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Abstract

In this paper we propose a deterministic algorithm for approximately counting thek-colourings
of sparse random graphsG(n, d/n). In particular, our algorithm computes in polynomial time a
(1 ± n−Ω(1))-approximation of the logarithm of the number ofk-colourings ofG(n, d/n) for k ≥
(2 + ǫ)d with high probability over the graph instances.

Our algorithm is related to the algorithms of A. Bandyopadhyay et al. in SODA ’06, and
A. Montanari et al. in SODA ’06, i.e. it usesspatial correlation decayto computedeterminis-
tically marginals ofGibbs distribution. We develop a scheme whose accuracy depends onnon-
reconstructionof the colourings ofG(n, d/n), rather thanuniquenessthat are required in previous
works. This leaves open the possibility for our schema to be sufficiently accurate even fork < d.

The set up for establishing correlation decay is as follows:GivenG(n, d/n), we alter the graph
structure in some specific regionΛ of the graph by deleting edges between vertices ofΛ. Then we
show that the effect of this change on the marginals of Gibbs distribution, diminishes as we move
away fromΛ. Our approach is novel and suggests a new context for the study of deterministic
counting algorithms.

1 Introduction

For a graphG = (V,E) and a positive integerk, a properk-colouring is an assignmentσ : V → [k]
(we use[k] to denote{1, . . . , k}), such that adjacent vertices receive different members of[k], i.e.
different “colours”. Here we focus on the problem ofcounting the k-colourings ofG. In particular,
we consider the cases where the underlying graph is an instance of Erdős-Rényi random graphG(n, p),
wherep = d/n andd is ‘large’ but remains bounded asn → ∞. We say that an event occurswith high
probability (w.h.p.)if the probability of the event to occur tends to 1 asn→ ∞.

Usually, a counting problem is reduced to computing marginal probabilities ofGibbs distribution,
see [19]. Typically, we estimate these marginals by using asamplingalgorithm. The most powerful
method for sampling is the Markov Chain Monte Carlo (MCMC). There the main technical challenge
is to establish that the underlying Markov chain mixes in polynomial time (see [18, 17]). The MCMC
method givesprobabilisticapproximation guarantees.

Recently, new approaches were proposed fordeterministiccounting algorithms in [3] and [29]. The
work in [3] is for counting colourings and independent sets,while [29] is for independent sets. These new
approaches link the correlation decay tocomputing efficientlymarginals of Gibbs distributions. The two
algorithms in [3, 29] suggest two different approaches for computing marginals. The one in [3] applies
mainly to locally tree graphs. Spatial correlation decay isexploited so as to restrict the computations
of marginals and consider only small areas of the graph. The accuracy of the computations there relies
on establishing the so-calleduniqueness conditionson trees. On the other hand, the algorithm in [29]
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applies to a wider family of graphs, i.e. not necessarily locally treelike ones. It uses a more elaborate
technique which somehow handles the existence of cycles in the computation of marginals, mainly by
fixing the spins of certain sites appropriately. The approximation guarantees for the second algorithm
are stronger than those of the first one. However, the stronger results do not come for free. The spatial
mixing assumptions there are stronger, e.g. for the case of counting independent sets it requiresstrong
spatial mixing conditions.

Our approach for computing Gibbs marginals is closer to [3] as w.h.p. the instance ofG(n, d/n) is
locally tree like. However, this is not just an extension of [3] to random graphs. First we express the
bounds fork in terms of the expected degree of the graph, rather than the maximum degree which is
the case in [3]. Furthermore, we relate the computation of Gibbs marginals to weaker notions of spatial
mixing, namely the so-callednon reconstruction conditions. Compared to Gibbs uniqueness condition,
which is required in [3], non-reconstruction is weaker and holds for a wider range ofk. This leaves open
the possibility for our schema to be sufficiently accurate for countingk-colourings ofG(n, d/n) even
for k < d, i.e. when uniqueness condition is not expected to hold.

Further Motivation. Apart from its use for counting algorithms, the problem of computing efficiently
good approximations of Gibbs marginals is a very interesting problem on its own. It is related to the
empirical success of heuristics suggested by statistical physicists such asBelief PropagationandSurvey
Propagation(see e.g. [20]). In theoretical computer science, these heuristics are studied in the context of
finding solution of random instances of Constraint Satisfaction Problems, e.g. random graph colouring,
randomk-SAT, etc. Similar ideas for computing marginals were also suggested incoding theoryand
artificial intelligence(see in [21]).

Related Work. Algorithms that follow a similar approach as the one in [3], appear in [23, 10]. The one
in [23] is for computing Gibbs marginals for random instances ofk-SAT. The one in [10] is for random
colouring ofG(n, d/n). The algorithm in [10] does not compute the log partition function, however, it
can be altered so as to do so. Then, it is not hard to show that itrequires at leastd7/2 colours.

On the other hand, counting algorithms as the one in [29] givebetter polynomial time approxima-
tions, compared to the ones referred in the previous paragraph. However, they require stronger cor-
relation decay conditions. Attempts to establish such strong conditions were successful for two spin
cases, e.g. independent sets, matchings, Ising spins (see [29, 4, 24]]). For the multi-spin cases, such as
colourings, things seem harder. The best algorithm of this category for counting k-colourings requires
k > 2.8∆ and girth at least 4 (see [11]), where∆ is the maximum degree of the underlying graph.

The author of this work, in a subsequent paper [9], uses some of the ideas that appear here in an al-
gorithm for approximate random colouringG(n, d/n). The algorithm there yields similar results as here
but the approximation guarantees are probabilistic ones, i.e. the same as the Monte Carlo algorithms.

1.1 Results

LetZ(G, k) denote the number ofk-colourings of the graphG. In statistic physics literature the quantity
Z(G, k) is also known as thepartition function. Our algorithm computes an approximation for the log-
partition functionlogZ(G, k).

Definition 1.1. Ψ is defined to be anǫ-approximation of the log-partition functionlogZ(G, k) if

(1− ǫ)
logZ(G, k)

n
≤ Ψ ≤ (1 + ǫ)

logZ(G, k)

n
.

The results of our work are the following ones:
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Theorem 1.1. Let ǫ > 0 be a fixed number and letd be sufficiently large. Fork ≥ (2 + ǫ)d and with
probability at least1 − n−a, over the graph instances, our algorithm computes ann−b-approximation
of logZ(Gn,d/n, k), in timeO(ns), wherea, b ands are positive real numbers which depend onk.

Roughly speaking the above theorem implies that for typicalinstances ofG(n, d/n) andk ≥ (2 + ǫ)d
our algorithm is able to compute Gibbs marginals of thek-colourings ofG(n, d/n) within erroro(n−c),
wherec > 0 is fixed. Furthermore, the fact that the Gibbs distribution of k-colourings is symmetric and
the fact that w.h.p. all but a vanishing fraction of the edgesin G(n, d/n) do not belong to cycles shorter
thanΘ(lnn) implies the following result.

Corollary 1.1. For sufficiently larged andk ≥ (2 + ǫ)d, w.h.p. it holds that

∣

∣

∣

∣

logZ(Gn,d/n, k)

n
−

(

log k +
d

2
· log

(

1−
1

k

))∣

∣

∣

∣

≤ n−c,

for fixedc > 0.

Observe that the concentration result in Corollary 1.1, forthe number ofk-colouring ofG(n, d/n), is
derived by using correlation decay arguments. In the literature of random structures such results are
typically derived by using the so-called “Second moment method”. A less accurate result can be derived
from the work of Achlioptas and Naor in [1] with some extra work, i.e. the error there isO(log−1 n).

Finally, a related question and somehow a natural one is whether we can distinguish efficiently the
instances ofG(n, d/n) that have their log-partition function concentrated. Thatis, for a sufficiently
large functionh(n, d, k) we can answer whether a given instanceG(n, d/n) is such that

∣

∣

∣

∣

logZ(G(n, d/n), k)

n
−

(

log k +
d

2
· log

(

1−
1

k

))∣

∣

∣

∣

≤ h(n, k, d),

or not. This goes beyond what we can get from the second momentmethod, as the later uses non-
constructive arguments. We show that such distinction of instances is possible. The reason is that our
arguments for correlation decay are tightly related to the degrees of vertices. That is,examining the
degrees of the verticeswe can infer whether the number of colourings ofG(n, d/n) is concentrated.

LetS(n, d) denote the set of graphs onn vertices which have the following properties: Their number
of edges is at most3dn/4. There are at mostn0.3 cycles, each of them, of length at mostlogn10 log d . Finally,
for each vertexv in the graph, the induced subgraph that containsv and all vertices within distance

logn
4 log(e2d/2)

is either tree or a unicyclic graph. In the following result,we show that for the graphs in

S(n, d/n) it is possible to verify whether the log-partition functionis concentrated or not.

Corollary 1.2. Let ǫ > 0 be a fixed number and letd be sufficiently large. Fork ≥ (2 + ǫ)d, there
exists a set of graphsS(n, d) such that the following holds: For any sufficiently large real function
h(n, d, k) ≥ n−O(1) it can be verified in polynomial time whether the property

∣

∣

∣

∣

logZ(G, k)

n
−

(

log k +
d

2
· log

(

1−
1

k

))∣

∣

∣

∣

≤ h(n, k, d). (1)

holds or not, for anyG ∈ S(n, d). Furthermore,Pr[Gn,d/n ∈ S(n, d)] = 1 − n−0.1 and deciding
whetherGn,d/n ∈ S(n, d) can be made in polynomial time.

1.2 Contribution

We could partition the contribution of our work into two parts. The first part includes a new approximation-
schema for computing deterministically Gibbs marginals. In the second part we present the tool for
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bounding correlation decay quantities that arise in the schema.

Approximating Gibbs Marginals. The problem of countingk-colourings of a graphG = (V,E)
reduces to the problem of estimating Gibbs marginals which can be formulated as follows:

Problem 1.Consider the graphG = (V,E) and letµ(·) denote the Gibbs distribution over the proper
k-colourings ofG. For the small (fixed sized) set of verticesΛ ⊂ V and forσΛ ∈ [k]Λ, compute the
probabilityµ(σΛ).

