H 1 are 3-connected
or isomorphic to K3 then H and H 1 are not q-equivalent for any q ě 2, by Theorem 1.4. In
fact, it remains an open question, first posed in [15], whether there are two non-isomorphic
connected graphs H and H 1 that are 2-equivalent. A theorem by Nešetřil and Rödl [23]
implies that any graph that is q-equivalent to the clique Kk, for some q ě 2, needs to contain
Kk as a subgraph. Fox, Grinshpun, Person, Szabó and the second author [15] show that Kk

is not 2-equivalent to Kk ¨K2, the graph on k ` 1 vertices formed by adding a pendant edge
to Kk. We lift this result to any number of colours.

Theorem 1.9. For all k, q ě 3, Kk and Kk ¨K2 are not q-Ramsey equivalent.

Together with the result in [23] this implies that, for all q ě 3, Kk is not q-equivalent to
any connected graph other than Kk. We wonder whether one can prove in general that if two
graphs H and H 1 are connected and not 2-equivalent, then they are not q-equivalent for any
q ě 3. In our proof of Theorem 1.9 the graph Kk cannot be replaced by, say, Kk missing an
edge.

The rest of the paper is organised as follows. In Section 2, we fix our notation and describe
the method of signal senders. We also include the proof of Theorem 1.4 there. In Section 3
we prove Theorem 1.2 and Corollary 1.3. Section 4 contains the results related to Ramsey
equivalence, that is we prove Theorem 1.8, which we obtain as a corollary to a slightly more
general result, as well as both Theorem 1.7 and Theorem 1.9. In the final section we discuss
open problems.

2 Preliminaries

Notation. For a graph G “ pV,Eq we write V pGq and EpGq for its vertex set and edge set,
respectively, and we set vpGq “ |V pGq| and epGq “ |EpGq|. Throughout the paper we assume

that EpGq Ď
`

V pGq
2

˘

and that both V and E are finite. A graph F is called a subgraph of a
graph G, denoted by F Ď G, if V pF q Ď V pGq and EpF q Ď EpGq. Let G, F , and H be graphs
such that F Ď G and V pGqXV pHq “ H. We write G´F for the graph with vertex set V pGq
and edge set EpGqzEpF q; and G`H for the graph formed by the vertex-disjoint union of G
and H, i.e. the graph with vertex set V pGqYV pHq and edge set EpGqYEpHq. When F or H
consist of a single edge e we also write G´ e and G` e, respectively. For a subset A Ď V pGq
denote by GrAs the induced subgraph on A, i.e. the graph with vertex set A and edge set
consisting of all edges of G with both endpoints in A. A subgraph F of G is called an induced
subgraph if F “ GrV pF qs. Given a path P in a graph G, the length of P is the number of
edges of P . For two subsets A,B Ď V pGq, we write distGpA,Bq for the distance between A
and B, i.e. the length of a shortest path in G with one endpoint in A and the other endpoint
in B. Given a subgraph F Ď G, we also write distGpA,F q for distGpA, V pF qq and distGpA, eq
if F consists of a single edge e. A q-colouring of a graph G is a function c that assigns colours
to edges, where the set S of colours has size q and, unless specified otherwise, we assume that
S “ rqs “ t1, . . . , qu. We call a q-colouring H-free if there is no monochromatic copy of H.

Signal senders. For the proofs of Theorems 1.2, 1.4, and 1.9 we use the idea of signal
sender graphs which was first introduced by Burr, Erdős and Lovász [7]. Let H be a graph
and q ě 2 and d ě 0 be integers. A negative (positive) signal sender S “ S´pq,H, dq
(S “ S`pq,H, dq) is a graph S containing distinguished edges e, f P EpSq such that
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(S1) S Û pHqq;

(S2) in every H-free q-colouring of EpSq, the edges e and f have different (the same) colours;
and

(S3) distSpe, fq ě d.

The edges e and f in the definition above are called signal edges of S. The following was
proved by Rödl and Siggers [26], generalising earlier proofs by Burr, Erdős and Lovász [7]
and by Burr, Nešetřil and Rödl [9].

Lemma 2.1. Let H be 3-connected or H “ K3, and let q, d ě 2 be integers. Then there exist
negative and positive signal senders S´pq,H, dq and S`pq,H, dq.

In the proofs of Theorems 1.2, 1.4, and 1.9 we construct graphs using several signal senders.
Assume that G is some graph and let e1, e2 P EpGq be two disjoint edges. We say that we
join e1 and e2 by a signal sender Spq,H, dq if we add a vertex disjoint copy rS of a signal
sender Spq,H, dq to G and then identify the signal edges of rS with e1 and e2, respectively.

Theorem 1.4 is an easy consequence of the existence of signal senders, we prove it here to
serve as a simple example of the method of signal senders.

Proof of Theorem 1.4. Without loss of generality let H Ę H 1. Let S “ S`pq,H 1, dq be a
positive signal sender, where d “ vpHq ` 1. If S Ñ pHqq, then we are done since S Û pH 1qq
by (S1). So we may assume that there is an H-free colouring ϕ : EpSq Ñ rqs. Now construct
a graph G as follows. Fix a copy rH of H 1 and an edge e that is vertex-disjoint from rH.
Then, for every f P Ep rHq join e and f by a copy of the signal sender S so that e is always
identified with the same signal edge of S. Then, G Ñ pH 1qq. Indeed, for a q-colouring of G,
there is a monochromatic copy of H 1 in one of the copies of the signal sender S, or every edge
in rH has the same colour as e, by (S2) and by construction of G. In either case, there is a
monochromatic copy of H 1.

Moreover, GÛ pHqq. Consider the colouring of EpGq defined by colouring each copy of S
using ϕ. Note that any two copies of S intersect in the edge e only (and at most one vertex in
rH). Since e is always identified with the same signal edge in S this colouring is well-defined.
Now every copy of H in G is contained in a copy of the signal sender S since H Ę H 1, H is
3-connected or H – K3, and since distGpe, rHq ą vpHq by choice of S and (S3). However, ϕ
is H-free (on each copy of S), so none of these copies of H is monochromatic.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2 we first establish the existence of certain gadget graphs. Let F
and H be graphs and let d, q ě 2 be integers. Let G be a graph containing both an induced
subgraph rF that is isomorphic to F and an edge e that is vertex-disjoint from rF . G is called
an pH,F, e, q, dq-indicator if distGp rF , eq ě d and the following hold for every i, j P rqs:

(I1) There exists an H-free q-colouring of G such that rF is monochromatic of colour i.

