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Abstract

Let Gn,r,s denote a uniformly random r-regular s-uniform hypergraph on the vertex
set {1, 2, . . . , n}. We establish a threshold result for the existence of a spanning tree in
Gn,r,s, restricting to n satisfying the necessary divisibility conditions. Specifically, we
show that when s > 5, there is a positive constant ρ(s) such that for any r > 2, the
probability that Gn,r,s contains a spanning tree tends to 1 if r > ρ(s), and otherwise this
probability tends to zero. The threshold value ρ(s) grows exponentially with s. As Gn,r,s

is connected with probability which tends to 1, this implies that when r 6 ρ(s), most r-
regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4
we prove that Gn,r,s contains a spanning tree with probability which tends to 1, for any
r > 2. Our proof also provides the asymptotic distribution of the number of spanning
trees in Gn,r,s for all fixed integers r, s > 2. Previously, this asymptotic distribution was
only known in the trivial case of 2-regular graphs, or for cubic graphs.

1 Introduction

A hypergraph H = (V,E) consists of a set of vertices V and a multiset E of non-empty
multisubsets of V , which we call edges. A hypergraph is simple if it has no repeated edges
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and no edge contains a repeated vertex. We focus on uniform hypergraphs, where every edge
has the same size, and say that a hypergraph is s-uniform if every edge has size s. A graph
is a simple 2-uniform hypergraph. For more background on hypergraphs, see [14].

In graph theory, a tree is a simple connected graph with no cycles, or equivalently a
graph with the smallest number of edges among all connected graphs on a given vertex set.
There are several different ways to generalise this notion to hypergraphs, involving different
definitions of acyclicity in hypergraphs [10]. We use Berge acyclicity [7] to define trees in
hypergraphs (hypertrees), see Section 2. In particular, the definition implies that any two
distinct edges in the tree intersect in at most one vertex, and hence an s-uniform tree with n
vertices has exactly n−1

s−1
edges. In fact, for n satisfying this divisibility condition, a tree is a

connected hypergraph on n vertices with the smallest number of edges, exactly as in the graph
case. We note also that our definition of trees in hypergraphs matches the definition given by
Boonyasombat in [11], while Siu refers to the trees we consider as “traditional hypertrees” [30,
Section 1.2.1].

A spanning tree in a hypergraph H is a spanning subhypergraph of H which is a tree. Just
as trees in graphs are well-studied and extremely useful objects, trees in hypergraphs have var-
ious applications in a wide variety of areas, including game theory [29], relational databases [5],
molecular optimisation [19] and network reliability [16]. For example, Warme [32] showed that
the Steiner tree problem reduces to finding the minimum spanning tree in a hypergraph.

It is well known that a graph contains a spanning tree if and only if it is connected. How-
ever, this relation does not extend to hypergraphs: that is, there exist connected hypergraphs
without spanning trees. In fact, our results imply that asymptotically almost all s-uniform
regular hypergraphs are like this, provided the degree is not too large (depending on s); see
Theorem 1.1 and Lemma 1.4. The property of containing a spanning tree can be thought of
as a kind of “optimal connectedness” of the hypergraph. This property is stronger than the
usual notion of connectedness, which can be achieved using substantially overlapping edges
and thus causing undesirable redundancy in various applications.

Given r, s > 2, let n be a positive integer such that s | rn, and let Γn,r,s be the set of r-
regular s-uniform simple hypergraphs on [n]. Denote by Gn,r,s a hypergraph chosen uniformly
at random from Γn,r,s. Unless otherwise specified, all asymptotics in this paper are as n→ ∞,
restricted to values of n which satisfy the necessary divisibility conditions: that is, restricted
to the set

N(r,s) = {n ∈ Z
+ : s | rn and s− 1 | n− 1}.

Our main result establishes a degree threshold for the existence of a spanning tree in Gn,r,s,
when s > 5, and proves that Gn,r,s contains a spanning tree with probability which tends to
1 when s ∈ {2, 3, 4}, except for the case (r, s) = (2, 2). A 2-regular graph has a spanning
tree if and only if it is connected (that is, forms a Hamilton cycle). Thus it follows from [35,
Equation (11)] that as n→ ∞,

P(Gn,2,2 contains a spanning tree) ∼ 1

2
e3/4

√
π

n
→ 0. (1)
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Theorem 1.1. Let s > 2 be a fixed integer. If s > 5 then there exists a positive constant ρ(s)
such that for any fixed integer r > 2, as n→ ∞ along N(r,s),

P (Gn,r,s contains a spanning tree) −→
{
1 if r > ρ(s),

0 if r 6 ρ(s).

Specifically, ρ = ρ(s) is the unique real number in (2,∞) such that

(s− 1)ρ(ρ− 1)s(ρ−1) = ρρs−ρ−s(ρs− ρ− s)(ρs−ρ−s)/(s−1). (2)

For s > 5 we have ρ−(s) < ρ(s) < ρ+(s) where

ρ−(s) =
es−2

s− 1
− s− 1

2
, ρ+(s) =

es−2

s− 1
− s− 3

2
.

Furthermore, as s→ ∞,

ρ(s) =
es−2

s− 1
− s2 − 3s+ 1

2(s− 1)
+Os(s

4 e−s).

Finally, if s ∈ {2, 3, 4} then for any fixed integer r > 2,

P (Gn,r,s contains a spanning tree) −→
{
1 if (r, s) 6= (2, 2),

0 if (r, s) = (2, 2).

The value of ρ(s) for s = 5, . . . , 12 is displayed in Table 1, together with the bounds ρ−(s)
and ρ+(s). All values are rounded to 3 decimal places.

s 5 6 7 8 9 10 11 12

ρ−(s) 3.021 8.420 21.736 54.133 133.079 326.718 805.308 1996.906

ρ(s) 3.029 8.706 22.142 54.606 133.588 327.245 805.844 1997.444

ρ+(s) 4.021 9.420 22.736 55.133 134.079 327.718 806.308 1997.906

Table 1: Values of ρ(s) for s = 5, . . . , 12, together with our bounds.

Let YG be the number of spanning trees in Gn,r,s. This random variable is our main object
of study. Using asymptotic enumeration methods, Aldosari and Greenhill [2, Corollary 1.2.]
established the following asymptotic expression for EYG when s > 3:

EYG ∼ exp

(
rs− r − 1

2(r − 1)

)
(s− 1)

√
r − 1

n (rs− r − s)
s+1

2(s−1)

(
(s− 1)r (r − 1)(r−1)s

rrs−r−s (rs− r − s)
rs−r−s

s−1

)n/s

. (3)

(In fact a more general result is proved in [2], which covers irregular degree sequences and
allows s and the maximum degree to grow slowly with n.) In the graph case, the asymptotic
formula for EYG was known up to a constant factor by the results of McKay [23] (who also
considered irregular, slowly-growing degrees), and then this constant factor was calculated
precisely in [18, Theorem 1.1].

The argument used to prove Theorem 1.1 also provides the asymptotic distribution of YG ,
for any parameters r, s > 2.
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Theorem 1.2. Let r, s,> 2 be fixed integers. For all positive integers j, define

λj =
(r − 1)j(s− 1)j

2j
and ζj =

(
r

r−1
− s+ 1

)j − 2

(r − 1)j(s− 1)j
.

Let J(2) = 3 and J(s) = 2 for s > 3. If P(YG > 0) → 1 as n → ∞ along N(r,s), then the
asymptotic distribution of YG satisfies

YG
EYG

d−→
∞∏

j=J(s)

(1 + ζj)
Zj e−λjζj

where Zj = Po(λj) are independent Poisson random variables. Otherwise, the asymptotic
distribution of YG is a point mass at zero.

Previously, the result of Theorem 1.2 was only known for two values of (r, s): when
(r, s) = (2, 2) the result follows trivially from (1), while for (r, s) = (3, 2) (cubic graphs), the
asymptotic distribution of YG was obtained by Greenhill, Kwan and Wind [18, Theorem 1.2].
The authors of [18] also conjectured an expression for the asymptotic distribution of YG when
s = 2 and r > 4. Substituting s = 2 into Theorem 1.2 verifies that their conjecture is true.

Corollary 1.3. The conjecture given in [18, Conjecture 1.3] holds. That is, the number YG
of spanning trees in a random r-regular graph satisfies

YG
EYG

d−→
∞∏

j=3

(1 + ζj)
Zj e−λjζj

with

λj =
(r − 1)j

2j
, ζj = −2(r − 1)j − 1

(r − 1)2j

for j > 3.

