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Abstract

In this paper we propose a deterministic algorithm for agipnately counting thé:-colourings
of sparse random grapli$(n,d/n). In particular, our algorithm computes in polynomial time a
(1 4+ n—%1))-approximation of the logarithm of the numberietolourings ofG(n, d/n) for k >
(2 + €)d with high probability over the graph instances.

Our algorithm is related to the algorithms of A. Bandyopaalhet al. in SODA '06, and
A. Montanari et al. in SODA '06, i.e. it usespatial correlation decayo computedeterminis-
tically marginals ofGibbs distribution We develop a scheme whose accuracy dependsoon
reconstructiorof the colourings of7(n, d/n), rather tharuniquenesshat are required in previous
works. This leaves open the possibility for our schema touficgently accurate even fat < d.

The set up for establishing correlation decay is as folld@isenG(n, d/n), we alter the graph
structure in some specific regidnof the graph by deleting edges between vertices.oThen we
show that the effect of this change on the marginals of Gib&siloution, diminishes as we move
away fromA. Our approach is novel and suggests a new context for the studeterministic
counting algorithms.

1 Introduction

For a graphG = (V, E)) and a positive integek, a properk-colouring is an assignment : V. — [k]
(we use[k] to denote{l, ..., k}), such that adjacent vertices receive different memberig]ofi.e.
different “colours”. Here we focus on the problem ajuntingthe k-colourings ofG. In particular,
we consider the cases where the underlying graph is an geste#rErdés-Rényi random grajh(n, p),
wherep = d/n andd is ‘large’ but remains bounded as— co. We say that an event occussth high
probability (w.h.p.)if the probability of the event to occur tends to lras» cc.

Usually, a counting problem is reduced to computing matginababilities ofGibbs distribution
see [19]. Typically, we estimate these marginals by usisgraplingalgorithm. The most powerful
method for sampling is the Markov Chain Monte Carlo (MCMChefte the main technical challenge
is to establish that the underlying Markov chain mixes inypomial time (see[[18, 17]). The MCMC
method givegprobabilistic approximation guarantees.

Recently, new approaches were proposedi&derministiccounting algorithms in [3] and [29]. The
work in [3] is for counting colourings and independent setsile [29] is for independent sets. These new
approaches link the correlation decayctimputing efficientlynarginals of Gibbs distributions. The two
algorithms in[[3[29] suggest two different approaches tamputing marginals. The one inl[3] applies
mainly to locally tree graphs. Spatial correlation decagxploited so as to restrict the computations
of marginals and consider only small areas of the graph. Theracy of the computations there relies
on establishing the so-callachiqueness conditionsn trees. On the other hand, the algorithm[in| [29]
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applies to a wider family of graphs, i.e. not necessarilallyctreelike ones. It uses a more elaborate
technique which somehow handles the existence of cycldsicamputation of marginals, mainly by
fixing the spins of certain sites appropriately. The appr@tion guarantees for the second algorithm
are stronger than those of the first one. However, the straegelts do not come for free. The spatial
mixing assumptions there are stronger, e.g. for the casewtfting independent sets it requirgtsong
spatial mixing conditions

Our approach for computing Gibbs marginals is closer fto §3jvéah.p. the instance @¥(n,d/n) is
locally tree like. However, this is not just an extension[8ff fo random graphs. First we express the
bounds fork in terms of the expected degree of the graph, rather than &xénmam degree which is
the case in[3]. Furthermore, we relate the computation bb&marginals to weaker notions of spatial
mixing, namely the so-calledon reconstruction conditionsgCompared to Gibbs uniqueness condition,
which is required in[[8], non-reconstruction is weaker anftlk for a wider range df. This leaves open
the possibility for our schema to be sufficiently accuratedmuntingk-colourings ofG(n, d/n) even
for k < d, i.e. when uniqueness condition is not expected to hold.

Further Motivation.  Apart from its use for counting algorithms, the problem afnguting efficiently
good approximations of Gibbs marginals is a very intergsfiroblem on its own. It is related to the
empirical success of heuristics suggested by statistioaipists such aBelief PropagatiorandSurvey
Propagation(see e.g.[[20]). In theoretical computer science, thesasiies are studied in the context of
finding solution of random instances of Constraint Satt&facProblems, e.g. random graph colouring,
randomk-SAT, etc. Similar ideas for computing marginals were algsggested ircoding theoryand
artificial intelligence(see in[[21]).

Related Work. Algorithms that follow a similar approach as the on€in [lpaar in[23, 10]. The one
in [23] is for computing Gibbs marginals for random instasoék-SAT. The one in[[10] is for random
colouring of G(n,d/n). The algorithm in[[10] does not compute the log partitiondtiion, however, it
can be altered so as to do so. Then, it is not hard to show trejuires at least”/? colours.

On the other hand, counting algorithms as the oné_ih [29] betéer polynomial time approxima-
tions, compared to the ones referred in the previous pashgrélowever, they require stronger cor-
relation decay conditions. Attempts to establish suchngtrconditions were successful for two spin
cases, e.g. independent sets, matchings, Ising spins29£€,[24]]). For the multi-spin cases, such as
colourings, things seem harder. The best algorithm of thiegory for counting k-colourings requires
k > 2.8A and girth at least 4 (see [11]), whefeis the maximum degree of the underlying graph.

The author of this work, in a subsequent papér [9], uses sdnie ideas that appear here in an al-
gorithm for approximate random colouriidg(n, d/n). The algorithm there yields similar results as here
but the approximation guarantees are probabilistic onesthie same as the Monte Carlo algorithms.

1.1 Results

Let Z(G, k) denote the number @fcolourings of the graply. In statistic physics literature the quantity
Z(G, k) is also known as thpartition function Our algorithm computes an approximation for the log-
partition functionlog Z (G, k).

Definition 1.1. W is defined to be ap-approximation of the log-partition functiolog Z (G, k) if

(1_6)logZ(G,k) - (l_i_e)logZ(G,k)_
n n

The results of our work are the following ones:



Theorem 1.1. Lete > 0 be a fixed number and letbe sufficiently large. Fok > (2 + ¢)d and with
probability at leastl — n~%, over the graph instances, our algorithm computes:af-approximation
oflog Z(G,, 4/n, k), intimeO(n®), wherea, b and s are positive real numbers which depend/on

Roughly speaking the above theorem implies that for tygitsthnces of+(n,d/n) andk > (2 + €)d
our algorithm is able to compute Gibbs marginals of#theplourings ofG(n, d/n) within erroro(n=°),
wherec > 0 is fixed. Furthermore, the fact that the Gibbs distributid®-@olourings is symmetric and
the fact that w.h.p. all but a vanishing fraction of the edgeS(n, d/n) do not belong to cycles shorter
than®(In n) implies the following result.

Corollary 1.1. For sufficiently larged andk > (2 + €)d, w.h.p. it holds that

log Z(Gn,d/na k)

d 1
— — . — < ¢
- <10gk:—|— 5 log <1 k:))‘ n-

Observe that the concentration result in Corollary 1.1 tHernumber of-colouring of G(n,d/n), is
derived by using correlation decay arguments. In the liteeaof random structures such results are
typically derived by using the so-called “Second momenttodt. A less accurate result can be derived
from the work of Achlioptas and Naor inl[1] with some extra wgte. the error there i©(log ™! n).

Finally, a related question and somehow a natural one isheh&te can distinguish efficiently the
instances of7(n,d/n) that have their log-partition function concentrated. Tisatfor a sufficiently
large functionh(n, d, k) we can answer whether a given instaige:, d/n) is such that

for fixede > 0.

n

or not. This goes beyond what we can get from the second mometttod, as the later uses non-
constructive arguments. We show that such distinction sthimces is possible. The reason is that our
arguments for correlation decay are tightly related to tegreles of vertices. That isxamining the
degrees of the verticage can infer whether the number of colouringg#n, d/n) is concentrated.
Let S(n, d) denote the set of graphs arvertices which have the following properties: Their number
of edges is at mostdn /4. There are at most’3 cycles, each of them, of length at mq#}gogid. Finally,
for each vertexv in the graph, the induced subgraph that contairend all vertices within distance
log n ) is either tree or a unicyclic graph. In the following resute show that for the graphs in

4log(e?d/2
S(n,d/n) itis possible to verify whether the log-partition functienconcentrated or not.

Corollary 1.2. Lete > 0 be a fixed number and let be sufficiently large. Fok > (2 + €)d, there
exists a set of graphs§(n,d) such that the following holds: For any sufficiently large Iréanction
h(n,d, k) > n~°0 it can be verified in polynomial time whether the property

log Z (G, k)
n

- <logk:+g-log (1—%>>‘ < h(n,k,d). Q)

holds or not, for anyG € S(n,d). Furthermore,Pr[G,, 4/, € S(n,d)] = 1 —n~"! and deciding
whetherG,, 4/, € S(n,d) can be made in polynomial time.
1.2 Contribution

We could partition the contribution of our work into two parf he first part includes a new approximation-
schema for computing deterministically Gibbs marginals.the second part we present the tool for



bounding correlation decay quantities that arise in themseh

Approximating Gibbs Marginals. The problem of counting:-colourings of a graptG = (V, E)
reduces to the problem of estimating Gibbs marginals whichbe formulated as follows:

Problem 1.Consider the grapliy = (V, E) and letu(-) denote the Gibbs distribution over the proper
k-colourings ofG. For the small (fixed sized) set of verticdsc V and foro, € [k]*, compute the
probability pi(on).