In the general case computingµ(σΛ) exactly requires superpolynomial time. So the focus is on approx-
imating it. One possible approach for computing an approximation of the marginal in Problem 1 was
suggested in [3] for locally tree graphs. Roughly speaking the idea can be described as follows: The
Gibbs marginal onΛ can be expressed as a convex combination of boundary conditions onLt,Λ, the
vertices at distancet from Λ, as follows

µ(σΛ) =
∑

τ∈[k]Lt,Λ

µ(σΛ|τ)µ(τ). (2)

Pick t such that we can compute in polynomial time each of the marginals µ(σΛ|τ). The problem,
then, reduces to the not easier task of computing the coefficientsµ(τ). The authors in [3] noticed that
the problem of estimating these coefficients somehow “degenerates” ifk is so large that the marginals
µ(σΛ|τ) andµ(σΛ|τ ′) are sufficiently close to each other, for anyτ, τ ′ ∈ [k]Lt,Λ in the support ofµ.
In this case, the convexity implies thatµ(σΛ) is sufficiently close to any of the conditional marginals
in the r.h.s. of (2). Using this observation and the fact thatwe have chosent such that the conditional
marginals can be computed in polynomial time, it is direct that the above schema gives in polynomial
time an approximation ofµ(σΛ).

We should remark that the conditional marginals above are close to each other if a certain kind of
independence hold, between the colourings ofΛ and the colourings ofLt,Λ. Establishing such a kind of
independence is related to what is known in statistical physics as establishing “Dobrushin Uniqueness
Condition” (see [12]).

Our approach, here, is in a similar spirit. However, it amounts to substituting the coefficientsµ(τ)
with new, different, ones. The aim is not to bypass the estimation of coefficients but somehow toap-
proximatethem. So instead ofG we consider the graphGt,Λ, the induced subgraph ofG that contains
the setΛ and all its neighbours within graph distancet. We denote witĥµ(σΛ) the new Gibbs marginal
of the eventσΛ in the k-colourings ofGt,Λ. We will useµ̂(σΛ) to approximateµ(σΛ). Note that we
have chosent so as the computation of̂µ(σΛ) can be carried out efficiently. Writing the corresponding
of (2) for the graphGt,Λ we get that

µ̂(σΛ) =
∑

τ∈[k]Lt(Λ)

µ̂(σΛ|τ)µ̂(τ).

Remark 1.Someone could use uniqueness condition here as well, i.e. work as in [3]. However, here we
make a more detailed comparison ofµ̂(σΛ) andµ(σΛ). As a matter of fact, our analysis gives rise to
non-reconstruction spatial mixing conditions.

The key observation to comparêµ andµ is the following one: The distribution̂µ(·) can be seen as being
induced by the deletion of the edges that connect the neighbourhoodGt,Λ with the rest of the graphG.
We require that the deletion of these edges does not have great effect on the marginals onΛ. It turns out
that this is equivalent to requiringnon-reconstructibilitycondition1 with (sufficiently fast) exponential
decay. That is, letG′ be eitherG (the graph in Problem 1) or any of its subgraph. Letµ′ be the Gibbs

1Non-reconstructibility is equivalent to extremality of Gibbs measure for infinite graphs, see e.g. [12].
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distribution of the colourings ofG′. Then,non-reconstructibilitycondition with exponential decay can
be expressed as follows:

max
C∈[k]x

||µ′(·)− µ′(·|C)||Lx,t ≤ exp(−at), (3)

wherex is a vertex inG′, Lt,x contains all the vertices which are at distancet from x andα > 0 is a
fixed number.

For the distributionsνa, νb on [k]V , we let||νa − νb|| denote theirtotal variation distance, i.e.

||νa − νb|| = max
Ω′⊆[k]V

|νa(Ω
′)− νb(Ω

′)|. (4)

ForΛ ⊆ V let ||νa − νb||Λ denote the total variation distance between the projections of νa andνb on
[k]Λ.

Bounds for Spatial Correlation Decay. We complement the new approach for estimating Gibbs
marginals, by providing a general tool for bounding correlation decay conditions as in (3). We bound
the correlation between some vertexx and the vertices at distancet from x by studying the probability
of the following event: Choose u.a.r. ak-colouring ofG′. Let ρ be the probability that there are two
colour classes that specify aconnectedsubgraph ofG′ that contains bothx and some vertices at distance
t. Then we show thatmaxC∈[k]x ||µ

′(·)− µ′(·|C)||Lx,t ≤ ρ.
We derive bounds for the quantityρ by using the well-known technique from statistical physics

called “disagreement percolation” coupling construction[6]. It turns out that using the disagreement
percolation we express the decay of correlation as in (3) in terms of percolation-probabilities on the
graph. Our technique is general and simple, e.g. there is no need for restrictions on the graph structure
which was the case in [3, 10, 23]. Furthermore, it allows expressing the corresponding bounds in terms
of the degree of each vertex, not the maximum degree.

Remark 2.“Disagreement Percolation” has been used for bounding different kinds of correlation decay
in works for MCMC sampling colouring, e.g. [14, 7]. Also, disagreement percolation appears (implic-
itly) in [5] as part of a more general technique for showing non-reconstruction for colourings on trees.
Our setting here is more general than [5] as it considers graphs with cycles. i.e. there are technical issues
that need to be addressed.

Remark 3.For the sparse random graphs with bounded expected degreed there is a work by Montanari
et al. in [22] that shows non-reconstructibility fork smaller than what we derive here. Unfortunately,
we cannot use this result here, mainly, because it does not imply that the corresponding spatial mixing
conditions are monotone in the graph structure. Note that ifwe could use the non-reconstructibility
bounds from [22], then our results for counting would be evenbetter.

1.3 Structure of the paper

The rest of the paper is organized as follows: In Section 2 we present some basic concepts and describe
the counting to marginal estimation reduction. In Section 3we give a general description of our counting
algorithm and relate its accuracy with certain kind of spatial correlation decay conditions. Then, we
provide the results which are used for bounding spatial correlation decay (in Section 3.2).

In Section 4 we discuss the technical details for applying the counting algorithm onGn,d/n. We
prove Theorem 1.1, Corollary 1.1 and Corollary 1.2. In Section 5 we prove the results that appear in
Section 3.2, for bounding spatial correlation decay. Finally, in Section 6 we provide the proofs of some
technical results we use.
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Figure 1: GraphGi.
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Figure 2: GraphGi+1.

2 Basics and Problem Formulation

Our algorithm is studied in the context of finite spin-systems, a concept that originates in statistical
physics. In particular, we use the finitecolouring model.

TheFinite Colouring Model with underlying graphG = (V,E) that usesk colours is specified by a
set of “sites”, which correspond to the vertices ofG, a set of “spins”, i.e. the set[k], and a symmetric
functionU : [k]× [k] → {0, 1} such that fori, j ∈ [k]

U(i, j) =

{

1 if i 6= j
0 otherwise.

We always assume thatk is such thatZ(G, k) 6= ∅.
A configurationσ ∈ [k]V of the system assigns each vertex (“site”)x ∈ V the colour (“spin value”)

σx ∈ [k]. The probability to find the system in configurationσ is determined by theGibbs distribution,
which is defined as

µ(σ) =

∏

{x,y}∈E U(σx, σy)

Z(G, k)
.

It is direct that the Gibbs distribution corresponds to the uniform distribution over the set ofk-colouring
of the underlying graphG. A boundary conditioncorresponds to fixing the colour assignment of a
specific “boundary” vertex set ofG.

Another concept we will need is that of thesequence of subgraphs.

Definition 2.1 (Sequence of subgraphs). For the graphG = (V,E), let G(G) = {Gi = (V,Ei)}
r
i=0

denote a sequence of subgraphs ofG which has the following properties:

• G0 is a spanning subgraph ofG

• Ei ⊂ Ei+1 for 0 ≤ i < r andEr = E

• the termGi+1 compared toGi has an additional edge, the edgeΨi = {vi, ui}.

When we refer toG(G) we specify the graphG0 while we, usually, assume that there is some arbitrary
rule which gives the termsG1, . . . , Gr. In Figures 1 and 2 there is an example of two consecutive terms
of a sequenceG(G), for some graphG. Observe that inGi the verticesvi andui are not adjacent, while
in Gi+1 we add the edgeΨi = {vi, ui}.

Lemma 2.1. For the graphG = (V,E) consider a sequence of subgraphsG(G) whereG0 is edgeless.
LetXi be a random colouring ofGi ∈ G(G). For some integerk > 0, we have that

|Z(G, k)| = kn ·

|E|−1
∏

i=1

Pr[Xi(vi) 6= Xi(ui)],

where the verticesvi andui are incident toΨi.
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Figure 3: GraphGi0.
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vij
ui,j

Figure 4: GraphGi,j+1.

Li(Ψi, t) Li(Ψi, t + 1)

ui

vi

A B

Figure 5: GraphGi,ri .

The proof of the above lemma is standard and can be found in various places (e.g. [19, 8, 16]), for
completeness we present it in Section 6.3.

We close this section with some additional notation. ForΛ ⊆ V and some integert > 0, we let
L(Λ, t) denote the set of vertices at graph distanceexactlyt from Λ. Also, we letB(Λ, t) denote the set
of verticeswithin graph distancet from Λ.

3 Counting Schema

For clarity reasons, we present the counting schema by assuming that we are given a fixed graphG =
(V,E) and some integerk such thatZ(G, k) > 0.

The schema is based on computing Gibbs marginals as it is described in Lemma 2.1. That is, givenG,
we consider a sequence of subgraphsG(G) = G0, . . . , Gr withG0 being edgeless. For eachGi ∈ G(G)
let Xi be a random colouring. In our schema we compute anapproximationof each probability term
Pr[Xi(vi) 6= Xi(ui)] by working as follows: We consider a new sequence of subgraphs G(Gi) =
Gi,0, . . . , Gi,ri defined as follows:Gi,ri , is the graphGi whileGi,0 is derived fromGi by removing all
the edges between the setsL(Ψi, t) andL(Ψi, t + 1)2, wheret > 0 is some appropriate integer. We
considerYi a random colouring of the graphGi,0 ∈ G(Gi). Our schema approximatesPr[X(vi) 6=
X(ui)] with Pr[Yi(vi) 6= Yi(ui)].