Theorems 1.1 and 1.2 are proved using the small subgraph conditioning method [26].
While many structural results about random regular graphs have been proved using this
method (see [20, 35] for surveys), there are only two previously-known results for hypergraphs
with s > 3. Cooper, Frieze, Molloy and Reed [13] gave a threshold result for the existence
of a perfect matching in Gn,r,s, while Altman, Greenhill, Isaev and Ramadurai [3] proved a
threshold result for the existence of loose Hamilton cycles in Gn,r,s. Keeping only the most
significant term, the threshold values for spanning trees, loose Hamilton cycles and perfect
matchings are approximately

es−2

s− 1
(spanning trees),

es−1

s− 1
(loose Hamilton cycles), es−1 (perfect matchings)

respectively. Hence (restricting to values of n satisfying the relevant divisibility conditions in
each case), for a fixed s, as r increases, spanning trees appear first, followed by loose Hamilton
cycles and then perfect matchings.
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We close this section with some comments on connectedness in random regular uniform
hypergraphs. It is well known that with probability tending to 1, random r-regular graphs are
connected (indeed, r-connected) whenever r > 3, see [9, 34]. Dumitriu and Zhu [15] recently
used spectral methods to investigate expansion properties of Gn,r,s, and hence inferred [15,
Lemma 6.2] that P(Gn,r,s is connected) → 1 when r > s > 3. For completeness we sketch a
more elementary argument which covers all (r, s) 6= (2, 2).

Lemma 1.4. Let r, s > 2 be fixed integers with (r, s) 6= (2, 2). Then

P(Gn,r,s is connected) → 1

as n tends to infinity along N(r,s).

Proof. Suppose that A ⊂ [n] is a subset of vertices with |A| = a, where 1 6 a 6 n/2. The
probability that (A, [n]−A) is a cut in Gn,r,s is

|Γa,r,s| |Γn−a,r,s|
|Γn,r,s|

. (4)

It follows from (8), (9) and (10) that

|Γn,r,s| = Θ(1)
(rn)!

(rn/s)! (s!)rn/s (r!)n
.

Substituting this into (4) and summing over all A with 1 6 |A| 6 n/2, we conclude that the
probability that Gn,r,s is disconnected is o(1) whenever r, s > 2 and (r, s) 6= (2, 2).

2 Preliminaries

Throughout, N denotes the nonnegative integers and (a)b = a(a − 1) · · · (a − b + 1) is the
falling factorial.

A 1-cycle (or loop) is a hypergraph consisting of one edge which contains a repeated vertex.
A 2-cycle is a hypergraph consisting of two edges which intersect in at least 2 vertices. For
j > 3, a j-cycle is a hypergraph with j edges which can be labelled e1, e2, . . . , ej such that
there exists distinct vertices v1, . . . , vj where vi ∈ ei ∩ ei+1 for i = 1, . . . , j (where ej+1 ≡ e1).

A (Berge) path in H consists of a sequence v0, e1, v1, e2, . . . , ej , vj where v0, v1, . . . , vj are
distinct vertices, e1, . . . , ej are distinct edges, and vi−1, vi ∈ ei for all i = 1, . . . , j. A hyper-
graph is connected if there is a path between every pair of vertices. A spanning tree T in a
hypergraph H is a connected spanning subhypergraph of H which contains no j-cycles for all
positive integers j. In particular, as T contains no 2-cycles it follows that edges of T overlap
in at most one vertex.

An s-uniform tree with t edges has (s − 1)t + 1 vertices, and the number of (labelled)
s-uniform trees on n = (s− 1)t+ 1 vertices is given by

nt−1 (n− 1)!

t! ((s− 1)!)t
. (5)
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This formula was proved in [21, Corollary 1] and [31, Theorem 2]. See also [28]. Note that in
the graph case s = 2 we recover Cayley’s formula.

Suppose that δ = (δ1, . . . , δn) is the degree sequence of an s-uniform tree on n vertices.
Then δ is a sequence of n positive integers such that

δ1 + · · ·+ δn =
s(n− 1)

s− 1
= st,

and any such sequence δ is called a tree degree sequence. Bacher [4, Theorem 1.1] proved that
the number of labelled s-uniform trees on n = (s− 1)t+ 1 vertices with degree sequence δ is

(
t− 1

δ1 − 1, . . . , δn − 1

)
(n− 1)!

t! ((s− 1)!)t
=

(s− 1)(n− 2)!

((s− 1)!)
n−1
s−1

n∏

i=1

1

(δi − 1)!
. (6)

This generalises the formula for the graph case proved by Moon [24].
Now we introduce some special families of cycles which will be used in our analysis. An

s-uniform 1-cycle is loose if the edge contains s−1 distinct vertices, and an s-uniform 2-cycle
is loose if the intersection of the two edges has size 2. For j > 3, an s-uniform j-cycle is loose
if

|ek ∩ eℓ| =
{

1 if k − ℓ ≡ ±1 (mod j),

0 otherwise

for k 6= ℓ. A loose j-cycle C contains (s− 1)j vertices.
Let v be a vertex in a loose j-cycle C. We say v is C-external (or external) if v has degree

2 in C. Otherwise, we say v has degree 1 and we say it is C-internal (or internal).

2.1 Configuration model

The configuration model for regular uniform hypergraphs is a generalisation of the configura-
tion model for graphs, introduced by by Bollobás [8]. Take rn points in n cells, B1, . . . , Bn,
each containing r points. Then partition the points into rn/s subsets of size s, called parts.
Each such partition P corresponds to a hypergraph G(P ), which may not be simple, obtained
by replacing each cell by a vertex and replacing each part {a1, . . . , as} in the partition by
an edge {vi1 , . . . , vis} such that aj ∈ Bij for j = 1, . . . , s. If a part contains more than one
point from the same cell then the corresponding edge in P is a loop, and if the partition has
two parts which contain points from precisely the same cells, with the same multiplicity, then
these parts produce a repeated edge in G(P ).

Each simple hypergraph corresponds to precisely (r!)n partitions, so an r-regular s-uniform
simple hypergraph can be chosen uniformly at random by choosing a partition uniformly at
random and rejecting the result if it has loops or multiple edges. A partition P is said to be
simple if G(P ) is a simple hypergraph.

Denote the set of possible partitions by Ωn,r,s, and let Pn,r,s be a partition chosen uniformly
at random from Ωn,r,s.

A subpartition P ′ is a subset of a partition P ∈ Ωn,r,s. A subpartition of P projects to a
subhypergraph of G(P ).

6



The configuration model allows us to prove some properties of Gn,r,s by performing com-
putations in Pn,r,s. When s | t, the number of partitions of a set of t points into t/s parts of
size s is

p(t) =
t!

(t/s)!(s!)t/s
.

Hence the number of partitions in Ωn,r,s is

|Ωn,r,s| = p(rn) =
(rn)!

(rn/s)! (s!)rn/s
. (7)

Therefore, the number of r-regular s-uniform simple hypergraphs on n vertices is precisely

|Γn,r,s| =
(rn)!P(Simple)

(rn/s)! (s!)rn/s(r!)n
, (8)

where “Simple” is the event that the partition is simple. Thus, an asymptotic formula for
|Γn,r,s| can be found by estimating P(Simple). When s = 2 the event “Simple” means no
1-cycles or 2-cycles, and Bender and Canfield [6] showed that

P(Simple) ∼ exp
(
−(r2 − 1)/4

)
. (9)

Cooper, Frieze, Molloy and Reed showed in [13] that for fixed integers r > 2 and s > 3,

P(Simple) ∼ exp (−(r − 1)(s− 1)/2) . (10)

2.2 Small subgraph conditioning method for hypergraphs

Robinson and Wormald showed in [26, 27] that almost all r-regular graphs are Hamiltonian,
for any fixed r > 3, using an analysis of variance technique now known as the small subgraph
conditioning method. We restate the small subgraph conditioning method from [20] (with
slightly different notation).

Theorem 2.1 (Janson [20, Theorem 1]). Let λj > 0 and ζj > −1, j = 1, 2, . . . , be constants
and suppose that for each n there are random variables Xj,n, j = 1, 2, . . . , and Yn (defined on
the same probability space) such that Xj,n is a nonnegative integer valued and EYn 6= 0 (at
least for large n), and furthermore the following conditions are satisfied:

(A1) Xj,n
d−→ Zj as n → ∞ jointly for all j, where Zj ∼ Po(λj) are independent Poisson

random variables;

(A2) For any finite sequence x1, . . . , xm of nonnegative integers,

E(Yn|X1,n = x1, . . . , Xm,n = xm)

EYn
→

m∏

j=1

(1 + ζj)
xje−λjζj as n→ ∞;

(A3)
∑

j>1

λjζ
2
j <∞;
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(A4)
EY 2

n

(EYn)2
→ exp

(
∑

j>1

λjζ
2
j

)
as n→ ∞.

Then
Yn
EYn

d−→ W =

∞∏

j=1

(1 + ζj)
Zje−λjζj as n→ ∞;

moreover, this and the convergence in (A1) hold jointly. The infinite product defining W
converges asymptotically almost surely and in L2, with

EW = 1 and EW 2 = exp

(
∑

j>1

λjζ
2
j

)
= lim

n→∞

EY 2
n

(EYn)2
.

Furthermore, the event W = 0 equals, up to a set of probability zero, the event that Zj > 0
for some j with ζj = −1. In particular, W > 0 almost surely if and only if every ζj > −1.