In the general case computingo s ) exactly requires superpolynomial time. So the focus is gn@p
imating it. One possible approach for computing an apprexion of the marginal in Problem 1 was
suggested in ]3] for locally tree graphs. Roughly speakhwgitlea can be described as follows: The
Gibbs marginal om\ can be expressed as a convex combination of boundary cumslitinZ; 5, the
vertices at distancefrom A, as follows

plon) = Y ploalr)u(r). )

re[k]beA

Pick ¢ such that we can compute in polynomial time each of the malgjn(oa|7). The problem,
then, reduces to the not easier task of computing the caaftsji(7). The authors in[3] noticed that
the problem of estimating these coefficients somehow “degaes” ifk is so large that the marginals
w(oa|r) andu(oa|7') are sufficiently close to each other, for anyr’ € [k]"+ in the support ofu.

In this case, the convexity implies thafoy ) is sufficiently close to any of the conditional marginals
in the r.h.s. of[(R). Using this observation and the fact thathave chosen such that the conditional
marginals can be computed in polynomial time, it is direett tihe above schema gives in polynomial
time an approximation gfi(o, ).

We should remark that the conditional marginals above areecio each other if a certain kind of
independence hold, between the colouringa aind the colourings of; 5. Establishing such a kind of
independence is related to what is known in statistical johyas establishing “Dobrushin Uniqueness
Condition” (seel[1R]).

Our approach, here, is in a similar spirit. However, it amsun substituting the coefficients 7)
with new, different, ones. The aim is not to bypass the estimaf coefficients but somehow tap-
proximatethem. So instead aff we consider the grap@i; », the induced subgraph 6f that contains
the setA and all its neighbours within graph distancéNVe denote withi(o, ) the new Gibbs marginal
of the evento, in the k-colourings ofGy 5. We will use /(o) to approximateu(o,). Note that we
have chosem so as the computation @f{o, ) can be carried out efficiently. Writing the corresponding
of (@) for the graptG; A we get that

flon) = > ploalm)ilr).

Te[k] Lt ()

Remark 1.Someone could use uniqueness condition here as well, i agdn [3]. However, here we
make a more detailed comparisonjgiry ) and (o). As a matter of fact, our analysis gives rise to
non-reconstruction spatial mixing conditions.

The key observation to compafieand is the following one: The distributiofi(-) can be seen as being
induced by the deletion of the edges that connect the neighbodG; , with the rest of the grapty.
We require that the deletion of these edges does not havedffeet on the marginals of. It turns out
that this is equivalent to requiringon—reconstructibilityconditionﬂ with (sufficiently fast) exponential
decay. That is, le€’ be eitherG (the graph in Problem 1) or any of its subgraph. Lébe the Gibbs

INon-reconstructibility is equivalent to extremality oftfbis measure for infinite graphs, see €.al [12].



distribution of the colourings of’. Then,non-reconstructibilitycondition with exponential decay can
be expressed as follows:

max [|¢/(-) = p'(-|0)||r,., < exp(—at), ®3)
Celk]®
wherez is a vertex inG’, L; , contains all the vertices which are at distandeom = anda > 0 is a
fixed number.
For the distributions/,, v, on [k]", we let||v, — || denote theitotal variation distancei.e.

||Va - Vb|| = Q%?ls]{‘/ |Va(Q/) - Vb(Q/)|' 4)

ForA C V let||v, — v3||a denote the total variation distance between the projestadn, andw;, on
[K]*.

Bounds for Spatial Correlation Decay. We complement the new approach for estimating Gibbs
marginals, by providing a general tool for bounding cotieladecay conditions as ifl(3). We bound
the correlation between some vertexand the vertices at distan¢drom x by studying the probability
of the following event: Choose u.a.r. kacolouring of G’. Let p be the probability that there are two
colour classes that specifycannectedsubgraph of’ that contains bothr and some vertices at distance
t. Then we show thanhaxceye |1/ (-) — ¢ (-|C)|| L., < p-

We derive bounds for the quantify by using the well-known technique from statistical physics
called “disagreement percolation” coupling constructibh It turns out that using the disagreement
percolation we express the decay of correlation aglin (3gims$ of percolation-probabilities on the
graph. Our technique is general and simple, e.g. there i®ad for restrictions on the graph structure
which was the case i3, 10,123]. Furthermore, it allows egping the corresponding bounds in terms
of the degree of each vertex, not the maximum degree.

Remark 2.‘Disagreement Percolation” has been used for boundingréifit kinds of correlation decay
in works for MCMC sampling colouring, e.d. [14], 7]. Also, digreement percolation appears (implic-
itly) in [5] as part of a more general technique for showingmeconstruction for colourings on trees.
Our setting here is more general thah [5] as it considershgrayith cycles. i.e. there are technical issues
that need to be addressed.

Remark 3.For the sparse random graphs with bounded expected déghneee is a work by Montanari
et al. in [22] that shows non-reconstructibility férsmaller than what we derive here. Unfortunately,
we cannot use this result here, mainly, because it does iy ittnat the corresponding spatial mixing
conditions are monotone in the graph structure. Note thateifcould use the non-reconstructibility
bounds from([2R], then our results for counting would be evetter.

1.3 Structure of the paper

The rest of the paper is organized as follows: In Sedtlon 2nesgmt some basic concepts and describe
the counting to marginal estimation reduction. In Sediiove3jive a general description of our counting
algorithm and relate its accuracy with certain kind of sgatbrrelation decay conditions. Then, we
provide the results which are used for bounding spatiaktation decay (in Sectidn 3.2).

In Section# we discuss the technical details for applyiregdbunting algorithm ortx,, ;/,. We
prove Theoreni 111, Corollafy 1.1 and Corollaryl1.2. In Sedfi we prove the results that appear in
Sectior 3.2, for bounding spatial correlation decay. Bnai Sectior[ 6 we provide the proofs of some
technical results we use.
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Figure 1: GraphG;. Figure 2: GraplG,.

2 Basics and Problem Formulation

Our algorithm is studied in the context of finite spin-syssera concept that originates in statistical
physics. In particular, we use the finitelouring model

The Finite Colouring Model with underlying graptG = (V, E) that uses: colours is specified by a
set of ‘sites, which correspond to the vertices 6f, a set of sping, i.e. the setk]|, and a symmetric
functionU : [k] x [k] — {0, 1} such that for, j € [k]

. 1 if i #j
Uti.g) = { 0 otherwise.

We always assume thatis such thatZ (G, k) # 0.

A configurations € [k]V of the system assigns each vertex (“site” V' the colour (“spin value”)
o, € [k]. The probability to find the system in configuratiens determined by th&ibbs distribution
which is defined as
,U,(O') _ H{m,y}eE U(O-JIH Uy)

Z(G,k) '

It is direct that the Gibbs distribution corresponds to th#arm distribution over the set df-colouring
of the underlying graptz. A boundary conditioncorresponds to fixing the colour assignment of a
specific ‘boundary vertex set ofG.

Another concept we will need is that of tsequence of subgraphs

Definition 2.1 (Sequence of subgraphsfor the graphG = (V. E), letG(G) = {G; = (V. E))}_,
denote a sequence of subgraphg-oivhich has the following properties:

e (34 is a spanning subgraph @f
e F,CE;1for0<i<randE,.=F
e the termG;;1 compared ta=; has an additional edge, the eddge = {v;, u;}.

When we refer t@j(G) we specify the grapliry while we, usually, assume that there is some arbitrary
rule which gives the term&', ..., G,.. In Figuredl anfl]2 there is an example of two consecutivesterm
of a sequencé(G), for some grapltz. Observe that irt7; the vertices; andu; are not adjacent, while

in G;4+1 we add the edg®; = {v;, u;}.

Lemma 2.1. For the graphG = (V, E) consider a sequence of subgragh&>) whereG, is edgeless.
Let X; be a random colouring off; € G(G). For some integek > 0, we have that

|E|—1
12(G, k) =k ] PriXiv) # Xi(uw)],
=1

where the vertices; andu; are incident tol;.
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Figure 3: GraphG;,.  Figure 4: GraplG; j+1. Figure 5: GraplG, ;..

The proof of the above lemma is standard and can be found iougaplaces (e.g.[ 19, 8, 116]), for
completeness we present it in Secfiod 6.3.

We close this section with some additional notation. ko V and some integer > 0, we let
L(A,t) denote the set of vertices at graph distaexactly: from A. Also, we letB(A,t) denote the set
of verticeswithin graph distance from A.

3 Counting Schema

For clarity reasons, we present the counting schema by asguhat we are given a fixed grapgh =
(V, E') and some integét such thatZ (G, k) > 0.

The schema is based on computing Gibbs marginals as it islleden Lemma2ll. Thatis, gives,
we consider a sequence of subgragh&) = Gy, ..., G, with G, being edgeless. For eath € G(G)
let X; be a random colouring. In our schema we comput@gproximationof each probability term
PriX;(v;) # Xi(u;)] by working as follows: We consider a new sequence of subgrgighv;) =
Gio,...,Gi,, defined as followsG; ., is the graphG; while G; o is derived fromG; by removing all
the edges between the sét6¥,,t) and L(V;,t + 1)@, wheret > 0 is some appropriate integer. We
considerY; a random colouring of the grapfi; o € G(G;). Our schema approximatd3dr[X (v;) #

X (u;)] with PrY;(v;) # Yi(u;)].

Observe that the computation Bf[Y;(v;) # Y;(u;)] depends on the induced subgraptGefwhich
contains only vertices within graph distancttom ¥; = {v;, u;}. Taking sufficiently smalt it makes
it possible to comput@r[Y;(v;) # Y;(u;)] in polynomial time.