Observe that the computation ofPr[Yi(vi) 6= Yi(ui)] depends on the induced subgraph ofGi which
contains only vertices within graph distancet from Ψi = {vi, ui}. Taking sufficiently smallt it makes
it possible to computePr[Yi(vi) 6= Yi(ui)] in polynomial time.

Figures 3, 4 and 5 illustrate some members ofG(Gi). That is, Figure 3 shows the first term of the
sequence. Figure 4 shows the graphGi,j+1, i.e. the edgeΨi,j = {ui,j , vu,i} has just been inserted. In
Figure 5 we have the final term ofG(Gi), the graphGi,ri .

In what follows we provide the pseudocode of the counting algorithm.

Counting Schema

Input: G, k, t.
SetZ = kn.
ComputeG(G) = {G0, . . . , Gr}.
For0 ≤ i ≤ r − 1 do

• ComputeG(Gi).

• Compute the exact value ofPr[Yi(vi) 6= Yi(ui)].

• SetZ = Z · Pr[Yi(vi) 6= Yi(ui)].

End For.
Output: log (Z) /n.

2BothL(Ψi, t) andL(Ψi, t+ 1) are considered w.r.t. graphGi.

7



Two natural questions arise for the counting algorithm. Thefirst one is itsaccuracy, i.e. how close
1
n logZ and 1

n logZ(G, k) are. The second one is about thetime complexity.
As far as the time complexity is regarded, typically, the execution time is dominated by the com-

putations forPr[Yi(vi) 6= Yi(ui)]. Let us remark, here, that there is no standard way of computing
Pr[Yi(vi) 6= Yi(ui)]. In the next section where we study the application of the above schema on
G(n, d/n) we chooset such that the computation of the marginalPr[Yi(vi) 6= Yi(ui)] can be carried
out efficiently by using adynamic programming algorithm.

As far as the accuracy is concerned we have the following results.

Proposition 3.1. For the counting schema it holds that

1

n
| logZ − logZ(G, k)| ≤

2

n

r−1
∑

i=0

|Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]|

Pr[Xi(vi) 6= Xi(ui)]
,

when each of the summands on the r.h.s. is sufficiently small.

The proof of Proposition 3.1 appears in Section 6.1.
So as to show that the estimationlogZ is accurate, we work as follows: We derive a constant lower

bound forPr[Xi(vi) 6= Xi(ui)], which is used to for the denominator in Proposition 3.1. Then, we
show thatPr[Xi(vi) 6= Xi(ui)] andPr[Yi(vi) 6= Yi(ui)] are asymptotically equal. There, we use the
following proposition.

Proposition 3.2. For 0 ≤ i ≤ r − 1 it holds that

|Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]| ≤

≤
ri−1
∑

j=0

Cij max
σ,τ,∈Ω(Gij ,k)

{

||µi,j(·|σvij )− µi,j(·|τvij )||Ψi∪{uij} + ||µi,j(·|σvij )− µi,j(·|τvij )||{uij}

}

,

whereCij = maxs,t∈[k]
{

(Pr[Xi,j(ui,j) = s,Xi,j(vi,j) = t])−2
}

and ri is the number of terms in the
sequenceG(Gi).

The proof of Proposition 3.2 is given in Section 6.2.

3.1 Remarks on the Spatial Conditions

It is interesting to discuss the implications of the spatialmixing conditions required by Proposition 3.1
and Proposition 3.2. If everyCij in Proposition 3.2 is a sufficiently small constant, which will be the
case here, then the spatial mixing condition can be summarized as follows:

1

n
| logZ − logZ(G, k)| ≤ f(G, t) · max

i,j,x,σ,τ
||µij(·|σx)− µij(·|τx)||Λ,

wheref(G, t) is a quantity that grows linearly with the number of terms in both sequencesG(G) and
G(Gi) andΛ ⊂ V is an appropriate defined region inG. Then, a sufficient condition for the counting
schema to be accurate is that, for every0 ≤ i ≤ r and0 ≤ j ≤ ri we have

max
x∈V

max
σx,τx∈[k]{x}

||µij(·|σx)− µij(·|τx)||L({x},t) ≤ exp (−a · t) (5)

for sufficiently largea > 0. Another expression for the condition in (5) can be derived by using the
following (standard) lemma.

8



Lemma 3.1. For any graphG = (V,E) andk, let µ be the Gibbs distribution of itsk-colourings. For
everyx ∈ V andΛ ⊆ V it holds

max
σx,τx∈[k]{x}

||µ(·|σx)− µ(·|τx)||Λ ≤ 2k ·
∑

A∈[k]Λ

µ(A) · ||µ(·|A) − µ(·)||x.

For a proof Lemma 3.1 see in Section 6.4.
In the light of the above lemma and fork constant the condition in (5) is equivalent to the following

one: For0 ≤ i ≤ r and0 ≤ i ≤ ri

max
x∈V

max
σx,τx∈[k]{x}

∑

A∈[k]L({x},t)

µij(A) · ||µij(·|A)− µij(·)||x ≤ exp(−a′ · t), (6)

for appropriatea′ > 0. What the condition in (6) implies is that a “typical” colouring of L({x}, t) in
Gij should have small impact on the Gibbs marginal onx.

3.2 Bounds for Spatial Correlation decay

In this section, we provide the method that we use to derive anupper bound for the quantities that express
spatial correlation decay in Proposition 3.2, i.e.||µij(·|σx) − µij(·|τx)||Λ, for x ∈ V andΛ ⊂ V . The
derivation of these bounds are of independent interest fromthe discussion in the Section 3.1. The method
is based on the well-known “disagreement percolation” coupling construction, from [6].

Consider a configuration space on the vertices ofG such that each vertexv ∈ V is set eitherdis-
agreeingor non-disagreeing. In such a configuration, we callpath of disagreementany simple path
which has all its vertices disagreeing. Given an integers andw ∈ V we letPs,w be theproduct measure
under which each vertexv ∈ V \{w} of degree∆(v) < s is disagreeing with probability 1

s−∆(v) and
non-disagreeing with the remaining probability. Ifs ≤ ∆(v), thenv is disagreeing with probability 1.
The vertexw is set disagreeing with probability 1, regardless of its degree. Using the above concepts we
show the following result.

Theorem 3.1. Consider the graphG = (V,E), v ∈ V , Λ ⊆ V and an integerk > 0. Letµ denote the
Gibbs distribution of thek-colourings ofG. Also, letPk,v denote the product measure defined above. It
holds that

max
σv ,ηv∈[k]{v}

||µ(·|σv)− µ(·|ηv)||Λ ≤ Ps,v[ ∃ path of disagreement connecting{v} andΛ].

The proof of Theorem 3.1 is given in Section 5.
Roughly speaking, we bound||µ(·|σv)−µ(·|ηv)||Λ, in Theorem 3.1, by working as follows: We use

coupling, i.e. we coupleX,Y two random colourings ofG that assign the vertexx colourσv andηv,
respectively. Then, by Coupling Lemma [2] we have that

||µ(·|σv)− µ(·|ηv)||Λ ≤ Pr[X(Λ) 6= Y (Λ)].

The coupling ofX,Y is done by specifying whatY is, givenX. In particular, givenX, we letGX

denote the maximalconnectedsubgraph ofG which contains the vertexv and vertices from the colour
classes specified byσv andηv in the colouringX. Then, we deriveY as follows: For every vertex
u /∈ GX it holds thatY (u) = X(u). Foru ∈ GX if X(u) = σx, thenY (u) = τx and the other way
around3. In Figures 6 and 7 we illustrate this coupling, e.g.σv =“Blue” andηv =“Green”.

3I.e. if X(u) = τx, thenY (u) = σx.
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It is not hard to see that in the above couplingX,Y disagree only on the colour assignments for the
vertices inGX . That is

Pr[X(Λ) 6= Y (Λ)] = Pr[∃Λ′ ⊆ Λ : Λ′ ⊆ GX in the coupling].

Of course, bounding the probability term on the r.h.s. of theinequality above is not a trivial task.
However, we show that the above process (of gettingGX ) is stochastically dominated by an independent
process, i.e. disagreement percolation. That is, we show that

Pr[∃Λ′ ⊆ Λ : Λ′ ⊆ GX in the coupling] ≤ Ps,v[ ∃ path of disagreement connecting{v} andΛ].

4 Application to G(n, d/n)

In this section we show Theorem 1.1, Corollary 1.1 and Corollary 1.2. For technical reasons, which we
discuss later, we require the following sequence of subgraphs.

Sequence of subgraphsG(Gn,d/n): Let r be the greatest index inG(Gn,d/n), e.g. G(Gn,d/n) =
G0, . . . , Gr. The termG0 is an edgeless graph. LetR be the set of all edges inGn,d/n that do not

belong to a cycle of length smaller thanlogn10 log d but they are incident to some vertex that belongs to such
a cycle. There is an indexi0 such that for everyi ≥ i0,Gi differs fromGi−1 in some edge fromR while
for i < i0 no edge from the setR appears inGi.

For0 ≤ i ≤ r consider that the sequence of subgraphsG(Gi) defined as follows:Gi,0 is derived by
Gi by deleting all the edges that connect the sets of verticesL(Ψi, t) andL(Ψi, t+1) wheret = logn

2 log d .

Typically we are in the case wherek, the number of colours, is smaller than the maximum degree of
G(n, d/n)4. Then, there can be situations where(Ci,j)

−1 (defined in Proposition 3.2) andPr[Xi(vi) 6=
Xi(ui)] are very small. According to Proposition 3.2, this can increase the error dramatically. The
analysis implies that these situations arise when the vertices that are involved, i.e.vi, ui, orvij , uij , have
large degrees and belong to small cycles at the same time. It is easy to see that choosingG(n, d/n)
as we describe above, we avoid such undesirable situations for any i < i0. Furthermore, the terms
Pr[Xi,0(vi) 6= Xi,0(ui)] for i ≥ i0 are too few, i.e.O(n0.3), and it turns out that each of them is
bounded away from zero. This implies that their contribution to log(Z(G(n, d/n))) is negligible.