(I2) In every H-free q-colouring of G in which rF is monochromatic of colour i, e has colour i.

(I3) If f is any edge of rF , then there exists an H-free colouring of G´ f in which rF ´ f is
monochromatic of colour i and in which e has colour j.
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Note that it would be enough to say that the subgraphs and edges in the Properties (I2)
and (I3) above should have the same or different colours respectively, without mentioning
explicit colours i and j (since we can swap the colours by symmetry). Nevertheless, we find
it more convenient to state the properties in the above manner, so that we do not need to
repeat the argument of swapping colours over again.

The notion of indicators for q “ 2 was introduced by Burr, Faudree and Schelp [8] who
established their existence in the case when H is a clique and F Ğ H, but with d not being
specified; see Lemma 3 in [8]. We find the definition above to be a suitable generalisation for
q ě 3 to be able to prove existence while still being useful gadgets for the proof of Theorem 1.2.

By definition it is necessary that F does not contain a copy of H for an pH,F, e, q, dq-
indicator to exist. Under the assumption that H is suitably connected this turns out to
be sufficient. We need one more ingredient though which allows us to combine indicators
(and signal senders) by identifying certain edges without creating new copies of H. We
say that an pH,F, e, q, dq-indicator G has Property T if there is a collection of subgraphs
tTf Ď G | f P Ep rF qu such that

(T1) V pTf q X V p rF q “ f and f P EpTf q for all f P Ep rF q,

(T2) V pGq “
Ť

fPEp rF q
V pTf q and EpGq “

Ť

fPEp rF q
EpTf q, and

(T3) for all distinct f1, f2 P Ep rF q and all v P V pTf1q X V pTf2q it holds that v P V p rF q or

distGpv, rF q ě d,

where rF is the fixed induced copy of F in G.

Lemma 3.1. Let H be 3-connected or H “ K3, let F be a graph that does not contain a copy
of H, let e be an edge that is vertex-disjoint from F , and let q, d ě 2 be integers. Then there
exists an pH,F, e, q, dq-indicator G that has Property T .

Similar to the convention for signal senders we say that, for given graphs F Ď G and an
edge e P EpGq that is vertex-disjoint from F , we join F and e by an pH,F, e, q, dq-indicator
when we add a vertex-disjoint copy of an pH,F, e1, q, dq-indicator G1 to G and identify the
copy of F in G1 with F Ď G and identify the edge e1 in G1 with e in G.

The proof of Lemma 3.1 proceeds by induction on epF q. When F is a matching of two
edges, however, we need gadget graphs with a stronger property than pI3q. We prove their
existence first.

Lemma 3.2. Let H,F, e, q, d be as in Lemma 3.1 and assume that F “ tf1, f2u is a matching.
Then there exists an pH,F, e, q, dq-indicator G2 with distG2pf1, f2q ě d that has Property T ,
where instead of pI3q we have that

pI31q for ` P t1, 2u there exists an H-free colouring of G2 in which f` has colour i and both,
e and f3´` have colour j.

Proof. We construct G2 as follows. Start with a copy rF of F and an edge e that is vertex
disjoint from F . By a slight abuse of notation we refer to f1 and f2 for the copies of the two
edges of F . Let te1, e2, . . . , eq´1u be a matching of q´1 edges that are vertex-disjoint from rF
and e. Let H1, H2, . . . ,Hq´1 be copies of H that are vertex-disjoint from f1, f2, e1, e2, . . . , eq´1
and such that any two copies Hi and Hj intersect in one fixed edge which we identify with e.
Furthermore,

7



H1
H2 H3

f1 f2

S− S−

S−

S+

e

e1 e2 e3

S+ S+

S−

Figure 1: Indicator for q “ 4 and F “ tf1, f2u being a matching.

(i) join f1 and e1 by a negative signal sender S1 “ S´pq,H, dq and for every 2 ď k ď q ´ 1
join f2 and ek by a negative signal sender Sk “ S´pq,H, dq;

(ii) for every 1 ď k ă ` ă q join ek and e` by a negative signal sender Sk,` “ S´pq,H, dq;

(iii) for every 1 ď k ď q´ 1 and every edge g P EpHk ´ eq join ek and g by a positive signal
sender Sk,g “ S`pq,H, dq.

Note that the existence of the signal senders in (i)-(iii) is given by Lemma 2.1. Call the
resulting graph G2; an illustration can be found in Figure 1 for the case that q “ 4. It
should be clear that distG2pe,

rF q ě d and distG2pf1, f2q ě d. Thus, it remains to prove that
G2 satisfies Properties pI1q, pI2q, pI31q and Property T . Without loss of generality we may
assume that i “ q.

In the light of these properties, we first observe that every copy of H in G2 either is one
of the subgraphs Hk with k P rq ´ 1s or is contained completely in one of the signal senders
from (i)-(iii). Indeed, let a copy H 1 of H be given and assume first that H 1 contains at least
one vertex v from a signal sender S such that v is not incident with one of the signal edges
of S. Due to the fact that H is 3-connected or H “ K3 and the fact that signal edges always
have distance at least d ą vpHq, it must hold that H Ď S. Assume then that H 1 does not
contain such a vertex. Then H 1 must be contained in the union of all Hk with k P rq´ 1s. As
these subgraphs all intersect only in the edge e and since H is 3-connected or H – K3, we
must have V pH 1q “ V pHkq for some k P rq ´ 1s.

For Property pI1q, define a q-colouring of G2 as follows. Colour the edges of rF and e
with colour q, and for every k P rq ´ 1s colour the edges of Hk ´ e and ek with colour k.
Moreover, colour every signal sender from (i)-(iii) with an H-free q-colouring preserving the
colours already chosen for the signal edges. Note that this is possible by Properties pS1q
and pS2q, because the signal senders may only intersect in their signal edges and the colours
above have been chosen in such a way that the signal edges of negative/positive signal senders
receive different/identical colours. The resulting q-colouring of G2 is H-free as it is H-free on
every signal sender and on every subgraph Hk with k P rq ´ 1s.