(In the above statement, we have corrected a typographical error from [20], which had
W > 0 instead of W = 0 in the second-last sentence.)

Janson remarks in [20] that the index set Z
+ may be replaced by any other countably

infinite set, and that 00 is defined to be 1. We will apply Theorem 2.1 with the following
random variables:

• Let Y be the number of s-uniform spanning trees in a random partition P ∈ Pn,r,s.

• Let X1 be the number of 1-cycles in a random partition P ∈ Pn,r,s.

• For j > 2, let Xj be the number of loose j-cycles in a random partition P ∈ Pn,r,s.

With r, s > 2 fixed, it is well-known that Xj → Zj as n → ∞, where Zj are asymptotically
independent Poisson random variables with mean

λj =
(r − 1)j(s− 1)j

2j
. (11)

This was proved for graphs (s = 2) by Bollobás [8], and by Cooper, Frieze, Molloy and
Reed [13] when s > 3. To be more precise, Cooper, Frieze, Molloy and Reed worked with the
random variable X ′

j, the number of j-cycles (not necessarily loose), and showed that X ′
j has

the same asymptotic distribution as Xj , as the contribution to X ′
j from non-loose j-cycles

forms a negligible fraction of X ′
j. This verifies that (A1) of Theorem 2.1 holds.

In order to verify condition (A2), the following lemma is helpful.

Lemma 2.2 (Janson [20, Lemma 1]). Let λ′j > 0, j = 1, 2, . . . be constants. Suppose that
(A1) holds, that Yn > 0 and that

(A2′)
E(Yn(X1,n)x1 · · · (Xm,n)xm

)

EYn
→

m∏

j=1

(λ′j)
xj as n→ ∞,

for every finite sequence x1, . . . , xm of nonnegative integers. Then condition (A2) holds with
λ′j = λj(1 + ζj).

8



There are some challenges when applying the small subgraph conditioning method to
regular uniform hypergraphs with s > 3. In the graph case, a partition is simple precisely
when X1 = X2 = 0. For hypergraphs with s > 3, this is no longer true: a hypergraph is
simple if and only if it has no 1-cycles and no repeated edges: some 2-cycles are allowed, as
long as the two edges overlap in between 2 and s− 1 vertices.

Fortunately, we can translate some asymptotic properties from the configuration model to
random hypergraphs. For any event E ⊆ Ωn,r,s, we have

P(P ∈ E | Simple) 6
P(P ∈ E)
P(Simple)

. (12)

Altman, Greenhill, Isaev and Ramadurai proved the following lemma in [3].

Lemma 2.3 ([3, Lemma 2.1]). Fix integers r, s > 2. For any positive integer n such that

s | rn, let P̂ be a uniformly random partition in Ωn,r,s with no 1-cycles, let PS be a uniformly
random simple partition in Ωn,r,s and let P be a uniformly random partition in Ωn,r,s. Let
Y : Ωn,r,s → Z be a random variable. Then as n → ∞ along integers such that s | rn, the
following two properties hold.

(a) If P(Y (P ) ∈ A) = o(1), then P(Y (PS) ∈ A) = o(1) for any A ⊆ Z.

(b) P(Y (P̂ ) ∈ A)− P(Y (PS) ∈ A) = o(1) for any A ⊆ Z.

Property (a) follows from (12), while property (b) follows from (10) and the fact that the
probability that two parts in a random partition P ∈ Pn,r,s give rise to a repeated edge is o(1)
(as remarked by Cooper, Frieze, Molloy and Reed in [13]).

Property (b) essentially tells us that the distribution of Y that arises from conditioning
on X1 = 0 is asymptotically equivalent to the distribution Y conditioned on “Simple”. This
allows us to apply the following corollary, very slightly adapted from [3, Corollary 2.6], which
will be useful in the proof of Theorem 1.2.

Corollary 2.4. Suppose that Yn and Xj,n satisfy conditions (A1)–(A4) of Theorem 2.1. Let

Ŷn be the random variable obtained from Yn by conditioning on the event X1,n = 0. Then

Ŷn
EYn

d−→ e−λ1ζ1

∞∏

j=2

(1 + ζj)
Zje−λjζj as n→ ∞.

Moreover, if ζj > −1 for all j > 2 then asymptotically almost surely Ŷn > 0.

Proof. The statement of [3, Corollary 2.6] made the assumption that ζj > −1 for all j > 1,
and the proof used the final statement of Theorem 2.1. However, we can drop the assumption
that ζ1 > −1 if we instead apply the second-last statement from Theorem 2.1.
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3 First moment

We fix integers r, s > 2, where (r, s) 6= (2, 2), and work in the configuration model Pn,r,s,
where s | rn and n = (s− 1)t + 1 for some t ∈ N.

Lemma 3.1. Let r, s > 2 be fixed integers with (r, s) 6= (2, 2). Then as n→ ∞ along N(r,s),

EY ∼ (s− 1)
√
r − 1

n (rs− r − s)
s+1

2(s−1)

(
(s− 1)r(r − 1)(r−1)s

rrs−r−s(rs− r − s)
rs−r−s

s−1

)n/s

.

Proof. Let Tn be the set of all s-uniform trees on n vertices. For a random partition P ∈ Pn,r,s,
we can write

EY =
∑

PT :G(PT )∈Tn

P(PT ⊆ P ) =
∑

PT :G(PT )∈Tn

|{P ∈ Ωn,r,s : PT ⊆ P}|
|Ωn,r,s|

.

Selecting PT uses up st points so, for a given PT , the size of {P ∈ Ωn,r,s : PT ⊆ P} is p(rn−st).
This is the number of ways to partition the remaining rn− st points after the points of the
tree are selected. Recall that Dn is the set of possible tree degree sequences on n vertices.
Given δ ∈ Dn, define Tn(δ) to be the set of trees with a degree sequence δ. We can write

|Ωn,r,s|EY = p(rn− st)
∑

δ∈Dn

∑

T∈Tn(δ)

∑

PT :G(PT )=T

1. (13)

Consider a subpartition that projects to a given tree T ∈ Tn(δ), for a given δ ∈ Dn. Exactly
δi of the points in cell i must contribute to PT , and there are (r)δj ways to choose and order
these points. So there are

∏n
j=1(r)δj possible subpartitions PT which project to the given

spanning tree T . Therefore, using (6) for the second line, the number of subpartitions PT

which project to some spanning tree is

∑

δ∈Dn

|Tn(δ)|
n∏

j=1

(r)δj =
(s− 1)(n− 2)!

((s− 1)!)t

(
∑

δ∈Dn

n∏

j=1

(r)δj
(δj − 1)!

)

=
(s− 1)(n− 2)!

((s− 1)!)t
[zst]

(
∞∑

i=1

(r)i
(i− 1)!

zi

)n

=
(s− 1)(n− 2)!

((s− 1)!)t
[zst]

(
∞∑

i=1

rz

(
r − 1

i− 1

)
zi−1

)n

=
rn(s− 1)(n− 2)!

((s− 1)!)t

(
(r − 1)n

t− 1

)
. (14)

Here square brackets denotes coefficient extraction. Substituting (14) into (13) and applying
(7) gives, by definition of t,

EY =
p(rn− st)

p(rn)
· r

n(s− 1)(n− 2)!

((s− 1)!)t

(
(r − 1)n

t− 1

)

10



= rns
n−1
s−1

((r − 1)n)! (n− 1)! (rn/s)!

(rn)!
(
n−1
s−1

)
!
(

(rs−r−s)n+s
s(s−1)

)
!
. (15)

The result follows by applying Stirling’s approximation.

For future reference we note that by (7), Lemma 3.1 and Stirling’s approximation,

|Ωn,r,s|EY ∼ (s− 1)
√
(r − 1)s

n(rs− r − s)
s+1

2(s−1)

(
rs (r − 1)(r−1)s nr(s−1)

(rs− r − s)
rs−r−s

s−1 ((s− 2)!)r er(s−1)

)n/s

. (16)

In Section 6 we characterise pairs (r, s) for which EY tends to infinity. This provides the
threshold function ρ(s) when s > 5 and, using (12), provides the negative half of the threshold
result. In order to complete the proof, we must apply small subgraph conditioning.

4 Effect of short cycles

Fix a positive integer m and a sequence x = (x1, . . . , xm) ∈ N
m. Write ℓ = x1 + · · · + xm.