Setting the parametert = logn
2 log d , the component inGi,0 which contains{vi, ui} is w.h.p. a tree with

O(log n) extra edges, for every0 ≤ i < i0. This allows the computation of every Gibbs marginal in
polynomial-time. To be more specific we work as follows:

4The maximum degree inGn,d/n isΘ
(

log n
log log n

)

w.h.p. (see [15])
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Computing Probabilities . The probability termPr[Yi(vi) 6= Yi(ui)], for 0 ≤ i < i0, can be
computed by using Dynamic Programming (D.P.). More specifically, using DP we can compute exactly
the number of list colourings of a treeT . In the list colouring problem every vertexv ∈ T has a set
List(v) of valid colours, whereList(v) ⊆ [k] andv only receives a colour inList(v). For a tree onl
vertices, using dynamic programming we can compute exactlythe number of list colourings in timelk.

For0 ≤ i < i0, the connected component inGi,0 that contains{vi, ui} is a tree with at mostΘ(log n)
extra edges w.h.p. For such component we can consider all thekO(logn) colourings of the endpoints of
the extra edges and for each of these colourings recurse on the remaining tree. Since in our casek is
constant,kO(logn) = nO(1). It follows that the number of list colourings of the connected component,
in Gi,0, that contains{vi, ui} can be counted in polynomial time for everyi. This is sufficient for
computingPr[Yi(vi) 6= Yi(ui)] efficiently5.

The pseudocode of the counting schema for the case ofG(n, d/n) follows.

Counting SchemaG(n, d/n)

Input: G(n, d/n), k
Compute the set of edgesR.
If |R| > n0.3, computelog(Z(Gn,d/n, k)) by exhaustive enumeration.
Compute the sequence of subgraphsG(Gn,d/n).
SetZ = 1
For0 < i < r − |R| do

• Compute the exact value ofPr[Yi(vi) 6= Yi(ui)].

• SetZ = Z · Pr[Yi(vi) 6= Yi(ui)].

End for.
SetZ = Z · kn.

Output: log (Z) /n.

Observe that, above, implicitly we setPr[Yi(vi) 6= Yi(ui)] = 1 for i ≥ i0. It turns out that the error
introduced by working this way is negligible. Theorem 1.1 follows as a corollary of the following two
propositions.

Proposition 4.1. Let ǫ > 0 be a fixed number and letd be sufficiently large. Fork ≥ (2 + ǫ)d
the counting schema computes ann−b-approximation oflogZ(G(n, d/n), k), with probability at least
1− n−a, over the graph instances anda, b > 0 depend onk.

The proof of Proposition 4.1 appears in Section 4.1 and makesa heavy use of Theorem 3.1.

Proposition 4.2. There are real constantsh, s > 0 such that the time complexity for the counting schema
to computelogZ(G(n, d/n), k) isO(ns), with probability at least1− n−h, over the graph instances.

Proof: The theorem follows directly from the paragraph, “Computing Probabilities”, above. ♦

4.1 Proof of Proposition 4.1

First we present a series of results that will be useful for the proof of Proposition 4.1. In all our results
that follow we assume thatǫ > 0 is a fixed number andd > 0 is sufficiently large, i.e.d > d0(ǫ).

5A similar DP approach is also used in [7] and [10].
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Proposition 4.3. Consider the measurePk,x w.r.t. G(n, d/n), for k ≥ (2 + ǫ)d and some vertexx in
the graph. For a set of verticesΨ, letD(l) denote the number of paths of disagreement betweenx and
Ψ, of length at leastl, for any integerl = O(log n). Then, there exists a realγ = γ(k) > 1 such that

Pr[D(l) > 0] ≤
8

ǫ
·
|Ψ|

n
γ−l, (7)

where|Ψ| is the cardinality ofΨ. The probability term above, is w.r.tPk,x and the graph instances.

The proof of Proposition 4.3 appears in Section 4.2. Also, from the proof of Proposition 4.3 it is direct
to deduce the following corollary.

Corollary 4.1. The bound for the probability in (7) holds even if we remove anarbitrary set of edges of
G(n, d/n).

The following lemma is standard. We denote byCl the number of cycles of length at mostl. Also, we
remind the reader that the setR is the set of edges ofG(n, d/n) that do not belong to a cycle of length
smaller than logn

10 log d but they are incident to a vertex that belongs to such a cycle.

Lemma 4.1. With probability at least1 − n−0.19, the following holds: (A)|R| ≤ n0.3. (B)Cl ≤ n0.3,
for l = logn

10 log d . (C) After removing the edges inR fromGn,d/n, each of the cycles of length less than
logn

10 log d becomes isolated from the rest of the graph.

For completeness we present the proof of Lemma 4.1 in Section6.5.

Lemma 4.2. For G(G(n, d/n)), G(Gi) as defined in Section 4 and for constantk ≥ (2 + ǫ)d, the
following holds:

Pr[Ci,j < 2k4, for 0 ≤ i < i0, 0 ≤ j ≤ ri] ≥ 1− n−
log γ

11 log d , (8)

whereCij, γ are defined in the statements of Proposition 3.2 and Proposition 4.3, respectively.

Proof: LetXi,j be a random colouring ofGi,j . We remind the reader that

Cij = max
s,t∈[k]

{

(Pr[Xi,j(ui,j) = s,Xi,j(vi,j) = t])−2
}

.

We show thatCi,j is reasonably small by comparingPr[Xi,j(ui,j) = s|Xi,j(vi,j) = t] with Pr[Xi,j(ui,j) =
s] = 1/k and by showing that these two probability terms do not differmuch. In particular, we have

|Pr[Xi,j(ui,j) = s|Xi,j(vi,j) = t]− Pr[Xi,j(ui,j) = s]| ≤ max
σ,η∈[k]{vi,j}

||µij(·|σ) − µij(·|η)||uij . (9)

Then, we show that with probability at least1− n−
log γ

11 log d for 0 ≤ i < i0 and0 ≤ j ≤ ri it holds that

max
σ,η∈[k]{vi,j}

||µij(·|σ) − µij(·|η)||uij ≤
1

10k
. (10)

Given the above, it is straightforward to verify (8) by using(9) and (10). Then, the lemma follows.
We are going to use Theorem 3.1 to prove (10). For a pair of adjacent verticesx, y in the graph let

Dx,y denote the number of paths of disagreement that start fromx and end iny but they do not use the

edge{x, y}. Also, we let̺x,y = Pk,x[Dx,y > 0]. Finally, given some integers > 1 we letD(s)
x,y denote

the number of paths of disagreement that start formx, end iny and their length is at leasts. Similarly,
let ̺(s)x,w = Pk,x[D

(s)
x,y > 0].
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Let e = {x, y} be a random edge inG(n, d/n) conditional that the shorter cycle that contains it is
of length at least logn10 log d . Let e′ = {x′, y′} be a randomly chosen edge inG(n, d/n). It holds that

E[̺x,y] ≤
1

ψ
E[̺

(l)
x′,y′ ], (11)

wherel denotes the distance between the verticesx andy. Also, ψ is the probability that a randomly
chosen edge inG(n, d/n) does not belong to a cycle shorter thanlogn10 log d . It is straightforward to show

thatψ = 1− o(1). Using Proposition 4.3 and the fact thatl ≥ logn
10 log d we have that

E[̺
(l)
x′,y′ ] ≤

8

ǫ
n
−
(

1+ log γ
10 log d

)

. (12)

From (11) and (12) we get thatE[̺x,y] ≤
10
ǫ n

−
(

1+ log γ
10 log d

)

. From Markov’s inequality we get that

Pr

[

̺x,y ≥
1

10k

]

≤
100k

ǫ
n
−
(

1+ log γ
10 log d

)

.

Let L be number of edges{x, y} in G(n, d/n) such that the shortest cycle that contains each of them
is of length at least logn10 log d and̺x,y ≥ 1

10k . Using the linearity of expectation, it is straightforwardto

show thatE[L] ≤ 60dk
ǫ n

− log γ
10 log d . Applying, Markov’s inequality we get that

Pr[L > 0] ≤
60dk

ǫ
n−

log γ
10 log d . (13)

Observe that the probability for path between two vertices to be a path of disagreement is an increasing
function of the degrees of its vertices (whenk is fixed). From this observation and (13) we have that

for everyvi,j andui,j it holds that̺vi,j ,uij ≤ 1/(10k) with probability at least1 − 60dk
ǫ n−

log γ
10 log d . The

lemma follows by using Theorem 3.1, i.e. it holds that

max
σ,η∈[k]{vi,j}

||µij(·|σ)− µij(·|η)||uij ≤ Pk,vi,j [Dvi,j ,ui,j > 0] = ̺vi,j ,uij .

♦

Lemma 4.3. Letγ be as in the statement of Proposition 4.3. ForG(Gn,d/n) as defined in Section 4 and
for k ≥ (2 + ǫ) the following holds:

• Let I be the set such thati ∈ I, iff the edge{vi, ui} does not belong to any cycle of length less

than logn
10 log d . With probability at least1− n

− log γ
22 log d over the instancesG(n, d/n) it holds that

∣

∣

∣

∣

Pr[Xi(ui) 6= Xi(vi]−

(

1−
1

k

)∣

∣

∣

∣

≤ n
− log γ

21 log d , ∀i ∈ I. (14)

• Let I ′ be the set such thati ∈ I ′, iff the edge{vi, ui} belongs to cycle of length less thanlogn10 log d .

