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Abstract

Let G be a simple graph that is properly edge coloured with m colours and let
M = {M1, . . . ,Mm} be the set of m matchings induced by the colours in G. Suppose
that m 6 n − nc, where c > 9/10, and every matching in M has size n. Then G
contains a full rainbow matching, i.e. a matching that contains exactly one edge from
Mi for each 1 6 i 6 m. This answers an open problem of Pokrovskiy and gives an
affirmative answer to a generalisation of a special case of a conjecture of Aharoni and
Berger.

Related results are also found for multigraphs with edges of bounded multiplicity,
and for hypergraphs.

Finally, we provide counterexamples to several conjectures on full rainbow match-
ings made by Aharoni and Berger.

1 Introduction

Throughout this paper the setting is a multigraph G whose edges are properly coloured with
m colours, so that each colour i induces a matching Mi. We say that G contains a full
rainbow matching if there is a matching M that contains exactly one edge from Mi for each
1 6 i 6 m. This paper is motivated by the following conjecture of Aharoni and Berger [1,
Conj. 2.4].

Conjecture 1 If G is bipartite and each matching Mi has size m + 1 then G has a full
rainbow matching.
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Consider a k × n array A. A partial transversal of length ` in A is a selection of ` cells
of A from different rows and columns, and containing different symbols. A transversal of A
is a partial transversal of length min(k, n). If A has no repeated symbol within a row it is
called row-Latin. We say that A is Latin if it and its transpose are both row-Latin. If k = n
and A is Latin and contains exactly n symbols, then A is a Latin square. Conjecture 1 was
motivated by a longstanding conjecture of Stein [25], that every (n− 1)×n row-Latin array
has a transversal. This is equivalent to the restriction of Conjecture 1 to the case where each
matching covers the same set of vertices on one side of the bipartite graph. Stein’s conjecture
was in turn motivated by the question of what length of partial transversal can be guaranteed
to exist in a Latin square. His conjecture implies that every Latin square of order n has a
partial transversal of length n−1 (this statement was independently conjectured by Brualdi
slightly earlier; see [26] for a full survey of these conjectures and related results). The best
result to date is by Hatami and Shor [14], who showed that every Latin square of order n
has a partial transversal of length n − O(log2 n). It is known that for even orders n there

are at least nn
3/2(1/2−o(1)) (equivalence classes of) Latin squares that do not have transversals

[10]. However, a famous conjecture of Ryser [24] states that all Latin squares of odd order
have transversals. In terminology similar to Conjecture 1, Ryser’s conjecture is that if G is
Km,m and m is odd, then G should have a full rainbow matching. This conjecture is known
to fail if a single edge is removed from Km,m. Also there are Latin arrays of odd order n
containing more than n symbols but having no transversal (again, see [26] for details).

Barát and Wanless [8] considered an intermediate step between Conjecture 1 and its
variant (that we know fails) with m + 1 replaced by m. They showed that bm/2c − 1
matchings of size m + 1 together with m− bm/2c+ 1 matchings of size m need not have a
full rainbow matching. They also constructed m matchings of size m inducing a bipartite
multigraph with m vertices in the first part of the bipartition and m2/2 − O(m) in the
second part, and with no rainbow matching. This raises the question of how large one part
can be before a rainbow matching is unavoidable. In [9] it is shown that if one part has m
vertices and the other has at least

⌈
1
4
(5−

√
5)m2

⌉
vertices then there will be a full rainbow

matching. Clearly, the threshold is quadratic in m for this problem. However, things change
significantly if the induced bipartite graph must be simple. Montgomery, Pokrovskiy and
Sudakov [21], showed in that case that if one part has m vertices and the other has at least
εm2 vertices then there will be many full rainbow matchings. Also Keevash and Yepremyan
[18] showed that if one part has m vertices and the other has at least m399/200 vertices then
there will be a full rainbow matching. In particular, the threshold for this variant of the
problem is subquadratic.

The first progress towards Conjecture 1 was by Aharoni, Charbit and Howard [3], who
showed that n matchings of size b7n/4c must have a full rainbow matching. The b7n/4c term
was successively improved to b5n/3c by Kotlar and Ziv [19], then (3 + ε)n/2 by Clemens
and Ehrenmüller [11], and then d3n/2e+ 1 by Aharoni, Kotlar and Ziv [4]. Finally, for any
fixed ε > 0, Pokrovskiy [23] showed that if the matchings are edge-disjoint (so that G is
simple) then n matchings of size (1 + ε)n have a full rainbow matching when n is sufficiently
large. He also posed two challenges regarding improving the error term in his result (we
make some progress in this direction) and generalising to bipartite multigraphs (a feat he
himself achieved in [22]).
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A related result is due to Häggkvist and Johansson [13], who showed that if the matchings
are all perfect and edge-disjoint then n matchings of size (1 + ε)n can be decomposed into
full rainbow matchings, provided n is sufficiently large.

All the results discussed so far pertain to bipartite graphs. So far, this case has attracted
more scrutiny than the unrestricted case. However, Aharoni et al. [2] and Barát, Gyárfás and
Sárközy [7] both consider the question of how large a rainbow matching can be found across
any set of matchings. The former paper makes a conjecture which includes this variant of
Conjecture 1 as a special case:

Conjecture 2 If each matching has size m+ 2 then G has a full rainbow matching.

It is not viable to replace m + 2 by m + 1. For example, a 1-factorisation of two copies of
K4 provides 3 matchings of size 4 that do not possess a full rainbow matching.

Our aim is to investigate approximate versions of Conjecture 2. Our main result is an
analogue of Pokrovskiy’s Theorem from [23], but without the requirement that G is bipartite.
Our results in this direction are stated in the next section, and include some information on
the role of the maximum degree of the graph G. Related to this, in §7, we discuss and refute
several further conjectures on full rainbow matchings made by Aharoni and Berger [1] and
Aharoni et al. [2]. In particular, both papers include the following conjecture, which turns
out not to be true.

Conjecture 3 Let G be a bipartite multigraph, with maximum degree ∆(G), whose edges
are (not-necessarily properly) coloured. If every colour appears on at least ∆(G) + 1 edges,
then G has a full rainbow matching.

Finally, we note that the main result in a recent preprint of Keevash and Yepremyan [17]
implies that in any multigraph with edge multiplicities o(n) that is properly edge-coloured
by n colours with at least n(1 + ε) edges of each colour, there must be a rainbow matching
that is close to full.