Let S(x) be the set of sequences (P1, . . . , Pℓ) of subpartitions such that G(P1), . . . , G(Px1) are
distinct 1-cycles, and

G(Px1+···+xj−1+1), . . . , G(Px1+···+xj−1+xj
)

are distinct loose j-cycles, for j = 2, . . . , m. Then let S∗(x) be the set of all (P1, . . . , Pℓ) ∈
S(x) such that the cycles G(P1), . . . , G(Pℓ) are vertex-disjoint. For a random partition P ∈
Pn,r,s, we can write

E[Y (X1)x1 · · · (Xm)xm
] =

∑

(P1,...,Pℓ)∈S(x)

∑

PT :G(PT )∈Tn

P(P1 ∪ · · · ∪ Pℓ ∪ PT ⊆ P ). (17)

We will find that E[Y (X1)x1 · · · (Xm)xm
] is asymptotically dominated by the contribution from

vertex-disjoint cycles. So we first evaluate

Σ∗(x) =
∑

(P1,...,Pℓ)∈S∗(x)

∑

PT :G(PT )∈Tn

P(P1 ∪ · · · ∪ Pℓ ∪ PT ⊆ P )

=
∑

(P1,...,Pℓ)∈S∗(x)

∑

PT :G(PT )∈Tn

|{P ∈ Ωn,r,s : P1 ∪ · · · ∪ Pℓ ∪ PT ⊆ P}|
|Ωn,r,s|

. (18)

To perform this count, we condition on the intersections between PT and each of the subpar-
titions P1, . . . , Pℓ. We will use the lexicographical ordering on s-subsets of vertices to define
a corresponding ordering on parts of Pi, by applying the lexicographical ordering to the set
(or multiset) of s cells corresponding to the s points in the part. First suppose that G(Pi) is
a loose j-cycle with j > 2. The part of Pi which is lexicographically-least will be the starting

11



part of Pi, and we fix a direction around Pi such that the second part visited is lexicographi-
cally smaller than the last part. Then we define a binary sequence Ii ∈ {0, 1}j corresponding
to Pi as follows: starting from the first part of Pi, in the fixed direction, if the k’th part of
Pi belongs to Pi ∩ PT then the k’th element of Ii is one; otherwise it is zero. All sequences in
{0, 1}j represent possible intersections, except for (1, . . . , 1) because a tree contains no cycles.
In the case that G(Pi) is a 1-cycle then Ii = (0). Denote the set of all possible intersection
sequences for a cycle of length j by

Ij = {0, 1}j \ {(1, . . . , 1)}
and define the Cartesian product

I(x) =
m∏

j=1

Ixj

j .

For I ∈ Ij , let U(I) ∈ {1, . . . , j} be the number of entries in I which equal zero. Given
I = (I1, . . . , Iℓ) ∈ I(x), let ui = U(Ii)for i = 1, . . . , m and define u = u(I) = u1 + · · ·+ uℓ.

Given (P1, . . . , Pℓ, PT ), write ι(P1, . . . , Pℓ, PT ) = I ∈ I(x) for the corresponding ℓ-tuple of
intersection sequences. We can rewrite Σ∗(x) as

|Ωn,r,s| Σ∗(x) =
∑

I∈I(x)

∑

(P1,...,Pℓ,PT ):
(P1,...,Pℓ)∈S

∗(x),
G(PT )∈Tn,

ι(P1,...,Pℓ,PT )=I

|{P ∈ Ωn,r,s : P1 ∪ · · · ∪ Pℓ ∪ PT ⊆ P}| .

For a given I ∈ I(x), we evaluate the inner sum using the following process:

Step 1: Choose a sequence (P1, . . . , Pℓ) ∈ S∗(x).

Step 2: Choose PT with G(PT ) ∈ Tn such that ι(P1, . . . , Pℓ, PT ) = I.

Step 3: Partition the remaining points arbitrarily.

Define the subpartition Q = P1 ∪ · · · ∪ Pℓ. Writing |P ′| for the number of parts in a
subpartition P ′, we have

|Q| =
m∑

j=1

j xj =

ℓ∑

i=1

|Pi| .

Lemma 4.1. Let r, s > 2 be integers such that (r, s) 6= (2, 2) and fix x = (x1, . . . , xm) ∈ N
m.

The number of ways to choose a sequence of subpartitions (P1, . . . , Pℓ) in S∗(x) is

s1(x) ∼
(
(r − 1) rs−1ns−1

(s− 2)!

)|Q| m∏

j=1

1

(2j)xj
. (19)

Proof. To begin, we claim that (19) is true when ℓ = 1. First suppose that j > 2. We must
show that the number of ways of selecting a subpartition P which projects to a loose j-cycle
C is asymptotically equal to

1

2j

(
(r − 1) rs−1ns−1

(s− 2)!

)j

.

12



Recall that, in a loose j-cycle C, the C-external vertices have degree 2 and the C-internal
vertices have degree 1. To specify a single loose j-cycle C, choose a sequence of (s − 1)j
vertices in (n)(s−1)j ∼ n(s−1)j ways, then divide by 2j((s− 2)!)j . Here, division by 2j adjusts
for direction and starting point (where a starting point is a C-external vertex), and division
by ((s−2)!)j adjusts for the order of the s−2 C-internal vertices in each edge. To specify PC ,
we choose two points for each C-external vertex and one point for each C-internal vertex in
the configuration model, in (r(r− 1))jr(s−2)j ways. Hence (19) holds for a single loose j-cycle
when j > 2.

When j = 1, the number of non-loose 1-cycles is O(ns−2) while the number of loose 1-cycles
is Θ(ns−1). There are n

(
n−1
s−2

)
∼ ns−1

(s−2)!
ways to choose the vertices of a loose 1-cycle, where the

first-chosen vertex is external, then there are
(
r
2

)
rs−2 ways to choose points corresponding to

these vertices. Multiplying these shows that (19) also holds when j = 1.
When ℓ > 1, observe that this process can be iterated. The only change is that the next

cycle must be disjoint from all previously-selected cycles, ruling out O(1) vertices. Hence the

number of ways to select a sequence of (s−1)j vertices for the next j-cycle is
(
n−O(1)

)(s−1)j ∼
n(s−1)j , and all remaining calculations are the same as above. This shows that (19) holds in
general.

Now suppose that a sequence of subpartitions (P1, . . . , Pℓ) ∈ S∗(x) has been chosen. To
perform Step 2, we construct an irregular configuration model Pn′,x from the points that are
so far unused.

There are n − (s − 1) |Q| cells which are not involved in any of (P1, . . . , Pℓ). Any cell
which corresponds to an external vertex of some G(Pi) has r − 2 unused points, and any
cell which corresponds to an internal vertex of some G(Pi) has r − 1 unused points. Recall
that I = (I1, . . . , Iℓ) determines a collection of disjoint paths contained in the subpartitions
P1, . . . , Pℓ. This collection of paths will form the intersection of PT and P1 ∪ · · ·Pℓ.

For each such path with at least one part, collect all the unused points and combine them
together into an irregular cell. If such a path consists of k part then it contains of k + 1 cells
with r − 2 points unused, and (s − 2)k cells with r − 1 points unused. Thus, the resulting
irregular cell has (k + 1)(r − 2) + (s − 2)k(r − 1) = (rs − r − s)k + r − 2 points. For each
cell which corresponds to an external vertex of some G(Pi), but which is not contained in
the intersection PT ∩ Pi, we also form an irregular cell with r − 2 points. Note, this matches
the earlier formula with k = 0; we can think of these external vertices as a length-0 path in
the intersection. Indeed, these cells are exactly those which are contained in two parts of Pi

which both correspond to a 0 in the intersection sequence Ii.
Recall that u = u(I) = u1 + · · · + uℓ where ui = U(Ii) is the number of zero entries

in Ii. Then u also equals the number of irregular cells identified so far, as the paths in the
intersection Pi ∩ PT (of length zero or more) are in one-to-one correspondence with the zero
entries in Ii. The u irregular cells we have identified so far are called external irregular cells.

Finally, for each cell which corresponds to an internal vertex of some G(Pi), which is not
involved in the intersection PT ∩Pi, we form an internal irregular cell with r−1 points. There
are (s− 2)u such cells.

13



To summarise the properties of our irregular configuration model:

• The total number of cells is n′ = n− (s− 1) |Q|+ (s− 1)u.

• There are n− (s− 1) |Q| regular cells with r points each.

• There are (s− 2)u internal irregular cells with r − 1 points each.

• There are u external irregular cells. If an external irregular cell was collapsed from a
path with k parts then it contains (rs− r − s)k + r − 2 points.

The number of ways to complete Step 2 equals the number of ways of choosing a sub-
partition P ′ in this irregular configuration model such that G(P ′) is a spanning tree. The
projection T ′ = G(P ′) of this partition corresponds exactly to a tree T ∈ Tn, with the subpaths
determined by I contracted to single vertices.

For a sequence I ∈ Ij and k > 0, let qk(I) be the number of paths of length k in the
intersection encoded by I. (Recall the length-0 paths correspond to cells which belong to two
parts in the j-cycle which are both encoded by 0 in I.) By a slight abuse of notation, write
qk(I) =

∑ℓ
i=1 qk(Ii).

The next result is proved in Section A.1.

Lemma 4.2. Fix I = (I1, . . . , Iℓ) ∈ I(x) and let u = u(I). Fix a sequence of subpartitions
(P1, . . . , Pℓ) ∈ S∗(x) and let Q = P1 ∪ · · · ∪ Pℓ. Then the number of ways to extend Q to a
subpartition Q ∪ PT consistent with I, such that G(PT ) ∈ Tn, is

s2(x, I)

∼
√
r − 1 (s− 1)2 ((s− 1)!)