For Property pI2q, let c : EpG2q Ñ rqs be an H-free q-colouring of G2 such that rF is
monochromatic of colour q. Then cpe1q ‰ cpf1q “ q and cpekq ‰ cpf2q “ q for every k P rq´1s,
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by Property pS2q for the negative signal senders in (i). Similarly, by Property pS2q for the
negative signal senders in (ii) we obtain that cpekq ‰ cpe`q for every 1 ď k ă ` ď q ´ 1.
Therefore, it must hold that tcpekq : k P rq ´ 1su “ rq ´ 1s. Applying pS2q for the positive
signal senders in (iii) we finally deduce that Hk ´ e must be monochromatic in colour cpekq.
Therefore, in order to prevent any copy Hk of H from becoming monochromatic we must
have cpeq R rq ´ 1s, i.e. cpeq “ q.

For Property pI31q, let f “ f`, ` P r2s be one of the two edges of rF . We define a colouring
c : EpG2q Ñ rqs as follows. Set cpf`q “ cpe3´`q “ q, cpeq “ cpf3´`q “ j and colour the edges
e`, e3, e4, . . . , eq´1 with distinct colours from rq ´ 1sztju. Colour the edges of Hk ´ e with
colour cpekq for every k P rq ´ 1s. Finally, colour every signal sender from (i)-(iii) with an
H-free colouring preserving the colours already chosen for the signal edges. Analogously to
the verification of Property pI1q this is possible and it results in an H-free q-colouring of G2.
Property pI31q follows.

For Property T note that the choice Tf1 “ S1 and Tf2 “ G2rV pG2qzV pS1 ´ e1qs satisfies
(T1)-(T3).

Proof of Lemma 3.1. Without loss of generality we may assume that d ą vpHq. We proceed
by induction on epF q.

If epF q “ 1 then let G “ S`pq,H, dq be a positive signal sender, which exists by
Lemma 2.1, and identify its signal edges with e and f , where f is the unique edge of F .
Then Properties pI1q and pI2q hold by Properties pS1q and pS2q for positive signal senders.
Property pI3q follows since F ´ f has no edges, and by pS1q again, after possibly swapping
colours. Property T holds with Tf “ G.

Suppose now that epF q ě 2. We construct G as follows. Start with a copy rF of F and an
edge e that is vertex disjoint from rF . Let e1 be an edge that is vertex-disjoint from e and rF ,
and let f1, f2, . . . , fepF q be the edges of F in any order. For clarity of presentation, we assume

that the edges of rF are labelled f1, f2, . . . , fepF q as well. Let G1 be an pH,F ´ f1, e1, q, dq-
indicator that has Property T as given by induction, and let G2 be an pH, tf1, e1u, e, q, dq-
indicator that has Property T as given by Lemma 3.2. Now join rF ´ f1 and e1 by G1 and
join f1 and e1 by G2. An illustration can be found in Figure 2.

F̃

G1

e G2

F̃ − f1

e1

f1

Figure 2: Recursive construction of indicators.

First observe that distGpe, rF q ě mintdistG2pe, f1q,distG2pe, e1qu ě d and distGpe1, f1q ě d.
Furthermore, every copy of H in G must be either a subgraph of G1 or of G2. To see this,
let H 1 be a copy of H in G. Assume first that H 1 contains a vertex from V pG2qzpe1 Y f1q.
Since distG2pe1, f1q ě d ą vpHq, H 1 cannot use vertices from both e1 and f1, and thus,
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we conclude that H 1 Ď G2 since either H – K3 or H is 3-connected. Assume then that
H 1 does not use vertices from V pG2qzpe1 Y f1q. This implies that V pH 1q Ď V pG1q so we
are done unless f1 is an edge of H 1 (note that by definition, the vertices of f1 are vertices
of rF ´ f1 and hence of G1). Assume towards a contradiction that f1 is an edge of H 1.
Furthermore, we may assume that H 1 contains a vertex v P V pG1qzpV p rF q Y e1q since rF does
not contain a copy of H. Let Tf2 , . . . , TfepF q be the subgraphs of G1 given by Property T .
Then v P V pTgq for some g P EpF ´ f1q, by (T2). Furthermore, g is unique since otherwise

distGpv, f1q ě mintdistG1pv,
rF q,distG2pe1, f1qu ě d ą vpHq by (T3), a contradiction since H

is connected. In fact, this shows that no vertex of V pH 1qzV p rF q is contained in the intersection
V pTg1qXV pTg2q for distinct g1, g2 P Ep rF´f1q. Now, g cannot be incident with both endpoints

of f1, and V pTgq X V p rF q “ g by (T1). When H – K3 this already implies that v together
with the vertices of f1 cannot form a copy of H. When H is 3-connected, we then find a
vertex w R V pTgq which is incident with f1 and three internally vertex-disjoint v-w-paths
in H 1. Among these paths there is at least one path that does not contain a vertex from
g, call this path P . Since v P V pTgq and w R V pTgq there must be an edge e “ xy on P

such that x P V pTgq and y R V pTgq. But now, x R g “ V pTgq X V p rF q, and thus we conclude

that x R V p rF q and e “ xy R Ep rF q. Using (T2) and y R V pTgq it follows that e P EpTg1q for

some g1 P Ep rF ´ f1 ´ gq. But then x is a vertex in V pH 1qzV p rF q which is contained in the
intersection V pTgq X V pTg1q for distinct g, g1 P Ep rF ´ f1q. We already explained that such a
vertex does not exist, a contradiction.

For Property pI1q, let c1 be an H-free q-colouring of G1with rF´f1 and e1 having colour q,
as provided by Properties pI1q and pI2q for G1. Analogously, let c2 be an H-free q-colouring
of G2 with te1, f1u and e having colour q. The combination of both colourings together is an
H-free q-colouring c of G, as every copy of H is contained either in G1 or in G2. Moreover,
rF is monochromatic in colour q, as claimed.

For Property pI2q, let c be an H-free q-colouring of G such that rF is monochromatic of
colour q. Then cpe1q “ q by Property pI2q of G1. But then te1, f1u is monochromatic in
colour q which implies that cpeq “ q by Property pI2q of G2.