Figured B[ # andl5 illustrate some memberg;0f;). That is, Figuré 13 shows the first term of the
sequence. Figufg 4 shows the graph;.1, i.e. the edgel; ; = {u; j, v} has just been inserted. In
Figure[3 we have the final term 6f(G;), the graph’; ;...

In what follows we provide the pseudocode of the countingtigm.

Counting Schema

Input G, k, t.
Setz = k".
ComputeG(G) = {Go,...,G,}.
For0<:<r—1do

e ComputeG(G;).
e Compute the exact value &fr[Y;(v;) # Y;i(u;)].
e SetZ = Z . PrlY;(v;) # Yi(u;)].

End For.
Output log (Z) /n.

Both L(¥;, t) and L(¥,, t 4+ 1) are considered w.r.t. gragh;.



Two natural questions arise for the counting algorithm. Titet one is itsaccuracy i.e. how close
% log Z and% log Z(G, k) are. The second one is about thlee complexity

As far as the time complexity is regarded, typically, theceximn time is dominated by the com-
putations forPr[Y;(v;) # Yi(u;)]. Let us remark, here, that there is no standard way of comgputi
PriY;(v;) # Yi(u;)]. In the next section where we study the application of thevalsrhema on
G(n,d/n) we choose such that the computation of the margidat[Y;(v;) # Y;(u;)] can be carried
out efficiently by using alynamic programming algorithm

As far as the accuracy is concerned we have the followindtsesu

Proposition 3.1. For the counting schema it holds that

r—1
1 2
—llog Z —log Z(G, k)| < —
~|log og(,)l_n;

|PrX;(vi) # Xi(ui)] — PriYi(vi) # Yi(w)]|
PrX;(vi) # Xi(us)] ’

when each of the summands on the r.h.s. is sufficiently small.

The proof of Proposition 311 appears in Secfiod 6.1.

So as to show that the estimatitug Z is accurate, we work as follows: We derive a constant lower
bound for Pr[X;(v;) # X;(u;)], which is used to for the denominator in Proposition 3.1. MThee
show thatPr[X;(v;) # Xi(u;)] and Pr[Y;(v;) # Y;(u;)] are asymptotically equal. There, we use the
following proposition.

Proposition 3.2. For 0 < ¢ < r — 1 it holds that

|Pr{Xi(vi) # Xi(ui)] — Pr(Yi(vi) # Yi(u)]]| <

<G, me {105 Closy) = i Gy + i Clow,) = i Gl §

whereCy; = max; ep { (Pr[Xi;(uij) = s, Xi;(vij) = t])~?} andr; is the number of terms in the
sequenc& (G;).

The proof of Proposition 312 is given in Sectionl6.2.

3.1 Remarks on the Spatial Conditions

It is interesting to discuss the implications of the spati@ing conditions required by Propositién B.1
and Propositiofi3]2. If everg;; in Propositio 3.2 is a sufficiently small constant, whichl e the
case here, then the spatial mixing condition can be sumathég follows:

1

-llog Z —1og Z(G. k)| < J(G.1) - max_|lii(low) — pis (7).
where f(G, t) is a quantity that grows linearly with the number of terms atthsequence§(G) and
G(G;) andA C V is an appropriate defined region@ Then, a sufficient condition for the counting
schema to be accurate is that, for every i < r and0 < j < r; we have

mex Imax pij (low) = pij (72| L(ay 0 < exp(—a-t) (5)

for sufficiently largea > 0. Another expression for the condition ial (5) can be derivgdibing the
following (standard) lemma.



Lemma 3.1. For any graphG = (V, E) andk, let . be the Gibbs distribution of it8-colourings. For
everyr € V andA C V it holds

max ||p(-loz) = pClm)lla <2k > u(A) - [|u(-1A) = ()|l
ouTaE[R] ) Ae[u

For a proof Lemm&3l1 see in Sect[on]6.4.
In the light of the above lemma and fbrconstant the condition ik5) is equivalent to the following
one: Foln <i<rand)<i<r;

max — max Z 115 (A) - i (-|A) = pij ()] < exp(—a’ - 1), (6)
TV o€ e

for appropriater’ > 0. What the condition in[{6) implies is that a “typical” colang of L({x},t) in
G'i; should have small impact on the Gibbs marginalon

3.2 Bounds for Spatial Correlation decay

In this section, we provide the method that we use to derivgp@er bound for the quantities that express
spatial correlation decay in Proposition]3.2, i (-|oz) — 1ij(:|72)||a, forz € V.andA C V. The
derivation of these bounds are of independent interest fhendiscussion in the Sectibn B.1. The method
is based on the well-knowrdisagreement percolatidrtoupling construction, froni[6].

Consider a configuration space on the vertice§’afuch that each vertex € V' is set eitheris-
agreeingor non-disagreeing In such a configuration, we cgtlath of disagreemerdny simple path
which has all its vertices disagreeing. Given an integandw € V' we letP; ,, be theproduct measure
under which each vertex € V'\{w} of degreeA(v) < s is disagreeing with probabilitysf(v) and
non-disagreeing with the remaining probability.sl< A(v), thenv is disagreeing with probability 1.
The vertexw is set disagreeing with probability 1, regardless of itsrdegUsing the above concepts we
show the following result.

Theorem 3.1. Consider the grapltz = (V, E), v € V, A C V and an integefc > 0. Letyx denote the
Gibbs distribution of the:-colourings ofG. Also, letP;, ,, denote the product measure defined above. It
holds that

max [|(-|low) — p(-Inw)lla < Ps,o[ 3 path of disagreement connectigg} and A].
0'117771)6[]?} v

The proof of Theore 311 is given in Sectidn 5.

Roughly speaking, we bounf(-|o,) — u(:|7)||a, in Theoreni 311, by working as follows: We use
coupling, i.e. we coupleX, Y two random colourings off that assign the vertex colour o, andn,,
respectively. Then, by Coupling Lemma [2] we have that

u(-low) = p(no)lla < PriX(A) # Y (A)].

The coupling ofX, Y is done by specifying what™ is, given X. In particular, givenX, we letGx
denote the maximalonnectedsubgraph ofZ which contains the vertex and vertices from the colour
classes specified by, andn, in the colouringX. Then, we deriveY” as follows: For every vertex
u ¢ Gx itholds thatY (u) = X (u). Foru € Gx if X(u) = o4, thenY (u) = 7, and the other way
around. In Figured 6 anfl7 we illustrate this coupling, esg.="Blue” and ), =“Green”.

3Le. if X(u) = 7, thenY (u) = 0.



Figure 6: ColouringX. Figure 7: Colouringy".

It is not hard to see that in the above couplikigY” disagree only on the colour assignments for the
vertices inG x. That is

PriX(A) # Y (A)] = Pr[3A" C A : A C Gy in the coupling.

Of course, bounding the probability term on the r.h.s. of itiegquality above is not a trivial task.
However, we show that the above process (of getfing is stochastically dominated by an independent
process, i.e. disagreement percolation. That is, we shatv th

Pr[3A" C A: A" C Gy in the coupling < P; , [ 3 path of disagreement connectifig} andA].

4 Application to G(n,d/n)

In this section we show Theordm 1.1, Corollaryl1.1 and Cargll.2. For technical reasons, which we
discuss later, we require the following sequence of sultgrap

Sequence of subgraphsj(G,, 4/,): Let r be the greatest index iG(Gy, 4/n), €.9- G(Gpa/m) =
Go,...,Gr. The termGy is an edgeless graph. Lét be the set of all edges i@, ;/,, that do not
belong to a cycle of length smaller thqﬁ% but they are incident to some vertex that belongs to such
a cycle. There is an indey such that for every > iy, G; differs fromG,;_; in some edge fronkt while
for i < iy no edge from the s&k appears irG;.

For0 < i < r consider that the sequence of subgra@lis;) defined as followsG;  is derived by

G; by deleting all the edges that connect the sets of verfi¢gs, ¢) andL(V;,t + 1) wheret = ;‘ffg”d.

Typically we are in the case whekethe number of colours, is smaller than the maximum degree of
G(n, d/n)ﬁ. Then, there can be situations whé€g ;)~! (defined in Proposition 32) anér[X;(v;) #
Xi(u;)] are very small. According to Proposition B.2, this can iaseethe error dramatically. The
analysis implies that these situations arise when thecesrthat are involved, i.e;, u;, Orv;;, u;;, have
large degrees and belong to small cycles at the same time.eHgy to see that choosiggn, d/n)
as we describe above, we avoid such undesirable situatiwrenf/: < ig. Furthermore, the terms
Pr(X;o(vi) # X;o(u;)] for i > ip are too few, i.e.O(n%3), and it turns out that each of them is
bounded away from zero. This implies that their contributiolog(Z(G(n, d/n))) is negligible.

Setting the parameter= ;‘ffg”d, the component i7; o which contains{v;, u; } is w.h.p. a tree with
O(log n) extra edges, for every < i < ip. This allows the computation of every Gibbs marginal in
polynomial-time. To be more specific we work as follows:

*The maximum degree i@, 4/,, is © (M) w.h.p. (seel[15])

loglogn
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Computing Probabilities . The probability termPr[Y;(v;) # Yi(u;)], for 0 < i < ip, can be
computed by using Dynamic Programming (D.P.). More spetificusing DP we can compute exactly
the number of list colourings of a tréB. In the list colouring problem every vertexc T has a set
List(v) of valid colours, wherd.ist(v) C [k] andwv only receives a colour ilist(v). For a tree ori
vertices, using dynamic programming we can compute ex#twtiyiumber of list colourings in timig:.