1
s−1

(rs− r − s)
3s−1
2(s−1) n2

(
(rs− r − s)s+1 ns−1

(r − 1) (s− 1)s−1 (s− 1)!

)u (
(s− 2)!

(r − 1) rs−1 ns−1

)|Q|

×
(

r (r − 1)r−1 (s− 1)r−1 n

e((s− 1)!)
1

s−1 (rs− r − s)
rs−r−s

s−1

)n m−1∏

k=0

(
k +

r − 2

rs− r − s

)qk(I)

.

Finally, Step 3 completes the subpartition PT ∪Q to a partition P ∈ Pn,r,s.

Lemma 4.3. Given I ∈ I(x), suppose that (P1, . . . , Pℓ) ∈ S∗(x) is fixed, and PT is a fixed
subpartition with ι(P1, . . . , Pℓ, PT ) = I. Let u = u(I). The number of ways to complete Step 3
is

s3(x, I) ∼
√
s (rs− r − s)n

(s− 1) ((s− 1)!)
1

s−1

(
(s− 1)s−1 (s− 1)!

(rs− r − s)s−1 ns−1

)u
(

(rs− r − s)n

e(s− 1) ((s− 1)!)
1

s−1

) (rs−r−s)
s

n

.

Proof. Out of the rn points in the original configuration model, 2 |Q| points have been used
for the external vertices in Q = P1 ∪ · · · ∪ Pℓ and (s − 2) |Q| points have been used for the
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internal vertices of Q. Finally, s(n′−1)
s−1

points have been used to complete the subpartition PT .
So there are

rn− 2 |Q| − (s− 2) |Q| − s(n′ − 1)

s− 1
=

(rs− r − s)n

s− 1
− s
(
u− 1

s− 1

)

points remaining. Hence, the number of ways to complete Step 3 is

s3(x, I) = p

(
(rs− r − s)n

s− 1
− s
(
u− 1

s− 1

))
(20)

and applying Stirling’s approximation completes the proof.

We use these expressions for s1, s2 and s3 to prove the following result.

Lemma 4.4. Let r, s > 2 be fixed integers with (r, s) 6= (2, 2). For any fixed integer m > 1
and fixed sequence (x1, . . . , xm) of non-negative integers,

E[Y (X1)x1 . . . (Xm)xm
]

EY
−→

m∏

j=1

(λj(1 + ζj))
xj

as n→ ∞ along N(r,s), where for all j ∈ Z
+,

λj =
(r − 1)j(s− 1)j

2j
and ζj =

(
r

r−1
− s+ 1

)j − 2

(r − 1)j(s− 1)j
.

Proof. Recall the definition of Σ∗ from (18). By definition of s1(x), s2(x, I), s3(x, I), we have

Σ∗(x) =
∑

I∈I(x)

s1(x) s2(x, I) s3(x, I)

|Ωn,r,s| EY
.

Combining Lemmas 4.1–4.3, then dividing by (16) and cancelling leads to

Σ∗(x) ∼
m∏

j=1

1

(2j)xj

∑

I∈I(x)

(
(rs− r − s)2

r − 1

)u m−1∏

k=0

(
k +

r − 2

rs− r − s

)qk(I)

=

m∏

j=1

1

(2j)xj

∑

I∈I(x)

ℓ∏

i=1

(
(rs− r − s)2

r − 1

)ui m−1∏

k=0

(
k +

r − 2

rs− r − s

)qk(Ii)

=
m∏

j=1

ξ
xj

j , (21)

where

ξj =
1

2j

∑

I∈Ij

(
(rs− r − s)2

r − 1

)U(I) j−1∏

k=0

(
k +

r − 2

rs− r − s

)qk(I)

.
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We will compute this sum with the help of a generating function. Because (1, . . . , 1) /∈ Ij ,
we may identify a particular element in the sequence to be zero. By symmetry, we arbitrarily
choose the last. Define the coefficients

cj,ℓ =
∑

I∈Ij :
U(I)=ℓ
Ij=0

µℓ

j−1∏

k=0

(k + β)qk(I) ,

where we let

µ =
(rs− r − s)2

r − 1
and β =

r − 2

rs− r − s

for convenience. Now, cj,ℓ fixes the number of zeros in I to be ℓ, and assumes that Ij = 0
(that is, the last entry of I is zero). Hence

ξj ∼
1

2j

j∑

ℓ=1

j cj,ℓ
ℓ

=
1

2

j∑

ℓ=1

cj,ℓ
ℓ
. (22)

We now evaluate the coefficients cj,ℓ. Recall that U(I) represents the number of zeros in
the sequence I. We have cj,1 = µ (j − 1 + β), because the only sequence with 1 zero and the
last element zero is (1, . . . , 1, 0). For ℓ > 2, the sequence starts with k ones followed by a
zero, for some k ∈ {0, . . . , j − 2}. Ranging over these possibilities gives

cj,ℓ = µ

j−2∑

k=0

(k + β) cj−k−1,ℓ−1.

To solve this, define the generating function

F (x, y) =
∑

j>1

∑

ℓ>1

cj,ℓ x
jyℓ.

By changing the order of summation and re-indexing, we have

F (x, y)−
∑

j>1

cj,1x
jy = µ

∑

j>1

∑

ℓ>2

j−2∑

k=0

(k + β) cj−k−1,ℓ−1 x
jyℓ

= µ
∑

k>0

(k + β)xk+1y
∑

j>k+2

∑

ℓ′>1

cj−k−1,ℓ′ x
j−k−1yℓ

′

= µ
∑

k>0

(k + β)xk+1y F (x, y).

Thus, recalling that cj,1 = µ(j − 1 + β), we have

F (x, y) = µ

[
∑

j>1

(j − 1 + β) xjy +
∑

k>0

(k + β) xk+1y F (x, y)

]

16



= µ (F (x, y) + 1)
∑

k>0

(k + β)xk+1y.

Recall that by differentiating both sides of (1− x)−1 =
∑

k>0 x
k, we have

∑

k>0

kxk+1 =
x2

(1− x)2
.

Hence if we define

f(x) = µ
∑

k>0

(k + β)xk+1 = µ

(
x2

(1− x)2
+

βx

1− x

)
,

we have F (x, y) = y f(x)(F (x, y) + 1) and thus

F (x, y) =
f(x)y

1− f(x)y
.

Now, going back to (22), we have

ξj ∼ 1
2

j∑

ℓ=1

cj,ℓ
ℓ

= 1
2
[xj ]

j∑

ℓ=1

1

ℓ
[yℓ−1]

f(x)

1− f(x)y
.

Applying the Taylor expansion of (1− z)−1 and log(1− z), we have

ξj ∼ 1
2
[xj ]

j∑

ℓ=1

1

ℓ
[yℓ−1]

(
f(x)

∞∑

k=0

(f(x)y)k

)
= 1

2
[xj ]

j∑

ℓ=1

f(x)ℓ

ℓ
= −1

2
[xj ] log(1− f(x)).

Now,

1− f(x) =

(
1−

(
r

r−1
− s+ 1

)
x
)
(1− (r − 1)(s− 1)x)

(1− x)2
,

so

ξj ∼ 1
2
[xj ]

(
2 log(1− x)− log

(
1−

(
r

r − 1
− s+ 1

)
x

)
− log (1− (r − 1)(s− 1)x)

)

= 1
2
[xj ]

∞∑

k=1

−2xk +
((

r
r−1

− s+ 1
)
x
)k

+ ((r − 1)(s− 1)x)k

k

=

(
r

r−1
− s + 1

)j
+ (r − 1)j(s− 1)j − 2

2j

= λj(1 + ζj)

for j = 1, . . . , m. Substituting this into (21) implies that

Σ∗(x) ∼
m∏

j=1

(λj(1 + ζj))
xj .
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To complete the proof, it remains to show that in (17), the sum over S(x) \ S∗(x) is
negligible. This is standard, but for completeness we sketch an argument. We adapt Steps 1
to 3 as above. There are O(n(s−1)|Q|−1) ways to choose (P1, . . . , Pℓ) ∈ S(x) \ S∗(x), as then
Q = P1∪· · ·∪Pℓ involves at most (s−1)|Q|−1 distinct cells. Now consider the number of ways
to perform Steps 2 and 3, summed over all possibilities for the intersection Q∩PT . This is the
number of ways to extend Q to Q∪PT , where PT corresponds to a spanning tree T ∈ Tn, and
then extending Q ∪ PT to a full partition. This is very similar to the calculations performed
to evaluate EY , and the presence of Q only changes these calculations by a constant factor.
Therefore, for a given Q, the total number of ways to perform Steps 2 and 3, summed over
all possible intersections, and then divided by EY , is

O(1)
p(rn− s|Q|)

p(rn)
= O(n−(s−1)|Q|).