For Property pI3q, let f P Ep rF q. Assume first that f “ f1. As in pI1q there exists an
H-free q-colouring c1 of G1 with rF´f1 and e1 having colour q. Moreover, using Property pI3q
of G2 we know that there is an H-free q-colouring c2 of G2 ´ f1 such that c2pe1q “ q and
c2peq “ j. The combination of both colourings is a q-colouring as desired, since every copy of
H is contained either in G1 or in G2. Now, assume that f ‰ f1. By Property pI3q of G1 there
is an H-free q-colouring c1 of G1 ´ f such that rF ´ tf1, fu is monochromatic in colour q and
with e1 having colour j. By Property pI31q of G2 there is an H-free q-colouring of G2 such
that c2pf1q “ q and c2peq “ c2pe1q “ j. The combination of both colourings is a q-colouring
as desired for Property pI3q.

For Property T , let Tf2 , . . . , TfepF q be the subgraphs for f2, . . . , fepF q given by Property T
of G1 Ď G. Moreover, set Tf1 “ G2. Then (T1) holds for G, since (T1) holds for G1 by

induction and since V pG2q X V p rF q “ f1 and f1 P EpG2q. Property (T2) is given for G,
since V pGq “ V pG1q Y V pG2q “

Ť

fP rF´f1
V pTf q Y V pTf1q by Property (T2) for G1; and since

EpGq “ EpG1q Y EpG2q “
Ť

gPEp rF q
EpTgq. For (T3), let v P V pTfiq X V pTfj q for some i ‰ j

where v R V p rF q. If i “ 1 or j “ 1, then v P e1 and thus distGpv, rF q ě d. Otherwise, by
(T3) for G1 and the construction of G, we conclude that distGpv, rF q ě mintdistG1pv,

rF ´
f1q,distG2pe1, f1qu ě d.
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F1

F2

F3

e1

e2

e3

f1

f2

f3

I1

I2

I3

S−1

S−2

S−3

S+
1

S+
2

r1

r2

r3

S+

S+
S−

F

Figure 3: Construction of G for q “ 3.

Proof of Theorem 1.2. Let H, q, and F be as in the theorem statement. By assumption, there
exists an H-free q-colouring of F . Let F1, . . . , Fq denote its colour classes. We construct a
graph G as follows. Let tr1, . . . , rq, e1, . . . , eq, f1, . . . , fqu be a matching that is vertex-disjoint
from F “ F1Y . . .YFq. Now join these matching edges and the edges of F by signal senders
and indicators as follows. Set d “ vpHq ` 1.

(i) For every 1 ď k ă ` ď q join rk and r` by a negative signal sender Sk,` “ S´pq,H, dq;

(ii) for every k P rqs and every g P Fk join rk and g by a positive signal sender Sk,g “
S`pq,H, dq;

(iii) for every k P rqs join Fk and ek by an pH,Fk, ek, q, dq-indicator Ik that has Property T ;

(iv) for every k P rqs join ek and fk by a negative signal sender S´k “ S´pq,H, dq;

(v) for every k P rq ´ 1s join fk and fk`1 by a positive signal sender S`k “ S`pq,H, dq.

The existence of the signal senders and indicators in (i)-(v) follows from Lemmas 2.1 and 3.1.
An illustration of the construction can be found in Figure 3.

Similar to the constructions for Lemma 3.1, we first show that every copy of H in G is
a subgraph of either F or one of these signal senders or one of these indicators. Let H 1 be
a copy of H in G. Assume first that there is a signal sender S from (i), (ii), (iv) or (v),
and a vertex v P V pH 1q X V pSq that is not incident to any of the signal edges of S. Then
H 1 Ď S, since the signal edges have distance at least d in S and since H is 3-connected or a
triangle. So we may assume that V pH 1q Ď V pF q Y

Ť

kPrqs V pIkq. If V pH 1q Ď V pF q then we

are done. Thus, we may also assume that H 1 contains a vertex v from V pIkqzV pF q for some
k P rqs. Let tTg | g P EpFkqu be the collection of subgraphs of Ik given by Property T of Ik.
By (T2) we know that v P V pTgqzV pF q for some g P EpFkq. Moreover, the only edges of G
containing v are contained in Ik or in S´k , by construction. When H 1 – K3 we immediately
can deduce that V pH 1q Ď V pIkq, since we already assumed that V pH 1q X pV pS´k qzekq “ H.
Let V pH 1q “ tv, x, yu in this case. By Property (T2) we have vx P EpTg1q for some g1 P EpFkq.
If g ‰ g1 holds, then v P V pTgq X V pTg1q and therefore distIkpv, F q ě d “ 4 by Property (T3),
which yields H 1 Ď Ik. Hence, we may assume that g “ g1 and vx P EpTgq, analogously we
may assume that vy P EpTgq. If xy P EpIkq, then we are done. So, we may also assume
that xy P EpF q. Then by Property (T1) we get tx, yu Ď V pTgq X V pF q “ g and thus
xy “ g P EpTgq, again implying that H 1 Ď Ik. Consider next the case when H 1 is 3-connected.
We already know that we may assume that V pH 1q Ď V pF q Y

Ť

kPrqs V pIkq and that there is a
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vertex v from V pIkqzV pF q for some k P rqs. Again, by (T2) there is an edge g P EpFkq with
v P V pTgqzV pF q. If H 1 Ď Tg then we are done. So, we may assume that H 1 contains an edge
which does not belong to EpTgq. By the 3-connectivity of H 1 we then find a v-y-path P in H 1

which does not use vertices from g and such that the edge xy P EpP 1q which is incident with
the endpoint y does not belong to EpTgq. Let P be a shortest such path. Then x P V pTgq.
Since P does not use vertices of g and since V pTgq X V pF q “ g by (T1), we have x R V pF q.
In particular, the only neighbours of x in V pF q need to belong to g, and hence y R V pF q. It
follows that y P V pIkqzV pF q and xy P EpIkq, since all the indicators intersect in V pF q only.
Hence, using (T1) and since xy R EpTgq by the choice of P , we find an edge g1 P EpFk ´ gq
such that xy P EpTg1q. But then x P V pTgqzV pF q is a vertex that lies in the intersection
V pTgq X V pTg1q for distinct g, g1 P EpFkq. Applying (T3) leads to distIkpx, F q ě d and hence
H 1 Ď Ik.