For0 < ¢ < ip, the connected componentd o that containgv;, u, } is a tree with at mos® (log n)
extra edges w.h.p. For such component we can consider &™) colourings of the endpoints of
the extra edges and for each of these colourings recurseearhaining tree. Since in our cakes
constantx@Uesm) = nOM) |t follows that the number of list colourings of the conrestcomponent,
in G, that contains{v;,u;} can be counted in polynomial time for eveiy This is sufficient for
computingPr[Y;(v;) # Yi(u;)] efficiently.

The pseudocode of the counting schema for the caé&wofd/n) follows.

Counting SchemaG(n,d/n)

Input G(n,d/n), k
Compute the set of edgéa
If |R| > n%3, computelog(Z(G,, q4/n, k)) by exhaustive enumeration
Compute the sequence of subgraghiér,, 4/, )-
Setz=1
For0 <i <r —|R|do

e Compute the exact value &fr[Y;(v;) # Y;i(u;)].
e SetZ = Z - PrlY;(v;) # Yi(u;)].

End for.
SetZ = Z - k™.
Output log (Z) /n.

Observe that, above, implicitly we s&[Y;(v;) # Yi(u;)] = 1 for i > iy. It turns out that the error
introduced by working this way is negligible. Theorém]1.lldes as a corollary of the following two
propositions.

Proposition 4.1. Lete > 0 be a fixed number and let be sufficiently large. Fok > (2 + ¢)d
the counting schema computessarn’-approximation oflog Z(G(n,d/n), k), with probability at least
1 —n~%, over the graph instances amdb > 0 depend ork.

The proof of Proposition 411 appears in Secfiod 4.1 and makesvy use of Theorem B.1.

Proposition 4.2. There are real constants, s > 0 such that the time complexity for the counting schema
to computdog Z(G(n, d/n), k) is O(n®), with probability at leastl — n~", over the graph instances.

Proof: The theorem follows directly from the paragraph, “CompgtiRrobabilities”, above. O

4.1 Proof of Proposition[4.1

First we present a series of results that will be useful fergroof of Proposition 4]1. In all our results
that follow we assume that> 0 is a fixed number and > 0 is sufficiently large, i.ed > dy(e).

SA similar DP approach is also used A [7] and][10].

11



Proposition 4.3. Consider the measurgy, , W.r.t. G(n,d/n), for k > (2 + €)d and some vertex in
the graph. For a set of vertices, let D) denote the number of paths of disagreement betwesmd
U, of length at least, for any integerl = O(logn). Then, there exists a real= ~(k) > 1 such that

§ . nyilj
€

Pr[DY > 0] <
n

(7
where| V| is the cardinality of’. The probability term above, is w.fR;, ,, and the graph instances.

The proof of Propositioh 413 appears in Secfiod 4.2. Alsumfthe proof of Proposition 4.3 it is direct
to deduce the following corollary.

Corollary 4.1. The bound for the probability if17) holds even if we removeaduitrary set of edges of
G(n,d/n).

The following lemma is standard. We denote @ythe number of cycles of length at mdstAlso, we
remind the reader that the sRtis the set of edges @¥(n, d/n) that do not belong to a cycle of length
smaller thanlg’f% but they are incident to a vertex that belongs to such a cycle.

Lemma 4.1. With probability at leastl — n~1?, the following holds: (AJR| < n°3. (B) C; < n®3,

for [ :11001%;d . (C) After removing the edges i from G,, 4/,,, €ach of the cycles of length less than

logn
10logd

becomes isolated from the rest of the graph.
For completeness we present the proof of Lerimh 4.1 in Se&ftbn

Lemma 4.2. For G(G(n,d/n)), G(G;) as defined in Sectidd 4 and for consté&nt> (2 + €)d, the
following holds:

log v

Pr(C;; < 2k* for0<i<ip,0<j<r]>1—n Ted, ®)

whereCj;, v are defined in the statements of Proposifiod 3.2 and Propo$f.3, respectively.

Proof: Let X; ; be a random colouring df; ;. We remind the reader that

Cij = nax {(Pr(Xij(uig) = s, Xi(viy) = )%}
We show that”; ; is reasonably small by comparidty [ X; ;(u; ;) = s|X; j(vi ;) = t] with Pr[X; ;(u; ;) =
s] = 1/k and by showing that these two probability terms do not diffieich. In particular, we have

|Pr(Xij(uij) = s| X 5(vi) = t] — Pr{X; j(u; ;) = s]| < Iﬁf}i} M Clo) = i Cimllug - (9)
o,ne ©J

1o,
Then, we show that with probability at ledst- n oz for 0 <1 < igand0 < j < r; it holds that

max li;(+|o) — pig (1) (10)

< —
onelk] i s < T

Given the above, it is straightforward to verify (8) by usi®) and [I0). Then, the lemma follows.

We are going to use Theordm B.1 to prdvel (10). For a pair otedjaverticesr, y in the graph let
D, , denote the number of paths of disagreement that start framd end iny but they do not use the
edge{xz,y}. Also, we leto, , = Py .[D., > 0]. Finally, given some integer > 1 we Ieth(f,Z), denote
the number of paths of disagreement that start forrand iny and their length is at least Similarly,
let o)y = Pro[DE) > 0.

12



Lete = {z,y} be arandom edge i&(n,d/n) conditional that the shorter cycle that contains it is
of length at Ieas% . Lete’ = {2/, 4’} be a randomly chosen edgedi{n, d/n). It holds that

L B9 ), (11)

E[Qm,y] < Qut oyt

(8

wherel denotes the distance between the verticesmdy. Also, v is the probability that a randomly
chosen edge it"(n, d/n) does not belong to a cycle shorter th%%% . It is straightforward to show

thaty) = 1 — o(1). Using Proposition 413 and the fact thiat 11001g” we have that

m | oo

o ea) (12)

log v
From [11) and[{I2) we get thé[o, ,] < 2n" (Hmligd). From Markov’s inequality we get that

— €

Prlo > | < 100k —(eitza),
Y= 10k €

Let L be number of edgegr, y} in G(n d/n) such that the shortest cycle that contains each of them
is of length at Ieastig’%gd andg,, > 10k Using the linearity of expectation, it is straightforwaad

lo
show thatE[L] < %n*m togd | Applying, Markov's inequality we get that

00dk -za (13)

Pr[L > 0] <

€
Observe that the probability for path between two verticeset a path of disagreement is an increasing
function of the degrees of its vertices (whkris fixed). From this observation and {13) we have that

log
for everyv; ; andu, ; it holds thato,, , .., < 1/(10k) with probability at least — 804, ~ 0z, The
lemma follows by using Theoreln 3.1, i.e. it holds that

max ||M2J(|O') - :uij('|77)||uz'j < Pk?,vi,j [Dvi,jﬂli,j > 0] = Ov; juiz
omelk] i)

Lemma 4.3. Let be as in the statement of Propositionl4.3. B¢, 4/,,) as defined in Sectidd 4 and
for k > (2 + ¢) the following holds:

e Let ] be the set such thate I, iff the edge{uz,ul} does not belong to any cycle of length less

than 1(1)"ligd With probability at least — n ~miRa over the instance&!(n, d/n) it holds that

lo

PriX;(u;) £ Xi(vi] <1 - %) ' <np Twd, Viel. (14)

e Let I’ be the set such thate I, iff the edge{v;, u; } belongs to cycle of length less th@ﬁ% .
With probability at leastl — n %19 over the instance&/(n, d/n) it holds that
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Proof: First we consider the edgés;, u; } such that € I. There, we use the following fact.

PT[Xz‘(ui) 7"é Xi(vi] - <1 - l)' < H:U'Z( ‘ ) Mz(’n)HUz < Pk,vi[Dvmui > 0]7
k onelhl i)

whereD,, ,,, is the number of paths of disagreementifr, d/n) that connect; andu; but they do not
use the edgév;, u;}.

As in the proof of Lemm&4]2, for the vertices v’ we let o,/ ,, = Py, ,[Dyr,» > 0]. We work in
the same manner as in the proof of Lenimd 4.2 to get tail bownds,f,/, i.e. we get the following:
For a random edgér, y} such that the shortest cycle that contains it is of Iengthatllg’%g , it holds
that

o 1o,
Pr [me >n %fggd] < 1_60 (1"’201%;(1) (15)

Let L be number of edges i&'(n,d/n) such that the shortest cycle that contains each of them is of
1o
length at Ieast&f{% andg,, > n 2 foad Using the linearity of expectation it is straightforwam t

lo
show thatE[L] < %ln_% log d Applying, Markov’s inequality we get that

PrlL>0] < G?dn‘ﬁ (16)
It is immediate thaf(14) holds.

In the latter case, we considerandwu; which belong to small cycle, i.e. of length at mqﬁ% .
Such a pair of vertices appears in the schema only when werbavaved fromG,, 4/, all the edges
in R. By Lemma 4.1 we have that with probability at least »~°1? the removal of the edges iR
disconnects every small cycle from the restdf,/,,. Thus, for the second case, whefeu; belong to
a small, isolated cyclelr[X;(u;) # X;(v;] is trivially lower bounded by some constant, sirice> 2.
The lemma follows. O

Using Lemma& 2.1 and the previous lemmas, in this section,etéhg following corollary.
Corollary 4.2. For k > (2+¢)d, the log-partition function of thé-colourings ofG,, 4/, is ©(n), w.h.p.