Multiplying this with the O(n(s−1)|Q|−1) ways to complete Step 1, we see that the sum over
(P1, . . . , Pℓ) in (17), contributes O(1/n) = o(1), as required.

We now show that condition (A3) holds, under fairly weak conditions on (r, s).

Lemma 4.5. Fix integers r, s > 2 and r such that

r >





3 if s = 2,

2 if s ∈ {3, 4},
s− 1 if s > 5.

(23)

Then

exp

(
∞∑

j=1

λjζ
2
j

)
=

r2
√
s− 1√

(r2 − rs+ r + s− 1) (rs− r − s)(r − 1)
<∞.

Proof. First, observe that

( r
r−1

− s+ 1)2

(r − 1)(s− 1)
,

r
r−1

− s+ 1

(r − 1)(s− 1)
,

1

(r − 1)(s− 1)

are all less than 1 in absolute value. Next, we claim that

r2 − rs+ r + s− 1 > 0. (24)

This condition is easily verified when s ∈ {2, 3, 4} and r belongs to the stated range. When
s > 5 we use the fact that

r > s− 1 >
1

2

(√
s2 − 6s+ 5 + s− 1

)
,

which implies (24).
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Therefore, using the Taylor expansion of − log(1− z) we obtain

∞∑

j=1

λjζ
2
j = 1

2

∞∑

j=1

1

j



((

r
r−1

− s+ 1
)2

(r − 1)(s− 1)

)j

− 4

( r
r−1

− s+ 1

(r − 1)(s− 1)

)j

+ 4

(
1

(r − 1)(s− 1)

)j



= −2 log

(
1− 1

(r − 1)(s− 1)

)
+ 2 log

(
1−

r
r−1

− s + 1

(r − 1)(s− 1)

)

− 1
2
log

(
1−

(
r

r−1
− s+ 1

)2

(r − 1)(s− 1)

)

= −2 log

(
rs− r − s

(r − 1)(s− 1)

)
+ 2 log

(
r(rs− r − s)

(r − 1)2(s− 1)

)

− 1
2
log

(
(rs− r − s)(r2 − rs+ r + s− 1)

(r − 1)3(s− 1)

)
.

Taking the exponential of both sides establishes the result.

Next, we investigate the parameters ζj(r, s).

Lemma 4.6. Let r, s > 2 and recall that for all fixed integers j > 1,

ζj = ζj(r, s) =

(
r

r−1
− s+ 1

)j − 2

(r − 1)j(s− 1)j
.

Then

(i) ζj(2, 2) = −1 for j > 1;

(i) ζj(2, s) = −1 for s > 3 and j = 1;

In all other cases, ζj(r, s) > −1.

Proof. It is easy to check that (i) and (ii) hold. For (iii), note that ζj(r, s) > −1 if and only
if f(r, s, j) > 0, where

f(r, s, j) =

(
r

r − 1
− s+ 1

)j

− 2 + (r − 1)j(s− 1)j.

If r = 2 and s > 3 then f(2, s, j) = (s− 1)j − (s− 3)j − 2, which increases with j. So

f(2, s, j) > f(2, s, 2) = 4s− 10 > 0

as s > 3. If s = 2, then
(

r
r−1

− s+ 1
)j
> 0, so f(r, 2, j) > (r−1)j −2 > 0 as r > 3 and j > 1.

It remains to show that f(r, s, j) > 0 when r > 3, s > 3 and j > 1. If j is even then(
r

r−1
− s+ 1

)j
> 0, so

f(r, s, j) > (r − 1)j(s− 1)j − 2 > 22j − 2 > 0.
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Now suppose that j is odd. Since r > 3 and s > 3, we have r
r−1

− s+ 1 < 0. Thus

f(r, s, j) = (r − 1)j(s− 1)j −
(
s− 1− r

r − 1

)j

− 2

>
(
(r − 1)j − 1

)
(s− 1)j − 2

> 2j − 2 > 0.

This completes the proof.

5 Second moment

So far, conditions (A1)–(A3) of Theorem 2.1 have been verified. In this section we will assume
that r, s > 2 are fixed integers such that r > ρ(s) when s > 5, and that (r, s) 6= (2, 2) when
s ∈ {2, 3, 4}. With this assumption, we will obtain an asymptotic expression for the second
moment, verifying condition (A4). The following identity of Chu [12], which generalises
Jensen’s identity, will be useful.

Lemma 5.1 ([12]). Let m, b be positive integers, x1, . . . , xb and z be complex numbers, and
define

(
−1
0

)
= 1. Then

∑

(k1,...,kb)∈N
b

k1+···+kb=m

b∏

i=1

(
xi + kiz

ki

)
=

m∑

k=0

(
k + b− 2

k

)(
x1 + · · ·+ xb +mz − k

m− k

)
zk.

We write
|Ωn,r,s|EY 2 =

∑

(PT1
,PT2

)

|{P ∈ Ωn,r,s : PT1 ∪ PT2 ⊆ P}|

where the sum is over all pairs (PT1, PT2) such that G(PT1) = T2 and G(PT2) = T2, for some
spanning trees T1, T2.

We perform this count by conditioning on the intersection between PT1 and PT2 , which
will correspond to a union of disjoint trees. Let b ∈

{
1 + (s− 1)ℓ : ℓ = 0, 1, . . . , n−1

s−1

}
be the

number of connected components in this intersection (we can show b must be of this form by
adding up the number of vertices in each connected component). We break up the process
into the following steps:

1. Choose a partition ν = (ν1, . . . , νb) of n, where νi > 0, s− 1 | νi − 1 and
∑b

i=1 νi = n.
Here, νi represents the number of vertices in the i’th connected component. (Later,
we will divide by b! to account for the assumption that the connected components are
labelled).

2. Choose a partition of the n vertices into b groups, where the size of the i’th group is νi.

3. In each group, choose a spanning tree on that group and a subpartition that projects
to that tree.
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We then collapse the unused points in each group to an irregular cell. The i’th irregular cell
will have rνi − s(νi−1)

s−1
= rs−r−s

s−1
νi +

s
s−1

points. In this irregular configuration model, we wish
to partition two part-disjoint spanning trees T ′

1 and T ′
2, which will extend to T1 and T2.

4. Choose δ(1), δ(2) ∈ N
b, the degree sequence of T ′

1 and T ′
2 respectively, such that, for all

i,

δ
(1)
i , δ

(2)
i > 1,

b∑

i=1

δ
(1)
i =

b∑

i=1

δ
(2)
i =

s(b− 1)

s− 1
, and δ

(1)
i + δ

(2)
i 6

rs− r − s

s− 1
νi +

s

s− 1
.

5. Choose trees T ′
1, T

′
2 consistent with δ(1) and δ(2).

6. Choose PT1 and PT2 such that there are no parts in common.

7. Partition remaining points.

Then |Ωn,r,s|EY 2 is equal to the number of ways to complete the above process, summed over
all b.

Let

S1(b) =

{
ν ∈

{
1 + (s− 1)ℓ : ℓ = 0, 1, . . . ,

n− 1

s− 1

}b

:

b∑

i=1

νi = n

}

be the set of possible sequences ν from Step 1. The number of ways to complete Step 2 is

s2 =

(
n

ν1, . . . , νb

)
= n!

b∏

i=1

1

νi!
.

By (14), the number of ways to complete Step 3 is

s3 =
(s− 1)b rn

((s− 1)!)
n−b
s−1

b∏

i=1

(νi − 2)!

(
(r − 1)νi

νi−s
s−1

)
=

(s− 1)b rn

((s− 1)!)
n−b
s−1

b∏

i=1

(νi − 2)!((r − 1)νi)!(
νi−s
s−1

)
!
(
rs−r−s
s−1

νi +
s

s−1

)
!
.

Let

S4(ν) =

{
(η(1),η(2),η(3)) ∈ (Nb)3 : η

(1)
i + η

(2)
i + η

(3)
i =

rs− r − s

s− 1
νi −

s− 2

s− 1
,

b∑

i=1

η
(1)
i =

b∑

i=1

η
(2)
i =

b− s

s− 1

}

be the set of sequences arising from Step 4. By (6), the number of ways to complete Step 5 is

s5 =

( b−1
s−1

− 1

δ
(1)
1 − 1, . . . , δ

(1)
b − 1

)( b−1
s−1

− 1

δ
(2)
1 − 1, . . . , δ

(2)
b − 1

)(
(b− 1)!

(
b−1
s−1

)
!((s− 1)!)

b−1
s−1

)2

.
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As each cell in this irregular configuration model has rs−r−s
s−1

νi +
s

s−1
points, the number of

ways to complete Step 6 is

s6 =
b∏

i=1

(
rs− r − s

s− 1
νi +

s

s− 1

)

δ
(1)
i +δ

(2)
i

=
b∏

i=1

(
rs−r−s
s−1

νi +
s

s−1

)
!(

rs−r−s
s−1

νi +
s

s−1
− δ

(1)
i − δ

(2)
i

)
!
.