2 Main results

Recall our setting: G is a multigraph that is properly edge coloured with m colours, and
matching Mi is induced by colour i. Let M = {M1, . . . ,Mm} denote the family of m
matchings. We say M is non-intersecting if G is a simple graph, i.e. if Mi ∩Mj = ∅ for
every 1 6 i < j 6 m. Otherwise, it is called intersecting. Let ∆(M) = ∆(G) denote the
maximum degree of G.

Theorem 4 Suppose that 0 6 δ < 1/4 and 0 < c < (1− 4δ)/10 and n is sufficiently large.
If M is a non-intersecting family of m 6 (1 − n−c)n1+δ matchings, each of size n, and
∆(M) 6 (1− n−c)n, then M contains a full rainbow matching.

Clearly, for any M we always have ∆(M) 6 m. Thus by taking δ = 0, we immediately
have the following corollary.
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Theorem 5 Suppose that 0 < c < 1/10 and n is sufficiently large. If M is a non-
intersecting family of m 6 (1 − n−c)n matchings, each of size n, then M contains a full
rainbow matching.

Remark: Theorem 5 proves an approximate version of Conjecture 2, and thus of Conjec-
ture 1. Compared with [22] we get better approximation by improving m from (1−o(1))n to
n−n9/10+ε and of course Theorem 5 also approximates the non-bipartite case of Conjecture 2.
However Theorem 5 does not cover the multigraph case, whereas [22] does.

Remark: One can ask about possible strengthenings of this theorem. For instance, Aharoni
and Berger [1, Conjecture 2.5] conjectured essentially that one can drop the upper bound
on m, and even drop the condition that each element of M is a matching, as long as
∆(M) 6 n − 1. It turns out that their conjecture is false, as shown by a graph whose
components are double stars, which we give in §7. But the question for matchings remains
open.

Our proof for Theorem 4 easily extends to intersecting M where the underlying graph
G is a multigraph with relatively low multiplicity.

Theorem 6 For every ε0 > 0, if M is a family of m 6 (1− ε0)n matchings, each of size n,
and every edge is contained in at most

√
n/ log2 n matchings, thenM contains a full rainbow

matching.

The proof of Theorem 4 also immediately extends to rainbow matchings in uniform
hypergraphs. A hypergraph G = (V,E) is defined on a set of vertices V where the set E of
hyperedges is a set of subsets of V . We say G is a k-uniform hypergraph if every hyperedge
has size k. A matching M in G is a set of hyperedges such that no vertex in G is contained
in more than one hyperedge in M .

Theorem 7 For every ε0 > 0 and every integer k > 2, ifM is a family of m 6 (1−ε0)n edge
disjoint matchings in a k-uniform hypergraph H, each of size n, and every pair of vertices
is contained in at most

√
n/ log2 n hyperedges, then M contains a full rainbow matching.

Remark: If we restrict further by saying that every pair of vertices is contained in at most
a constant number of hyperedges, then Theorem 7 holds if we replace m 6 (1 − ε0)n by
m 6 (1 − n−1/10+ε0)n. That is, we can fully recover Theorem 5 for arbitrary k > 2. This
indeed covers some interesting families of hypergraphs such as linear hypergraphs where no
two vertices are contained in more than one hyperedge. By further restricting the maximum
degree of G, improved bounds on m can be achieved with minor modification of the proof.
Similarly the bound on m in Theorem 6 can easily be improved by restricting to smaller
multiplicity, or placing additional constraints on the maximum degree. We will not develop
this idea further in this paper.

3 A heuristic approach

In this section, we give a simplified description of the algorithm we use for full rainbow
matchings, and also a heuristic argument as to why we expect it to successfully find the full
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rainbow matching required for Theorem 4. The actual proof, showing that all aspects work
as intended, will be given in §4.

Given a nonintersecting family M of m matchings of size n, we do the following.
First, randomly partitionM into subfamilies containing about εm matchings each, which

we call “chunks”. Here ε is a function of n.
Next, “process” the chunks iteratively using the following three steps in iteration i.

(i) Pick one edge u.a.r. from each of the matchings in chunk i. Any picked edge x that is
not incident to any other is added to the rainbow matching M0 that will be outputted,
and the end vertices of x are deleted from the graph. Edges that “collide” with others
are not added (but see step (iii)).

(ii) For each vertex surviving the first step, calculate the probability that it was deleted,
and then artificially delete with such a probability to ensure that all vertices have
the same probability of surviving these first two steps of the iteration. (A suitable
probability will be specified in the precise analysis of the algorithm.)

(iii) For any matching M containing a “colliding” edge in step (i), greedily choose a re-
placement edge x in M to add to M0 and delete the end vertices of x from the graph.

These steps are performed for all chunks except the last, which is treated instead by greedily
choosing edges from the remaining matchings. (We will show that this is highly likely to
succeed.)

We now give a rough overview of the analysis of the algorithm. Let τ denote the number
of iterations of the algorithm, i.e. the number of chunks. (For definiteness, we call the
treatment of the last chunk an “iteration”, even though it is treated differently to the other
chunks.) Also, let djv(i) denote the number of edges of chunk j that are (still) incident with
vertex v after iteration i. We will specify functions g and r, and the correct probabilities in
step (ii), for the following to hold iteratively for each i = 1, . . . , τ − 1 and all j > i:

(a) after iteration i, all surviving matchings have size approximately r(iε)n;

(b) djv(i) ≈ εg(iε)dv for all surviving vertices v, where dv is the degree of v initially (in G).

Here the sign ≈ is used to denote some version of concentration around the stated value.
Specific versions of (a) and (b) are proved using the initial concentration, together with

an inductive argument that computes the expected changes in the variables concerned during
each iteration and shows concentration close to the expected changes. The precise inductive
statements are chosen with a margin of error that rigorously contains the effect of collisions,
so we will ignore these in the outline here. Our estimates are least accurate near the end
of the algorithm, which is why we use a greedy algorithm at that stage. This final iteration
works because there are few matchings left compared to their remaining sizes.

Here is an outline of why we expect the algorithm to succeed. Initially we have |M | = n
for all matchings M . Since the matchings are randomly allocated into chunks, we expect the
initial setup to satisfy

djv(0) ≈ εdv, for all j > 1 and v ∈ G.
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Assume that the first i iterations of the algorithm are complete. For iteration i + 1, we
specify the probability of v being artificially deleted in step (ii) so that the probability of
surviving the first two steps is f(iε) for every remaining vertex. Then for every vertex v that
survives iteration i+ 1, the expected change in djv(i) (j > i) is

E(djv(i+ 1)− djv(i)) ≈ −f(iε)djv(i), (1)

since each of v’s neighbours is deleted with probability f(iε). (Here we ignore collisions and
the effect of step (iii), as mentioned above.) Hence, the degrees of two different vertices
remain roughly in the same proportion as long as they both survive.