We have all the lemmas we need to show Proposifioh 4.1.

Proof of Proposition [4.1: Let D be the event that “ (a} < p = 41 + n~1/3), (b) max;{r;} <
10dn'/?logn, () |R| < n%3, (d) min;{ Pr[X;(v;) # X;(u;)]} = O(1), (€)max; ;(C; ;) < 2k*".

We remind the reader that we denote vvltthe number of terms iG(G(n, d/n)) 7’@ the number of
terms inG(G;), for everyG; € G(G(n,d/n)).

Claim 4.1. It holds thatPr[D] > 1 — n~?, for some fixed > 0.

Proof: From all the previous results in Sectipil4.1, it suffices tovsithatmax; {r;} < 5dn'/?logn
with sufficiently large probability.

Clearly, r; is equal to the number of edges betwe[eéxlfl, 21(1’@" ) and L ( i 21(1’(;% + 1) in G;.

The number of vertices at dlstanéﬁing from ¥ is dominated by a Galton-Watson treeé’é,;gfid levels,
with a number of offspring per individual distributed asi3fn, d/n) and the initial population being 2.
With standard arguments (e.g. see Theorem 6.in [24]), itdbldt with probability at least— n =3, the
number of vertices at lev 1§g”d is at mosYn'/?log n. Clearlyr; is at most the sum of degrees of these
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vertices. In turn, this sum is dominated by a sun9of/? log n independenBB(n, d/n). It is direct to
derive that~; = 10dn'/2 log n with probability at least — n—3, by using Chernoff bounds. The claim
follows. O

By Propositiorf 3.11 we have that

E E“ng —log Z(G(n,d/n) ||D} ZE [|P7“ i(vi) # Pz( ui)] — Pr(Xio(vi) # Xio(us)]| |D} L(17)

r[Xi(vi) # Xi(ui)]

where the expectation is over the graph instar€es, d/n). Using Propositiof 3]2, we have that

5 @PT{Xz‘(W) # Xi(uwi)] — Pr[Yi(vi) # Yi(u;)]

Pr(Xi(v;) # Xi(u;)] IID} <C-E

r;i—1
Z Cij - Qz’jD:| ; (18)

=0

whereC > 0 is a fixed number and
Quy= max {[li;(10) = (1) lwigus sy + 1aag (o) = i ()l

Clearly [I8) holds since, conditioning on eve we have a constant lower bound & [X;(v;) #
X;(u;)], for everyi. Also, the following holds: For any < iy we have that

ri—1 5dn'/2 logn
E Y Ci;-QyD| <2k* Y E[Qi,ID], (19)
=0 =0

since from conditioning orD, it holds thatr; < 10dn'/?logn andC;; < 2k*. Also, we have the
following,

E[Qi;] - %nf(H#g;(‘”)
Pr[D] = €

E[Q;;|D] < [as Pr[D] > 3/4], (20)
where the bound foE/[Q); ;] in the last inequality follows by working exactly as in Lem@a&l. The
quantity~y is defined in Proposition 4.3. We remind the reader than fori, the distance between ;
andu; ; is at leastyar; .

Plugging into IZIB) the inequalities il (R0) aid(19), we dnt following: For sufficiently large:
and for anyi < ig we have that

> ’PT[Xz‘(Uz') # Xi(ug)] — Pr(Yi(vi) # Yi(ui)]
Pr(Xi(vi) # Xi(us)]
From the pseudocode of the schema €&m,d/n) we have that fori > iy the schema estimates

PrX;(v;) # Xi(u;)] by assuming that they are 1. Assuming that the e@iolds, then, it is not
hard to show that

_1__logy
H'D <m 2 T0log(d), (21)

|Pr(X;(vi) # Xi(u;)] — 1
Pr(X;(vi) # Xi(wi)]

Plugging [21) and(22) intd_(17) we get that

=0(1) for i > i. (22)
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lo,
E[%\ng——ng«%n¢Unnup}ggn0ﬂ+nﬁ$)
Using Markov’s inequality we get that
1 — _logy
Pr |:E‘ log Z — log Z(G(n,d/n),k)] > n_1/4‘D] < 2n (1/4+111i§d>_

The proposition follows from the above inequality and thet that Pr[D] > 1—n 7, for fixed 3 > 0. ¢

4.2 Proof of Proposition[4.3
For the proof of Proposition 4.3, we need the following resul

Lemma 4.4. Consider the graplG(n,d/n) and letm be a permutation of + 1 vertices ofG,, 4/y,,
for 0 < 1 < ©(log®n). Consider, also, the product measu?g ,, w.r.t. the graphG(n,d/n), where
x1 = w(l)andk > (2 + €)d. Settingl’ = 1 if 7 is a path of disagreement, otherwiBe= 0, it holds

that
R ()

where the expectation is taken w.r.t. b@h,, andG(n,d/n).
Proof: Call = the path that corresponds to the permutatiore.g. 7 = (z1,...x;4+1). Let I, be the
event that there exists the pdthy, . .., z;11) in G,, 4/, It holds that

B[] = (9>l B[T|E),

n

Let @, denote the event that the verticgs;ﬁrhave degree less thawg® n. Using Chernoff bounds it is
easy to show thaPr[Q,|I;] > 1 — n~ 198 (") Also, it holds that

El|I;] = E[l|I;,QPr(iQx|I:] + E[l|I;, Q] Pr(Qx|I]
< E[l|I;,Qn] + nlog" (),
It suffices to show that fab < I < ©(log® n) and sufficiently large: it holds that
1 !
- —20 ) 2
(te2d ¢ > (23)

We show [(ZB) by using induction dn Clearly forl = 0 the inequality in[(Z2B) is true. Assuming that
(23) holds forl = Iy, we will show that it holds foi = [y + 1, as well.
Let D;, denote the event that the vertexis disagreeing. It suffices to show that

1 _
< 7(1+6/2)d+d 20, (24)

El|I; Qr] < (

Pr(Dyy 1| Ay Dy, I, Q]

Using the law of total probability, we have that

PT[DIQ+1| /\é():l DjaIﬂ'?Qﬂ] S PT[D10+1| /\20:1 Dj’IW’QW?Al()-‘rl - 0] +
+Pr[Ajys1 > 0| Ay Dj, I, Qx), (25)
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whereA,, 1, is the number of edges that are incidenttp,; and some vertex ifizy, ..., z;,—1}.
Given that all vertices igx1, . . ., x;, } are disagreeing, lét be the number of vertices N\ {x1,...,z;, }
that are adjacent to;, for 1 < i < . If 9; = ¢, then all the possible subsets¥6f {1, ...,z } with
cardinality¢ are equiprobably adjacent 19. This implies that the probability far;,; to be adjacent
tox;is E [‘” . By the linearity of expectation we have

[AloJrl‘ /\] 1 Dj7I7T7Q7T = Dj7[7r7Q7r] < n70'977 (26)

the last inequality follows from the fact that < @(log n) and all the expectations in the sum are upper
bounded byog® n, due to conditioning oi),.. By (28) and Markov’s inequality, we get that

Pr(Agy1 > 0| A%y D, I, Qr] < 07097, (27)
Also, we have that

o = Pr [Dlo+1|/\l'0 Dj, I, Qr, Ajy11 = 0]

< Zk < >(d/n) (1—d/n)"7 + Z <]> (d/n) (1 — d/n)"

j=k—2
. @tod/2 | ' n—2 " '
ST 75 ) (d/n)! (1 —=d/n)""7 + ) (d/n)! (1 —d/n)"
(2+e)d/2 jzo <J> j(2+§1/2+1 <J>
7(2 +1e)d/2 + exp (—cd) (28)

wherec =log — 1+ 1/ andd = (1 + ¢/2). The last inequality follows from Chernoff bounds, i.e.
Corollary 2.4 in[15]. Pluggind(28) and (R7) inta (25), farged we get that

1 _
Pr{Diga| Ay Dy, I, Q] < o +d 7%
That is, [24) is true. The lemma follows. O

Proof of Proposition[4.3: Consider an enumeration of all the permutations Bfl vertices inG(n, d/n)
with first the vertexz and last some vertex af. Let m(t), 71 (¢),... be the permutations in the order
they appear in the enumeration. Also, w.r.t. the gréith, d/n), consider the product measurg , as

it is defined in the statement of Theoreéml3.1. Cgft) be the random variable such that

Ti(t) = 1 the path that corresponds+g(¢) is a path of disagreement
10 otherwise

Let, also,I'(t) = >, I'i(%).
Let £ = 1 if the event‘there is no path of disagreement that starts franand has length larger

thant, = gg(lf_goz) " occurs and = 0 otherwise. It holds that
Pray | D T(t) > 0] < Pray | T() > 018 = 1| Prgy[€ = 1]+ Pry [€ = 0]
1>l =

< Pra | Y, T >0

I<t<to

+ Prl€ = 0]. (29)
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For convenience, we let= Py, ,, [thl r(t) > 0] , 01 = Pray [Zzgt«o () > 0} andg, = Pri€ =
0]. The proposition follows by deriving an appropriate uppeutd for E[o], where the expectation is
taken w.r.t. graph instances. For this we bound approfyidigo;| and E[p2] and use the following
inequality (which follows from[(29))

Elo] < Elo1] + Elo2]. (30)
It holds that
Elg] < > Y E[Lt)]
I<t<tp 1
N 1 PN “loghn
< lq;f()?dt- <<(1+e/2)d+d 20) +2n 7 loe >’

where in the last inequality we use Lemmal4.4 and the factitbaveenr; and ¥ there are at most
|¥| - nt~1 paths of length exactly. Sincet < log?n, it is direct that

gol < Y Darognr <My g (31)

1<t<tg

Observe thaPy, ,, (€ = 0] < Py, [H(to) > 0], whereH (ty) denotes the number of paths of disagree-
ment of lengtht, that start from vertex:;. Note that the paths th& (¢,) counts do not necessarily end
in ¥. By Markov’s inequality, we have that

Pra € =01 < Ep[H(to)].

