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Abstract. We introduce a non-increasing tree growth process ((Tn, σn), n ≥ 1), where

Tn is a rooted labeled tree on n vertices and σn is a permutation of the vertex labels. The
construction of (Tn, σn) from (Tn−1, σn−1) involves rewiring a random (possibly empty)

subset of edges in Tn−1 towards the newly added vertex; as a consequence Tn−1 6⊂ Tn
with positive probability. The key feature of the process is that the shape of Tn has the
same law as that of a random recursive tree, while the degree distribution of any given

vertex is not monotonous in the process.

We present two applications. First, while couplings between Kingman’s coalescent
and random recursive trees where known for any fixed n, this new process provides a non-

standard coupling of all finite Kingman’s coalescents. Second, we use the new process and
the Chen-Stein method to extend the well-understood properties of degree distribution

of random recursive trees to extremal-range cases. Namely, we obtain convergence rates

on the number of vertices with degree at least c lnn, c ∈ (1, 2), in trees with n vertices.
Further avenues of research are discussed.

1. Introduction

In a paper of 1970 [21], Na and Rapoport presented the problem of modeling how the
structure of networks (as sociograms, communication and acquaintance networks) emerge
through time. They considered two cases: ‘growing’ trees and ‘static’ trees. The ‘growing’
model is now know as uniform attachment model and each instance is usually named (ran-
dom) recursive tree. These are part of a broad class of tree growth models where vertices
are sequentially added and connected to a random vertex in the current tree. On the other
side, the term ‘static’ was motivated by the fact that this construction starts with the n
vertices the tree is aimed to have and n − 1 edges are added one by one (without creating
cycles). The ‘static’ model was an early description of what is now referred to as coalescent
processes. The seemingly two distinct models of growth have been shown to be related for
certain coalescent procedures (e.g. additive and Kingman’s); that is, their resulting trees
can also be constructed by a growth process [1, 20, 22]. In particular, Kingman’s coalescents
correspond, for any fixed number of vertices n, to recursive trees; see Remark 2.3.

Here we present a non-increasing tree growth process ((Tn, σn), n ≥ 1) where Tn is a
rooted labeled tree on n vertices and σn is a permutation of the vertex labels. The three
key features of this new growth process are:

(1) The shape of Tn has the same distribution as that of recursive trees (vertices are
labeled uniformly at random),
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2 LAURA ESLAVA

(2) adding edges according to the permutation σn (in reverse order), recovers Kingman’s
coalescent,

(3) there is a positive probability that Tn−1 6⊂ Tn.

Formally, we introduce the classDn of decorated trees on n vertices and a random mapping

Hn : Dn−1 → Dn such that Hn(Tn−1, σn−1)
dist
= (Tn, σn) for all n > 1. Our main result,

Theorem 1.1, states that recursively applying the mappings Hn to the unique element in
D1 gives uniformly random decorated trees on Dn; from which the properties above are
recovered. The fact that we can construct recursive trees in a non-increasing fashion is,
to the best of our knowledge, a novel idea and it opens a wide range of further avenues of
research. We discuss some of them in the last section.

We call Robin-Hood pruning to the random mapping Hn that builds (Tn, σn) from
(Tn−1, σn−1); it is the key conceptual contribution of this work and builds on the corre-
spondence between recursive trees and Kingman’s coalescent exploited in [2, 10]. It seems
that such connection had been rarely exploited, with exception to [6, 23], where an equivalent
construction was used by to study union-find trees and then related to recursive trees.

Additionally, we provide applications to high-degree vertices of recursive trees and their
maximum degree. Kingman’s coalescent had already been exploited by Addario-Berry and
the author to describe near-maximum degrees in recursive trees, [2, 10]. With the new
procedure, we are able to extract finer information about extreme degree values in recursive
trees. The main underlying technique is the Chen-Stein method for convergence rates to
Poisson distributions. Informally, this method approximates the law of a sum W of in-
dicator variables, by understanding how the law of such indicator variables changes when
conditioning on one of them being equal to one. In our case, the sum W counts the num-
ber of vertices with high-degree. The perspective of the Robin-Hood pruning allow us to
understand how the vertex-degree distributions change when we condition on one of such
vertex-degrees being large.

Before we continue to precise statements of our results, we introduce basic notation that
will be used throughout the paper as well as the standard construction of recursive trees.

1.1. Notation. For n ∈ N, we write [n] = {1, . . . , n} and Sn for the set of permutations on
[n]. We denote natural logarithms by ln(·) and logarithms with base 2 by log(·).

Given a rooted labeled tree T = (V (T ), E(T )), write |T | = |V (T )| and call |T | the size
of T . We write Tn for the set of rooted trees T with vertex set V (T ) = [n]. By convention,
we direct all edges toward the root r(T ) and write e = uv for an edge with tail u and head
v. For u ∈ V (T ) \ {r(T )} we write pT (u) for the parent of u, that is, the unique vertex v
with uv in E(T ). Finally, write dT (v) for the number of edges directed toward v in T , and
call dT (v) the degree of v. Note that dT (v) = #{u : pT (u) = v}.

We say T ∈ Tn is increasing if its vertex labels increase along root-to-leaf paths; in other
words, if T ∈ Tn and pT (v) < v for all v ∈ [n] \ {r(T )} (in particular, r(T ) = 1). We write
In ⊂ Tn for the set of increasing trees of size n. Using induction, it is easy to see that
|In| = (n − 1)! for all n. Next, a tree growth process is a sequence (Tn, n ≥ 1) of trees
with Tn ∈ Tn for each n. The process is increasing if Tn ⊂ Tn+1 for all n; this implies that
Tn ∈ In for all n.

Recursive trees on n vertices, which we denote Rn, are usually constructed as follows.
Start with R1 as a single node with label 1. For each 1 < j ≤ n, Rj is obtained from Rj−1 by
adding a new vertex j and connecting it to vj ∈ [j−1]; the choice of vj is uniformly random
and independent for each 1 < j ≤ n. It is readily seen that Rn is a uniformly random tree
in In. It follows that the process (Rn, n ≥ 1) is a random increasing tree growth process.
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Figure 1. A decorated tree (T, σ) ∈ D6 on the left; the permutation σ
is depicted with bold numbers next to the vertices in T (so for example
σ(1) = 5 and σ(6) = 2). On the right, the increasing tree σ(T ).

1.2. The new growth process. In what follows we extend the concept of increasing trees.
If T ∈ Tn and σ ∈ Sn then σ(T ) is the tree T ′ ∈ Tn with edges {σ(u)σ(v) : uv ∈ E(T )}. In
words, T ′ is obtained from T by relabeling the vertices of T according to the permutation σ;
see Figure 1 for an example. We say that σ is an stamp history for T if σ(T ) is increasing.
If σ is an stamp history for T then we say that the pair (T, σ) is a recursively decorated tree
or decorated tree, and that vertex v has time stamp σ(v). We denote the set of decorated
trees of size n by

Dn = {(T, σ) : T ∈ Tn, σ is an stamp history of T}.

For each n ≥ 2, the Robin-Hood pruning Hn : Dn−1 → Dn is a random mapping that
can be applied to any decorated tree. The exact definition of Hn will be given in Section 3.
Broadly speaking, Hn(T, σ) is obtained from (T, σ) by pruning some subtrees of T and
placing them as subtrees of a new vertex labeled n; additionally, vertex n attaches to a
random vertex or becomes the root of the new tree. The stamp history in Hn(T, σ) is
adjusted from σ such that vertex n has a uniformly random time stamp. Heuristically, the
random procedure follows a ‘steal from the old to give to the new’ scheme; that is, once
the time stamp of n has been determined, vertices with an earlier time stamp have larger
probability of being reattached to vertex n.

The content of our main theorem says that, when the input of Hn is uniformly random in
Dn−1 the output is uniformly random in Dn. For the remainder of the paper, for any n ≥ 1,
the pair (Tn, σn) denotes a uniformly random element in Dn. Such result boils down to
carefully setting up the distribution of the random parameters involved in the Robin-Hood
pruning.

Theorem 1.1. For each n ≥ 2, the Robin-Hood pruning provides a coupling between
(Tn−1, σn−1) and (Tn, σn) such that (Tn, σn) = Hn(Tn−1, σn−1).

Note that |D1| = 1, thus the Robin-Hood pruning can be unambiguously applied to deco-
rated trees starting fromD1. Theorem 1.1 implies that the tree growth process ((Tn, σn), n ≥
1) given by (Tn, σn) = Hn((Tn−1, σn−1)) is composed of uniformly random decorated trees,
but it yields a non-increasing growth process on trees. This occurs since the rewiring may
destroy some subtrees in the previous tree; see Remark 3.4. However, the shape of Tn has
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the same law as that of Rn; this is proven by a straightforward bijection between Dn and
In × Sn.

Proposition 1.2. For each n ∈ N, |Dn| = n!(n − 1)! and if (Tn, σn) ∈ Dn is chosen

uniformly at random then σn(Tn)
dist
= Rn is a recursive tree of size n and σn is a uniformly

chosen permutation in Sn.

Proof. By definition, if (T, σ) ∈ Dn, then σ(T ) ∈ In. Let ϕ : Dn → In × Sn be defined
such that ϕ(T, σ) = (σ(T ), σ). For an increasing tree T and σ ∈ Sn, let T ′ = σ−1(T )
then ϕ(T ′, σ) = (T, σ), it is also straightforward that ϕ is injective. Therefore, |Dn| =
|In| · |Sn| = n!(n− 1)!. The result follows since bijections preserve the uniform measure on
finite probability spaces. �

Growth procedures naturally couple families of trees as the size varies. For example,
Proposition 1.3 below shows that (Tn, σn) is a representation of Kingman’s coalescent on
[n]; informally, the stamp history encodes the addition of edges in the coalescent. Precise
definitions are given in Section 2, for the moment it suffices to say that C = (Fn, . . . , F1)
denotes a Kingman’s coalescent, where the Fj are forests.