For each matching in chunk j, the expected change in its size while chunk i is processed
is roughly

− 2f(iε)|M(i)|, (2)

neglecting what will turn out to be an O(ε2n) error from the case that the two ends of an
edge in M are both deleted.

Consider a vertex v that has survived i iterations. During iteration i+ 1, each matching
in chunk i+ 1 has one of its edges chosen. So, using (a) above, any given edge in a matching
in chunk i + 1 that is incident with v is chosen with probability p ≈ 1/

(
r(iε)n

)
. This

means that the probability that v is not deleted in step (i) of iteration i + 1 is roughly

(1− p)di+1
v (i) ≈ 1− pdi+1

v (i), and hence the probability that it is deleted here is roughly

di+1
v (i)

r(iε)n
.

With this in mind, we can define f(iε) so that it is approximately equal to the maximum
value of this probability over all v, which is determined by the maximum vertex degree.
(We also add a little elbow-room to account for the collisions.) Then the probability can
be appropriately specified in step (ii). We can find the maximum value by tracking the
maximum degree via (1). Let γn denote the maximum degree of the initial graph G. By
our assumption in Theorem 4, γ 6 1− n−c. Using (b), we find that the approximate size of
maxv d

j
v(i) is εg(x)γn, where x = iε. We have

f(x) ≈ εg(x)γn

r(x)n
=
εγg(x)

r(x)
.

Letting f̂(x) = γ g(x)
r(x)

, we have f(x) ≈ εf̂(x). Then, if the size of each matching is

approximated, as mentioned in (a), by r(iε)n, equation (1) suggests (as ε→ 0, and applying
it to a vertex of maximum degree) the differential equation

g′(x) = −f̂(x)g(x) = −γ g(x)2

r(x)
.

Similarly, (2) suggests
r′(x) = −2γg(x).

But then dg/dr = g/2r which gives r = Cg2. Initially, r(0) = 1 and g(0) = 1 which yields
C = 1. So, the solution to these differential equations is

r(x) = (1− γx)2 , g(x) = 1− γx. (3)
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Thus, we have djv(i) ≈ ε(1 − γiε)dv for every surviving vertex v. For those vertices whose
degrees are initially lower than the maximum degree, the derivative is proportionally lower,
and hence the degrees stay in proportion. The process cannot ‘get stuck’ until the error
in the approximation in assumption (a) becomes significantly large compared to r(x). The
function r(x) is positive for all 0 6 x 6 1, because our hypothesis ∆(M) 6 (1 − n−c)n
guarantees that 1− γx > n−c > 0. Thus, if the error of approximations is small enough (as
we shall show), the process proceeds until the last iteration. The final (greedy) iteration is
shown to work using the previous analysis to estimate the size of the remaining matchings.
Note that g(x) tends to zero along with r(x).

The astute reader may have noticed that, in this above sketch of proof, all we needed
from assumption (b) was an upper bound on all vertex degrees, and this is the approach we
will take in the formal proof in the following section. Thus, we will replace assumption (b)
by

(b′) djv(v) 6 εg(iε)γn for all j > i and all surviving vertices v.

4 Algorithm and proof

In this section, we define the algorithm precisely and then analyse it to prove Theorem 4.

4.1 The algorithm

Let M = {M1,M2, . . . ,Mm} be a non-intersecting family of matchings, each of size n. The
algorithm has an initial stage, then some repeated iterations, then one final iteration. The
initial stage consists of the following. First order the matchings in M uniformly at random
(u.a.r.). Then, for some ε > 0 of our choosing, partition M into “chunks” M1,M2, . . .
whereM1 contains the first dεme matchings,M2 contains the next dεme matchings, and so
on, up to the last chunk, which contains at most dεme matchings. For ease of calculations,
we will choose ε so that εm is an integer.

We next define some notation useful in defining the iterations of the algorithm. Let G
be the graph induced by ∪M∈MM , and let V be its vertex set. For any u ∈ V , let Eu
denote the set of edges in G that are incident with u. During the algorithm, vertices are
removed from consideration for several distinct reasons, which we discuss shortly. The set
U(i) is the set of vertices that were removed at some point during the first i iterations.
After i iterations, vertices in V \ U(i) are said to be surviving and matchings are said to be
surviving if they do not belong to the first i chunks. Edges are said to be surviving if both
their endpoints are surviving vertices and they are part of a surviving matching. At any
point in the algorithm M0 denotes the set of edges added so far to the rainbow matching
(initially M0 = ∅). The graph G(i) denotes the graph with vertex set V \U(i) and edge set⋃
j>iMj restricted to V \U(i). For all matchings M ∈M, we let M(i) denote M ∩E(G(i))

andMj(i) = {M(i) : M ∈Mj}. Let E(Mj(i)) = ∪M∈MjM(i), so that E(Mj(i)) is the set
of edges in matchings in chunk j that still survive after iteration i. The above definitions
are all intended to apply to the i = 0 case in the obvious way, with U(0) = ∅, G(0) = G,
and so on.
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After the initial stage, the algorithm performs iterations consisting of the three steps
below. We consider the situation after i > 0 iterations have been completed, and describe
how to perform the (i+ 1)-st iteration. For simplicity, we describe certain edges and vertices
being deleted from G(i) as the algorithm progresses. More accurately, the algorithm takes
a copy of G(i) at the start of the (i + 1)-st iteration and edits this copy, which will end up
becoming G(i+ 1).

We assume that f is a given function (and will specify a particular one below).

(i) For each M ∈ Mi+1(i), choose one edge in M u.a.r.. Let Ψ(i + 1) denote the set of
edges that are chosen. Vertices incident with edges in Ψ(i+ 1) are called marked. For
x ∈ Ψ(i+ 1), if x ∩ y 6= ∅ for some y ∈ Ψ(i+ 1), we say there is a vertex collision
involving x. For each x ∈ Ψ(i+ 1) not involved in such a collision, add x into M0 and
delete the end vertices of x from G(i); vertices deleted this way are called “killed”.

(ii) Independently delete each existing vertex v in G(i) with probability Pi+1(v) where

Qi+1(v) + Pi+1(v)(1−Qi+1(v)) = f(iε),

and Qi+1(v) denotes the probability that v is marked in step (i). Vertices deleted this
way are called “zapped”. If Pi+1(v) < 0 or Pi+1(v) > 1 for some v then restart the
algorithm.