Clearly, the above implies thdt[p,] < E[H (ty)], where the expectations is taken w.r.t. b@¥h,, and
the graph instances. We use Lenima 4.4 to balif (¢,)] and we get that

d\ " 1 fo ’
< to [ 2 —20 —log*n
Elos] < n <n> <<7(1 /2 +d ) +2n ) [from Lemmd4.4]
1 log? n Liog
< —5 10 n‘
= <1+e/4> e (32)
The proposition follows by plugging (1) ard {32) infa}30). O

4.3 Proof of Corollary 1.1

For proving the corollary we are going to use Lenima 2.1. Itigaar, it suffices to have the following:
W.h.p overG(n,d/n) all but a vanishing fraction of the probability ternd®-[X (v;) # X (u;)] are
within distanceo(1) from (1 — +). Also, the remaining probability terms, i.e. those whick aot close
to (1 — 1) are bounded well away from zero.

The corollary follows immediately from Lemmas#[1,14.3. Ti& consider the sequence of sub-
graphg(G(n,d/n)) we have for the counting algorithm. From Lemima 4.3 and Leindia# have that
w.h.p. the situation is as follows: There is a set of indi€esich that for every € [ it holds that

log

PrX () £ X ()] = (1- 1) | <07, (33)
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For the rest indices, i.6.¢ I it holds that
PrX (@) £ X () - (1- 1) 1= 60) (34)

From Lemmd2Il we can writelog(Z(G(n,d/n), k)) as follows:

%log Z(Gnyd/n), k) = k+ % S " log Pr{X (u:) £ X (u)]
=1

_ k+%21ogpr X (vi) # X () ZlogPT (vi) # X (uy)],

i€l ey

while from Lemmd4l we get that w.h.{g| > n — O(n*/'%log n). We derive upper and lower bounds
for Llog Z(G(n,d/n), k) by working as follows:

1 1 1 _ _logy — |7
EIOgZ(G(n7d/n)7k) < |n| ((1 _ %> in 2i1ogd> + nTH
d 1 log
< k+ B (1 — E> +2n 2110%‘1 (35)

where in the last inequality we used the lower bound for thidinality of the set/. Working in exactly
the same manner we get the lower bound—ifd»@g Z(G(n,d/n), k). The corollary follows.

4.4 Proof of Corollary 1.2

Consider the following sequence of subgraghér,, 4/,,) (different than what we used previously): The
term-graphGy is edgless. There is an indéxsuch that fol0 < i < i1, G; contains all the edges that
belong to cycles of length at mo%% in G, 4/, and only these edges. We refer to the cycle of length
less thanlg’% as “small cycles”.

Let S(n,d) be the set of instances 6f,, 4/, which have (A)©(n) edges, (B); < ©(n’?logn)
and (C) eachB(v;, %) is either a tree or unicyclic.

We are going to show that for eve€y € S(n,d) and every ternG; € G(G) such that > i;, we
can verify in polynomial time that

||M('|0vi) - M(|77v1)||u1 < niela (36)
wheree; > 0. Then the corollary follows by using standard argumengs,from Lemma2J1 and from
the fact that‘P’l“[XZ(ul) 75 Xz(vz)] — (1 — %)‘ < maxame[k]{vi} ||,uz(|0) — ,ul(|77)||ul

The value of¢; in (36) depends on the functidi(n, k, d) andi;. Fori < 4, it direct to see tha;
is so simple that we can compuke[X,,, # X,,] exactly. Theorerh 3|1 and Corolldry ¥.1 suggest that

|1(-low;) — (1m0 s < Prw, [ 3 path of disagreement connectifig; } and{w;}]. (37)
where P, is the product measure defined in Secfior 3.2 and it is takehgraphG,, 4/, \{vi, u;}.
Fori > i it holds thatdist(v;, ui) > 5% i Gra/\{vi, u;}. Consider, now, the event

E,, . = "3 apath of disagreement that connegtsvith L(v;, clogn) in Gy, 4/, \{vi, u;}".

For each paip; u; define

dist(vg, u; -
a; = min {%, (4log(e?d/2)) 1} .
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Noting that, for fixedc; > ¢ it holds thatPy, ., [Ey, ] < Pr v, [Fv, c.], We get that

Pr,v; [3 path of disagreement connectifig; } and{u;} in Gy, 4/, \{vi, ui}] < Pro;[Eva;]-  (38)

By (36) (37) and[(3B), we can verify (B6) by using the criteriBy, ,,(Ey, o,) < n~ . It remains to
show thatPy, ., (Ey, «;) < n~, fori > iy, can be verified in polynomial time. L&, ., be the set of
all simple paths that connect to L(v;, a; logn), it holds that

Previ [Eviai) < Z Py, [“m is a path of disagreemerjt” (39)

meTy,; a;

The computation of each probability term on the r.h.s. ofdbheve inequality can be carried out in
polynomial time. It suffices to show that w.h.p. the numbethefse terms is polynomially large.

Using Lemma 2.1 froni [10] we get that for every i, the subgraptB(v;, a; logn) of Gy, 4/, \{vi, ui},
is a tree with at most an extra edge, with probability at léast:~%1. In this case, the number of simple
paths between; andL(v;, a; logn) is at mos®|L(v;, a; log n)|. Also, with standard arguments (e.g. see
Theorem 6 in[[24]), it holds that with probability at ledst- o(n=2), |L(v;, a; log n)| < n%20logn, for
everyi > i;. Thatis, for every > i1, |T,, 4,| is polynomially large with probability at least— 2n=0-1.
Thus, the probability term on the I.h.s. 6f{39) can be comguwfficiently, for anyi > i1, w.h.p.

Using the arguments in the paragraph above and Lemma 4diniéet to show thaPr(G(n,d/n) €
S(n,d)] > 1 —3n"%1 Also, it is direct that we can decide wheth®(n,d/n) € S(n,d) or not,
efficiently. The corollary follows

5 Bounds for spatial correlation decay - Proof of Theoreni 3]1

For some finite graply = (V, E') and some sufficiently large integerlet .(-) be the Gibbs distribution
of the k-colourings ofG. Forz € V, A C V ando,,n, € [k]{*}, we are interested in deriving upper
bounds for following quantity

p(-loz) = p(ne)lla- (40)

Towards bounding the above quantity we introduce two randariablesX, X" < [k]V distributed as
in u(-lo,) andu(-|n,), respectively. We coupl&® and X" and we use the following inequality from
the Coupling Lemma (se&l[2]),

|(-low) = pu(-|ne)l]a < Pr[X°(A) # X"(A) in the coupling.

We provide a upper bound for the probability of the evekt'(A) # X"(A)” in the coupling, in terms
of k£ and the degrees of the verticesGhby using ‘disagreement percolatidn[6]. In Section[5.1 we
describe the coupling betweéd¥ and X ™.

5.1 The coupling for the comparison

Let 2, and(2, denote the:-colourings ofG that assign the vertex colour o, andr,, respectively. For
the coupling ofX“ and X" we need to develop, first, a bijectidn: Q, — 2, as follows:

Given¢ € Q,, we letG¢ = (Vg, E¢), induced subgrapbf G, be defined as follows: In the colouring
¢, let V, andV;, be the colour classes specified by the cologysandn,, respectively. Thertr; =
(Ve, E¢) is the maximal connectedgraph such that € Ve andVy C V, UV;. Thatis,G¢ is the
maximal, connected, induced subgraplGoivhich containse and vertices only from the colour classes
V, andV,,, in the colouringé. Then, givenG, we deriveT¢ by working as follows: For every vertex
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u ¢ Gg itholds thaté (u) = (T€)(u). Foru € G¢ if {(u) = 0y, then(T€)(u) = n,. Also, if £(u) = 1y,
then(7¢)(u) = o,.

In Figured 6 an@7, in Sectién 3.2, we illustrate how does thppimgZ” work. Of course, it is not
direct thatT" is a bijection. For this we provide the following lemma.

Lemma 5.1. It holds thatT" : 2, — Q,, is a bijection.

Proof: For the colouring € Q,, considerG, = (V, E¢) as defined above. We need to focus on three
properties thati; has. First, it is easy to see th@t should be bipartite (in the extreme case where
Ve = {«} we considelG; bipartite too). Secondy is connected due to the way we consider it. Third,
the fact thaiG¢ is maximal implies the following: DV, = {v € V\V¢|{v,u} € E for u € V¢}, then
Vo € OV itholds§, & {0z, 1.}

Clearly ¢ specifies a prope2-colouring for the vertices of/¢ that uses only the colours, andrn,.
In particular, letpy,p2 C Vg be the two parts ofss and w.l.o.g. assume thatbelongs top;. Then,§
assigns to all the vertices jm the colours, and to all the vertices ipy the colourn,. In that terms,
the mappingl” works as follows: For every vertex € V\V; to hold (7€), = &,. For the remaining
vertices, i.e. those that belong ¢, the mappingdl’ swaps the colour assignments of the two parts of
G. First we show thal” maps every colouring d, to €2,.