There are
b∑

i=1

rνi −
s(νi − 1)

s− 1
− δ

(1)
i − δ

(2)
i =

(rs− r − s)n

s− 1
− s(b− 2)

s− 1

points remaining, so the number of ways to complete Step 7 is

s7 = p

(
(rs− r − s)n

s− 1
− s(b− 2)

s− 1

)
=

(
(rs−r−s)n

s−1
− s(b−2)

s−1

)
!

(
rs−r−s
s(s−1)

n− b−2
s−1

)
!(s!)

rs−r−s
s(s−1)

n− b−2
s−1

.

It is convenient to work with nonnegative variables, so we let

η
(1)
i = δ

(1)
i − 1, η

(2)
i = δ

(2)
i − 1, η

(3)
i =

rs− r − s

s− 1
νi −

s− 2

s− 1
− η

(1)
i − η

(2)
i ,

for i = 1, . . . , b.
Combining everything, and dividing by b! as promised earlier, we have

|Ωn,r,s|EY 2 =

n∑

b=1
s−1|b−1

1

b!

∑

ν∈S1(b)

s2s3
∑

(η(1),η(2),η(3))∈S4(ν)

s5s6s7

=

n∑

b=1
s−1|b−1

n! rn(s− 1)b((b− 1)!)2

b!((s− 1)!)
n+b−2
s−1

(
rs−r−s
s(s−1)

n− b−2
s−1

)
!
((

b−1
s−1

)
!
)2

(s!)
rs−r−s
s(s−1)

n− b−2
s−1

×
∑

ν∈S1(b)

(
b∏

i=1

((r − 1)νi)!

νi(νi − 1)
(
νi−s
s−1

)
!

)

×
∑

(η(1),η(2),η(3))∈S4(ν)

( b−1
s−1

− 1

η
(1)
1 , . . . , η

(1)
b

)( b−1
s−1

− 1

η
(2)
1 , . . . , η

(2)
b

)( (rs−r−s)n
s−1

− s(b−2)
s−1

η
(3)
1 , . . . , η

(3)
b

)
.

Now we compute the sum over S4(ν) through the use of generating functions:

∑

(η(1),η(2),η(3))∈S4(ν)

( b−1
s−1

− 1

η
(1)
1 , . . . , η

(1)
b

)( b−1
s−1

− 1

η
(2)
1 , . . . , η

(2)
b

)( (rs−r−s)n
s−1

− s(b−2)
s−1

η
(3)
1 , . . . , η

(3)
b

)

=
∑

(η(1),η(2),η(3))∈S4(ν)

(
[z

η
(1)
1

1 · · · zη
(1)
b

b ]

( b∑

i=1

zi

) b−s
s−1

)(
[z

η
(2)
1

1 · · · zη
(2)
b

b ]

( b∑

i=1

zi

) b−s
s−1

)
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(
[z

η
(3)
1

1 · · · zη
(3)
b

b ]

( b∑

i=1

zi

) (rs−r−s)n
s−1

− s(b−2)
s−1

)

= [z
rs−r−s

s−1
ν1−

s−2
s−1

1 · · · z
rs−r−s

s−1
νb−

s−2
s−1

b ]

(
b∑

i=1

zi

) (rs−r−s)n
s−1

− b(s−2)
s−1

=

( (rs−r−s)n
s−1

− b(s−2)
s−1

(rs−r−s)ν1
s−1

− s−2
s−1

, . . . , (rs−r−s)νb
s−1

− s−2
s−1

)
.

So

|Ωn,r,s|EY 2 =
n∑

b=1
s−1|b−1

n! rn(r − 1)b((b− 1)!)2
(

(rs−r−s)n
s−1

− b(s−2)
s−1

)
!

b!((s− 1)!)
n+b−2
s−1

(
rs−r−s
s(s−1)

n− b−2
s−1

)
!
((

b−1
s−1

)
!
)2

(s!)
rs−r−s
s(s−1)

n− b−2
s−1

×
∑

ν∈S1(b)

b∏

i=1

(
(r − 1)νi − 1

νi−1
s−1

)

Note that the summand is equal to |Ωn,r,s|EY when b = 1. For b > 2, we let ki =
νi−1
s−1

and
use Lemma 5.1, to see that

∑

ν∈S1(b)

b∏

i=1

(
(r − 1)νi − 1

νi−1
s−1

)
=

∑

k1+···+kb=
n−b
s−1

ki>0

b∏

i=1

(
(r − 1)(s− 1)ki + r − 2

ki

)

=

n−b
s−1∑

k=0

(
k + b− 2

k

)(
(r − 1)n− b− k

n−b
s−1

− k

)
(r − 1)k.

Define

K = {(α, β) : α, β > 0, (s− 1)α + β 6 1}, (25)

L = Z× (s− 1)Z (26)

and let K◦ denote the interior of K. Thus, dividing through by the expression in (7), we have

EY 2 = EY +
∑

(k,b)∈(L+(0,1))∩nK

an(k, b), (27)

where

an(k, b) =





0 for b 6 1,

rn(b−1)(r−1)k+b s
n+b−2
s−1 (k+b−2)! ((r−1)n−k−b)! (rn/s)!n!

b k! (( b−1
s−1)!)

2
( rs−r−s

s(s−1) n− b−2
s−1)! (

n−(s−1)k−b

s−1 )! (rn)!
otherwise.

.
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We now wish to apply Laplace’s method to compute the asymptotic summation of this ex-
pression.

Greenhill, Janson and Ruciński [17] proved a version of Laplace’s method for asymptotic
summation, tailored for the small subgraph conditioning method. We refer to [17] for precise
definitions.

Lemma 5.2 ([17, Lemma 6.3]). Suppose the following:

(i) L ⊂ R
m is a lattice with full rank m.

(ii) K ⊂ R
m is a compact convex set with non-empty interior.

(iii) ϕ : K → R is a continuous function with a unique maximum at some interior point
x0 ∈ K◦.

(iv) ϕ is a twice continuously differentiable in a neighbourhood of x0 and the Hessian H0 :=
D2ϕ(x0) is strictly negative definite.

(v) ψ : K1 → R is a continuous function on some neighbourhood K1 ⊂ K of x0 with
ψ(x0) > 0.

(vi) For each positive integer n there is a vector ℓn ∈ R
m.

(vii) For each positive integer n there is a positive real number bn and a function an : (L +
ℓn) ∩ nK → R such that, as n→ ∞,

an(ℓ) = O(bne
nϕ(ℓ/n)+o(n)), ℓ ∈ (L+ ℓn) ∩ nK, (28)

and

an(ℓ) = bn(ψ(ℓ/n) + o(1))enϕ(ℓ/n), ℓ ∈ (L+ ℓn) ∩ nK1, (29)

uniformly for ℓ in the indicated sets.

Then, as n→ ∞,

∑

(L+ℓn)∩nK

an(ℓ) ∼
(2π)m/2ψ(x0)

det(L) det(−H0)1/2
bnn

m/2enϕ(x0).

To apply this lemma, we define

bn =
(s− 1)2

2πn3

(
(s− 1)r/s

r
rs−r−s

s

)n

,

ψ(α, β) =
(r − 1− α− β)1/2

(α + β)3/2(rs− r − s(1 + β))
1
2
+ 2

s−1β1− 2
s−1α1/2(1− β − (s− 1)α)1/2

,

ϕ(α, β) = (α + β) log(r − 1) + g(α+ β) + g(r − 1− α− β)− 2

s− 1
g(β)− g(α) (30)
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− 1

s(s− 1)
g(rs− r − s− sβ)− 1

s− 1
g(1− (s− 1)α− β), (31)

where g(x) = x log x for x > 0 and g(0) = 0. The following result, proved in Section A.2,
gives critical information about the function ϕ.

Lemma 5.3. Assume that r, s > 2 are fixed integers such that r > ρ(s) when s > 5, and that
(r, s) 6= (2, 2) when s ∈ {2, 3, 4}. The unique global maximum of ϕ over K occurs at the point
(α0, β0) where

α0 =
1

r(s− 1)
, β0 =

rs− r − s

r(s− 1)
.

The maximum value of ϕ over this domain equals

ϕ(α0, β0) = 2(r− 1) log(r− 1)− 2(rs− r − s)

s(s− 1)
log(rs− r− s)+

r

s
log(s− 1)− rs− r − s

s
log r.

Let H0 be the Hessian of ϕ evaluated at the point (α0, β0). Then H0 is strictly negative definite
and

det(−H0) =
r3(s− 1)2 (r2 − rs+ r + s− 1)

(r − 1)2(rs− r − s)
.

Then Lemma 5.3 implies the following.

Lemma 5.4. Assume that r, s > 2 are fixed integers such that r > ρ(s) when s > 5, and that
(r, s) 6= (2, 2) when s ∈ {2, 3, 4}. Then as n→ ∞ along N(r,s),

EY 2

(EY )2
∼ r2

√
s− 1√

(r2 − rs+ r + s− 1) (rs− r − s)(r − 1)
.