With probability at least1− n−0.19 over the instancesG(n, d/n) it holds that

Pr[Xi(ui) 6= Xi(vi] = Θ(1).
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Proof: First we consider the edges{vi, ui} such thati ∈ I. There, we use the following fact.
∣

∣

∣

∣

Pr[Xi(ui) 6= Xi(vi]−

(

1−
1

k

)∣

∣

∣

∣

≤ max
σ,η∈[k]{vi}

||µi(·|σ) − µi(·|η)||ui ≤ Pk,vi [Dvi,ui > 0],

whereDvi,ui is the number of paths of disagreement inG(n, d/n) that connectvi andui but they do not
use the edge{vi, ui}.

As in the proof of Lemma 4.2, for the verticesx′, y′ we let̺x′,y′ = Pk,x′ [Dx′,y′ > 0]. We work in
the same manner as in the proof of Lemma 4.2 to get tail bounds for ̺x′,y′ , i.e. we get the following:
For a random edge{x, y} such that the shortest cycle that contains it is of length at least logn

10 log d , it holds
that

Pr
[

̺x,y ≥ n
− log γ

20 log d

]

≤
10

ǫ
n
−
(

1+ log γ
20 log d

)

. (15)

Let L be number of edges inG(n, d/n) such that the shortest cycle that contains each of them is of

length at least logn
10 log d and̺x,y ≥ n

− log γ
20 log d . Using the linearity of expectation it is straightforward to

show thatE[L] ≤ 6d
ǫ n

− log γ
20 log d . Applying, Markov’s inequality we get that

Pr[L > 0] ≤
6d

ǫ
n−

log γ
20 log d . (16)

It is immediate that (14) holds.
In the latter case, we considervi andui which belong to small cycle, i.e. of length at mostlogn10 log d .

Such a pair of vertices appears in the schema only when we haveremoved fromGn,d/n all the edges
in R. By Lemma 4.1 we have that with probability at least1 − n−0.19 the removal of the edges inR
disconnects every small cycle from the rest ofGn,d/n. Thus, for the second case, wherevi, ui belong to
a small, isolated cycle,Pr[Xi(ui) 6= Xi(vi] is trivially lower bounded by some constant, sincek ≫ 2.
The lemma follows. ♦

Using Lemma 2.1 and the previous lemmas, in this section, we get the following corollary.

Corollary 4.2. For k ≥ (2+ǫ)d, the log-partition function of thek-colourings ofGn,d/n isΘ(n), w.h.p.

We have all the lemmas we need to show Proposition 4.1.

Proof of Proposition 4.1: Let D be the event that “ (a)r ≤ ρ = dn
2 (1 + n−1/3), (b) maxi{ri} ≤

10dn1/2 log n, (c) |R| ≤ n0.3, (d)mini{Pr[Xi(vi) 6= Xi(ui)]} = Θ(1), (e)maxi,j(Ci,j) ≤ 2k4”.
We remind the reader that we denote withr the number of terms inG(G(n, d/n)), ri the number of

terms inG(Gi), for everyGi ∈ G(G(n, d/n)).

Claim 4.1. It holds thatPr[D] ≥ 1− n−β, for some fixedβ > 0.

Proof: From all the previous results in Section 4.1, it suffices to show thatmaxi{ri} ≤ 5dn1/2 log n
with sufficiently large probability.

Clearly, ri is equal to the number of edges betweenL
(

Ψi,
logn
2 log d

)

andL
(

Ψi,
logn
2 log d + 1

)

in Gi.

The number of vertices at distancelogn2 log d from Ψ is dominated by a Galton-Watson tree oflogn
2 log d levels,

with a number of offspring per individual distributed as inB(n, d/n) and the initial population being 2.
With standard arguments (e.g. see Theorem 6 in [24]), it holds that with probability at least1−n−3, the
number of vertices at levellogn2 log d is at most9n1/2 log n. Clearlyri is at most the sum of degrees of these
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vertices. In turn, this sum is dominated by a sum of9n1/2 log n independentB(n, d/n). It is direct to
derive thatri = 10dn1/2 log n with probability at least1 − n−3, by using Chernoff bounds. The claim
follows. ♦

By Proposition 3.1 we have that

E

[

1

n
| logZ − logZ(G(n, d/n))||D

]

≤
2

n

ρ
∑

i=0

E

[

|Pr[Xi(vi) 6= Xi(ui)]− Pr[Xi,0(vi) 6= Xi,0(ui)]|

Pr[Xi(vi) 6= Xi(ui)]
|D

]

, (17)

where the expectation is over the graph instancesG(n, d/n). Using Proposition 3.2, we have that

E

[

|
Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]

Pr[Xi(vi) 6= Xi(ui)]
||D

]

≤ C · E





ri−1
∑

j=0

Ci,j ·Qij|D



 , (18)

whereC > 0 is a fixed number and

Qi,j = max
σ,τ∈[k]{vij}

{

||µi,j(·|σ) − µij(·|τ)||Ψi∪{ui,j} + ||µi,j(·|σ) − µij(·|τ)||uij

}

.

Clearly (18) holds since, conditioning on eventD, we have a constant lower bound onPr[Xi(vi) 6=
Xi(ui)], for everyi. Also, the following holds: For anyi ≤ i0 we have that

E





ri−1
∑

j=0

Ci,j ·Qij |D



 ≤ 2k4
5dn1/2 logn
∑

j=0

E[Qi,j|D], (19)

since from conditioning onD, it holds thatri ≤ 10dn1/2 log n andCij < 2k4. Also, we have the
following,

E[Qij |D] ≤
E[Qij ]

Pr[D]
≤

35

ǫ
n
−
(

1+ log γ
10 log(d)

)

[asPr[D] > 3/4], (20)

where the bound forE[Qi,j] in the last inequality follows by working exactly as in Lemma4.2. The
quantityγ is defined in Proposition 4.3. We remind the reader than fori < i0 the distance betweenvi,j
andui,j is at least logn

10 log d .
Plugging into (18) the inequalities in (20) and (19), we get the following: For sufficiently largen

and for anyi ≤ i0 we have that

E

[

|
Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]

Pr[Xi(vi) 6= Xi(ui)]
||D

]

≤ n
− 1

2
− log γ

10 log(d) . (21)

From the pseudocode of the schema forG(n, d/n) we have that fori ≥ i0 the schema estimates
Pr[Xi(vi) 6= Xi(ui)] by assuming that they are 1. Assuming that the eventD holds, then, it is not
hard to show that

|Pr[Xi(vi) 6= Xi(ui)]− 1|

Pr[Xi(vi) 6= Xi(ui)]
= Θ(1) for i ≥ i0. (22)

Plugging (21) and (22) into (17) we get that
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E

[

1

n
| logZ − logZ(G(n, d/n))||D

]

≤ 2n
−
(

1/2+ log γ
11 log d

)

.

Using Markov’s inequality we get that

Pr

[

1

n
| logZ − logZ(G(n, d/n), k)| ≥ n−1/4|D

]

≤ 2n
−
(

1/4+ log γ
11 log d

)

.

The proposition follows from the above inequality and the fact thatPr[D] ≥ 1−n−β, for fixedβ > 0. ♦

4.2 Proof of Proposition 4.3

For the proof of Proposition 4.3, we need the following result.

Lemma 4.4. Consider the graphG(n, d/n) and letπ be a permutation ofl + 1 vertices ofGn,d/n,
for 0 ≤ l ≤ Θ(log6 n). Consider, also, the product measurePk,x1 w.r.t. the graphG(n, d/n), where
x1 = π(1) andk ≥ (2 + ǫ)d. SettingΓ = 1 if π is a path of disagreement, otherwiseΓ = 0, it holds
that

E[Γ] ≤

(

d

n

)l

·

(

(

1

(1 + ǫ/2)d
+ d−20

)l

+ 2n− log4 n

)

,

where the expectation is taken w.r.t. bothPk,x1 andG(n, d/n).

Proof: Call π the path that corresponds to the permutationπ, e.g. π = (x1, . . . xl+1). Let Iπ be the
event that there exists the path(x1, . . . , xl+1) in Gn,d/n. It holds that

E[Γ] =

(

d

n

)l

·E[Γ|Iπ],

LetQπ denote the event that the vertices inπ have degree less thanlog6 n. Using Chernoff bounds it is
easy to show thatPr[Qπ|Iπ] ≥ 1− n− log4(n). Also, it holds that

E[Γ|Iπ] = E[Γ|Iπ, Qπ]Pr[Qπ|Iπ] + E[Γ|Iπ, Q̄π]Pr[Q̄π|Iπ]

≤ E[Γ|Iπ, Qπ] + n− log4(n).

It suffices to show that for0 ≤ l ≤ Θ(log6 n) and sufficiently largen it holds that

E[Γ|Iπ, Qπ] ≤

(

1

(1 + ǫ/2)d
+ d−20

)l

. (23)

We show (23) by using induction onl. Clearly for l = 0 the inequality in (23) is true. Assuming that
(23) holds forl = l0, we will show that it holds forl = l0 + 1, as well.