Claim 5.1. For every¢ € €, it holds that(T¢) € Q,,.

Proof: Itis direct that(7'¢), = 7,. It remains to show thaf'¢ is a proper colouring ofs.

If T¢ is a non proper colouring, then there should be , at leastatlj@cent vertices (somewhere in
(7) having the same colour assignment. The swap of colourrasgigts that take place, when we apply
T on¢, involves only vertices iVe. Thus if (7€) is a non proper colouring, then the monochromatic
pair of adjacent vertices has either both verticegzor one vertex in/; and the other idVz.

It is direct that swapping the colour assignments of the taxdspof G, as these are specified by
¢, leads to a proper colouring 6f;. Thus, inT¢ there is no monochromatic pair whose both vertices
belong toG,. Also, this swap of colourings cannot lead some verteXdrto have the same colour
assignment with some vertexdtvz. This is due to the maximality af';, i.e. the colouring cannot not
specify colour assignment that uses the coleyrandn,. for any vertex indV;. Thus, for every. € Q,,
it holds that7¢ is a proper colouring ofs. The claim follows. %

It remains to show thdf is a bijection. The next claim shows tHAtis a surjective.
Claim 5.2. T is surjective.

Proof: Let¢’ be any member df2,,. We are going to show that there exists 2, such thatl'¢ = ¢'.

For the colouring’, let G¢» = (Vg, E¢) be the maximal, connected bipartite subgrapldzasuch
thatz € Ve andVo € Ve it holds ), € {o,,7,}, (i.e. G¢ is derived in a similar way a§, above).

The colouring¢’ specifies a prope2-colouring for G that uses only the colouks, andn,. Let
p1,p2 C Ve be the two parts of7e: and w.l.0.g. assume thé&tassigns to all the vertices jn the colour
n, and to all the vertices ip, the colouro,.

Consider the colouring which is derived by’ by swapping the colour assignments of the two parts
of G¢r while &, = & for v € V\V,. With arguments similar to those in the proof of Cldiml5.1 e ¢
see that € Q. The claim follows by noting, additionally, that¢ = &' O

In the following claim we show thaf’ is one-to-one.

Claim 5.3. T'is one-to-one.
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Proof: Assume that there are two colourings £? € €, such thatl'¢! = T¢? = ¢3. We are going to
show that it should hold! = ¢2. For this, assume the opposite, i&€.# £2. We consider the graphs
Ge Ge2 andGes, as in the proofs of the two previous claims. By the proofshefse claims we know
that the graphé:1, G¢2 andG,s have the same subset of verticesCof

Thus, we conclude that the colouringsandé? should differ only on the colour assignment of the
vertices in the grapliz.:. We remind the reader that this graph is a connected bipatéph with¢!
and¢? specifying proper 2-colourings f@¥¢: which both using the colourgs,, 7, }.

By assumption, the 2-colouring f6#,: that¢! specifies is different than that @&'. The same holds
for colouring of¢é? andT¢2. SinceT¢! = T¢? we deduce that there exist three different 2-colourings
for G¢1. There is a contradiction, here, since there can exist evdy2-colourings forG,:. The claim
follows. O

Since the mapping@” : ©, — , is surjective (Claini5]2) and one-to-one (Cldiml5.3), it isijaction.
The lemma follows. O

Lemma 5.2. There exists a coupling df? with X" such that
X"=TX°.

Proof: The existence of the bijectidfi implies that/Q2,| = |2,,|. ThusV¢ € Q(G, k, 0,,) it holds that

1
Q]

(§loz) = p((TE)[n.) =

This implies thatPr[ X7 = ¢] = Pr[X" = T¢|, V¢ € Q,. The lemma follows by noting that

(Z Pr(X° = g]) =1 and (Z Pr(X" = (Tg)]) =1.

£€Q, £EQ,

¢

Letv : [k]Y x [k]Y — [0, 1] denote the joint distribution of the colourings” and X" in the coupling
where X" = T X?. We close the section by providing a very useful property,offhich we use in the
disagreement percolation.

Lemma 5.3. For everyu € V\{z}, let NV, be the set that contains all the vertices which are adjacent
to the vertex: in G. Also, letB, C [k]V« x [k]V« be defined such that

By = {¢ € [K]™ x [k]"[v(€) > 0}.

If £ > A, then it holds that

max (X (u) # X(u)|7) < =5

whereA,, is the degree of vertexin G.

Proof: Let Gx = (Vx,Ex), denote the induced subgraph @fsuch thatv € Gx if and only if
X%(v) # X"(v), in the coupling. We remind the reader that under b&thand X", Gx is coloured
using only the colours, andr,.

There are two necessary conditions for some vestex 1\ {z} to be inVx. The first one is that
some vertex inV, should, also, belong t&’x. This is due to the fact that'x is connected. The
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second is the following one: Assume that € N, andw; € V. If there existsws € N, \{w; } and
X (wq) € {04,n:}, then it should holdX? (w;) = X?(w,). This should hold under botK* and X",
G x is coloured using only the coloues. ands, .

Considering the two previous conditions the worst cas& 6f.V,,) is the following: At least one
vertex inNV,, belongs toVx, call this vertexw. No vertex inN,, uses the coloufo,, 7, }\{X?(w)}.
X?(N,) is such that the number of different colour that are useduslem | N, |. In that case the prob-
ability of u to belong toVx is 7—x—. The lemma follows. O

Lemmd’5.B assumes thiat> A, otherwise it holds

ma (X (u) £ X7(u)|7) < 1

5.2 Proof of Theorem3.1
By Theorem 1 and Corollary 1.1 ihl[6], and Lemmal5.3 we get that

[|p(-|loz) — 1(-|m2)l|a < Pr.[3 path of disagreement betweén} and a vertex in\].

We have to remark here that the coupling on which the disawggat percolation is based, has the
following property: Lett be the minimum integer such that there is no path of disageaeoonnecting

x to L(z,t). Then, our coupling specifies that no vertexif, t'), for t' > ¢ can be disagreeing. This
is a crucial property of our coupling, since otherwise weldaot apply the disagreement percolation
technigue (see [13]).

6 Rest of the Proofs

6.1 Proof of Proposition[3.1

Let
err; = |Pr[X;(v;) # Xi(u;)] — Pr[Yi(v;) # Yi(w)]| foro<:<r-—1.

It holds that

log Z

r—1
S log(P[Yi(vi) # Yiw:)]) + log Z(Go, k)
1=0

IN

Si2g log (P[Xi(vs) # Xi(u;)] + err;) + log Z(Go, k)

120 log (PXi(v:) # Xi(ws))) + 2i=, log <1 + m> +log Z(Go, k)
r—1

log Z(G. k) + ;10% (1 T PXi(on) %Xi(ui)]>

r—1
err;

log Z(G, k) + ; P[X;(vi) # Xl(ul)]

IN

IN

IN

The final derivation follows by the fact thatg(z) is an increasing function (the base is of the logarithm
ise > 1) and byl + z < €%, for anyz. Similarly we get the lower bound fdog(Z). The theorem
follows.
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6.2 Proof of Proposition[3.2

Proposition 3.P follows as a corollary of the two followirgnimas.
Lemma 6.1. It holds that

ri—1

|PriXi(vi) # Xi(us)] — PriYi(vi) # Yi(u)]] < > Mg () = pijra()llw, -
=0

Proof: Let p; ; be the Gibbs distribution of thie-colourings ofG; ;. It holds that
| PriXi(vi) # Xi(ui)] = Pr{Xio(vi) # Xio(u)]| < Do, [0 (A) =i, ()| < i 0 () =pir; ()l

By the triangle inequality we get thﬁui,o(-) - Mi,n‘(')H\I’i < Z;;Bl Hui,j(') - Mi,j-l—l(')H‘Ifi O

Lemma 6.2. Let A be any subset of vertices Gf ; that does not contain; ; andw; ;. It holds that

s )=tz (Olln < Coy  mare {11135 C10) = s CI gy + i (1) = i Gy
o,TE vJ

whereCi; = C; j(Gy 5, k) = maxg peppy { (Pr[Xij(uij) = s|X;j(vi;) = t]) 72},

Proof: Let €); ; denote the set of-colourings ofG;; and y;; the uniform distribution ovef?; ;. Itis
straightforward that

g () = i g C)lla < maxf[uij(low, ;) = pijea (I, ;)lla,

wherer varies inQ); ;.1 ando varies in(; ;. By the fact that); ;;1 C €; ; and by the conditional
independence, it holds that ;1 (-|Tw, ;) = i ;(-|Tw, ;). Hence, we have that

i g () = i g Ol |a < maxflpi;(low, ;) = pij (I, ;)lla- (41)
By definition (see[()), there exists a sétC [k]* such that

g Clow, ;) = pigClre lla = i (Alow, ;) = pi (Al ;)]

Let Qi = f1ij(Tuy; [ Tvi;) — 1ij(0uylow,;). Using elementary probability theory relations we get the
following:

Hi,j (Av Tugj ’Tvi ) Hi,j (A7 Ouj ‘UW*)
"-AO'\I/Z“_ -/47'\111 S i J Jj’ J J
|,uz,]( | N ) i ( | N )| Hi,j (Tuij |7—U¢j ) Hi,j (Juij |0vij )
< :ui,j(A’ Tugj |T'Uij) . Mi,j(A’ Ou;j |Uvij)
T nig(Ouylo,) + Qi pij(oulow;)
< Mi,j(A, Tugj ’T'Uij) o Hi,j (A7 O ‘UUU) +
N i, g (Uuij |O-Uij ) Hi,j (Juij |Uvij )
Qi g

Hi.j (Tuij |7—Uij )lu’i,j(o-uij |O-U7,'j) ‘
It is direct to see that
13,5 (A5 Tugs [Ty ) = 135 (A, 0w low, )| < max [l g ([7or;) = pig Cloe,)llax
’/’[/ij(Tuij ‘TUU) - Iuij(o-uij ’UUij)’ < H;%XHMZ'J("TUQ) - Iu'ivj(.‘o-vij)uuij7

whereA* = A U {u;;}. The lemma follows. O
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6.3 Proof of LemmaZ.1

Consider the sequence of subgraphié’) = Gy, ..., G,, wherer = |E| andGj is empty. Consider,
also, the following telescopic relation

(G, k)| = 12(Go, k) HHW?%_ Iﬂmgg

The lemma will follow by showing that
[2(Git1, k)|
(G, k)
The above relation clearly holds by noting the following:eTget ofk-colourings ofG; 1 is the same as

the subset ok-colourings ofG; that contains all the colourings that assigrandw; different colours.
The lemma follows.