Proposition 1.3. Let (Tn, σn) be uniformly random in Dn and C = (Fn, . . . , F1) be a

Kingman’s coalescent. Denote F1 = {TC}, then TC
dist
= Tn and the forests evolution is given

by σn.

Typically there is no simple coupling of finite n-coalescent processes as n varies. The first
application of Theorem 1.1 is that the Robin-Hood pruning produces, given a Kingman’s
coalescent on n vertices, a Kingman’s coalescent on n+ 1 vertices.

Corollary 1.4. The tree growth process ((Tn, σn), n ≥ 1), coupled as in Theorem 1.1 gives
an explicit coupling of all finite Kingman’s coalescents.

The proof of Proposition 1.3 is given in Section 2 and is based on previous connections
between recursive trees and Kingman’s coalescents; see Remark 2.3.

1.3. High-degree vertices in Rn. In this section we establish a phase change on the
number of high-degree vertices in recursive trees. Phase changes occurs on random structures
when a class of variables undergo a transition from asymptotic normal limits to asymptotic
Poisson limits. The change is marked by the mean of the variables going from infinite to
bounded. In recursive trees, for example, the number of fringe trees of a given size undergoes
a phase change when the size k of the trees tend to infinite and k = o(

√
n) no longer holds

[12]; similar results are given when the fringe trees are required to satisfy any given property
or pattern [5, 16]. For an integer 0 < m ≤ n, let us count the number of high-degree vertices
by

Z(n)
m = #{v ∈ [n] : dRn

(v) ≥ m}

and write λn,m = E
[
Z

(n)
m

]
. The following estimates where implicitly given in [2] and a

proof can be found in Appendix A, Proposition 6.3. For each c ∈ (0, 2), there is γ = γ(c)
such that uniformly over m < c lnn,

2−m+logn(1− o(n−γ)) = E
[
Z(n)
m

]
≤ 2−m+logn.(1)

It thus follows that the phase change occurs when m = m(n) ≈ log n. Using a Poisson
approximation together with (1) we obtain the following phase change for the counts on
high-degree vertices.
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Theorem 1.5. For each c ∈ (1, log e) there exists c′ ∈ (1, c) such that if c′ lnn < m < c lnn,
then

Z
(n)
m − λn,m√

λn,m

dist−→ N(0, 1).(2)

If m ≥ log n, under sequences nj for which λnj ,m → λ we have that

Z(nj)
m

dist−→ Poi(λ).

Remark 1.6. Counting the high-degree vertices is equivalent to count fringe trees (of all

sizes) with a high-degree root. Therefore, the asymptotic normal distribution of Z
(n)
m , (2),

follows from [16, Corollary 1.25]; however, the computation of both the mean and variance
for the renormalization of the variables is not seemingly straightforward. Nevertheless, we
remark that the associated convergence rates in Theorem 1.7 are strong and novel.

Previous results on the profile of recursive trees considerX
(n)
m = #{v ∈ [n] : dRn(v) = m},

for m < n. For finite values of m, Janson established the joint limiting distribution of

(X
(n)
m , m ≥ 1) in [17]. Addario-Berry and the author addressed the case m = m(n) →

∞, providing all the possible limiting distributions of (X
(n)
blognc+k, k ∈ Z) and establishing

asymptotic normality for X
(n)
m when m = log n−d and d = d(n) slowly tends to infinity [2].

Theorem 1.5 follows from the convergence rates of the next theorem, which in turn,

applies the Chen-Stein method to Z
(n)
m . By changing the perspective of recursive trees to

the distribution equivalent Tn we can use the Robin-Hood pruning to understand how the
variables (1[]dTn

(v) ≥ m, v ∈ [n]) change when conditioning to dTn
(v) ≥ m. The details of

this approach are somewhat delicate, so we defer the discussion to Section 4.

Theorem 1.7. Fix 1 < c′ < c < 2. There are constants α = α(c) ∈ (0, 1) and β = β(c′) > 0
such that uniformly for m = m(n) satisfying c′ lnn < m < c lnn,

dTV

(
Z(n)
m ,Poi (λn,m)

)
≤ O(2−m+(1−α) logn) +O(n−β).

Remark 1.8. A detailed but simple track of the conditions on α, see Proposition 4.1, shows
that there is a non-empty interval I = ((1− α) log e, c) such that if c′ ∈ I ∩ (1, 2), then the
bounds in Theorem 1.7 are, in fact, tending to zero.

Remark 1.9. The exponent α is determined by almost negative correlation between pairs of
vertices in Tn (see Proposition 4.1), while the exponent β depends on an auxiliary coupling
based on the Robin-Hood pruning (see Proposition 4.4). We believe that the constraint
on c′ > 1 could be relaxed by obtaining uniform bounds on P (dRn

(i) = m) rather than
P (dRn

(i) ≥ m).

Finally, consider now the maximum degree ∆n of a recursive tree Rn. Note that Z
(n)
m >

0 if and only if ∆n ≥ m. Therefore, having E
[
Z

(n)
logn

]
≈ 1 indicates ∆n ≈ log n. In

fact, Devroye and Lu showed that ∆n/ log n → 1 a.s. [7]. The first tail bounds on ∆n

where obtained for P (∆n < blog nc+ i) with i ∈ Z using singularity analysis of generating
functions [13]. The relation between recursive trees and Kingman’s coalescent provided
simpler proofs to such results, extending it also to i < 2 lnn − log n [2]. The bounds in
Theorem 1.7 yield broader, tighter bounds.
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Corollary 1.10. There exists C > 0 such that uniformly over 0 < i = i(n) < log e ln lnn−
C,

P (∆n < blog nc − i) = exp{−2i+εn}(1 + o(1)),

where εn = log n− blog nc.

The maximum of i.i.d. random variables is, under rather general conditions, distributed
in the limit as the Gumbel (or double-exponential) distribution [15]; however lattice dis-
tributions are excluded from this regime. Addressing the case of integer-valued variables,
Anderson gives sufficient conditions under which the Gumbel distribution serves as an ap-
proximation for their maximum [3]; among those is the geometric distribution. Now, when
we randomize the labels in Rn (e.g. using the tree Tn instead), vertex degrees become
exchangeable and their limiting distributions are geometric. Although, the degrees of Tn
are not independent, their correlations are weak and the Gumbel-type approximation still
arises for the distribution of ∆n. Goh and Schmutz provide an alternative heuristic based
on the fact that dRn

(i), with i→∞ slowly, is asymptotically normal [13].

Outline. The paper is divided into two parts. First, we discuss more on the connection
between recursive trees, Kingman’s coalescents and other tree models in Section 2. The
precise definition of the Robin-Hood pruning Hn together with the proof of Theorem 1.1
is given in Section 3. Second, the results on high-degree vertices of recursive trees use
the Chen-Stein method and the Robin-Hood pruning in a non-trivial way. An overview
on how we use the Chen-Stein method is given Section 4. Assuming the existence of an
auxiliary coupling (Proposition 4.4), we complete the proofs concerning high-degree vertices
in Section 4.1. The auxiliary coupling, based on the Robin-Hood pruning, is presented in
Section 5. And finally, Section 6 discusses further avenues of research.

2. Kingman’s coalescents and recursive trees: distinct representations

Discrete coalescents are processes on partitions of [n] that can be represented with dif-
ferent tree structures. On can encode the coalescent using an n-chain: a sequence of forests
where, at all times there are n vertices (or elements), and n − 1 edges are added one by
one until a tree is formed. However, there is an more traditional construction using binary
search trees (BST) where internal nodes correspond to merges and only external nodes cor-
respond to elements of the coalescent. In the next section we introduce the representation
used in this paper and prove Proposition 1.3. Following that, we discuss the well-know
bijection between BST’s and recursive trees and the difference between the two coalescent
representations. In addition, we explain the difference between the Yule-Harding model of
phylogenetic trees and its uniform model, and highlight the importance of clarifying both
the rules applied to the mergings in coalescent processes and their representation as trees.

2.1. Recursive trees perspective. Na and Rapoport loosely described this process as the
construction of ‘static’ trees with n vertices [21]:

“Initially, single elements move about at random. Each collision forms a
couple. A collision of a couple with a single element forms a triple, a collision
of an s-tuple with a t-tuple forms an (s + t)-tuple, and so on. At each
collision a link is established between an element of one X-tuple and an
element of another, the links being rigid so that the elements of the same
k-tuple cannot collide. The process goes on until the entire set of n elements
has been joined into an n-tuple.”
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By changing the rule on how to link the elements on the tuples, we obtain distinct
coalescent distributions. In the description in [21] there are no restrictions on the elements
allowed to be linked during the coalescent1. In fact, the discrete multiplicative coalescent
arises when any possible link is chosen uniformly at random. It is associated with Kruskal’s
algorithm for the minimum weighted spanning tree problem [1].

Kingman’s coalescent is characterized by the property that the merging probability of
any pair of components is independent of the components’ sizes. The representation used
in this paper uses that, at each time the representative of each ‘tuple’ is the current root of
the tree and it is closely related to the ‘union-find’ algorithm used in computer science (see
e.g. [24]). A formal description follows.

A forest f is a set of trees with pairwise disjoint vertex sets. Denote by V (f) and E(f),
respectively, the union of the vertex and edge sets of the trees in f . For n ≥ 1, an n-chain is
a sequence C = (fn, . . . , f1) of elements of Fn = {f : V (f) = [n]} such that, for 1 < i ≤ n,
fi−1 is obtained from fi by adding a directed edge between the roots of some pair of trees
in fi. In particular, fn consists of n one-vertex trees and f1 consists of a single tree on n
vertices denoted by TC . For an example see Figure 2.