(iii) Deal with vertex collisions greedily. Let Φ(i+ 1) denote the set of matchings in chunk
i+ 1 that are not processed yet due to a vertex collision in step (i). Sequentially for
each M ∈ Φ(i + 1), choose a valid edge x ∈ M using a greedy algorithm; e.g. choose
x incident with a vertex with the lowest index. Add x into the rainbow matching M0

and delete the end vertices of x from the remaining graph. Unmark any vertices that
were marked but not deleted.

The final iteration of the algorithm consists of treating the last chunk of matchings. Here
edges are chosen greedily one by one from those matchings. A simple observation is as
follows. If we choose an edge x that can validly be added to M0, then the removal of the end
vertices of x will decrease the size of each remaining matching by at most 2. Hence, when
the algorithm comes to process the last chunk, if the sizes of the remaining matchings are
all at least twice the number of matchings remaining, then a full rainbow matching will be
successfully completed by the greedy method.

We repeat the following definitions from §3. Let γn denote the maximum degree of the
initial graph G, let djv(i) denote the number of edges of chunk j that are (still) incident with
vertex v after iteration i, and let τ denote the number of iterations of the algorithm. We
have τ = dm/(εm)e = d1/εe.

4.2 Proof of Theorem 4

We first change the definition of γ slightly from §3: from now on, set γ = 1 − n−c. By
the hypotheses of the theorem, we may assume that M is non-intersecting and contains
m = bγn1+δc matchings each of size n, and ∆(M) 6 γn. (This exact value of m is achieved
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by adding, if necessary, new matchings that are vertex-disjoint from all previous ones. This
does not affect ∆(M) or the existence of a full rainbow matching.) Let ε > 0 be a function
of n, to be specified later, such that n−1/3 < ε = o(1). Recall that τ = d1/εe is the number
of iterations of the algorithm. It must be noted that our randomised algorithm only applies
to the first τ − 1 iterations.

For simplicity, we let ri and gi denote r(iε) and g(iε), respectively, where r(·) and g(·)
are given in (3). For 0 6 i 6 τ − 1, we will specify non-negative real numbers ai and bi
such that at the start of the (i + 1)-st iteration of the algorithm, the following hold with
probability 1− o(ε):

(A1) every surviving matching has size between rin− ai and rin+ ai, and

(A2) every surviving vertex v satisfies

djv(i) 6 εγgin+ bi, for all j > i.

Values of the function f required in step (ii) of the (i+ 1)-st iteration will be defined by

f(iε) = εγ
gi
ri

+ ci (4)

where ci > 0 will also be specified.
The proof is by induction. For the base case, i = 0, we regard the state at the start of the

first iteration. The initial graph is G = G(0) and we define a0 = 0 and b0 = (εγn)1/2 log n.
Then (A1) is trivially true. To verify (A2) holds for i = 0, we need to consider the variation
in degrees caused by the initial random permutation of the matchings.

Lemma 8 With probability 1− o(ε), property (A2) holds for i = 0.

Proof. Here djv(0) is determined by the random permutation π of matchings in M. Ob-
viously Edjv(0) = εdv 6 εγn. We will apply McDiarmid’s inequality [20, Theorem 1.1] to
prove concentration. Let λ denote the median of djv(0). Observe that

• interchanging two elements in π can affect djv(0) by at most % = 1, because all edges
incident with v in G(0) belong to different matchings;

• for every s > 0, if djv(0) > s then there is a set of s elements {i1, . . . , is} ⊆ [m] such
that π(i1), . . . , π(is) certifies djv(0) > s.

By McDiarmid’s inequality, for any t > 0,

P(|djv(0)− λ| > t) 6 4 exp

(
− t2

16(λ+ t)

)
. (5)

It follows immediately that

|Edjv(0)− λ| 6 E|djv(0)− λ| 6
∫ ∞
t=0

4 exp

(
− t2

16(λ+ t)

)
dt

6
∫ λ

t=0

4e−t
2/32λdt+

∫ ∞
t=λ

4e−t/32dt = O(
√
λ+ 1).
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This implies that λ = Edjv(0) +O
(

1 +
√
Edjv(0)

)
. Since Edjv(0) 6 εγn→∞ as n→∞, we

have λ 6 εγn+O(
√
εγn). Hence, (5) with t = 1

2

√
εγn log n = b0/2 yields

P
(
|djv(0)− λ| > b0/2) = exp(−Ω(log2 n)),

since 16(λ + t) = O(εγn) = O(t2/ log2 n). As λ 6 εγn + o(b0), this means P(djv(0) >
εγn + b0) = o(n−6). Taking union bound over the O(mn) = O(n2+δ) choices for v and
O(m) = O(n1+δ) choices for j, we can conclude that with probability 1 − o(ε) we have
djv(0) 6 εγn+ b0 for every v and j.

This verifies (A2) for i = 0.

Next assume the claim holds for some i > 0, i.e., we assume (A1) and (A2) hold after the
first i iterations of the algorithm. Note that most edges in Ψ(i+ 1) will have their endpoints
killed in step (i) whereas some will survive due to vertex collision. We say a vertex is
condemned if it is either zapped or marked. We desire each vertex to be condemned with
probability f(iε) as specified in (4). This is made use of in step (ii). Of course, we require
that 0 6 Pi+1(v) 6 1, which is true if Qi+1(v) 6 f(iε) 6 1. By (A1), after the i-th iteration
every surviving matching has size at least rin − ai, which implies that the probability of a
given edge being chosen is at most 1/(rin−ai). From (A2), the degree of a vertex is at most
εγgin+ bi, so we have

Qi+1(v) 6
εγgin+ bi
rin− ai

.

Hence, Qi+1(v) 6 f(iε) would be guaranteed by

εγgin+ bi
rin− ai

6 εγ
gi
ri

+ ci. (6)

We will appropriately define non-negative ai, bi and ci with the following constraints:

ai < rin/2, bi 6 εγgin, ci 6 εγgi/ri 6 1/2, (7)

Note that requiring ci 6 εγgi/ri 6 1/2 ensures that we satisfy f(iε) 6 1. So our definitions
of these numbers just need to satisfy (6) and (7) for appropriate ε, and allow (A1) and (A2)
to hold with i replaced by i+ 1. At this point we add the requirement that

ε ∼ n−α, where 0 < α < 1/3 is fixed, (8)

with further conditions on ε to be imposed later, usually indirectly via conditions on α. Note
that since m = Ω(n) and α < 1/3, for any such α we can always find such an ε for which
εm is an integer. One implication we will use is that

ε2 > 1/n (9)

for n sufficiently large.
In order to show that condition (A1) is satisfied after the (i+ 1)-st iteration, we need to

estimate |M(i + 1)| for any M ∈ Mj(i), where j > i + 1. First, we bound the number of
edges in M that have at least one end vertex condemned in step (i) or (ii). We also call such
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edges condemned. Given uv ∈M(i), we know that the probability that u (or v) is condemned
after step (ii) is f(iε). However, while the probability that a vertex is condemned in iteration
(i+ 1) is the same for all surviving vertices, vertices are not condemned independently. The
following lemma shows that the probability that both u and v will be condemned is O(f(iε)2).
Note: the constants implicit in our O(·) notation are absolute. In the interest of continuity,
we state the lemmas we need to prove Theorem 4 below, and discuss some aspects of their
proofs, but defer their proofs to §4.3.