Pr(Xi(u;) # Xi(vi)] =

6.4 Proof of Lemmal3.1.

1
luClow) = uC)lla = 3 Y Iuloalor) = uon)|

kJAE[k]A

= Splos) Y lu(oalow) — p(oa)|

O'AG[]C]A

k

= 3 > wlon)lul(ozlon) — ploy)]
O'AG[]C]A
k

< 5 Z (oa) Z l(Tzlon) — p(7z)]
O’AE]C]A Tace[k?]

< kY plon)llpCloa) = u()lle-
(TAE[k

Noting that it holds

(o) = pllm)lla < lptloz) = nOlla + [[p¢) = pClm)lla,
the lemma follows.

6.5 Proof of Lemmal4.1

Lete = 1/(10log(d)). Assume that after removing all the edgedirhere are two cycles of length at
moste log n which are connected, i.e. these two cycles share edges, eea must exist a subgraph
of G, 4/, that contains at moske log n vertices while the number of edges exceeds by 1, or more, the
number of vertices.

Let D be the event that idr, 4/, there exists a set of vertices which have + 1 edges between
them. Forr < elogn we have the following:

PrD] < lzgn <”>< ) >(d/n)r+1( —d/n)E)-r+D)

r+1
r=1
elogn 2 r—41 elogn 2 r
ne\r ree i1 €-d e“d
- - - < - —- -
;(r> (2(r+1)> (@)™ < 57 Z(Q)

r=1
C €2d elogn
< — | — .
<3 (%)

IN
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Having e - log(e?d/2) < 1, the quantity in the r.h.s. of the last inequalityoid ), in particular it is of
order ©(ncle(€*d/2)~1) - Thus, fore = 1/(10log(d)) there is no connected component that contains
two cycles with probability at leagt— n~0-85,
Let C; denote the number of cycles of length at midstG(n, d/n). Itis direct to show thaE[C;] <
2d'. Furthermore E[C10g,] < 2n'/10. Itis not hard to see that the expected number of edges whose
one end is on a cycle of length less thdng n is O(n'/**1og? n). ThatisE[|R|] = O(n'/*1log?n).
Employing the Markov inequality, we haver[|R| > n3/1°) = O(n=%2/log® n) while Pr[Ce1ogn >
n3/10) < 2002, The lemma follows.

Acknowledgement. The author would like to thank the anonymous reviewer as a&lProf. Mike
Paterson for the time they spent to read this manuscript@rtéiir corrections and their suggestions to
improve the presentation of the result. Also, the authorld/tike to thank Amin Coja-Oghlan for the
numerous fruitful discussions.

References

[1] D. Achlioptas, and A. NaoiThe two possible values of the chromatic number of a rand@phyr
Annals of Mathematicsl62(3), (2005), 1333-1349.

[2] D. Aldous. Random walks of finite groups and rapidly mixing Markov chain: Séminaire de
Probabilites XVII 1981/82, Springer-Verlag, Berlin. [#13-297.

[3] A. Bandyopadhyay and D. Gamarni€ounting without sampling: new algorithms for enumer-
ation problems using statistical physids. Random Structures and Algorithm33 (4), (2008),
452-479.

[4] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tet&imple deterministic approximation algo-
rithms for counting matchingdn Proc. of the ACM 39th annual Symposium of Theory of Com-
puting (STOC '07) pp. 122-127, 2007.

[5] N. Bhatnagar, J. Vera, E. Vigoda and D. WeiReconstruction for coloring on TreeSIAM J.
Discrete Math25 (2), (2011) pp 809-826.

[6] J. van den Berg and C. MaeBisagreement percolation in the study of Markov fiellsnals of
Probability22, (1994) pp. 794-763.

[7] M. Dyer, A. Flaxman, A. M. Frieze and E. VigodRandom colouring sparse random graphs with
fewer colours than the maximum degr&ndom Struct. and Algorithn9, (2006), 450-465.

[8] M. Dyer, L. A. Goldberg and M. JerrunCounting and sampling H-colouringtnformation and
Computation189 (1), (2004), pp 1-16.

[9] C. Efthymiou.A simple algorithm for random colouring(n, d/n) using(2+¢€)d colours In proc.
of the 23th annual Symposium on Discrete Algorithms (SODAZ2Qpp 272-280.

[10] C. Efthymiou and P. G. SpirakiRandom sampling of colourings of sparse random graphs with a
constant number of colourtn Theoretical Computer Sciend®7, (2008), pp 134-154.

[11] D. Gamarnik and D. KatzCorrelation decay and deterministic FPTAS for countingrdislorings
of a graph Journal of Discrete Algorithmg,2. pp. 29 - 47.

26



[12] H. O. Georgii.Gibbs measures and phase transitiode Gruyter Studies in Mathematics 9, Walter
de Gruyter & Co., Berlin, 1988.

[13] O. Haggstrom A note on disagreement percolatiom Random Structures and Algorithnis
(2001), 267-278.

[14] T.P.Hayes, J.C. Vera and E. Vigodandomly coloring planar graphs with fewer colours than the
maximum degredn proc. of the 39th ACM annual Symposium of Theory of Compgit{STOC
2007 ), pp 450-458.

[15] S.Janson, T. Luczak and A. RucihsRiandom graphsWiley and Sons, Inc. 2000.

[16] M. JerrumSampling, Counting and Integrating:Algorithms and Comjhle Chapter 3, Birkauser,
Basel, 2003.

[17] M. Jerrum and A. SinclairApproximate Counting, Uniform generation and Rapidly Mii
Markov ChainsIinfomation and Computatio82(1), (1986), pp 93-133.

[18] M. Jerrum and A. SinclairThe Makov chain Monte Carlo method: an approach to approi@ma
counting and integrationln Approximation Algorithms for NP-hard problems (Doritpehbaum
ed.) PWS 1996.

[19] M. Jerrum, L. G. Valiant and V. V. VaziranRandom generation of combonatorial structures from
a uniform distribution.Theoretical Computer Sciencé3, (1986), 169-188.

[20] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Sejia@c, L. ZdeborovaGibbs states and the
set of solutions of random constraint satisfaction prolddmProc. National Academy of Sciences
104 (2007) 10318-10323.

[21] M. Mézard and A. Montanarilnfomation, Physics and Computatio®xford University Press
2009.

[22] A. Montanari, R. Restrepo and P. Tet&econstruction and Clustering in Random Constraint
Satisfaction ProblemsIAM J. Discrete Math25 (2), (2011), 771-808.

[23] A. Montanari and D. ShalCounting good truth assignments of random k-SAT formuireproc.
of the 18th annual Symposium on Discrete Algorithms (SODA7)0pp. 1255-1264.

[24] E. Mossel and A. SlyRapid Mixing of Gibbs Sampling on Graphs that are Sparse @rage.In
Random Structures and Algorithr88 (2), (2009), 250-270.

[25] E. Mossel and A. SlyGibbs Rapidly Samples Colorings 6f, ;/,,. In Probability Theory and
Related Fields148 (2010), 37-69.

[26] L. Valiant. The complexity of enumeration and reliability probler8$AM Journal of Computing
8,(1979), 410-421.

[27] E. Vigoda.Improved bounds for sampling coloringa.J. Math. Phys41, (2000), pp. 1555-1569.

[28] M. Wainwright and M. JordarGraphical Models, exponential families and variationalerence
Technical report 649, Dept. of Statistics, University ofiBdey.

[29] D. Weitz. Counting independent sets up to the tree threshimld?roc. of the ACM 38th annual
Symposium of Theory of Computing (STOC 2006).

27



	1 Introduction
	1.1 Results
	1.2 Contribution
	1.3 Structure of the paper

	2 Basics and Problem Formulation
	3 Counting Schema
	3.1 Remarks on the Spatial Conditions
	3.2 Bounds for Spatial Correlation decay

	4 Application to G(n,d/n)
	4.1 Proof of Proposition ??
	4.2 Proof of Proposition ??
	4.3 Proof of Corollary ??
	4.4 Proof of Corollary ??

	5 Bounds for spatial correlation decay - Proof of Theorem ??
	5.1 The coupling for the comparison
	5.2 Proof of Theorem ??

	6 Rest of the Proofs
	6.1 Proof of Proposition ??
	6.2 Proof of Proposition ??
	6.3 Proof of Lemma ??
	6.4 Proof of Lemma ??.
	6.5 Proof of Lemma ??