Next we introduce the necessary notation to define Kingman’s coalescent using n-chains.
For an n-chain (fn, . . . , f1) and 1 ≤ i ≤ n, list the trees of fi in increasing order of their

smallest-labeled vertex as T
(i)
1 , . . . , T

(i)
i . Independently for each 1 < i ≤ n let {ai, bi} ⊂

{{a, b} : 1 ≤ a < b ≤ i} be uniformly chosen at random; in addition, let ξi be independent
Bernoulli random variables with mean 1/2.

Definition 2.1. Kingman’s n-coalescent is defined as C = (Fn, . . . , F1) constructed as

follows. For 1 < i ≤ n, Fi−1 is obtained from Fi by adding an edge between r(T
(i)
ai ) and

r(T
(i)
bi

). If ξi = 1 then direct the edge towards r(T
(i)
ai ); otherwise direct it towards r(T

(i)
bi

).
The forest Fi−1 consists of the new tree and the remaining i− 2 unaltered trees from Fi.

In other words, if C = (Fn, . . . , F1) is a Kingman’s coalescent, then each of the trees of Fi
correspond to a set of coalesced elements after n− i+ 1 steps of the process. At each step,
two sets (represented by their roots) coalesce and a new representative is chosen uniformly
at random.

To link n-chains with decorated trees, we first define a natural edge labeling that tracks
the number of trees left in the forest when a give edge comes along. Fix C = (fn, . . . , f1),
for each e ∈ E(TC), let

ρC(e) = max{i ∈ [n− 1] : e ∈ E(fi)}.

We next define a vertex labeling σC : V (TC) → [n]. Let σC(r(TC)) = 1, and for each
uv ∈ E(tC), let

σC(u) = ρC(uv) + 1.

The following proposition shows that the pair (TC , σC) ∈ Dn contains all the information
to recover the original n-chain C; in other words, if Cn denotes the set of n-chains, then Dn
and Cn are in bijection.

Proposition 2.2. Let Υ : Cn → Dn be defined as follows. For an n-chain C = (fn, . . . , f1),
let Υ(C) = (TC , σC). Then Υ is a bijection.

1Unfortunately, it was incorrectly presumed in [21] that ‘static’ trees build uniformly random unrooted

labeled trees.
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Figure 2. An example of an n-chain with n = 6. The edge labelling ρn is
presented with numbers in bold.
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Proof. First, we show that Cn and Dn have the same cardinality. To count the number of
n-chains, consider constructing (fn, . . . , f1) by deciding which edge to add from fk to fk−1.
Since there are k trees in fk, when we have chosen (fn, . . . , fk), there are k(k − 1) possible
directed edges to add. Therefore, |Cn| = n!(n− 1)!.

Next, let C = (fn, . . . , f1) be an n-chain. For each 1 ≤ i < n, the new edge in fi
joins the roots of two trees in fi+1 and is directed towards the root of the resulting tree.
Thus, the labels {ρC(e), e ∈ E(TC)} decrease along all paths in TC towards the root r(TC).
Consequently, the labels {σC(v), v ∈ [n]} are, indeed, an stamp history of TC . It follows
that Υ is well defined.

Finally, let C = (fn, . . . , f1), C ′ = (f ′n, . . . , f
′
1) be distinct n-chains and write k = min{i :

fi 6= f ′i}. If k = 1 then TC 6= TC′ and clearly, Υ(C) 6= Υ(C ′). Otherwise TC = TC′ ,
fk−1 = f ′k−1 and the (unique) edges e ∈ E(fk−1) \ E(fk) and e′ ∈ E(f ′k−1) \ E(f ′k) are
distinct. It follows that e = uv ∈ f ′k and so σC(u) = k > σC′(u). This shows that Υ is
injective, and so Υ is a bijection between Cn and Dn. �

Using the bijection of Proposition 2.2, it follows that Proposition 1.3 boils down to
showing that C is uniformly random in Cn.

Proof of Proposition 1.3. Let C = (Fn, . . . , F1) be a Kingman’s coalescent. For any fixed
n-chain (fn, . . . , f1) ∈ Cn,

P ((Fn, . . . , F1) = (fn, . . . , f1)) =

n−1∏
k=1

P (Fk = fk|(Fn, . . . , Fk+1) = (fn, . . . , fk+1)) .

Among the k(k + 1) possible oriented edges connecting roots of fk+1, exactly one of them
can be added to fk+1 to yield fk. Thus, regardless of the sequence (fn, . . . , f1),

P ((Fn, . . . , F1) = (fn, . . . , f1)) = [(n− 1)!n!]−1.

Recall F1 = {TC}. By Proposition 2.2, (TC, σC) ∈ Dn and it has a uniform distribution,
since the bijection preserves the uniform measure of C. Finally, by Proposition 2.2, it follows

that TC
dist
= Tn. The evolution of the forests is given by ρC; equivalently by σC. �

Remark 2.3. It follows from Propositions 1.2 and 1.3 that, for any fixed n and up to
relabeling of vertices, Kingman’s coalescent correspond to recursive trees. See also [1, 2] for
direct proofs of this fact.

2.2. The binary search tree connection. Binary search trees have been related to both
recursive trees and phylogenetic trees. In this section we briefly discuss these connections
and compare them with Kingman’s coalescent. Let Bn be the set containing all plane, rooted,
unlabeled binary trees with n external nodes. Trees in Bn distinguish between left and right
subtrees of any given internal vertex. It can be shown that the sizes |Bn| = 3 · 5 · · · (2n− 3)
are given by the Catalan numbers.

Binary search trees are the tree representation of the sorting algorithm Quicksort. Simply
described, for each n ≥ 1, the quicksort algorithm takes a permutation σ ∈ [n] and constructs
(step by step) a binary tree with internal vertex labels on [n] as follows. The root is σ(1)
and vertices σ(2), . . . , σ(n) are sequentially added so that the final tree satisfies the following
property: for any internal node j, all nodes on its left subtree are smaller than j and all
nodes on its right tree are larger than j. It follows that, given a shape of a binary tree
B ∈ Bn+1, there is exactly one way to label internal vertices.

There are n! distinct permutations as input for the quicksort algorithm. Devroye intro-
duced the representation of the binary search tree (process) using time stamps which record
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all the insertion process. Using this representation, the rotation correspondence maps (one-
to-one) recursive trees (on n−1 vertices) and binary search trees (with n external vertices).
For a thorough description of the correspondence see [16, Section 2, Figures 1-2].

On the other side, phylogenetic trees on n species are represented by elements in Bn.
In this case, species are assumed to have a common ancestor (the root), internal nodes
are also ancestors and the time elapsed between differentiation of species, length of the
branches, is omitted. Two common distributions on phylogenetic trees are the uniform one,
known as the Catalan model, and the Yule-Harding model. The latter is a process that
constructs trees starting from the root, by branching a uniformly random external node
and replacing it with a cherry (an internal node with two external nodes). Clearly, this
construction corresponds one-to-one to the quicksort algorithm. We remark that the Yule-
Harding process does not yield uniform phylogenetic trees (as neither the BST is uniform
in Bn). For further discussion between the two models, see e.g. [4, Section 3].

It has been presumed that Kingman’s coalescent is the bottom’s up construction of the
Yule-Harding model, see e.g. [5]; however, such correspondence has to be done carefully, as
merges in principle are not bound to satisfy planarity constraints. As we can see through
the bijections and n!-to-1 mappings from Propositions 2.2 and 1.2, there should be a corre-
spondence between BST’s with time stamps and Kingman’s coalescent.

The construction of Kingman’s coalescent as a binary tree in Bn with time stamps is the
following. Using the same random variables used in Definition 2.1, add an internal node
connecting the two roots of the merging trees, while the coin flip indicates which of the
trees is left child of the new internal vertex; the time stamps indicate the (reversed) order
of addition of internal nodes. Note that in this construction, the symmetry breaking of the
coin flip is still necessary.

Conversely, we describe how to interpret time stamps of a BST as the merging history of
a Kingman’s coalescent. To do so, we have to label external nodes uniformly at random (so
that there are a total of n!(n− 1)! different processes). Now, the role of internal vertices is
as follows. At step k ∈ [n− 1], the two set of external vertices in each of the subtrees of the
vertex with time stamp n− k are the subsets to be merged in the coalescent.

Kingman’s coalescent has uniform distribution when considering all possible merging
histories with elements labeled exchangeably. However, considering only the final tree (either
in Tn or Bn) yields a non-uniform distribution: there are n!(n− 1)! total ways to merge the
subtrees (if we use the symmetry breaking at each merging), but there are only |Tn| = nn−1

and |Bn| = 3·5 · · · (2n−3) different rooted, labeled trees and phylogenetic trees, respectively.

3. The Robin-Hood pruning

The Robin-Hood pruning Hn : Dn−1 → Dn is a random procedure based on randomizing
the parameters of a deterministic mapping hn : Dn−1 × Pn → Dn where the set Pn defines
all possible ways to prune a decorated tree on n − 1 vertices. The distribution on Pn is
tailored so that the Robin-Hood pruning, in fact, yields a coupling of ((Tn, σn); n ≥ 1).

First we introduce the necessary notation to define Pn, the deterministic pruning hn
and verify that, indeed, the mapping hn is well defined. We then continue to define the
distribution on Pn used in defining the Robin-Hood pruning (Definition 3.5). The proof
of Theorem 1.1 requires us to characterize the properties of the uniform distribution in
decorated trees. For the characterization in Lemma 3.6 and the proof of Theorem 1.1, we
underline the difference between deterministic elements (T, π) of Dn and random elements
(T ,σ) using bold notation; the distribution of (T ,σ) is not given a priori.
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3.1. A deterministic process. Informally, we define all possible ways to prune a decorated
tree on n − 1 vertices using three parameters (k, l, x) ∈ Pn: the time stamp k of the new
vertex, its point of attachment l given by time stamp, and the vertices to be rewired encoded
by time stamp in the sequence x = (x1, . . . , xn−1). Once a stamp history is given to a tree
T , Vn contains the vertices to be pruned and rewired towards the new vertex n.