Lemma 9 If u and v are distinct vertices in G(i), then the probability that both u and v
are condemned in iteration i+ 1 is O(f(iε)2).

From this lemma, the probability that the edge uv is condemned is 2f(iε) + O(f(iε)2).
By linearity, the expected number of condemned edges in any given surviving matching
M(i) ∈Mj(i) in the (i+ 1)-st iteration is

(
2f(iε) +O(f(iε)2)

)
|M(i)|. Next, we address the

effect of vertex collisions on the size of the surviving matchings. The following two lemmas
bound the expected number of vertex collisions, and size of Φ(i+ 1), respectively.

Lemma 10 Let Xu be the number of edges incident with u that are chosen in step (i), and
let Yu = XuIXu>2. With probability 1− o(ε),

Yu = O

(
max

{
εgi
r2i n

di+1
u (i), log2 n

})
.

Lemma 11 With probability 1− o(ε), we have |Φ(i)| = O(εf(iε)m+
√
εm log n).

Thus, the treatment of vertex collisions does not change the size of each matching ob-
tained from step (ii) significantly. The number of edges that are condemned but do survive,
or are not condemned in steps (i) and (ii) but are deleted in step (iii), is bounded by O(|Φ(i)|).
It also follows from Lemma 11 that step (iii) will not usually fail, as the number of matchings
to be treated in that step is usually of much smaller order than rin, the approximate size of
each matching.

Using such considerations, we are able to show that with high probability, the size of
each surviving matching is concentrated around its expectation.

Lemma 12 With probability 1− o(ε), for every M ∈Mj(i) and j > i+ 1, we have

|M(i+ 1)| =
(
1− 2f(iε) +O(f(iε)2)

)
|M(i)|+O(εf(iε)m+

√
εm log n).

This provides us with enough information to specify ai+1 as required for (A1) after iteration
i+ 1.

Next we consider (A2). This requires us to bound djv(i+1) for all j > i+1. Recall from §3
that Ev denotes the set of edges in G that are incident with v. Let E = Ev∩E(Mj(i)). Since
every vertex in G(i) is condemned with probability f(iε), by linearity, the expected number
of edges in E that are condemned is f(iε)djv(i), if v survives after the i-th iteration. Again,
Lemma 11 ensures that the effect from vertex collision is small. This yields the following
lemma.

11



Lemma 13 With probability 1− o(ε), for every v ∈ G(i+ 1) and j > i+ 1,

djv(i+ 1) 6 (1− f(iε))djv(i) +O

(
εgi
r2i n

)
di+1
v (i) +O(

√
εm log n).

This lemma is strong enough for us to choose bi+1 appropriately.
We are now ready to complete the proof of Theorem 4. We first write the requirements

for (the i+ 1 versions of) (A1), (A2) and (6) to be satisfied, using the inductive hypothesis,
and then determine ai+1, bi+1 and ci so as to satisfy these requirements as well as (7). We
have

|M(i+ 1)| − ri+1n = T1 + T2 + T3 (10)

where

T1 = |M(i+ 1)| − |M(i)| = −2f(iε)|M(i)|+O
(
f(iε)2|M(i)|+ εf(iε)m+

√
εm log n

)
,

(by Lemma 12)

T2 = |M(i)| − rin,
T3 = (ri − ri+1)n = 2εγngi +O(ε2γ2n),

where the last equation holds since r′(x) = −2γg(x) and r′′(x) = 2γ2. Now

−2f(iε)|M(i)|+ 2εγngi = −2f(iε)T2 − 2cirin

and hence (10) gives

|M(i+ 1)|− ri+1n =
(
1− 2f(iε)

)
T2− 2cirin+O(f(iε)2|M(i)|+ εf(iε)m+

√
εm log n+ ε2n).

It is an easy observation that (A1) implies |T2| 6 ai, and this, along with (7) yields
f(iε)2|M(i)| = O(ε2ng2i /ri) = O(ε2n). Indeed, f(iε) = O(εgi/ri) and thus, (A1) is sat-
isfied after iteration i+ 1 provided that we define

ai+1 = C0

(
ε2gim/ri +

√
εm log n

)
+ 2cirin+ ai

(
1− 2εγgi

ri

)
, (11)

where C0 is a sufficiently large constant (subsequently to have a further condition imposed
on it). Note that ε2n is absorbed by ε2gim/ri.

For (A2), we first rewrite

djv(i+ 1)− εγgi+1n = djv(i+ 1)− εγgin(1− f(iε)) + εγn
(
gi − gi+1 − gif(iε)

)
.

By the definition of g, we have gi − gi+1 = εγ. Also, gif(iε) > εγg2i /ri = εγ as ci > 0. Hence,
using Lemma 13 to bound the value of djv(i + 1) occurring in the right hand side, we have
(using di+1

v (i) = O(εgin) by (A2) and (7))

djv(i+ 1)− εγgi+1n 6 (1− f(iε))
(
djv(i)− εγgin

)
+O

(
ε2g2i /r

2
i +
√
εm log n

)
.

Thus, (A2) is satisfied after iteration i+ 1 provided that for a sufficiently large constant C0,

bi+1 = (1− f(iε))bi + C0

(
ε2g2i /r

2
i +
√
εm log n

)
. (12)
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We choose C0 sufficiently large to satisfy the bounds on it implied in deriving both (11) and
(12). As part of the induction we are going to ensure the following strengthening of the
constraints on ai and bi in (7) (justified below):

ai 6 ξrin, bi 6 ξεgin for some fixed function ξ = ξ(n)→ 0. (13)

Then it follows that (6) is satisfied for n sufficiently large, provided we choose

ci =
εγaigin(1 + 2ξ)

r2i n
2

+
bi(1 + 2ξ)

rin
6
εγaigi(1 + 2ξ)

r2i n
+

2ξεγgi
ri

. (14)

To complete the induction to the end of step τ − 1, it only remains to check the growth
rates of ai, bi and ci and see that they satisfy (7) and (13) (for an appropriate ξ), which can
be assumed for smaller values of i by induction.