We now prove that pG ´ fq Û pHqq for every f P EpF q. Without loss of generality let
f P Fq. We define a colouring c : EpG´ fq Ñ rqs as follows. Colour all edges of Fq ´ f and
rq with colour q, and for every k P rq´ 1s colour the edges of Fk `tek, rku with colour k. Set
cpeqq “ 1 and cpfkq “ q for every k P rqs. Finally, colour every indicator from (iii) and every
signal sender from (i), (ii), (iv) and (v) with an H-free q-colouring preserving the colours
already chosen. For Iq this is possible by Property pI3q and for all other indicators this is
possible by Properties pI1q and pI2q. For the signal senders this is possible by Properties pS1q
and pS2q, as the colours above have been chosen in such a way that the signal edges of
negative/positive signal senders receive different/identical colours. We claim that c is H-free.
Indeed, any copy of H is contained as a subgraph either in F or in one of the indicators or
signal senders as we have shown above. The colouring on each indicator and signal sender is
H-free, and it is H-free on F since each of F1, . . . Fq receives a distinct colour, and each Fi is
H-free by assumption.

We next show that G Ñ pHqq. Assume that there exists an H-free q-colouring c. By
Property pS2q of the negative signal senders in (i), we find that cprkq ‰ cpr`q for all k, ` P rqs
with k ‰ `. Without loss of generality let cprkq “ k for all k P rqs. By Property pS2q of the
positive signal senders in (ii) it then follows that Fk needs to be monochromatic in colour k
for every k P rqs. Using Property pI2q of the indicators in (iii) we conclude that cpekq “ k
must hold for every k P rqs, and applying Property pS2q of the negative signal senders in (iv)
we then deduce cpfkq ‰ k for every k P rqs. But then, using Property pS2q of the positive
signal senders in (v), we obtain cpf1q “ cpfkq ‰ k for every k P rqs, a contradiction.

Finally, let G1 Ă G be a subgraph of G that is q-Ramsey-minimal for H. Then f P EpG1q
for every f P EpF q since pG´fq Û pHqq. Thus, G1 is a q-Ramsey-minimal graph for H which
contains F as an induced subgraph.

In order to obtain infinitely many such q-Ramsey-minimal graphs set G0 “ G1 and obtain
further such q-Ramsey-minimal graphs Gi iteratively as follows. Let Fi be the disjoint union
of vpGi´1q copies of F . Since Fi is not q-Ramsey for H, we can repeat the above argument and
thus create a q-Ramsey-minimal graph Gi for H which contains Fi as an induced subgraph.
Note that then Gi also contains F as an induced subgraph and vpGiq ě vpFiq ą vpGi´1q

holds.

Proof of Corollary 1.3. Suppose that for two graphs H and H 1 we have MqpHq ĎMqpH
1q

and MqpH
1q Ę MqpHq. Let G P MqpH

1qzMqpHq. If G is q-Ramsey for H then for some
subgraph G1 of G we have that G1 P MqpHq Ď MqpH

1q by assumption. If G1 “ G this
contradicts G RMqpHq, and if G1 is a proper subgraph of G then this contradicts G PMqpH

1q
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as G is not minimal then. On the other hand, if G is not q-Ramsey for H then there exists
a graph G1 such that G Ď G1 PMqpHq ĎMqpH

1q, by Theorem 1.2 and assumption. Since
G PMqpH

1q by assumption it follows that G “ G1, a contradiction to G RMqpHq.

4 Ramsey equivalence results

In this section we prove Theorems 1.7, 1.8, and 1.9. We start with the proof of Theorem 1.8
which is a corollary of the following slightly more general statement. This multi-colour ver-
sion is a straight-forward generalisation of the argument for 2 colours in [28, Theorem 3.1].
Theorem 1.8 follows by repeatedly applying this theorem to pairs Hi´1 “ Kk`pi´ 2qKt and
Hi “ Kk ` pi´ 1qKt with 2 ď i ď s` 1.

Theorem 4.1. Let q ě 2, let a1 ě a2 ě . . . ě as ě 1 and define Hi :“ Ka1 ` ¨ ¨ ¨ ` Kai

for 1 ď i ď s. If Rqpa1 ´ as ` 1, a1, . . . , a1q ą qpa1 ` . . . ` as´1q, then Hs and Hs´1 are
q-equivalent.

Proof. It is clear that every graph G that is q-Ramsey for Hs is also q-Ramsey for Hs´1. Now
let G be a graph that is q-Ramsey for Hs´1. We need to show that G is q-Ramsey for Hs.
Suppose for a contradiction that G Û pHsqq and let c : EpGq Ñ rqs be a q-colouring of the
edges of G without a monochromatic copy of Hs. Without loss of generality, we may assume
that there is a copy ofHs´1 in colour 1, and let S1 be its vertex set. Since c has no copy ofHs in
colour 1 the colouring restricted to V pGqzS1 has no copy of Kas in colour 1. Now, recursively
for every colour j “ 2, . . . , q, let ij be the largest index such that V pGqzpS1 Y . . . Y Sj´1q
contains a monochromatic copy of Hij in colour j (where we take H0 to be the empty graph),
and let Sj be its vertex set. Since c has no monochromatic copy of Hs we have that ij ă s
for all j P rqs. Now c restricted to V pGqzpS1 Y . . . Y Sqq does not contain a monochromatic
copy of Ka1 , since by the maximality of ij there is no copy of Hij`1 “ Hij `Kaij`1 in colour

j in V pGqzpS1 Y . . .Y Sj´1q and since aij`1 ď a1 for every j P rqs.
As in the proof of Theorem 3.1 in [28] we now recolour some edges of G. We have that

|S1 Y . . . Sq| “ |V pHs´1q| ` |V pHi2q| ` . . .` |V pHiqq| ď qpa1 ` . . .` as´1q

ă Rqpa1 ´ as ` 1, a1, . . . , a1q.