We now proceed to precise definitions. Let n ≥ 2 and set

Pn = {(k, l, x) : 1 ≤ l < k ≤ n, x ∈ {0, 1}n−1} ∪ {(1, 0, x) : x ∈ {0, 1}n−1, x1 = 1};

additionally, for (k, l, x) ∈ Pn and a permutation σ ∈ Sn−1, let

Vn(k, l, x, σ) = Vn(k, x, σ) = {v ∈ [n− 1] : xσ(v) = 1, σ(v) ≥ k}.

Remark 3.1. The definition of Pn is such that σ−1(1) ∈ Vn if and only if k = 1.

The following deterministic pruning is illustrated in Figure 3.

Definition 3.2. Fix n ≥ 2, (T, σ) ∈ Dn−1 and (k, l, x) ∈ Pn . We define (T ′, σ′) and set

hn((T, σ), (k, l, x)) = (T ′, σ′)

as follows. First, let V = Vn(k, x, σ) and construct T ′ from T : For each v ∈ V \ {r(T )},
replace the edge vpT (v) with an edge connecting v to a new vertex labeled n. Now, if k = 1
then attach r(T ) to n; otherwise, attach vertex n to σ−1(l). In other words, the edges of T ′

are given by

E(T ′) =

{
(E(T ) ∪ {vn; v ∈ V}) \ {vpT (v); v ∈ V} if k = 1,

{nσ−1(l)} ∪ (E(T ) ∪ {vn; v ∈ V}) \ {vpT (v); v ∈ V} if k > 1.

Second, let σ′ : [n]→ [n] be defined by σ′(n) = k and for v < n,

σ′(v) = σ(v) + 1[σ(v)≥k].

Lemma 3.3. For any n ≥ 2, hn : Dn−1 × Pn → Dn is well defined. That is, for any
(T, σ) ∈ Dn−1 and (k, l, x) ∈ Cn,

hn((T, σ), (k, l, x)) ∈ Dn.

Proof. Write hn((T, σ), (k, l, x)) = (T ′, σ′). When k = 1, it is clear that T ′ is a tree. When
k > 1, let w = σ−1(l) be the parent of n in T ′ and let (w = v1, . . . , vj = r(T )) be the path
from w to the root of T . Since σ is a stamp history of T , l = σ(v1) > σ(v2) > · · · > σ(vj) = 1;
moreover, l < k. It follows that vi /∈ V(k, l, x, σ) for all i ∈ [j] and consequently, no edges in
the path from n to the root in T ′ closes a cycle by connecting to n.

Now, we show that σ′ is a stamp history for T ′. It is clear that σ′ is a permutation of [n],
so it suffices to prove that σ′(v) > σ′(pT ′(v)), for all v ∈ V (T ) \ {r(T ′)}. First, for vertices
v with pT ′(v) = n we have σ(v) ≥ k and consequently σ′(v) = σ(v) + 1 > k = σ′(n).

Second, consider v, w < n with pT ′(v) = w. It follows that vw ∈ E(T ) and thus σ(v) >
σ(w). Consequently, 1[σ(v)≥k] ≥ 1[σ(w)≥k] and so σ′(v) > σ′(w). The last case occurs when

k > 1 and pT ′(n) = w = σ−1(l). We then have σ′(n) = k > l = σ(w) = σ′(w). �

Remark 3.4. Whenever (k, l, x) ∈ Pn has xj = 1 for some j ≥ k, setting (T ′, σ′) =
hn((T, σ), (k, l, x)) and v = σ−1(j) yields n = pT ′(v) 6= pT (v) ∈ [n − 1]. This implies that
T 6⊂ T ′.
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(a) A tree (T, σ) in D9. The permutation σ is depicted with bold numbers.
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(b) Vertices in gray satisfy Xσ(v) = 1 and underlined are time stamps σ(i) ≥ k.
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(c) Nodes i with σ(i) ≥ k and xi = 1 have been pruned and time stamps have been adjusted.
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(d) The resulting tree h10((T, σ), (k, l, x)) ∈ D10.

Figure 3. An example of the Robin-Hood pruning for (T, σ) with k =
6, l = 5 and x1 = x2 = x7 = x8 = 1; all other xi = 0.
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3.2. The random process. The Hn-set is a sample of Pn according to the following dis-
tribution.

Definition 3.5. Fix n ≥ 1. Let K
dist
= Unif (1, 2, . . . , n); if K = 1 let L = 0, and if

K > 1 let L = Unif (1, 2, . . .K − 1). Independently, let X = (X1, . . . , Xn−1) where Xi
dist
=

Bernoulli (1/i) are independent variables. An Hn-set is a triple of random variables with the
same law as (K,L,X) ∈ Pn.

We are ready to define the Robin-Hood pruning. For each n ≥ 2, let (K,L,X) ∈ Pn be
an Hn-set and define

Hn(T, σ) = hn((T, σ), (K,L,X)).

The law of Hn(T, σ) depends on the initial input (T, σ); however, the distribution of the
Hn-set is tailored so that Hn(Tn−1, σn−1) preserves the uniform measure on decorated trees.
In order to prove Theorem 1.1, we start with a characterization of (Tn, σn).

Lemma 3.6. Let n ≥ 1 be an integer. A random decorated tree (T ,σ) ∈ Dn is uniformly
random if and only if the following properties are satisfied.

i) The permutation σ is uniformly random on Sn.
ii) Conditionally given σ, the vertices (pσ(T )(σ

−1(v)), v ∈ V (T )\{r(T )}) are independent.
iii) For all vertices v, w ∈ [n] and indices i, j ∈ [n],

P (pT (v) = w, σ(v) = j, σ(w) = i) =
1

n(n− 1)(j − 1)
1[j>i].(3)

Proof. Let (T ,σ) = (Tn, σn) be uniformly random on Dn. Condition i) follows directly
from Proposition 1.2 which states that σ is a uniformly random permutation and σ(T ) has
the law of a recursive tree Rn. In addition, Proposition 1.2 implies

(pσ(T )(σ
−1(v)), v ∈ V (T ) \ {r(T )}) dist

= {pRn
(j), 1 < j ≤ n},

from which conditions ii) and iii) immediately follow: Parents in recursive trees are chosen
independently for each of the vertices, and for all v, w, i, j ∈ [n],

P (pT (v) = w, σ(v) = j, σ(w) = i) =
1

n(n− 1)
P (pT (v) = w |σ(v) = j, σ(w) = i)

=
1

n(n− 1)
P
(
pσ(T )(j) = i

)
=

1

n(n− 1)(j − 1)
1[j>i].

Now consider a random decorated tree (T ,σ) ∈ Dn satisfying conditions i)-iii). Fix a
decorated tree (T, π) ∈ Dn, and for v ∈ V (T ) \ {r(T )}, let wv = pT (v). Condition ii) on the
conditional independence of parents gives, for v 6= r(T ),

P (pT (v) = wv|σ = π) =P
(
pσ(T )(σ(v)) = π(wv)|σ(v) = π(v), σ(wv) = π(wv)

)
=
P (pT (v) = wv, σ(v) = π(v), σ(wv) = π(wv))

P (σ(v) = π(v), σ(wv) = π(wv))

Using that π is an stamp history for T , so π(v) > π(wv), and that σ is uniformly random,
it follows from (3) that

P (pT (v) = wv|σ = π) =
1

π(v)− 1
.(4)
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Any increasing tree T ′ ∈ In is determined by the set of parents {pT ′(v), 1 < v ≤ n}.
Using that π(T ) ∈ In and the conditional independence from condition ii) we get

P (σ(T ) = π(T ) |σ = π) = P
(
pσ(T )(j) = pπ(T )(j), 1 < j ≤ n |σ = π

)
= P (pT (v) = pT (v), v ∈ V (t) \ {r(T )} |σ = π)

=
∏

v∈V (T )\r(T )

P (pT (v) = pT (v) |σ = π)

= [(n− 1)!]−1;

the last equality holds by (4) and the fact that {π(v), v ∈ V (T ) \ {r(T )}} = {2, . . . , n}.
Finally, using the equation above and that σ is uniformly random, we have

P ((T ,σ) = (T, π)) = P (σ(T ) = π(T ) |σ = π)P (σ = π)

=
1

n!
P (σ(T ) = π(T ) |σ = π) = [n!(n− 1)!]−1.

This holds regardless of the choice of (T, π), so (T ,σ) is uniformly random in Dn.
�

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let (Tn−1, σn−1) ∈ Dn−1 be a uniformly random decorated tree. Let
(K,L,X) be an Hn-set and let (T ,σ) = h((Tn−1, σn−1), (K,L,X)). It suffices to show that
(T ,σ) satisfies the properties in Lemma 3.6.

First, condition i) follows from the construction of σ and the distributions of both K and
σn−1. Second, once conditioning on σ, which is equivalent to conditioning on both σn−1
and K, we get

{pT (v), v ∈ V (T ) \ {r(T )}} ={pT (v), 1 < σ(v) < σ(n)}
∪ {pT (v), σ(n) ≤ σ(v) ≤ n}

={pTn−1(v), v ∈ 1 < σn−1(v) < K}
∪ {pT (v), (2 ∨K) ≤ σ(v) ≤ n},

where the last two sets are conditionally independent given σ. Now, since (Tn−1, σn−1) is
uniformly random in Dn−1, the parents {pTn−1(v), v ∈ 1 < σn−1(v) < K} are independent,
conditionally given σn−1 (and thus, also conditionally given σ). On the other hand, for v
with σ(v) ≥ K,

pT (v) =


n if Xσ(v)−1 = 1,

pTn−1(v) if Xσ(v) = 0,

σ−1(L) if σ(v) = K.