Plugging (14) into (11) and using (13) we get

ai+1 6 Ai +Biai (15)

where

Ai = C0

(
ε2gim/ri +

√
εm log n

)
+ 4bi, (16)

Bi =
2εγgi(1 + 2ξ)

ri
+ 1− 2εγgi

ri
= 1 +

4ξεγgi
ri

.

If we turn the inequality (15) into an equality, we obtain a recurrence whose solution,
from initial condition a0 = 0, is easily solved, and thus (since all coefficients are positive)
implies

ai 6
i−1∑
j=0

Aj

i−1∏
k=j+1

Bk. (17)

Recall that the number of iterations the algorithm takes is τ = d1/εe. For any i 6
d1/εe − 1,

i−1∏
k=j+1

Bk 6 exp

(
(4εγξ)

i−1∑
k=j+1

1

1− εγk

)

= exp

(
(4ξ + o(1))

∫ (εγ)i

(εγ)j

(1− x)−1dx

)
6 (1− γ)o(1) = no(1) (18)

since γ = 1− n−c.
We have by iterating (12) (ignoring the negative term, which turns out to give no signif-

icant help) that

bi 6 b0 + iC0

(
ε2g2i /r

2
i +
√
εm log n

)
6 (1 + iC0)

√
εm log n+ iC0ε

2/ri, (19)
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recalling that b0 =
√
εγn log n and, as observed at the start of §4.2, m = bγn1+δc. This

easily establishes the bound on bi in (13) as long as

1

2
>

3

2
α +

δ

2
+ c, c < 1/3. (20)

Now we turn to ai. Substituting (19) into (16) gives

Aj = O
(
ε2gjm/rj + j

√
εm log n+ jε2/rj

)
. (21)

Using this and (18) in (17), and the bound i 6 d1/εe − 1 gives

ai 6 no(1) ·O

(
i−1∑
j=0

ε2gjm/rj +
i−1∑
j=0

j
√
εm log n+

i−1∑
j=0

jε2/rj

)
.

We can approximate
∑i−1

j=0 ε
2gjm/rj and

∑i−1
j=0 jε

2/rj as follows:

i−1∑
j=0

ε2gjm/rj = O

(
εm

∫ (εγ)i

0

1

1− x
dx

)
= O(εm log(1/(1− γ))) = O(εm log n),

and
i−1∑
j=0

jε2/rj = O

(∫ (εγ)i

0

x

(1− x)2
dx

)
= O(1/(1− γ)) = O(nc),

It then follows that

ai = no(1) ·O
(
εm+

√
mε−3/2 + nc

)
as the logarithmic factors are absorbed by no(1). Since τ = d1/εe, we have τ − 1 6 1/ε, and
thus rτ−1 > (1 − γ)2 = n−2c. As r is monotonically decreasing, and recalling that γ = n−δ,
m ∼ n1+δ, and ε ∼ n−α from (8), the above estimate for ai implies the bound for ai required
in (13), provided that

1− 2c > max
{
− α + 1 + δ, (1 + δ + 3α)/2, c

}
.

As mentioned before, the first two bounds in (7) follow from (13). The upper bound on ci
in (7) follows immediately from its definition in (14), in view of (13). Also, since gi 6 1, we
have the (final) upper bound, 1/2, in (7) provided

2c < α + δ.

In summary, if these last two inequalities hold, as well as (20), then we have (7) and (13) .
These three inequalities follow if we ensure that

δ + 2c− α < 0,
3

2
α +

δ

2
+ 2c <

1

2
, c < 1/3. (22)

By the theorem’s hypothesis that c < (1− 4δ)/10, there exists α satisfying these conditions
as well as the original α < 1/3 from (8). (Note that the bound c < 1/3 already follows from
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the theorem’s hypothesis.) We conclude that (A1) and (A2) are satisfied by induction, and
hence with probability 1− o(1), the algorithm runs successfully to the end of the second-last
iteration. Moreover, at the beginning of the last iteration, each surviving matching has size
at least rτ−1n− aτ−1 > rτ−1n/2 by (13).

Now we argue that with probability 1−o(1), the algorithm finds a full rainbow matching
in the last iteration. The first inequality in (22) gives

2εm 6
n1−2c

2
6
rτ−1n

2
(23)

for large n. There are at most εm matchings remaining in the last iteration. So we can
greedily choose one edge from each matching sequentially, since 2εm 6 rτ−1n/2, by (23).

4.3 Proofs of lemmas

Proof of Lemma 9. Vertices u and v are both marked in step (i) if either

uv ∈ E(Mi+1(i)) and uv is chosen; or

one edge in E(Mi+1(i)) ∩ Eu is chosen and another edge in E(Mi+1(i)) ∩ Ev is chosen.

This probability is at most

1

rin− ai
+

di+1
u (i)

rin− ai
· d

i+1
v (i)

rin− ai
= O

(
ε
gi
ri

)2

= O(f(iε)2), (24)

because of (7) and (9), which imply that 1/(rin − ai) = O(ε2g2i /r
2
i ). Vertices u and v are

both condemned (marked or zapped) after step (ii) if and only if

they are both marked in step (i); or

one is condemned, and the other is zapped in step (ii).

We have shown the probability of the first case is O(f(iε)2). The probability of the second
case is at most

f(iε)Pi+1(v) + f(iε)Pi+1(u) = O(f(iε)2).

This is because the probability of condemning u is at most f(iε) and conditional on u being
condemned and v not being killed (with probability at most 1), the probability that v is
zapped is at most Pi+1(v), as vertices are zapped independently in step (ii). The lemma
follows.

Proof of Lemma 10. Recall that Xu denotes the number of edges incident with u that are
chosen in step (i), and Yu = XuIXu>2. Immediately we have Xu − 1 6 Yu 6 Xu. Note that

Yu 6 Xu(Xu − 1) =
∑

x,y∈Eu∩E(Mi+1(i))

IxIy,

where Ix is the indicator variable that x is chosen, and the summation is over all ordered
pairs (x, y). For each u ∈ G(i), u is incident with di+1

u (i) 6 εγgin+ bi edges in E(Mi+1(i)).
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Note that all edges in Eu ∩ E(Mi+1(i)) must belong to different matchings and therefore
{Ix : x ∈ Eu ∩E(Mi+1(i))} are independent variables. Thus, the probability that any given
x and y are both chosen is at most

(rin− ai)−2.
Hence,

EYu 6
(
di+1
u (i)

)2
(rin− ai)−2 = O

(
εgi
r2i n

)
di+1
u (i).