Hence, by the definition of the Ramsey number we can recolour the edges inside S1Y . . .YSq
without a monochromatic copy of Ka1´as`1 in colour 1 and without a monochromatic copy
of Ka1 in colour j, for all 2 ď j ď q. All edges between S1 Y . . .Y Sq and V zpS1 Y . . .Y Sqq
receive colour 1, and all remaining edges retain their original colour. It is now easy to see
that there is no monochromatic copy of Ka1 which is a contradiction to GÑ pHs´1qq.

It turns out that Theorem 1.8 already implies Theorem 1.7 for q ě 4. We need two more
ingredients for the case q “ 3.

Observation 4.2. Let G be a graph such that G Ñ pK3q3, and let c be a 3-colouring of
the edges of G. If there is a monochromatic copy of K3 in every colour, then there is a
monochromatic copy of K3 `K2.

Proof. We first note that χpGq ě R3p3q “ 17, where χpGq is the chromatic number of G, see,
e.g., Theorem 1 in [21]. Let V0 be the set of vertices belonging to the three monochromatic
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triangles, each of a different colour, which exist by assumption. Then GrV pGqzV0s contains
an edge as otherwise χpGq ď χpGrV0sq`1 ď 10. This edge then forms a monochromatic copy
of K3 `K2 along with one of the three monochromatic triangles.

The next theorem was proved by Bodkin and Szabó (see [4], and [3] for a proof).

Theorem 4.3 (Theorem 2 in [3]). If GÑ pK3q2 and GÛ pK3 `K2q2 then K6 Ď G.

Proof of Theorem 1.7. For k “ 3 and t “ 2, Theorem 1.8 implies that K3 and K3 `K2 are
q-equivalent if Rqp2, 3, . . . , 3q “ Rq´1p3q ą 3q. This inequality follows for q ě 4 easily by
induction on q with the induction start given by the fact R3p3q “ 17 ą 4 ¨ 3.

It remains to prove that K3 and K3 `K2 are 3-equivalent. Clearly, any graph which is
3-Ramsey for K3 ` K2 is also 3-Ramsey for K3. Let now G be a graph that is 3-Ramsey
for K3 and let c be a 3-colouring of G using colours red, blue, and yellow. Let R, B, and
Y denote the subgraphs formed by the red, blue, and yellow edges, respectively. We need to
show that we can find a copy of K3 `K2 in one of R, B, or Y .

Suppose first that none of the subgraphs of G formed by the union of any two of R,B, Y
is a 2-Ramsey graph for K3. Then the subgraph R Y B can be recoloured red-blue without
monochromatic copies of K3. Hence there must exist a (yellow) copy of K3 in Y , since
GÑ pK3q3. Similarly we argue that there is also both a blue and a red copy of K3 in G. We
are then done by Observation 4.2.

Suppose now that without loss of generality R Y B is 2-Ramsey for K3. Then by Theo-
rem 4.3 either there is a copy of K3`K2 in R or in B (and we are done); or K6 is a subgraph
of R Y B, say on vertex set S. Now we find either a red or a blue copy of K3 `K2 in S; or
both a red and a blue copy of K3 on S.

We claim thatG contains a further (not necessarily monochromatic) copy ofK3 in V pGqzS.
Suppose not. Then we recolour G as follows. Let v P S and colour the edges of GrV pSqztvus
with red and blue without a monochromatic copy of K3 (i.e. a red and a blue C5). Colour
all edges incident to v in S yellow and colour all edges in V pGqzS blue. Finally, colour all
edges between V pSqztvu and V pGqzS yellow and all those between v and V pGqzS red. Unless
there is a triangle in V pGqzS this colouring does not contain a monochromatic copy of K3,
a contradiction to G Ñ pK3q3. Let T be this triangle in G ´ S. If any of the edges of
T is red or blue, then this edge forms a monochromatic copy of K3 ` K2 with one of the
monochromatic triangles in S. Otherwise, all edges of T are yellow, and we are done again
by Observation 4.2.

We now turn to the proof of Theorem 1.9. To show the non-equivalence of two graphs H
and H 1 we need to construct a graph that is q-Ramsey for one of the graphs, say for H, and
not q-Ramsey for H 1. Recall that the signal senders in Section 2 provide us with graphs that
can enforce certain predefined colour patterns. We now introduce suitable colour patterns.
Following notation of [16], we call a graph F on n vertices pn, r, kq-critical if Kk`1 Ę F
and every subset S Ď V pF q of size |S| ě n{r satisfies Kk Ď F rSs. A sequence of pairwise
edge-disjoint graphs F1, . . . , Fr on the same vertex set V is called a colour pattern on V .

Lemma 4.4 (Lemmas 4.2 and 4.4 in [16]). Let k ě 2, r ě 3 be integers. Then there exists a
colour pattern F1, . . . , Fr on vertex set rns, for some n, such that each Fi is pn, r, kq-critical.

Remark 4.5. The results in [16] include bounds on n in terms of r, which is unnecessary
for our purpose. Without these bounds, the lemma can actually be proved by a now standard
application of the probabilistic method.
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Figure 4: An illustration of the graph Gq`1 when q “ 3 and k “ 5. Bold edges indicate
complete bipartite graphs.

Next we state a lemma which captures the effect of repeated application of the pigeonhole
principle in a coloured bipartite graph. Its proof is a straight-forward generalisation of the
proof of Lemma 2.6 (a) in [15].

Lemma 4.6. Let G “ pAYB,Eq be a complete bipartite graph with a q-colouring c : E Ñ rqs
of its edges. Then there exists a subset B1 Ď B with |B1| ě |B|{q|A| such that for every vertex
a P A the set of edges from a to B1 is monochromatic.

We are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Fix k ě 3. The proof proceeds by induction on q. For q “ 2, there
exists a graph G2 that satisfies G2 Ñ Kk and G2 Û Kk ¨K2, by [15]. So assume that q ě 2
and let Gq be a graph such that is Gq Ñ pKkqq and Gq Û pKk ¨K2qq. We construct a graph
Gq`1 with the properties Gq`1 Ñ pKkqq`1 and Gq`1 Û pKk ¨K2qq`1.