Note that pT (v) is determined independently from other vertices, thus {pT (v), K ≤ σ(v) ≤
n} are also independent, conditionally given σ. This implies that condition ii) is satisfied.

Third, fix 1 ≤ i < j ≤ n and fix distinct v, w ∈ [n]. We consider three cases; namely
v = n, w = n, and {v, w} ⊂ [n− 1]. Let

A1 = {pT (n) = w, σ(n) = j, σ(w) = i},
A2 = {pT (v) = n, σ(v) = j, σ(n) = i},
A3 = {pT (v) = w, σ(v) = j, σ(w) = i}.
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It remains to show that the probabilities of A1, A2, A3 are given by (3) for all i, j ∈ [n].
The event pT (n) = w implies that σn−1(w) = L < K. Therefore, A1 occurs precisely when
K = j, L = i, and σn−1(w) = i. Then,

P (A1) = P (K = j, L = i)P (σn−1(w) = i) =
1

n(j − 1)(n− 1)
.

Next, pT (v) = n implies that σn−1(v) ≥ K and thus σ(v) = σn−1(v) + 1. It then follows
that A2 occurs when K = i, σn−1(v) = j − 1, and Xj−1 = 1. Therefore,

P (A2) = P (K = i,Xj−1 = 1)P (σn−1(v) = j − 1) =
1

n(j − 1)(n− 1)
.

For the last case, since u, v < n, it follows that K /∈ {i, j}. For each k ∈ [n] \ {i, j} let

A3,k = {pT (v) = w, σ(v) = j, σ(w) = i, K = k}.

In computing the probabilities P (A3,k) we use that (Tn−1, σn−1) is uniformly random in
RDn−1. If K > j, then both σn−1(v) = σ(v) and σn−1(w) = σ(w); in addition, pT (v) = w
only if pTn−1

(v) = w. Therefore, if k > j, then

P (A3,k) = P (K = k)P
(
pTn−1(v) = w, σn−1(v) = j, σn−1(w) = i

)
=

1

n(n− 1)(n− 2)(j − 1)
.

Similarly, if K < j, then σn−1(v) = σ(v) − 1, σn−1(w) = σ(w) − 1[K<i], and additionally
Xj−1 = 0. It then follows that, if k < j,

P (A3,k) = P (K = k, Xj−1 = 0)P
(
pTn−1

(v) = w, σn−1(v) = j − 1, σn−1(w) = i− 1[K<i]

)
=

1

n
· j − 2

j − 1
· 1

(n− 1)(n− 2)(j − 2)
.

We have shown that P (A3,k) is uniform for all k ∈ [n] \ {i, j}, and we get

P (A3) =
∑
k 6=i,j

P (A3,k) =
1

n(n− 1)(j − 1)
.

Altogether, we have shown that condition iii) is satisfied and so the proof is complete. �

4. The Poisson approximation

Recall that (Tn, σn) is a uniform decorated tree and that Tn has the shape of a recursive
tree. In fact, Proposition 1.2 implies that the following distributional identity holds, for all
n ∈ N,

(dTn
(σ−1n (i)); i ∈ [n])

dist
= (dRn

(i); i ∈ [n]).

It follows that the distribution of (Z
(n)
m , m ≥ 1) and ∆n does not change if we redefine

them as Z
(n)
m = #{v ∈ [n] : dTn

(v) ≥ m} and ∆ = max{dTn
(v) : v ∈ [n]}. However,

the correlations in (dTn
(v); v ∈ [n]) have a subtle difference in comparison with those in

(dRn
(i); i ∈ [n]). To see this, observe that (dRn

(i), i ∈ [n]) is negative orthant dependent;
for a definition see [8]. This fact can be proven by induction from the two-vertex case
(dRn(i),dRn(j)), which, in turn, follows essentially from the negative orthant dependency
of multinomial distributions, see e.g. [7, Lemma 1]. As a consequence, for all i, j ∈ [n],

P (dRn
(i) ≥ m, dRn

(j) ≥ m) ≤ P (dRn
(i) ≥ m)P (dRn

(j) ≥ m) .(5)
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On the other hand, the following proposition gives conditions on m for the degrees in Tn to
have a pairwise ‘almost’ negative correlation.

Proposition 4.1. For any c ∈ (0, 2) there exists α = α(c) > 0 such that uniformly for
m = m(n) < c lnn and distinct v, w ∈ [n],

P (dTn(v) ≥ m, dTn(w) ≥ m) ≤ P (dTn(v) ≥ m)P (dTn(w) ≥ m) +O(2−2m−α logn).(6)

Moreover, α < 1
4 (1− c+

√
1 + 2c− c2) < 1.

We make precise the constraints on α as this is crucial to Theorem 1.5. A weaker version
of Proposition 4.1, without explicit error bounds, was proved in [2, Proposition 4.2]; a
complete proof of Proposition 4.1 appears in Appendix A.

Although we do not claim the bounds in Proposition 4.1 are optimal, it seems that the
property in (5) is lost when randomizing the vertex labels of Rn to obtain Tn. The bound
in (6) will be an important input to the Chen-Stein Method.

Briefly explained, our application of the Chen-Stein method compares, in total varia-

tion distance, the sum Z
(n)
m with respect to a Poisson variable with mean E

[
Z

(n)
m

]
. The

strength of the bounds depend on finding suitable couplings between (1[dTn (v)≥m]; v ∈ [n])
and conditional versions of such variables. More precisely, we use the pruning procedure
to obtain Tn and Fact 5.1 describes (dTn

(i), i ∈ [n]) in terms of the independent ele-
ments (dTn−1(i), i ∈ [n − 1]) and dTn(n). This allows us to analyze the conditional law
of (dTn(i), i ∈ [n− 1]) given {dTn(n) ≥ m} holds.

Before going into further details we layout the necessary notation. Given probability
measures µ and ν, a coupling of µ and ν is a pair (X,Y ) of random variables (either real or
vector-valued) with X ∼ µ and Y ∼ ν. Let I = (Ia, a ∈ A) be a collection of {0, 1}-valued
random variables. Let µ be the law of W =

∑
a∈A Ia and for a ∈ A let νa be the conditional

law of W given that Ia = 1, so

νa(B) = P (Wa ∈ B) = P (W ∈ B | Ia = 1) .

We use the Chen-Stein method stated below.

Theorem 4.2 ([14, Theorem 3.7]). Let I = (Ia, a ∈ A) be a collection of {0, 1}-valued
random variables and let W =

∑
a∈A Ia. For each a ∈ A fix a coupling (W,Wa) of µ and

νa. Then with λ = E [W ], we have

dTV(W,Poi (λ)) ≤ min{λ−1, 1}
∑
a∈A

E [Ia]E [|W − (Wa − 1)|] .

To apply Theorem 4.2 with as tight as possible bounds, one can exploit properties of the
variables Ia or construct couplings of µ and ν with specific properties.

Corollary 4.3. Let I = (Ia, a ∈ A) be a collection of {0, 1}-valued random variables and
let W =

∑
a∈A Ia. If the variables I = (Ia, a ∈ A) are exchangeable, then for any fixed

a ∈ A and coupling (W,Wa) of µ and νa, we have

dTV(W,Poi (λ)) ≤ E [|W − (Wa − 1)|] .(7)

If, moreover, Wa = (Jab, b ∈ A) and there is a coupling (W,Wa) of µ and νa satisfying
Jab ≤ Ia for all b ∈ A \ {a}, then

dTV(W,Poi (λ)) ≤ E [Ia] +
∑

b∈A\{a}

E [Ia − Jab] .(8)
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Now, for the remainder of the section, fix m and let, for all v ∈ [n], Iv = 1[dTn (v)≥m],

so that Z
(n)
m

dist
=
∑
v∈[n] Iv. Let (I, J) = ((Iv, v ∈ [n]), (Jv, v ∈ [n]) be a coupling of µ and

ν = νn where µ is the law of (I1, . . . , In) and ν = νn is the conditional law of (I1, . . . , In)
given that In = 1.

If we would have orthant negative correlation for (dTn
(v), v ∈ [n]) then it would follow

that for all v ∈ [n − 1], E [InIv] − E [In]E [Iv] ≤ 0 and so the conditions for (8) would
be satisfied. Although such strong property has not been yet established, Proposition 4.1
implies for each v ∈ [n− 1],

E [InIv]− E [In]E [Iv] ≤ O(2−2m−α logn).

This suggests that there are couplings of µ and ν for which, with high probability, Iv ≤ Jv
for all v ∈ [n− 1]. The existence for such couplings is delicate as the inequality Iv ≤ Jv has
to hold for all v ∈ [n− 1] simultaneously.

The next proposition is the key ingredient in applying the Chen-Stein method to prove
Theorem 1.7. The coupling is based on the Robin-Hood pruning and its proof is the content
of Section 5.

Proposition 4.4. Let c ∈ (1, 2). There is β = β(c) > 0 such that for any m = m(n) >
c lnn there exists a coupling (I, J) = ((I1, . . . , In), (J1, . . . , Jn)) of µ and ν, in which for all
v ∈ [n− 1],

P (Iv < Jv) ≤ O(n−1−β).

In the next section we assume Proposition 4.4 and complete the proofs of the results on
high-degree vertices of Rn.