It follows immediately that

EXu 6 1 +O

(
εgi
r2i n

)
di+1
u (i),

as Xu 6 1 + Yu. Note that Xu =
∑

x∈Eu∩E(Mi+1(i)) Ix, which is the sum of independent

indicator variables. Applying Chernoff’s bound, we obtain that with probability 1− o(ε),

Yu 6 Xu 6 max{2EXu, log2 n} = O

(
max

{
εgi
r2i n

di+1
u (i), log2 n

})
, ∀u ∈ G(i).

The lemma follows.

Proof of Lemma 11. Let Y =
∑

u∈G(i) Yu where Yu is defined as in lemma 10. Then

|Φ(i+ 1)| 6 Y . Thus it immediately follows that

E|Φ(i+ 1)| 6 EY =
∑
u

EYu = O

(
εgi
r2i n

)∑
u

di+1
u (i).

By (A1),
∑

u d
i+1
u (i) 6 2(rin+ ai) · εm. Thus,

E|Φ(i+ 1)| = O

(
ε2mgi
ri

)
= O(εf(iε)m).

Apply Azuma’s inequality to |Φ(i + 1)|. Changing the choice x to another edge y in a
matching M would affect |Φ(i + 1)| by at most 3. To see this, let x = uv and y = u′v′. A
matching M ′ that was in Φ(i + 1) could be removed after changing x to y, if z ∈ M ′ was
chosen, and z is the only chosen edge, besides x, that is incident with u (or v). There can
only be at most two such matchings. So changing x to y would decrease |Φ(i + 1)| by at
most 3, counting M itself. Similarly, changing x to y would increase |Φ(i + 1)| by at most
3. Thus, by Azuma’s inequality with Lipschitz constant 3, we have that with probability
1− o(ε), |Φ(i+ 1)| = E|Φ(i+ 1)|+O(

√
εm log n) = O(εf(iε)m+

√
εm log n).

We will use the following Azuma-Hoeffding inequality to prove concentration of various
variables.

Theorem 14 ([6, 15]) Let X0, X1, . . . be a martingale satisfying |Xi−Xi−1| 6 δi for every
i > 1. Then, for every t > 0,

P
(
|Xn −X0| > t

)
6 2 exp

(
−t2
/

2
n∑
i=1

δ2i

)
.
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Proof of Lemma 12. We have argued that

E
(
|M(i+ 1)|

∣∣G(i)
)

=
(
1− 2f(iε) +O(f(iε)2)

)
|M(i)|+O(εf(iε)m+

√
εm log n), (25)

where the main term comes from considering the edges that are condemned, and the error
term accounts for a correction term due to vertex collision, by Lemma 11.

For concentration, first consider X, the number of edges chosen in Ψ(i+1) in M ∈Mj(i)
in step (i). Let EX = Y1, . . . , Yεm = X be the Doob’s martingale constructed by the
conditional expectation of X under the edge exposure process where edges in Ψ(i + 1) are
revealed sequentially. Apply Theorem 14 to the martingale (Yi). It is easy to see that
changing a single edge x ∈ Ψ(i + 1) to another edge y would change X by at most two.
Thus, the probability that X deviates from EX by more than t =

√
εm log n is at most

2 exp(−t2/8εm) = o(n−2). Taking the union bound over all M ∈ Mj(i) we obtain the
desired deviation in the lemma with probability at least 1 − o(ε). Next, we consider the
number of edges zapped in M in step (ii). Condition on the set of edges that survive step
(i). Each surviving vertex u is zapped independently with probability Pi+1(v). For each
M ∈ Mj(i) consisting of edges surviving after step (i), the 2|M | vertices incident with M
are independently zapped with probabilities all bounded by f(iε). Let Y denote the number
of vertices zapped. Then, Y is the sum of at most 2n independent Bernoulli variables. By
the Chernoff-Hoeffding bound [12, Theorem 1.1], the probability that Y deviates from its
expectation by more than

√
f(iε)n log n is at most n−2. Taking the union bound over all

M , again with probability at least 1 − o(ε) we have the desired deviation as in the lemma.
Finally, the change to |M(i)| due to step (iii) is absorbed by the error term in (25) by
Lemma 11.

Proof of Lemma 13. With arguments similar to the proof for Lemma 12, we can apply
Theorem 14 to prove concentration for the number of neighbours of v (in chunk j) condemned
in step (i) and then for the number of neighbours zapped in step (ii) using the Chernoff-
Hoeffding bound. By Lemma 10, vertex collision will affect djv(i+ 1) by O (εγgi/r

2
i n) di+1

v (i).
The treatment of vertex collisions in step (iii) can only decrease (the bound on) djv(i + 1).
The lemma follows.

5 Multigraphs

The proof for Theorem 6 follows almost exactly that of Theorem 4 with δ = 0. We run the
same randomised algorithm with the same parameters gi and ri, but with different ai, bi and
ci. The reason is that due to the multiplicities of the multiple edges, variables |M(i)| and
djv(i) are not as concentrated as in the simple graph case and thus we expect larger ai, bi
and ci here. We briefly sketch the proof. Now we assume that m = bγnc where γ = 1 − ε0
and ε0 > 0 is an arbitrarily small constant, and ε > 0 is going to be a constant that depends
on ε0. Let µ denote the maximum multiplicity of the multiple edges in G. Note also that
here m = Θ(n).

Lemma 8 holds in the multigraph case with the same b0. For Lemma 9, the probability
that an edge between u and v is chosen is bounded by µ/(rin− ai). Thus, for (24) to hold,
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we require
µ

rin− ai
= O

(
ε2(gim)2

(rin)2

)
,

which is guaranteed if we assume
ε2 > µ/n. (26)

Thus, Lemma 9 holds after replacing the condition ε2 > 1/n by (26).
Lemmas 10, 11 and 12 hold as they are. For Lemma 13, note that deleting a single

vertex (both in steps (i) and (ii)) can alter djv(i+ 1) by µ. Therefore, the Lipschitz constant
becomes µ. Applying Azuma’s inequality to both steps (i) and (ii), we deduce Lemma 13
where O(

√
εm log n) is replaced by O(n/ log n), if µ = O(

√
n/ log2 n).

These lead to recursions for ai as in (15), and for bi as

bi+1 = (1− f(iε))bi +O(n/ log n).