Let r “ q|V pGqq|`qk2 ` 1, and let F “ F1 Y . . .Y Fq be a colour pattern such that each Fi

is pn, r, k´ 1q-critical for some n. The existence of F follows from Lemma 4.4. (Note that we
only use q pairwise edge-disjoint graphs, where the lemma in fact provides r such graphs Fi.)
We construct Gq`1 as follows. Let rGq be a copy of Gq, say on vertex set V0. Let V1, . . . , Vk´2
be pairwise vertex disjoint sets of size n “ |V pF q| that are disjoint from V0. Let te1, . . . , equ
be a matching of size q, (vertex-) disjoint from V0 Y . . . Y Vk´2. For each 1 ď j ď k ´ 2 let

F pjq “ F
pjq
1 Y . . .Y F

pjq
q be a copy of F on vertex set Vj . Additionally, add all edges between

Vi and Vj for all 0 ď i ă j ď k ´ 2. Finally, we join edges by signal senders in the following
way. For all 1 ď i ă j ď q, join ei and ej by a negative signal sender S´ “ S´pq ` 1,Kk, kq.

And for all 1 ď i ď q and every edge e P F
p1q
i Y . . .Y F

pk´2q
i join e and ei by a positive signal

sender S` “ S`pq ` 1,Kk, kq. Both signal senders S´ and S` exist by Lemma 2.1. The
resulting graph is Gq`1, an illustration can be found in Figure 4.

Claim 4.7. Gq`1 Û pKk ¨K2qq`1.
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Proof. Consider the following pq`1q-colouring of the edges of Gq`1. By inductive hypothesis

of Gq, there exists a pKk ¨ K2q-free colouring c0 : Ep rGq Ñ rqs of the edges in V0. For all

1 ď i ď q, colour the edges of F
p1q
i Y . . .YF

pk´2q
i and the edge ei in colour i. Colour all edges

between any Vi and Vj , 0 ď i ă j ď k´ 2, with colour q` 1. Note that all pairs of edges that
are joined by copies of S` have the same colour. There exists a Kk-free pq ` 1q-colouring c`

of S` by Property pS1q, and by Property pS2q both signal edges have the same colour in c`.
Extend the partial colouring of Gq`1 to every copy of S` using c` (possibly permuting the
colours so that the colouring agrees on the already coloured signal edges). Similarly, any two
edges that are joined by copies of S´ received distinct colours (edge ei received colour i for
i P rqs); and there exists a Kk-free pq ` 1q-colouring c´ of S´ by Property pS1q in which the
two signal edges have distinct colours. Extend the partial colouring further to every copy of
S´ using c´, again permuting colours when needed.

We claim that this gives a pKk ¨K2q-free pq ` 1q-colouring of Gq`1. First note that any
copy of Kk is either contained in V0 Y . . . Y Vk´2, or is contained in one of the copies of a
signal sender. This follows since the intersection of the vertex set of every copy of S` (or S´)
and V0Y . . .YVk´2Y

Ť

kPrqs ek contains at most the two signal edges of the signal sender, and
since the distance between those two edges is at least k in Gq`1. The colouring is Kk-free on
every copy of a signal sender by the choice of the colourings c` and c´. Next, note that the
edges of colour pq ` 1q in V0 Y . . .Y Vk´2 form a (complete) pk ´ 1q-partite graph as no edge
inside Vi, 0 ď i ď k ´ 2, has colour q ` 1. Thus there is no monochromatic copy of Kk in
colour q` 1 in Gq`1. Furthermore, for every 1 ď i ď q, the graph formed by edges of colour i
on vertex set V1 Y . . .Y Vk´2 is isomorphic to the vertex-disjoint union of copies of Fi which
is pn, r, k´ 1q-critical and thus Kk-free. It follows that the only monochromatic copies of Kk

are contained in V0. The colouring on V0 only uses the colours rqs, whereas all edges between
V0 and V pGq`1qzV0 have colour q ` 1. Furthermore, the colouring on V0 is Kk ¨K2-free, by
inductive assumption. Therefore, if there is a monochromatic copy of Kk, then it must be
contained in V0, and then there is no pendant edge to that copy of the same colour.

Claim 4.8. Gq`1 Ñ pKkqq`1.

Proof. Let c : EpGq`1q Ñ rq`1s be a pq`1q-colouring and suppose that there is no monochro-
matic copy of Kk in this colouring. Then c is Kk-free on every copy of S´. Thus the two edges
ei and ej receive different colours for all 1 ď i ă j ď q, by Property pS2q of a negative signal
sender. After permuting colours we may henceforth assume that the edge ei has colour i for
1 ď i ď q. Furthermore, c is Kk-free on every copy of S` which joins e and ei, for each i P rqs

and e P F
p1q
i Y . . .Y F

pk´2q
i . This implies that the graph

F
p1q
i Y . . .Y F

pk´2q
i is monochromatic of colour i for every i P rqs, (1)

by Property pS2q for positive signal senders.
We now apply Lemma 4.6 to the bipartite graph between V0 and V1 and deduce that there

is a set V 11 Ď V1 with |V 11 | ě |V1|{q
|V0| such that for every vertex v P V0 the set of edges from

v to V 11 is monochromatic. Now, |V1|{q
|V0| ě |V1|{r by choice of r. Hence, for every i P rqs

there is a monochromatic copy of Kk´1 in colour i in V 11 , say on vertex set W
piq
1 , since F

piq
1

is pn, r, k ´ 1q-critical and monochromatic of colour i, by (1). Let W1 “
Ť

iPrqsW
piq
1 and note

that |W1| ď qk. If there exists a vertex v P V0 such that all the edges from v to W1 Ď V 11
have colour i for some i P rqs then the vertices W

piq
1 Y tvu form a monochromatic copy of Kk
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in colour i and we are done. We may thus assume that all edges between V0 and W1 have
colour q ` 1.