LetDi, denote the event that the vertexxi is disagreeing. It suffices to show that

Pr[Dl0+1| ∧
l0
j=1 Dj , Iπ, Qπ] ≤

1

(1 + ǫ/2)d
+ d−20. (24)

Using the law of total probability, we have that

Pr[Dl0+1| ∧
l0
j=1 Dj , Iπ, Qπ] ≤ Pr[Dl0+1| ∧

l0
j=1 Dj, Iπ, Qπ,∆l0+1 = 0] +

+Pr[∆l0+1 > 0| ∧l0
j=1 Dj, Iπ, Qπ], (25)
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where∆l0+1 is the number of edges that are incident toxl0+1 and some vertex in{x1, . . . , xl0−1}.
Given that all vertices in{x1, . . . , xl0} are disagreeing, letδi be the number of vertices inV \{x1, . . . , xl0}

that are adjacent toxi, for 1 ≤ i ≤ l0. If δi = t, then all the possible subsets ofV \{x1, . . . , xl0} with
cardinalityt are equiprobably adjacent toxi. This implies that the probability forxl0+1 to be adjacent

to xi is E[δi]
n−l0

. By the linearity of expectation we have

E[∆l0+1| ∧
l0
j=1 Dj , Iπ, Qπ] ≤

1

n− l0

l0
∑

s=1

E[δs| ∧
l0
j=1 Dj , Iπ, Qπ] ≤ n−0.97, (26)

the last inequality follows from the fact thatl0 ≤ Θ(log6 n) and all the expectations in the sum are upper
bounded bylog6 n, due to conditioning onQπ. By (26) and Markov’s inequality, we get that

Pr[∆l0+1 > 0| ∧l0
j=1 Dj , Iπ, Qπ] ≤ n−0.97. (27)

Also, we have that

̺ = Pr[Dl0+1| ∧
l0
j=1 Dj , Iπ, Qπ,∆l0+1 = 0]

≤
k−3
∑

j=0

1

k − 2− j

(

n

j

)

(d/n)j(1− d/n)n−j +
n−2
∑

j=k−2

(

n

j

)

(d/n)j(1− d/n)n−j

≤
1

(2 + ǫ)d/2

(2+ǫ)d/2
∑

j=0

(

n

j

)

(d/n)j(1− d/n)n−j +

n−2
∑

j=(2+ǫ)d/2+1

(

n

j

)

(d/n)j(1− d/n)n−j

≤
1

(2 + ǫ)d/2
+ exp (−cd) , (28)

wherec = log c′ − 1 + 1/c′ andc′ = (1 + ǫ/2). The last inequality follows from Chernoff bounds, i.e.
Corollary 2.4 in [15]. Plugging (28) and (27) into (25), for larged we get that

Pr[Dl0+1| ∧
l0
j=1 Dj , Iπ, Qπ] ≤

1

(1 + ǫ/2)d
+ d−20.

That is, (24) is true. The lemma follows. ♦

Proof of Proposition 4.3:Consider an enumeration of all the permutations oft ≥ l vertices inG(n, d/n)
with first the vertexx and last some vertex ofΨ. Let π0(t), π1(t), . . . be the permutations in the order
they appear in the enumeration. Also, w.r.t. the graphG(n, d/n), consider the product measurePk,x as
it is defined in the statement of Theorem 3.1. LetΓi(t) be the random variable such that

Γi(t) =

{

1 the path that corresponds toπi(t) is a path of disagreement
0 otherwise.

Let, also,Γ(t) =
∑

i Γi(t).
Let E = 1 if the event“there is no path of disagreement that starts fromx and has length larger

thant0 =
10 logn
log(1.04) ” occurs andE = 0 otherwise. It holds that

Pk,x1





∑

t≥l

Γ(t) > 0



 ≤ Pk,x1





∑

t≥l

Γ(t) > 0|E = 1



Pk,x1 [E = 1] + Pk,x1[E = 0]

≤ Pk,x1





∑

l≤t<t0

Γ(l) > 0



+ Pr[E = 0]. (29)
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For convenience, we let̺= Pk,x1

[

∑

t≥l Γ(t) > 0
]

, ̺1 = Pk,x1

[

∑

l≤t<t0
Γ(l) > 0

]

and̺2 = Pr[E =

0]. The proposition follows by deriving an appropriate upper bound forE[̺], where the expectation is
taken w.r.t. graph instances. For this we bound appropriately E[̺1] andE[̺2] and use the following
inequality (which follows from (29))

E[̺] ≤ E[̺1] + E[̺2]. (30)

It holds that

E[̺1] ≤
∑

l≤t<t0

∑

i

E[Γi(t)]

≤
∑

l≤t<t0

|Ψ|

n
dt ·

(

(

1

(1 + ǫ/2)d
+ d−20

)t

+ 2n− log4 n

)

,

where in the last inequality we use Lemma 4.4 and the fact thatbetweenx1 andΨ there are at most
|Ψ| · nt−1 paths of length exactlyt. Sincet ≤ log2 n, it is direct that

E[̺1] ≤
∑

l≤t<t0

|Ψ|

n
(1 + ǫ/4)−t ≤

4 + ǫ

ǫ

|Ψ|

n
(1 + ǫ/4)−l. (31)

Observe thatPk,x1 [E = 0] ≤ Pk,x1 [H(t0) > 0], whereH(t0) denotes the number of paths of disagree-
ment of lengtht0 that start from vertexx1. Note that the paths thatH(t0) counts do not necessarily end
in Ψ. By Markov’s inequality, we have that

Pk,x1 [E = 0] ≤ EP [H(t0)].

Clearly, the above implies thatE[̺2] ≤ E[H(t0)], where the expectations is taken w.r.t. bothPk,x1 and
the graph instances. We use Lemma 4.4 to boundE[H(t0)] and we get that

E[̺2] ≤ nt0
(

d

n

)t0
(

(

1

(1 + ǫ/2)d
+ d−20

)t0

+ 2n− log4 n

)

[from Lemma 4.4]

≤

(

1

1 + ǫ/4

)log2 n

+ n−
1
2
log4 n. (32)

The proposition follows by plugging (31) and (32) into (30). ♦

4.3 Proof of Corollary 1.1

For proving the corollary we are going to use Lemma 2.1. In particular, it suffices to have the following:
W.h.p overG(n, d/n) all but a vanishing fraction of the probability termsPr[X(vi) 6= X(ui)] are
within distanceo(1) from

(

1− 1
k

)

. Also, the remaining probability terms, i.e. those which are not close
to
(

1− 1
k

)

are bounded well away from zero.
The corollary follows immediately from Lemmas 4.1, 4.3. That is, consider the sequence of sub-

graphG(G(n, d/n)) we have for the counting algorithm. From Lemma 4.3 and Lemma 4.1 we have that
w.h.p. the situation is as follows: There is a set of indicesI such that for everyi ∈ I it holds that

|Pr[X(vi) 6= X(ui)]−

(

1−
1

k

)

| ≤ n
− log γ

21 log d . (33)
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For the rest indices, i.e.i /∈ I it holds that

|Pr[X(vi) 6= X(ui)]−

(

1−
1

k

)

| = Θ(1). (34)

From Lemma 2.1 we can write1n log(Z(G(n, d/n), k)) as follows:

1

n
logZ(G(n, d/n), k) = k +

1

n

r
∑

i=1

logPr[X(vi) 6= X(ui)]

= k +
1

n

∑

i∈I

logPr[X(vi) 6= X(ui)] +
1

n

∑

i/∈I

logPr[X(vi) 6= X(ui)],

while from Lemma 4.1 we get that w.h.p.|I| ≥ n−O(n3/10 log n). We derive upper and lower bounds
for 1

n logZ(G(n, d/n), k) by working as follows:

1

n
logZ(G(n, d/n), k) ≤ k +

|I|

n

((

1−
1

k

)

+ n−
log γ

21 log d

)

+
n− |I|

n

≤ k +
d

2

(

1−
1

k

)

+ 2n
− log γ

21 log d , (35)

where in the last inequality we used the lower bound for the cardinality of the setI. Working in exactly
the same manner we get the lower bound for1

n logZ(G(n, d/n), k). The corollary follows.

4.4 Proof of Corollary 1.2

Consider the following sequence of subgraphsG(Gn,d/n) (different than what we used previously): The
term-graphG0 is edgless. There is an indexi1 such that for0 < i ≤ i1, Gi contains all the edges that
belong to cycles of length at mostlogn10 log d in Gn,d/n and only these edges. We refer to the cycle of length

less than logn
10 log d as “small cycles”.

Let S(n, d) be the set of instances ofGn,d/n which have (A)Θ(n) edges, (B)i1 ≤ Θ(n0.3 log n)

and (C) eachB(vi,
logn

4 log(e2d/2)
) is either a tree or unicyclic.

We are going to show that for everyG ∈ S(n, d) and every termGi ∈ G(G) such thati ≥ i1, we
can verify in polynomial time that

||µ(·|σvi)− µ(·|ηvi)||ui ≤ n−ǫ1 , (36)

whereǫ1 > 0 . Then the corollary follows by using standard arguments, i.e. from Lemma 2.1 and from
the fact that

∣

∣Pr[Xi(ui) 6= Xi(vi)]−
(

1− 1
k

)∣

∣ ≤ maxσ,η∈[k]{vi} ||µi(·|σ)− µi(·|η)||ui .
The value ofǫ1 in (36) depends on the functionh(n, k, d) andi1. For i < i1 it direct to see thatGi

is so simple that we can computePr[Xui 6= Xvi ] exactly. Theorem 3.1 and Corollary 4.1 suggest that

||µ(·|σvi)− µ(·|ηvi)||ui ≤ Pk,vi [ ∃ path of disagreement connecting{vi} and{ui}]. (37)

wherePk,vi is the product measure defined in Section 3.2 and it is taken w.r.t graphGn,d/n\{vi, ui}.

For i > i1 it holds thatdist(vi, ui) ≥
logn

10 log(d) in Gn,d/n\{vi, ui}. Consider, now, the event

Evi,c = “∃ a path of disagreement that connectsvi with L(vi, c log n) in Gn,d/n\{vi, ui}” .

For each pairvi ui define

ai = min

{

dist(vi, ui)

log n
, (4 log(e2d/2))−1

}

.
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Noting that, for fixedc1 > c2 it holds thatPk,vi [Evi,c1 ] ≤ Pk,vi [Evi,c2], we get that

Pk,vi [∃ path of disagreement connecting{vi} and{ui} in Gn,d/n\{vi, ui}] ≤ Pk,vi [Evi,ai ]. (38)

By (36) (37) and (38), we can verify (36) by using the criterion Pk,vi(Evi,ai) ≤ n−ǫ1. It remains to
show thatPk,vi(Evi,ai) ≤ n−ǫ1, for i ≥ i1, can be verified in polynomial time. LetTvi,ai be the set of
all simple paths that connectvi toL(vi, ai log n), it holds that

Pk,vi [Evi,ai ] ≤
∑

m∈Tvi,ai

Pk,vi [“m is a path of disagreement”]. (39)

The computation of each probability term on the r.h.s. of theabove inequality can be carried out in
polynomial time. It suffices to show that w.h.p. the number ofthese terms is polynomially large.