Immediately we have bi = O(in/ log n). Substituting into (15), we have

ai+1 6

(
1 +

4ξεγgi
ri

)
ai +O(ε2ngi/ri + in/ log n).

Solving the recursion as before we get

ai = ε
o(1)
0 ·O

(
i−1∑
j=0

ε2ngj/rj +
i−1∑
j=0

jn/ log n

)
= ε

o(1)
0 ·O (εn+ n/ε log n) .

Hence there exists a constant C > 0 such that ai 6 C(εn + n/ε log n) for all 1 6 i 6 1/ε.
Let i1 = d1/εe − 1. Then ri1 > (1− γ)2 = ε20. Choose ε > 0 sufficiently small such that

C0(εn+ n/ε log n) 6
ε20
4
n.

Then, with the same argument as before, a greedy search in the last iteration of the ran-
domised algorithm succeeds in finding a full rainbow matching in M with high probability.

6 Hypergraphs

The proof of Theorem 7 is again similar. Let G be a k-uniform hypergraph. We give a
quick sketch here and just point out the differences. The randomised algorithm extends to
hypergraphs in a natural way. Thus, every vertex is deleted in the (i + 1)-st iteration with
probability

f(iε) ≈ εγg(iε)

r(iε)
,

where γ = 1 − ε0. Now every hyperedge in a matching is deleted with probability approx-
imately kf(iε), as there are k vertices in a hyperedge, For each surviving vertex v, each
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Figure 1: The graph G6

incident hyperedge is deleted with probability approximately (k− 1)f(iε), as this hyperedge
is deleted if one of the other k − 1 vertices contained in it is deleted. Hence, we find that
r(x) and g(x) obey the following differential equations

r′ = −kγg(x), g′(x) = −(k − 1)γ
g(x)2

r(x)
,

with initial conditions r(0) = 1 and g(0) = 1. The solution to these differential equations is

r(x) = (1− γx)k, g(x) = (1− γx)k−1.

The proof that |M(i)| and djv(i) are concentrated around rin and εγgin follows in the same
manner as in Theorem 4. Lemmas 9 and 13 need to be modified as in Theorem 6. Here, the
affect of codegrees, i.e. the maximum number of hyperedges containing a pair of vertices plays
the same role of affecting the Lipschitz constants as the maximum multiplicity in Theorem 6.
This yields Theorem 7.

7 Counterexamples to some conjectures on rainbow

matchings

In this section we describe counterexamples to Conjectures 2.5 and 2.9 in [1], as well as
Conjectures 5.3, 5.4, 6.1 and 6.2 in [2]. Before doing so, we need to describe how rainbow
matchings in graphs can be viewed as matchings in 3-uniform hypergraphs. Suppose that
G is a (not necessarily properly) edge-coloured graph in which we are interested in finding
a rainbow matching. We make a 3-uniform hypergraph H from G as follows. The vertices
of H are V (G) ∪ V1 where V1 is the set of colours used on edges of G. For each edge {u, v}
of G with colour c ∈ V1 there is a hyperedge {u, v, c} in H. Now a full rainbow matching
in G corresponds to a matching of H that covers all of the vertices in V1. If G happens to
be bipartite with bipartition V2 ∪ V3, then H will be tripartite, because its vertices can be
partitioned as V1 ∪ V2 ∪ V3 such that every hyperedge includes one vertex from each of these
three sets.

Let m be a positive even integer. We now construct a bipartite graph Gm whose edges are
(not properly) coloured using m colours in such a way that there is no full rainbow matching.
There are m components in Gm, each isomorphic to a double star which has two adjacent
central vertices each of which has m/2 leaves attached to it. The edge between the central
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Figure 2: A 2-regular graph with no rainbow matching.

vertices in each double star is coloured blue. In each component, the edges connected to
leaves all have one colour (not blue), which is specific to that component. Hence there are
m+ 1 colours overall, and each colour appears on m edges. Figure 1 shows G6. There is no
full rainbow matching in Gm because such a matching must include a blue edge from some
double star S. However, the colour of the other edges in S then cannot be represented in
the matching.

Let Hm be the tripartite hypergraph corresponding to Gm. Let V1 be the vertices of H
corresponding to the colours, and V2, V3 the sets of vertices corresponding to a bipartition
of G. Then every vertex in V1 has degree m. The vertices in V2 ∪ V3 all have degree either
1 or m/2 + 1. Thus the (minimum) degree δ(V1) of a vertex in V1 is nearly double the
maximum degree ∆(V2 ∪ V3) of the vertices outside V1. Interestingly, Aharoni and Berger
[1, Thm 2.6] showed that in any tripartite hypergraph if δ(V1) > 2∆(V2 ∪ V3) then there
must be a |V1|-matching. Our hypergraph Hm shows that their theorem is close to tight.
However, they made the following conjecture [1, Conj. 2.5] (repeated as [2, Conj. 5.3], and
rephrased as Conjecture 3 in our introduction).

Conjecture 15 Let H be a hypergraph with a vertex tripartition V (H) = V1 ∪ V2 ∪ V3 such
that every hyperedge includes exactly one vertex from Vi for i = 1, 2, 3. If δ(V1) > ∆(V2∪V3)
then H has a |V1|-matching.

Note that Hm disproves Conjecture 15 whenever m > 4. Another counterexample to
Conjecture 15 is based on the graph in Figure 2, which has no rainbow matching. The
corresponding tripartite hypergraph has δ(V1) = 3 > 2 = ∆(V2 ∪ V3). The line graph of the
graph in Figure 2 was published in [5] and its complement was published in [16]. In both
cases the focus of the investigation was slightly different from ours, so the generalisations
that were offered are not relevant for us.

Conjecture 2.9 of [1] generalises Conjecture 15, so it too is false. Similarly, [2, Conj. 6.1]
asserts that if δ(V1) > 2 + ∆(V2 ∪ V3) then there must be a |V1|-matching, so Hm is a
counterexample whenever m > 6.

Finally, we consider Conjectures 5.4 and 6.2 from [2]. These deal with the case when
the initial graph is not necessarily bipartite, so the resulting hypergraph is not necessarily
tripartite. Nevertheless they consider full rainbow matchings in an edge-coloured graph. Or
equivalently, |V1|-matchings in a 3-uniform hypergraph H in which every hyperedge includes
exactly one vertex in the set V1. The conjectures assert that such a matching will exist
provided that δ(V1) > 2 + ∆(V (H) \ V1). Again, Hm provides a counterexample. Indeed, it
shows that the 2 cannot be replaced by any constant.
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