4.1. Proofs for high-degree vertices.

Proof of Theorem 1.7. Fix 1 < c′ < c < 2 and let c′ lnn < m = m(n) < c lnn. We

apply the Chen-Stein method to Z
(n)
m

dist
=
∑
v∈[n] Iv. First, we use the coupling (I, J) =

((I1, . . . , In), (J1, . . . , Jn)) of µ and ν given in Proposition 4.4. By (7), we have

dTV

(
Z(n)
m ,Poi (E [λn,m])

)
≤ E [|W − (Wn − 1)|] ≤ E [In] +

∑
v∈[n−1]

E [|Iv − Jv|] .

It thus remains to show that the terms in the bound above are O(2−m+(1−α) logn)+O(n−β),
where α = α(c) ∈ (0, 1) and β = β(c′) > 0 are defined as in Propositions 4.1 and 4.4
respectively. For any v ∈ [n− 1],

E [In]E [|Jv − Iv|] =E [In]E [Iv − Jv] + 2E [In]E
[
(Jv − Iv)1[Iv<Jv]

]
=(E [In]E [Iv]− E [InIv]) + 2E [In]P (Iv < Jv) .

The terms in the last line are bounded by (6) and Proposition 4.4, respectively. Since (1)
gives E [In] = 2−m(1 + o(1)) we get∑

v 6=n

E [|Iv − Jv|] = (n− 1)

[
E [In]E [Iv]− E [InIv]

E [In]
+ 2P (Iv < Jv)

]
= O(2−m+(1−α) logn) +O(n−β).

Finally, (1) together with α < 1 also gives E [In] = O(2−m+(1−α) logn). �
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Proof of Theorem 1.5. Fix c ∈ (1, log e) and let α = α(c) be as in Theorem 1.7. Using the
upper bound for α in Proposition 4.1 and simple computations yield (1−α) log e < c. Thus,
we can chose c′ ∈ ((1− α) log e, c). Let m = m(n) be such that c′ lnn < m < c lnn. By the
choice of c and c′, we have that, as n→∞, (1− α) log n−m < 0; while (1) implies

E
[
Z(n)
m

]
= 2−m+logn(1 + o(1))→∞.

The result then follows by Theorem 1.7 and the central limit theorem of Poisson variables,
see e.g. [9, Exercise 3.4.4]. �

Proof of Theorem 1.10. Recall that εn = log n − blog nc. Let i = i(n) satisfy 0 < i <
log e ln lnn− C, where C > 0 is a constant to be determined below, and note that 2i+εn ≤
2i+1 < 2−C+1 lnn. Let m = blog nc − i and Z

dist
= Poi (λm,n).

We have that {∆n < blog nc − i} if and only if {Z(n)
m = 0}. Therefore,

P (∆n < blog nc − i) = P
(
Z(n)
m = 0

)
≤ P (Z = 0) + dTV(Z(n)

m , Z).(9)

We deal with the two terms on the right-hand side of (9) separately. First, using the lower
bound on i, there is a constant c ∈ (log e, 2) such that for n large enough, m − i < c lnn.
Therefore, (1) gives γ > 0 such that λn,m = 2i+εn + o(n−γ lnn). Consequently,

P (Z = 0) = exp {−λn,m} = exp{−2i+εn}(1 + o(1)).

For the second term in (9), Theorem 1.7 gives α, β > 0 such that

dTV(Z(n)
m , Z) = O(2−m+(1−α) logn) +O(n−β).

It remains to deal with these two error terms. Note that exp{2i+εn} ≤ exp{2−C+1 lnn}.
Therefore, if C > 1 + log(1/β) then

exp{2i+εn}O(n−β) = O(exp{(2−C+1 − β) lnn})→ 0;

similarly, for C large enough,

exp{2i+εn}O(2−m+(1−α) logn) = exp{2i+εn}O(2i−α logn)→ 0.

The two limits above imply that dTV(Z
(n)
m , Z) = o(exp{−2i+εn}), completing the proof. �

5. The coupling for the Chen-Stein Method

In this section we define and analyze the auxiliary coupling used in Proposition 4.4. The
coupling is based on the following straightforward property of the deterministic pruning.

Fact 5.1. Fix n ≥ 2. For hn((T, σ), (k, l, x)) = (T ′, σ′), we have dT ′(n) =
∑n−1
i=k xi, and

for v ∈ [n− 1],

dT ′(v) = dT (v) + 1[l=σ(v)] −
n−1∑
i=k

xi1[v=pT (σ−1(i))].

In words, Fact 5.1 specifies when the degree of a vertex v < n changes: either for having
n as a new child or for losing children that are rewired towards n. Clearly, the degree of n
equals the total number of such rewirings.

The heuristic for the almost negative relation obtained in Proposition 4.4 is the following.
Start with (Tn−1, σn−1) and apply the Robin-Hood procedure. If the degree of vertex n is
large, Fact 5.1 implies that a large number of vertices in Tn−1 were rewired towards n in
the new tree; thus, many (parent) vertices decreased their degree by at least one. In short,



A NON-INCREASING TREE GROWTH PROCESS 19

conditioning on degTn
(n) ≥ m implies that other vertices are (slightly) less likely to satisfy

degTn
(v) ≥ m.

For the remainder of the section, fix n ∈ N, c ∈ (1, 2) and m = m(n) > c lnn. Let
(Tn−1, σn−1) be uniformly random in Dn−1, (K,L,X) be an Hn-set, and (K ′, L′, X ′) be

distributed as an Hn-set conditioned to satisfy
∑n−1
i=K X

′
i ≥ m. Now, write

(Tn, σn) = h((Tn−1, σn−1), (K,L,X)),(10)

(T ,σ) = h((Tn−1, σn−1), (K ′, L′, X ′)).(11)

To avoid cluttery notation, we omit the dependency onm of the conditional random variables
(K ′, L′, X ′) and (T ,σ). By Fact 5.1 and Theorem 1.1, (T ,σ) is a conditional version of
(Tn, σn) given that dTn

(n) ≥ m. Consequently, if Iv = 1[dTn (v)≥m] and Jv = 1[dT (v)≥m] for
all v ∈ [n], then any coupling between (K,L,X) and (K ′, L′, X ′) yields a coupling for the
measures µ and ν in Proposition 4.4.

Our goal is then to couple (K,L,X) and (K ′, L′, X ′) in such a way that the negative
relation between Iv and Jv fails on a negligible set. More precisely, we construct a coupling
so that there is β = β(c) > 0 satisfying

P (Iv < Jv) = P
(
dTn−1

(v) < m ≤ dT (v)
)

= O(n−1−β).(12)

Lemmas 5.2–5.4 provide the coupling between (K,L,X) and (K ′, L′, X ′), while Propo-
sition 5.5 gives necessary conditions, under the coupling, for Iv < Jv to hold. The proof of
Proposition 4.4 then follows from bounding the probability that such necessary conditions
occur.

5.1. Construction of the coupling. For any integer n −m ≤ k < n, let Xk = (Xk
i , i ∈

[n− 1]) be a conditional version of X given that
∑n−1
i=k Xi ≥ m. The following observation

is quite standard but we include a proof for completeness. For a = (a1, . . . , ad) and b =
(b1, . . . , bd) ∈ {0, 1}d, a ≤ b only if ai ≤ bi for all i ∈ [d]. We say that S ⊂ {0, 1}d is
monotone if a ≤ b and a ∈ S imply b ∈ S.

Lemma 5.2. For each k < n, there exists a coupling of Xk and X such that Xi ≤ Xk
i for

all i ∈ [n− 1].

Proof. Fix k < n. Note that Sk = {a ∈ {0, 1}n−1 : ak + . . . + an−1 ≥ m} is a monotone
subset of {0, 1}n−1. Harris inequality implies P (X ∈ S ∩ Sk) ≥ P (X ∈ Sk)P (X ∈ S), for
any monotone subset S ∈ {0, 1}n−1. Dividing through by P (X ∈ Sk) yields P

(
Xk ∈ S

)
≥

P (X ∈ S). Therefore, Xk stochastically dominates X. The existence of the coupling is then
guaranteed by Strassen’s theorem [19]. �

Before the next coupling, we gather two observations. First, for fixed (k, l), we have
P (L = l|K = k) = P (L′ = l|K ′ = k). To see this, observe that P (L′ = l|K ′ = k) can be
rewritten as

P
(
L = l, K = k,

∑n−1
i=K Xi ≥ m

)
P
(
K = k,

∑n−1
i=K Xi ≥ m

) =
P
(
L = l, K = k,

∑n−1
i=k Xi ≥ m

)
P
(
K = k,

∑n−1
i=k Xi ≥ m

) ;

the claim then follows by the independence between X and (K,L). Second, the sequence

pk = P
(
K = k |

∑n−1
i=K Xi ≥ m

)
is proportional to P

(∑n−1
i=k Xi ≥ m

)
and, thus, it is de-

creasing in k. Clearly, the latter sequence of probabilities is decreasing in k, while both
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are proportional with a factor Z = nP
(∑n−1

i=K Xi ≥ m
)

. To see this, use the independence

between X and K to obtain

P

(
K = k

∣∣∣∣∣
n−1∑
i=K

Xi ≥ m

)
=

P
(
K = k,

∑n−1
i=k Xi ≥ m

)
P
(∑n−1

i=K Xi ≥ m
) =

1

Z
P

(
n−1∑
i=k

Xi ≥ m

)
.

Lemma 5.3. There exists a coupling of (K,L) and (K ′, L′) such that K ′ ≤ K and L′ ≤ L.

Proof. Let X = (X1, . . . , Xn−1) be independent with Xi
dist
= Bernoulli (1/i) and indepen-

dently, let U1, U2 be i.i.d. Unif (0, 1). By a slight abuse of notation we redefine the variables
(K,L) and (K ′, L′) using the variables U1, U2 and argue that the original law is preserved.