Iteratively assume that we have defined W1, . . . ,W` for some ` “ 1, . . . , k ´ 3, such that
for every i, j P r`s with i ‰ j we have that Wi Ď Vi of size |Wi| ď qk, Wi contains a
monochromatic copy of Kk in every colour j P rqs, all edges between V0 and

Ť

iPr`sWi have
colour q ` 1, and all edges between Wi and Wj have colour q ` 1. We then obtain W``1 in
V``1 by repeating the argument above where V0 is replaced by V0 YW1 Y . . . YW`. Note
that this set has size at most |V0| ` qk2. Thus the subset V 1``1 Ď V``1 that we obtain by

application of Lemma 4.6 has size at least |V``1|{q
|V0|`qk2 ě |V``1|{r by choice of r. The rest

of the argument is analogous.
Thus either we find a monochromatic copy of Kk in one of the colours 1, . . . , q; or we

obtain sets W1, . . . ,Wk´2 that form a complete pk´ 2q-partite graph in colour q` 1 and such
that all edges between V0 and

Ť

iPrk´2sWi are present and have colour q ` 1. If any of the
edges in V0 has colour q`1, then this edge together with one vertex from each Wi, i P rk´2s,
forms a monochromatic copy of Kk in colour q ` 1, and we are done again. Otherwise, no
edge in V0 has colour q ` 1. But the graph on V0 is isomorphic to Gq which means that in
any q-colouring of the edges in V0 there is a monochromatic copy of Kk in at least one of the
colours.

This finishes the proof of Theorem 1.9.

5 Concluding remarks

Minimal minimum degree of minimal Ramsey graphs.
We have proved that Kk and Kk ¨K2 are not q-equivalent for any q ě 3. The proof proceeds
by induction on q with the base case given by the non-equivalence in two colours from [15].
The 2-distinguishing graph G2 constructed in [15] actually has a stronger property, namely
that G Û pKk ¨K2q2 and every pKk ¨K2q-free colouring of G2 has a fixed copy of Kk being
monochromatic. This stronger property was used there to construct a graph G1 that is 2-
minimal for Kk ¨K2 and that contains a vertex of degree k´ 1, i.e. s2pKk ¨K2q ď k´ 1. The
classical paper by Burr, Erdős, and Lovász contains the proof of s2pKkq “ pk´1q2, i.e. adding
a pendant edge to Kk changes the behaviour of s2p¨q drastically.

Problem 5.1. Determine sqpKk ¨K2q for q ě 3. Specifically, is it true that sqpKk ¨K2q ď

sqpKkq, and if so, how small is the ratio sqpKk ¨K2q{sqpKkq?

It is known that sqpKkq “ Opq2pln qq8pk´1q
2
q for k ě 4 where the implicit constant is

independent of q [16]. For fixed k, this bound is tight up to a factor that is polylogarithmic
in q. Furthermore, sqpK3q “ Θpq2 log qq [19].

The construction of G2 in [15] does not generalise in a straight-forward manner to more
than 2 colours. The q-distinguishing graph Gq, q ě 3, from the proof of Theorem 1.9 contains
signal senders and thus does not have the stronger property of having a fixed copy of Kk that
is monochromatic in every pKk ¨K2q-free q-colouring of Gq as G2. In particular, our graphs
Gq cannot be used (per se) for constructions showing upper bounds on sqpKk ¨K2q.

From 2-(non)-equivalence to multicolour-(non)-equivalence.
We have seen in the introduction that 2-equivalence of H and H 1 implies q-equivalence for
every even q. More generally, Observation 1.6 implies that two graphs are q-equivalent for

17



every q ě 3 if they are known to be 2-equivalent and 3-equivalent. We reiterate our question
from the introduction here.

Question 5.2. Is it true that any two 2-equivalent graphs H and H 1 are also 3-equivalent?

Or are there two graphs H and H 1 that are, say, 100-equivalent but not 101-equivalent?
We have also said in the introduction that in general one cannot deduce that H and H 1 are
not q-equivalent for q ě 3 from the mere fact that they are not 2-equivalent. All examples
had H or H 1 being disconnected. Is this a coincidence?

Question 5.3. Let H and H 1 be both connected graphs that are 3-equivalent. Is it true that
they are 2-equivalent as well?

This question may have an affirmative answer for the trivial reason that there are no two
connected non-isomorphic graphs H and H 1 that are q-equivalent for any q ě 2. This question
was first posed in [15] for two colours, and we extend it here to any number of colours.

Question 5.4. For given q ě 2, are there two non-isomorphic connected graphs H and H 1

that are q-equivalent?

Since Kk is not q-equivalent to any other connected graph (see the discussion preceding
Theorem 1.9) and since any two 3-connected graphs are not q-equivalent for any q ě 2 by
Theorem 1.4 it is generally believed that the answer to this question is no.

Adding a connected graph to a clique.
We have seen that Kk is Ramsey equivalent to Kk ` H where H is a collection of vertex-
disjoint cliques. What other graphs H have that property? Here we concentrate on the
2-colour case to highlight how little is known. Of course, all the following questions have
natural analogues in the multicolour setting. We know that Kk and Kk`Kk are not Ramsey
equivalent (since the clique on R2pkq vertices is a distinguisher) and that Kk and Kk `Kk´1

are Ramsey equivalent. The following three questions are, of course, related, we find each of
them interesting.

Question 5.5. • What is the largest value of t “ tpkq such that there is a connected graph
H on t vertices so that Kk and Kk `H are Ramsey equivalent?

• What is the largest value of t “ tpkq such that Kk and Kk ` St are Ramsey equivalent,
where by St we denote the star with t vertices (in alignment with the previous question)?

• What is the largest value of t “ tpkq such that Kk and Kk ` Pt are Ramsey equivalent,
where by Pt we denote the path with t vertices?

The second question is from [15]. Note that the equivalence of Kk and Kk`Kk´1 implies
that the answer to these questions is at least k ´ 1. Moreover, it is easy to obtain an upper
bound of roughly Rpkq, i.e. exponential in k. To the best of our knowledge nothing better
is known. Specifically, we wonder whether Kk and Kk ` Sk are Ramsey-equivalent. If the
answer is affirmative then this may shed light on whether Kk`Kk´1 ¨K2 and Kk are Ramsey
equivalent. Slightly more ambitious is the following.

Problem 5.6. Are Kk and Kk `K
´
k Ramsey equivalent, where K´

k denotes the clique on k
vertices with one edge deleted?
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An affirmative answer would imply that RpK´
k q ă RpKkq, an inequality conjectured to

be true, but only known for k ď 6, see e.g. [2].
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