Using Lemma 2.1 from [10] we get that for everyi > i1 the subgraphB(vi, ai log n) ofGn,d/n\{vi, ui},
is a tree with at most an extra edge, with probability at least1−n−0.1. In this case, the number of simple
paths betweenvi andL(vi, ai log n) is at most2|L(vi, ai log n)|. Also, with standard arguments (e.g. see
Theorem 6 in [24]), it holds that with probability at least1− o(n−2), |L(vi, ai log n)| ≤ n0.26 log n, for
everyi > i1. That is, for everyi > i1, |Tvi,ai | is polynomially large with probability at least1− 2n−0.1.
Thus, the probability term on the l.h.s. of (39) can be computed efficiently, for anyi > i1, w.h.p.

Using the arguments in the paragraph above and Lemma 4.1 it isdirect to show thatPr[G(n, d/n) ∈
S(n, d)] ≥ 1 − 3n−0.1. Also, it is direct that we can decide whetherG(n, d/n) ∈ S(n, d) or not,
efficiently. The corollary follows

5 Bounds for spatial correlation decay - Proof of Theorem 3.1

For some finite graphG = (V,E) and some sufficiently large integerk, letµ(·) be the Gibbs distribution
of thek-colourings ofG. Forx ∈ V , Λ ⊆ V andσx, ηx ∈ [k]{x}, we are interested in deriving upper
bounds for following quantity

||µ(·|σx)− µ(·|ηx)||Λ. (40)

Towards bounding the above quantity we introduce two randomvariablesXσ,Xη ∈ [k]V distributed as
in µ(·|σx) andµ(·|ηx), respectively. We coupleXσ andXη and we use the following inequality from
the Coupling Lemma (see [2]),

||µ(·|σx)− µ(·|ηx)||Λ ≤ Pr[Xσ(Λ) 6= Xη(Λ) in the coupling].

We provide a upper bound for the probability of the event “Xσ(Λ) 6= Xη(Λ)” in the coupling, in terms
of k and the degrees of the vertices inG by using “disagreement percolation”, [6]. In Section 5.1 we
describe the coupling betweenXσ andXτ .

5.1 The coupling for the comparison

LetΩσ andΩη denote thek-colourings ofG that assign the vertexx colourσx andηx, respectively. For
the coupling ofXσ andXη we need to develop, first, a bijectionT : Ωσ → Ωη as follows:

Givenξ ∈ Ωσ, we letGξ = (Vξ, Eξ), induced subgraphofG, be defined as follows: In the colouring
ξ, let Vσ andVη be the colour classes specified by the coloursσx andηx, respectively. ThenGξ =
(Vξ, Eξ) is the maximal, connectedgraph such thatx ∈ Vξ andVξ ⊆ Vσ ∪ Vη. That is,Gξ is the
maximal, connected, induced subgraph ofG which containsx and vertices only from the colour classes
Vσ andVη, in the colouringξ. Then, givenGξ, we deriveTξ by working as follows: For every vertex
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u /∈ Gξ it holds thatξ(u) = (Tξ)(u). Foru ∈ Gξ if ξ(u) = σx, then(Tξ)(u) = ηx. Also, if ξ(u) = ηx,
then(Tξ)(u) = σx.

In Figures 6 and 7, in Section 3.2, we illustrate how does the mappingT work. Of course, it is not
direct thatT is a bijection. For this we provide the following lemma.

Lemma 5.1. It holds thatT : Ωσ → Ωη is a bijection.

Proof: For the colouringξ ∈ Ωσ, considerGξ = (Vξ, Eξ) as defined above. We need to focus on three
properties thatGξ has. First, it is easy to see thatGξ should be bipartite (in the extreme case where
Vξ = {x} we considerGξ bipartite too). Second,Gξ is connected due to the way we consider it. Third,
the fact thatGξ is maximal implies the following: if∂Vξ = {v ∈ V \Vξ|{v, u} ∈ E for u ∈ Vξ}, then
∀v ∈ ∂Vξ it holdsξv /∈ {σx, ηu}.

Clearlyξ specifies a proper2-colouring for the vertices ofGξ that uses only the coloursσx andηx.
In particular, letp1, p2 ⊆ Vξ be the two parts ofGξ and w.l.o.g. assume thatx belongs top1. Then,ξ
assigns to all the vertices inp1 the colourσx and to all the vertices inp2 the colourηx. In that terms,
the mappingT works as follows: For every vertexv ∈ V \Vξ to hold (Tξ)v = ξv. For the remaining
vertices, i.e. those that belong toGξ, the mappingT swaps the colour assignments of the two parts of
Gξ. First we show thatT maps every colouring ofΩσ toΩσ.

Claim 5.1. For everyξ ∈ Ωσ it holds that(Tξ) ∈ Ωη.

Proof: It is direct that(Tξ)x = ηx. It remains to show thatTξ is a proper colouring ofG.
If Tξ is a non proper colouring, then there should be , at least, twoadjacent vertices (somewhere in

G) having the same colour assignment. The swap of colour assignments that take place, when we apply
T on ξ, involves only vertices inVξ. Thus if (Tξ) is a non proper colouring, then the monochromatic
pair of adjacent vertices has either both vertices inVξ or one vertex inVξ and the other in∂Vξ.

It is direct that swapping the colour assignments of the two parts ofGξ, as these are specified by
ξ, leads to a proper colouring ofGξ . Thus, inTξ there is no monochromatic pair whose both vertices
belong toGξ. Also, this swap of colourings cannot lead some vertex inVξ to have the same colour
assignment with some vertex in∂Vξ. This is due to the maximality ofGξ, i.e. the colouringξ cannot not
specify colour assignment that uses the coloursσx andηx for any vertex in∂Vξ. Thus, for everyξ ∈ Ωσ,
it holds thatTξ is a proper colouring ofG. The claim follows. ♦

It remains to show thatT is a bijection. The next claim shows thatT is a surjective.

Claim 5.2. T is surjective.

Proof: Let ξ′ be any member ofΩη. We are going to show that there existsξ ∈ Ωσ such thatTξ = ξ′.
For the colouringξ′, letGξ′ = (Vξ′ , Eξ′) be the maximal, connected bipartite subgraph ofG such

thatx ∈ Vξ′ and∀v ∈ Vξ′ it holdsξ′v ∈ {σx, ηx}, (i.e.Gξ′ is derived in a similar way asGξ, above).
The colouringξ′ specifies a proper2-colouring forGξ′ that uses only the coloursσx andηx. Let

p1, p2 ⊆ Vξ be the two parts ofGξ′ and w.l.o.g. assume thatξ′ assigns to all the vertices inp1 the colour
ηx and to all the vertices inp2 the colourσx.

Consider the colouringξ which is derived byξ′ by swapping the colour assignments of the two parts
of Gξ′ while ξv = ξ′v for v ∈ V \Vξ′ . With arguments similar to those in the proof of Claim 5.1 we can
see thatξ ∈ Ωσ. The claim follows by noting, additionally, thatTξ = ξ′. ♦

In the following claim we show thatT is one-to-one.

Claim 5.3. T is one-to-one.
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Proof: Assume that there are two colouringsξ1, ξ2 ∈ Ωσ such thatTξ1 = Tξ2 = ξ3. We are going to
show that it should holdξ1 = ξ2. For this, assume the opposite, i.e.ξ1 6= ξ2. We consider the graphs
Gξ1 Gξ2 andGξ3, as in the proofs of the two previous claims. By the proofs of these claims we know
that the graphsGξ1 ,Gξ2 andGξ3 have the same subset of vertices ofG.

Thus, we conclude that the colouringsξ1 andξ2 should differ only on the colour assignment of the
vertices in the graphGξ1 . We remind the reader that this graph is a connected bipartite graph withξ1

andξ2 specifying proper 2-colourings forGξ1 which both using the colours{σx, ηx}.
By assumption, the 2-colouring forGξ1 thatξ1 specifies is different than that ofTξ1. The same holds

for colouring ofξ2 andTξ2. SinceTξ1 = Tξ2 we deduce that there exist three different 2-colourings
for Gξ1 . There is a contradiction, here, since there can exist only two 2-colourings forGξ1 . The claim
follows. ♦

Since the mappingT : Ωσ → Ωη is surjective (Claim 5.2) and one-to-one (Claim 5.3), it is abijection.
The lemma follows. ♦

Lemma 5.2. There exists a coupling ofXσ withXη such that

Xη = TXσ.

Proof: The existence of the bijectionT implies that|Ωσ| = |Ωη|. Thus∀ξ ∈ Ω(G, k, σx) it holds that

µ (ξ|σx) = µ ((Tξ)|ηx) =
1

|Ωσ|
.

This implies thatPr[Xσ = ξ] = Pr[Xη = Tξ], ∀ξ ∈ Ωσ. The lemma follows by noting that




∑

ξ∈Ωσ

Pr[Xσ = ξ]



 = 1 and





∑

ξ∈Ωσ

Pr[Xη = (Tξ)]



 = 1.

♦

Let ν : [k]V × [k]V → [0, 1] denote the joint distribution of the colouringsXσ andXη in the coupling
whereXη = TXσ. We close the section by providing a very useful property ofν, which we use in the
disagreement percolation.

Lemma 5.3. For everyu ∈ V \{x}, letNu be the set that contains all the vertices which are adjacent
to the vertexu in G. Also, letBu ⊆ [k]Nu × [k]Nu be defined such that

Bu = {ξ ∈ [k]Nu × [k]Nu |ν(ξ) > 0}.

If k > ∆, then it holds that

max
τ∈Bu

ν(Xσ(u) 6= Xη(u)|τ) ≤
1

k −∆u

where∆u is the degree of vertexu in G.

Proof: Let GX = (VX , EX), denote the induced subgraph ofG such thatv ∈ GX if and only if
Xσ(v) 6= Xη(v), in the coupling. We remind the reader that under bothXσ andXη, GX is coloured
using only the coloursσx andηx.

There are two necessary conditions for some vertexv ∈ V \{x} to be inVX . The first one is that
some vertex inNu should, also, belong toVX . This is due to the fact thatGX is connected. The
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second is the following one: Assume thatw1 ∈ Nu andw1 ∈ VX . If there existsw2 ∈ Nu\{w1} and
Xσ(w2) ∈ {σx, ηx}, then it should holdXσ(w1) = Xσ(w2). This should hold under bothXσ andXη,
GX is coloured using only the coloursσx andηx.