Let (K,L) = (dnU1e, d(K − 1)U2e) and (K ′, L′) = (K ′, d(K ′ − 1)U2e) with

K ′ = max

k : U1 >

k−1∑
j=1

pj

 .

It is straightforward that (K,L) and K ′ have the correct law by construction, while L′ has
the correct law since P (L = l|K = k) = P (L′ = l|K ′ = k) for each 0 ≤ l < k ≤ n. Moreover,

since pk is decreasing, it follows that K ′ = j implies U1 >
∑j−1
i=1 pi ≥

j−1
n . It follows that

K ≥ j = K ′, and so L = d(K − 1)U2e ≥ d(K ′ − 1)U2e = L′. �

Lemma 5.4. There exists a coupling of (K,L,X) and (K ′, L′, X ′) such that K ′ ≤ K,
L′ ≤ L′ and Xi ≤ X ′i for all i ∈ [n− 1].

Proof. Let U1, U2 be i.i.d. Unif (0, 1) and independently, let X = (X1, . . . , Xn−1) be in-

dependent with Xi
dist
= Bernoulli (1/i). For each 1 ≤ k < n fix a vector Xk coupled with

X according to Lemma 5.2. The dependence structure of X1, . . . , Xn−1 is unimportant to
the argument, but for concreteness we may, e.g., take them to be conditionally indepen-
dent given X. On the other hand, it is important to insist that the Xk are independent of
(K ′, L′). Since we will define (K ′, L′) using U1, U2, the existence of such joint coupling is
straightforward.

Again, by a slight abuse of notation we redefine the variables and argue that the origi-
nal law is preserved. Define (K,L),(K ′, L′) as in Lemma 5.3 and let X ′ = XK′ . Clearly,
(K,L,X) is an Hn-set. It remains to show that (K ′, L′, X ′) has the conditional distri-

bution of (K,L,X) given that
∑n−1
i=K Xi ≥ m. For any (k, l, x) ∈ Pn, the probability

P
(

(K,L,X) = (k, l, x)
∣∣∣∑n−1

i=K xi ≥ m
)

can be rewritten as

P
(
K = k, L = l, X = x,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=K xi ≥ m
) =

P (K = k, L = l)P
(
X = x,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=K xi ≥ m
) .

Adding two factors of P
(∑n−1

i=k xi ≥ m
)

and using the independence between (K,L) and

X, we can factorize these probabilities as

P
(
K = k, L = l,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=K xi ≥ m
) ·

P
(
X = x,

∑n−1
i=k xi ≥ m

)
P
(∑n−1

i=k xi ≥ m
)



A NON-INCREASING TREE GROWTH PROCESS 21

These probabilities correspond, respectively, to the distributions of (K ′, L′) and Xk, which
are independent. Therefore,

P

(
(K,L,X) = (k, l, x)

∣∣∣∣∣
n−1∑
i=K

xi ≥ m

)
= P ((K ′, L′) = (k, l))P

(
Xk = x

)
= P ((K ′, L′, X ′) = (k, l, x))

as desired. Finally, the variables (K,L,X) and (K ′, L′, X ′) satisfy the desired inequalities
by Lemmas 5.2 and 5.3. �

5.2. Analysis of the coupling. The proof of Proposition 4.4 boils down to understanding
necessary conditions for dTn(v) < m ≤ dT (v) to hold under the coupling of Lemma 5.4.

Proposition 5.5. Consider (K,L,X) and (K ′, L′, X ′) defined in Lemma 5.4 and their
corresponding decorated trees (Tn, σn), (T ,σ) defined in (10) and (11). For any v ∈ [n− 1],

{dTn
(v) < m ≤ dT (v)} ⊂ {L′ = σn−1(v)} ∩ {dTn−1

(v) ≥ m− 1}.

Proof. From the properties of the coupling in Lemma 5.4,

n−1∑
i=K

Xi 1[v=pTn−1
(σ−1

n−1(i))]
≤

n−1∑
i=K′

X ′i 1[v=pTn−1
(σ−1

n−1(i))]
.(13)

Consequently, using Fact 5.1 we have that dT (v) − dTn
(v) ≤ 1[L′=σn−1(v)]. On the other

hand, if {dTn
(v) < m ≤ dT (v)} holds, then it follows that dT (v) − dTn

(v) > 0 and so it is
necessary that {L′ = σn−1(v)} holds. Finally, {m ≤ dT (v)} implies that

m ≤ dT (v) = dTn−1
(v) + 1[L′=σn−1(v)] −

n−1∑
i=K′

X ′i 1[v=pTn−1
(σ−1

n−1(i))]
≤ dTn−1

(v) + 1;

or equivalently, that {dTn−1
(v) ≥ m− 1}. �

We can also argue, more specifically, that

{dTn
(v) < m ≤ dT (v)} ⊂ {L′ = σn−1(v)} ∩ {dTn−1

(v) = m− 1};

however, the approach we chose allow us to use uniform bounds for all v ∈ [n − 1]. We
will frame the events {dTn−1(v) ≥ m− 1} from the perspective of recursive trees where the
degree distributions are distinct for each vertex. Recall the following version of Bernstein
inequalities (see, e.g. [18] Theorem 2.8, (2.5)). For a sum S of {0, 1}-valued variables and

ε > 0, P (S > (1 + ε)E [S]) ≤ exp
{
− 3ε2

2(3+ε)E [S]
}

. By the construction of Rn we have that

dRn(i)
dist
=
∑n
k=iBk ≤

∑n
k=1Bk where (Bk, k ≥ 1) are independent Bernoulli variables with

mean 1/k. Therefore,

P (dRn(i) > m) ≤ P

(
n∑
k=1

Bk > c lnn

)
.

Using that E [
∑n
k=1Bk] = lnn + O(1) < c lnn, we can apply Berstein’s inequality with

ε = c−1+o(1) and set β = 3ε2

2(3+ε) . It follows that there is β = β(c) > 0 such that uniformly

over m > c lnn, and i ∈ [n],

(14) P (dRn
(i) > m) = O(n−β).
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Proof of Proposition 4.4. Fix c ∈ (1, 2). Let m = m(n) > c lnn and β = β(c) > 0 be
as in (14). Let Tn and T be as defined in (10) and (11) with ((K,L,X), (K ′, L′, X ′))
as in Lemma 5.4. Set Iv = 1[dTn (v)≥m] and Jv = 1[dT (v)≥m] for all v ∈ [n], so that
(I, J) = ((I1, . . . , In), (J1, . . . Jn)) is a coupling of the measures µ and ν.

Our goal is to bound P (Iv < Jv) = P (dTn
(v) < m ≤ dT (v)). First, by Proposition 5.5,

P (dTn
(v) < m ≤ dT (v)) ≤

n−1∑
j=1

P
(
L′ = j, σn−1(v) = j, dTn−1

(v) ≥ m− 1
)
.

Next we obtain uniform bounds for the terms on the right-hand side. Recall that σn−1 is

a uniformly random permutation independent of L′ and that σn−1(Tn−1)
dist
= Rn−1. These

facts, together with (14) gives, for each j ∈ [n− 1],

P
(
L′ = j, σn−1(v) = j, dTn−1

(v) ≥ m− 1
)

=
P (L′ = j)

n− 1
P
(
dTn1

(v) ≥ m− 1 |σn−1(v) = j
)

=
P (L′ = j)

n− 1
P
(
dRn−1(j) ≥ m− 1

)
≤ P (L′ = j)O(n−1−β).

Plugging together these bounds, we get for any v ∈ [n− 1],

P (Iv < Jv) ≤
n−1∑
j=1

P
(
L′ = j, σn−1(v) = j, dTn−1(v) ≥ m− 1

)
= O(n−1−β)

n−1∑
j=1

P (L′ = j) = O(n−1−β).
�

6. Conclusions and further research

The Robin-Hood pruning yields an interesting process ((Tn, σn), n ≥ 1). By Theorem 1.1

and Proposition 1.2, σn(Tn)
dist
= Rn for all n ≥ 1; that is, Tn has the shape of a recursive

tree. The novelty of this process is that the Robin-Hood pruning is a fairly complex dynamic
of trees which has potential connections to mathematical models of social and economic
networks and raises challenging theoretical questions.

First, only asymptotically about half the time Tn is obtained from Tn−1 by simply attach-

ing n to a uniformly random vertex. To see this, recall that dTn
(n)

dist
= min{Geo (1/2) , |S|}

where |S| → ∞ (see Fact 6.1 and Lemma 6.2). It follows that with probability tending to
1/2 the newly added vertex will be a leaf. Second, for all n ≥ 1, dRn

(n) = 0 a.s. , while
Fact 5.1 and the distribution of the H-set yield

E [dTn(n)] = E
[
E
[∑n−1

i=k Xi |M = k
]]

=

n∑
k=1

n−1∑
i=k

1

n · i
=

n−1∑
i=1

i∑
k=1

1

n · i
= 1− 1

n
.

Third, from time to time, a large proportion of edges will be rewired towards the newly added
vertex, drastically reshaping the structure of the tree. For example, for any a ∈ [0, 1),

E [dTn
(n) |M ≤ na] ≥ E

[
n∑

i=na

Xi

]
= (1− a) lnn.

As for applications, in the context of random networks, the Robin-Hood pruning has an
interpretation in terms of ‘trends’; for example, a new vertex brings in a new idea to the
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network which may drastically rewire the interests or connections of established individuals
in the network. The stamp history σn gives a ranking between the elements of Tn that
determines the susceptibility of changing parents in the tree. Preferential attachment models
are considered better models for real-world networks. It would be interesting to devise a
similar pruning procedure that, acting on preferential attachment trees, preserves their
scale-free degree distribution.

In the context of biology, Kingman’s coalescent is usually represented with increasing bi-
nary trees, keeping individuals as external nodes and adding an internal node for each merge
between two lineages. The representation using n-chains breaks the symmetry between the
pairs of trees merging at each step. Thus, it is not clear how the Robin-Hood pruning
process would have a significant interpretation in terms of the genealogical information.

Regardless of the perspective we use to motivate the process ((Tn, σn), n ≥ 1), there are
many interesting theoretical questions that would be worth pursuing. To name just a few:

(1) Understand the process describing how the parent and descendants of a given vertex
change with time.
• Describe how the size of the subtree rooted at a fixed node j evolves.
• How does maximum size of such subtree grow?

(2) Understand the maximum degree dynamics in both (Rn, n ≥ 1) and (Tn, n ≥ 1).
• How often does vertices attaining the maximum degree change?
• Are this dynamics the same for both processes?

(3) Determine whether there is a coupling for which the sequence (1[dTn (v)], v ∈ [n]) is
negative related (i.e. that conditions for (8) are satisfied), or similarly, whether the
sequence is negative orthant dependent.

Acknowledgements

I would like to thank Louigi Addario-Berry and Henning Sulzbach for some very helpful
discussions, and to the anonymous referees who provided insight on how to improve the pre-
sentation of the results and additional references. This research was supported by FQRNT
through PBEEE scholarship with number 169888.

Appendix A: Proof of Proposition 4.1

We use the representation of Kingman’s coalescent that consists of a chain C = (Fn, . . . , F1)
and write T (n) for the unique tree contained in F1. By Proposition 1.3 we can work with
the tree T (n). The proof mimics that of [2, Proposition 4.2], but requires a little more care
as we wish to obtain explicit error bounds.

For each v, j ∈ [n] let Tj(v) denote the tree in Fj that contains vertex v. For each v ∈ [n],
the selection set of v is defined as

Sn(v) = {2 ≤ j ≤ n : Tj(v) ∈ {T (j)
aj , T

(j)
bj
}};

this set keeps record of the times when the tree containing v merges. Finally, for each

2 ≤ j ≤ n, we say that ξj is favorable for vertices in T
(j)
aj (resp. vertices in T

(j)
bj

) if ξj = 1

(resp. ξj = 0).
The key property of Kingman’s coalescent is the following. For each j ∈ Sn(v), if ξj favors

v, then r(Tj(v)) increases its degree by one in the process; otherwise r(Tj(v)) attaches to
the root of the other merging tree and the degree of r(Tj(v)) remains unchanged for the rest
of the process. Since all vertices start the process as roots, dT (n)(v) is equal to the length
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of the first streak of favorable times for v. Moreover, (ξj , j ∈ [n− 1]) are independent and
distributed as Bernoulli (1/2). Therefore we have the following distributional equivalence.

Fact 6.1. Let D be a random variable with distribution Geo (1/2) independent of Sn(v),
then

dT (n)(v)
dist
= min{D, |Sn(v)|}.

This fact, together with the next lemma, allow us to get estimates for the tails of dT (n)(v).

Lemma 6.2. If c ∈ (0, 2) and 0 < ε ≤ 1− c/2. Writing a = 1− ε− c/2, we have

P (|Sn(v) \ [na]| > c lnn) ≤ O(1)n−ε
2/(ε+c/2).

Proof. First, there are j(j−1) distinct pair of trees in Fj , exactly j−1 of such pairs contains
Tj(v); thus P (j ∈ Sn(v)) = 2/j. Since the merging trees are chosen independently at each
time, we have that for any a ∈ [0, 1) we have

|Sn(v) \ [na]| dist=

n∑
j=na+1

Bj ,

where the variables B1, . . . Bn are independent Bernoulli variables with E [Bi] = 2/i, respec-
tively. The desired bound is then a straightforward application of Bernstein’s inequalities
(see, e.g. [18], Theorem 2.8 and (2.6)). For a sum S of {0, 1}-valued variables, we have
P (S ≤ E [S]− t) ≤ exp{−t2/2E [S]}. In this case, S =

∑n
i=na Bi and

E [S] =

n∑
i=na

2

i
= 2(1− a) lnn+O(1) = (c+ 2ε) lnn+O(1).

The result follows by setting t = 2ε lnn+O(1). �

Proposition 6.3. If c ∈ (0, 2) and m < c lnn, then for ε = (2− c)2/4,

2−m(1− o(n−ε)) ≤ P (dT (n)(1) ≥ m) ≤ 2−m.

Proof of Proposition 6.3. It follows from Lemma 6.1 that

P (dT (n)(v) ≥ m) = P (D ≥ m)P (|Sn(v)| ≥ m) .

The upper bound on P (dT (n)(1) ≥ m) is then trivial, while the lower bound follows by
Lemma 6.2 using ε = 1− c/2 and that Sn(v) = Sn(v) \ [1]. �

Now, consider two distinct vertices v, w ∈ [n]. For m ∈ N, let Gm ∈ {2, . . . , n}2 contain
all pairs of selection sets that enable vertices v and w to have degree at least m; that is,
(A,B) ∈ Gm only if

P (dT (n)(v) ≥ m, dT (n)(w) ≥ m, (Sn(v),Sn(w)) = (A,B)) > 0.

Since the ξj are independent of the selection times, we have that

P (dT (n)(v) ≥ m, dT (n)(w) ≥ m) ≥ 2−2mP ((Sn(v),Sn(w)) ∈ Gm) .(15)

To estimate P ((Sn(v),Sn(w)) ∈ Gm) we need more details on the dynamics of the model.
We start with a simple tail bound for the following random variable; let

τ = max{j : j ∈ Sn(v) ∩ Sn(w)}.

Lemma 6.4. For a ∈ (0, 1), P (τ > na) ≤ 4n−a.
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Proof. Vertices in T (n) are exchangeable, so we can take v = 1, w = 2; these vertices belong
to distinct trees in Fj for all j ≥ τ . Additionally, by the ordering convention of trees in Fj ,
it follows that Tj(1) = 1 and Tj(2) = 2 for all j ≥ τ .

We claim that for all 2 < k ≤ n,

P (τ ≤ k) =

n∏
j=k+1

(
1− 2

j(j − 1)

)
.

This follows by induction on n − k. Clearly, τ = n only if {an, bn} = {1, 2} which occurs
with probability 2

n(n−1) , thus P (τ ≤ n− 1) satisfies the equation above. For k < n, we have

P (τ ≤ k)

P (τ ≤ k + 1)
= P (τ ≤ k|τ ≤ k + 1) = P ({ak+1, bk+1} 6= {1, 2}) = 1− 2

(k + 1)k
.

Next, for k larger enough,

n∏
j=k+1

(
1− 2

j(j − 1)

)
≥
n−1∏
j=k

(
1− 2

j2

)
> 1−

∞∑
j=k

2

j2
> 1− 4

∫ ∞
k

x−2dx = 1− 4/k.

The second inequality uses that 1 − x > e−2x for x > 0 sufficiently small, followed by the
fact that e−

∑
2xj > 1−

∑
2xj . The result follows with k = na. �

Lemma 6.5. If c ∈ (0, 2) and m < c lnn, then for any γ < 1
4 (1− c+

√
1 + 2c− c2),

P ((Sn(v),Sn(w)) ∈ Gm) ≥ 1− o(n−γ).

Proof. For each ε ∈ (0, 1− c/2] write a = a(ε) = 1− ε− c/2, then

P ((Sn(v),Sn(w)) /∈ Gm) ≤ P (τ > na) + 2P (|Sn(v) \ [na]| < c lnn) .(16)

Before, establishing (16), we note that the terms in the right-hand side of (16) are bounded
by Lemmas 6.4 and 6.2, respectively. Since such bounds depend on the choice of ε, we can
use

γ < max
0<ε≤1−c/2

{
min

(
1− ε− c

2
,
ε2

ε+ c
2

)}
=

1

4

(
1− c+

√
1 + 2c− c2

)
.

The last equality since the functions to be minimized are decreasing and increasing,
respectively, on the (0, 1) interval. It then follows that the maximum is attained when
0 < ε < 1− c/2 satisfies 1− ε− c/2 = ε2/(ε+ c

2 ).
We now proceed to establish equation (16). At step τ , exactly one of v and w is favored

by ξτ . Thus, at least one of v or w gets its degree fixed for the remainder of the process.
Therefore,

{(Sn(v),Sn(w)) ∈ Gm} ⊂ {|Sn(v) \ [τ ]| ≥ m} ∪ {|Sn(w) \ [τ ]| ≥ m} .

By intersecting with the event τ > na, and the exchangeability of vertices in T (n) we get,

P ((Sn(v),Sn(w)) /∈ Gm) ≤ P (τ > na) + 2P ((Sn(v),Sn(w)) /∈ Gm, τ ≤ na)

≤ P (τ > na) + 2P (|Sn(v) \ [τ ]| < m, τ ≤ na)

≤ P (τ > na) + 2P (|Sn(v) \ [na]| < m, τ ≤ na) ;

from which (16) follows. �
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Proof of Proposition 4.1. Fix c ∈ (0, 2), m = m(n) < c lnn and let Iv, Jv be defined as in
Proposition 4.1. By Proposition 1.3, if follows that E [Iv] = P (dT (n)(v) ≥ m) and

E [Iv]E [Jv] = E [IvIn] = P (dT (n)(v) ≥ m, dT (n)(n) ≥ m)

= 2−2mP ((Sn(v),Sn(n)) ∈ Gm) ;

the last equality by (15). Lemmas 6.5 and 6.3 then gives that for α < 1
4 (1−c+

√
1 + 2c− c2),

E [Iv]E [In]− E [Iv]E [Jvn] ≤ 2−2m − 2−2m(1 + o(n−α)) = 2−2mo(n−α). �
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