Considering the two previous conditions the worst case ofXσ(Nu) is the following: At least one
vertex inNu belongs toVX , call this vertexw. No vertex inNu uses the colour{σx, ηx}\{Xσ(w)}.
Xσ(Nu) is such that the number of different colour that are used is equal to|Nu|. In that case the prob-
ability of u to belong toVX is 1

k−∆u
. The lemma follows. ♦

Lemma 5.3 assumes thatk > ∆, otherwise it holds

max
τ∈Bu

ν(Xσ(u) 6= Xη(u)|τ) ≤ 1.

5.2 Proof of Theorem 3.1

By Theorem 1 and Corollary 1.1 in [6], and Lemma 5.3 we get that

||µ(·|σx)− µ(·|ηx)||Λ ≤ Pk,x[∃ path of disagreement between{x} and a vertex inΛ].

We have to remark here that the coupling on which the disagreement percolation is based, has the
following property: Lett be the minimum integer such that there is no path of disagreement connecting
x to L(x, t). Then, our coupling specifies that no vertex inL(x, t′), for t′ ≥ t can be disagreeing. This
is a crucial property of our coupling, since otherwise we could not apply the disagreement percolation
technique (see [13]).

6 Rest of the Proofs

6.1 Proof of Proposition 3.1

Let
erri = |Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]| for 0 ≤ i ≤ r − 1.

It holds that

logZ =
r−1
∑

i=0

log(P [Yi(vi) 6= Yi(ui)]) + logZ(G0, k)

≤
∑r−1

i=0 log (P [Xi(vi) 6= Xi(ui)] + erri) + logZ(G0, k)

≤
∑r−1

i=0 log (P [Xi(vi) 6= Xi(ui)]) +
∑r−1

i=0 log
(

1 + erri
P [Xi(vi)6=Xi(ui)]

)

+ logZ(G0, k)

≤ logZ(G, k) +
r−1
∑

i=0

log

(

1 +
erri

P [Xi(vi) 6= Xi(ui)]

)

≤ logZ(G, k) +

r−1
∑

i=0

erri
P [Xi(vi) 6= Xi(ui)]

.

The final derivation follows by the fact thatlog(x) is an increasing function (the base is of the logarithm
is e > 1) and by1 + x ≤ ex, for anyx. Similarly we get the lower bound forlog(Z). The theorem
follows.
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6.2 Proof of Proposition 3.2

Proposition 3.2 follows as a corollary of the two following lemmas.

Lemma 6.1. It holds that

|Pr[Xi(vi) 6= Xi(ui)]− Pr[Yi(vi) 6= Yi(ui)]| ≤
ri−1
∑

j=0

||µi,j(·)− µi,j+1(·)||Ψi .

Proof: Let µi,j be the Gibbs distribution of thek-colourings ofGi,j . It holds that

|Pr[Xi(vi) 6= Xi(ui)]−Pr[Xi,0(vi) 6= Xi,0(ui)]| ≤ max
A⊆[k]Ψi

|µi,0(A)−µi,ri(A)| ≤ ||µi,0(·)−µi,ri(·)||Ψi

By the triangle inequality we get that||µi,0(·) − µi,ri(·)||Ψi ≤
∑ri−1

j=0 ||µi,j(·) − µi,j+1(·)||Ψi ♦

Lemma 6.2. LetΛ be any subset of vertices ofGi,j that does not containvi,j andui,j . It holds that

||µi,j(·)−µi,j+1(·)||Λ ≤ Ci,j max
σ,τ∈[k]{vi,j}

{

||µi,j(·|σ) − µi,j(·|τ)||Λ∪{uij} + ||µi,j(·|σ) − µi,j(·|τ)||{uij}

}

whereCij = Ci,j(Gi,j , k) = maxs,t∈[k]
{

(Pr[Xi,j(ui,j) = s|Xi,j(vi,j) = t])−2
}

.

Proof: Let Ωi,j denote the set ofk-colourings ofGij andµij the uniform distribution overΩi,j. It is
straightforward that

||µi,j(·) − µi,j+1(·)||Λ ≤ max
σ,τ

||µi,j(·|σΨi,j )− µi,j+1(·|τΨi,j )||Λ,

whereτ varies inΩi,j+1 andσ varies inΩi,j. By the fact thatΩi,j+1 ⊆ Ωi,j and by the conditional
independence, it holds thatµi,j+1(·|τΨi,j ) = µi,j(·|τΨi,j ). Hence, we have that

||µi,j(·)− µi,j+1(·)||Λ ≤ max
σ,τ

||µi,j(·|σΨi,j )− µi,j(·|τΨi,j )||Λ. (41)

By definition (see (4)), there exists a setA ⊆ [k]Λ such that

||µi,j(·|σΨi,j )− µi,j(·|τΨi,j )||Λ = |µi,j(A|σΨi,j )− µi,j(A|τΨi,j )|.

Let Qij = µij(τuij |τvij ) − µij(σuij |σvij ). Using elementary probability theory relations we get the
following:

|µi,j(A|σΨi,j )− µi,j(A|τΨi,j )| ≤

∣

∣

∣

∣

µi,j(A, τuij |τvij )

µi,j(τuij |τvij )
−
µi,j(A, σuij |σvij )

µi,j(σuij |σvij )

∣

∣

∣

∣

≤

∣

∣

∣

∣

µi,j(A, τuij |τvij )

µi,j(σuij |σvij ) +Qij
−
µi,j(A, σuij |σvij )

µi,j(σuij |σvij )

∣

∣

∣

∣

≤

∣

∣

∣

∣

µi,j(A, τuij |τvij )

µi,j(σuij |σvij )
−
µi,j(A, σuij |σvij )

µi,j(σuij |σvij )

∣

∣

∣

∣

+

+
|Qi,j|

µi,j(τuij |τvij )µi,j(σuij |σvij )
.

It is direct to see that

|µi,j(A, τuij |τvij )− µi,j(A, σuij |σvij )| ≤ max
τ,σ

||µi,j(·|τvij )− µi,j(·|σvij )||Λ∗

|µij(τuij |τvij )− µij(σuij |σvij )| ≤ max
τ,σ

||µi,j(·|τvij )− µi,j(·|σvij )||uij ,

whereΛ∗ = Λ ∪ {uij}. The lemma follows. ♦
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6.3 Proof of Lemma 2.1

Consider the sequence of subgraphsG(G) = G0, . . . , Gr, wherer = |E| andG0 is empty. Consider,
also, the following telescopic relation

|Ω(G, k)| = |Ω(G0, k)| ·
r−1
∏

i=0

|Ω(Gi+1, k)|

|Ω(Gi, k)|
= kn ·

r−1
∏

i=0

|Ω(Gi+1, k)|

|Ω(Gi, k)|
.

The lemma will follow by showing that

Pr[Xi(ui) 6= Xi(vi)] =
|Ω(Gi+1, k)|

|Ω(Gi, k)|
.

The above relation clearly holds by noting the following: The set ofk-colourings ofGi+1 is the same as
the subset ofk-colourings ofGi that contains all the colourings that assignvi andui different colours.
The lemma follows.

6.4 Proof of Lemma 3.1.

||µ(·|σx)− µ(·)||Λ =
1

2

∑

σΛ∈[k]Λ

|µ(σΛ|σx)− µ(σΛ)|

=
k

2
µ(σx)

∑

σΛ∈[k]Λ

|µ(σΛ|σx)− µ(σΛ)|

=
k

2

∑

σΛ∈[k]Λ

µ(σΛ)|µ(σx|σΛ)− µ(σx)|

≤
k

2

∑

σΛ∈[k]Λ

µ(σΛ)
∑

τx∈[k]

|µ(τx|σΛ)− µ(τx)|

≤ k
∑

σΛ∈[k]Λ

µ(σΛ)||µ(·|σΛ)− µ(·)||x.

Noting that it holds

||µ(·|σx)− µ(·|τx)||Λ ≤ ||µ(·|σx)− µ(·)||Λ + ||µ(·) − µ(·|τx)||Λ,

the lemma follows.

6.5 Proof of Lemma 4.1

Let ǫ = 1/(10 log(d)). Assume that after removing all the edges inR there are two cycles of length at
mostǫ log n which are connected, i.e. these two cycles share edges. Then, there must exist a subgraph
of Gn,d/n that contains at most2ǫ log n vertices while the number of edges exceeds by 1, or more, the
number of vertices.

Let D be the event that inGn,d/n there exists a set ofr vertices which haver + 1 edges between
them. Forr ≤ ǫ log n we have the following:

Pr[D] ≤

ǫ logn
∑

r=1

(

n

r

)(
(r
2

)

r + 1

)

(d/n)r+1(1− d/n)(
r
2)−(r+1)

≤

ǫ logn
∑

r=1

(ne

r

)r
(

r2e

2(r + 1)

)r+1

(d/n)r+1 ≤
e · d

2n

ǫ logn
∑

r=1

(

e2d

2

)r

≤
C

n

(

e2d

2

)ǫ logn

.
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Having ǫ · log(e2d/2) < 1, the quantity in the r.h.s. of the last inequality iso(1), in particular it is of
orderΘ(nǫ log(e

2d/2)−1). Thus, forǫ = 1/(10 log(d)) there is no connected component that contains
two cycles with probability at least1− n−0.85.

LetCl denote the number of cycles of length at mostl inG(n, d/n). It is direct to show thatE[Cl] ≤
2dl. Furthermore,E[Cǫ logn] ≤ 2n1/10. It is not hard to see that the expected number of edges whose
one end is on a cycle of length less thanǫ log n isO(n1/10 log2 n). That isE[|R|] = O(n1/10 log2 n).

Employing the Markov inequality, we havePr[|R| ≥ n3/10] = O(n−0.2/ log2 n)whilePr[Cǫ logn ≥
n3/10] ≤ 2n−0.2. The lemma follows.
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