Proof. We apply Lemma 5.2 to compute the sum in (27). The first six conditions of the
lemma hold: Now the conditions of Lemma 5.2 hold:

(i) We defined L = Z× (s− 1)Z, a lattice with rank m = 2 and det(L) = s− 1.

(ii) The domain K, defined in (25), is compact and convex with a non-empty interior.

(iii) The function ϕ : K → R is a continuous function with a unique global maximum
(α0, β0), by Lemma 5.3 is true.

(iv) The function ϕ : K → R is twice differentiable in the interior of K, with a strictly
negative definite Hessian, by Lemma 5.3 is true.

(v) Let K1 be the open ball around (α0, β0) of sufficiently small radius, ensuring that K1 ⊂
K. The function ψ : K1 → R is a continuous function with

ψ(α0, β0) =
r7/2(s− 1)5/2

√
r − 1(rs− r − s)

2s
s−1

> 0.
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(vi) Let ℓn be (0, 1) for each n.

(vii) This condition is verified by applying Stirling’s approximation.

Thus, we can apply Lemma 5.2 to see that

EY 2 ∼ 2π ψ(α0, β0)

det(L) det(−H0)1/2
bn n e

n ϕ(α0,β0)

=
r2
√
r − 1 (s− 1)5/2 (rs− r − s)

1
2
− 2s

s−1

n2
√
r2 − rs+ r + s− 1

(
(s− 1)r/s (r − 1)r−1

r
rs−r−s

s (rs− r − s)
rs−r−s
s(s−1)

)2n

.

Dividing by (EY )2, using the expression from Lemma 3.1, completes the proof.

6 Threshold analysis

Define the logarithm of the base of the exponential factor as a function:

L(r, s) = Ls(r) =
r

s
log(s−1)+(r−1) log(r−1)− rs− r − s

s
log r− rs− r − s

s(s− 1)
log(rs−r−s),

treating r as a continuous variable and s > 2 as a fixed positive integer. We restrict to r > 2,
or r > 3 when s = 2. We want to determine when Ls(r) > 0 (which implies that EY → ∞)
and when Ls(r) 6 0 (which implies that EY = o(1).

The following can be checked using elementary calculus.

Lemma 6.1. For s ∈ {2, 3, 4}, Ls(r) > 0 for r ∈ (2,∞). Furthermore, for s ∈ {3, 4},
Ls(2) > 0.

The situation is quite different when s > 5, as Lemma 6.2 shows. The following inequality
will be useful: For all b > 1 and |a| < b,

(
1 +

a

b

)b
> ea

(
1− a2

b

)
. (32)

(See for example [25, p. 435].) The proof of Lemma 6.2 is presented in Section A.3.

Lemma 6.2. For a fixed integer s > 5, there exists a unique real number ρ(s) > 2 such that
L(ρ(s), s) = 0,

L(r, s) < 0 for r ∈ [2, ρ(s)) and L(r, s) > 0 for r ∈ (ρ(s),∞).

Furthermore, if s > 6, then ρ(s) > s.

The next lemma proves that ρ(s) is exponential in s and lies strictly within an interval
of unit width, and gives an asymptotic expression for ρ(s) with exponentially small error, as
s→ ∞. The proof is given in Section A.4.
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Lemma 6.3. For a fixed integer s > 5, let ρ(s) be the unique real number such that L(ρ(s), s) =
0. Then

es−2

s− 1
− s− 1

2
< ρ(s) <

es−2

s− 1
− s− 3

2
.

Furthermore, as s→ ∞,

ρ(s) =
es−2

s− 1
− s2 − 3s+ 1

2(s− 1)
+Os(s

4 e−s).

We can now prove our main result, Theorem 1.1, which gives us a threshold result for the
existence of a spanning tree in Gn,r,s when s > 5.

Proof of Theorem 1.1. Lemma 6.2 proves the existence and uniqueness of ρ(s) for s > 5, while
Lemma 6.3 proves the upper and lower bounds on ρ(s), and verifies the given asymptotic
expression for ρ(s).

For fixed s > 2 and r 6 ρ(s) (but (r, s) 6= (2, 2)), the base of the exponential factor in
Lemma 3.1 is less than 1, and thus we have P(Y > 1) 6 EY → 0. By Lemma 2.3, we conclude
that P(YG > 1) → 0.

Now suppose that s > 6 and r > ρ(s), or s ∈ {2, 3, 4} and (r, s) 6= (2, 2). We verify the
conditions of Theorem 2.1. Cooper, Frieze, Molloy and Reed [13] proved that condition (1)
holds with λj defined in (11). Condition (A2) holds by Lemma 4.4, condition (A3) holds by
Lemma 4.5, and condition (A4) holds by Lemma 5.4. By our assumptions on r, s, we have

ζ1 > −1 for all j > 2, by Lemma 4.6. Hence Ŷ > 0 a.a.s., where Ŷ is the random variable
obtained from Y by conditioning on the event X1 = 0. Then Lemma 2.3 shows that YG > 0
a.a.s., as required.

Finally, we provide the proof for Theorem 1.2, which gives the asymptotic distribution of
the number of spanning trees in Gn,r,s.

Proof of Theorem 1.2. If P(YG > 0) → 0 then the result is immediate, as the asymptotic value
of YG is zero with probability 1. For the remainder of the proof, suppose that P(YG > 0) → 1.

We showed in the proof of Theorem 1.1 that conditions (A1)–(A4) of Theorem 2.1 hold
for Y . This gives us

Y

EY

d−→
∞∏

j=1

(1 + ζj)
Zje−λjζj .

For s = 2, the asymptotic distribution of YG is obtained from the asymptotic distribution of
Y by conditioning on X1 = X2 = 0.

For s > 3, let Ŷ be the random variable obtained from Y by conditioning on the event
X1 = 0. We apply Corollary 2.4 to see that

Ŷ

EY

d−→ e−λ1ζ1

∞∏

j=2

(1 + ζj)
Zje−λjζj .

Applying Lemma 2.3(b) shows that Ŷ and YG have the same asymptotic distribution. Finally,
combining (3) and Lemma 3.1 gives us EYG ∼ exp(−λ1ζ1)EY , and the result follows.

27



A Technical proofs

A.1 Proof of Lemma 4.2

Fix (P1, . . . , Pℓ) ∈ S∗(x) and I = (I1, . . . , Iℓ) ∈ I(x). Let Q = P1 ∪ · · · ∪ Pℓ. In Step 2 we
work in the irregular configuration model determined by I. Recall that u = u(I) is defined
by u = u1+ . . .+ uℓ, where ui is the number of entries of Ii which equal zero. In the irregular
configuration model:

• There are n− (s− 1) |Q| regular cells with r points each,

• There are (s− 2)u internal irregular cells with r − 1 points each,

• There are u external irregular cells: if an external irregular cell was collapsed from a
path in PT ∩Q with k edges then it contains (rs− r − s)k + r − 2 points, with k > 0.

This gives n′ = n − (s − 1) |Q| + (s − 1)u cells in total. The number of ways to complete
Step 2 equals the number of ways of choosing a subpartition P ′ in this irregular configuration
model such that T ′ = G(P ′) is a spanning tree. Then T ′ corresponds exactly to a spanning
tree T in the standard configuration model, with the subgraphs determined by I contracted
to single vertices.

We perform this count by conditioning on the degree of each vertex of T ′. Label the u
external irregular cells in increasing order, and label the (s − 2)u internal irregular cells in
increasing order. Let di be the number of points in the i’th external irregular cell; that is,

di = (rs− r − s)k + r − 2

if the i’th external irregular cell corresponds to a path of length k in PT ∩ Q. For a degree
sequence δ, let |δ| be its degree sum. Let Dirreg be the set of possible degree sequences for
the irregular cells, and for a given (δext, δint) ∈ Dirreg, let Dreg(δ

ext, δint) be of possible degree
sequences for the regular cells:

Dirreg = {(δext, δint) ∈ N
u × N

(s−2)u : 1 6 δexti 6 di, 1 6 δinti 6 r − 1},

Dreg(δ
ext, δint) =

{
δreg ∈ N

n−(s−1)|Q| :

n−(s−1)|Q|∑

i=1

δregi =
s(n′ − 1)

s− 1
−
∣∣δext

∣∣−
∣∣δint

∣∣ , δi > 1

}
.

Let Tn′(δreg, δext, δint) be the set of trees on n′ vertices which have degree sequence consistent
with (δreg, δext, δint). Then, the number of ways to complete Step 2 is

s2(x, I) =
∑

(δext,δint)∈Dirreg

∑

δreg∈Dreg(δext,δint)

∑

T ′∈Tn′ (δreg,δext,δint)

∑

P ′

T ′
:G(P ′

T ′
)=T ′

1. (33)

To simplify this, for a given T ′ ∈ Tn′(δreg, δext, δint), the number of subpartitions P ′
T ′ that

project to T ′ is
( u∏

i=1

(di)δexti

)( (s−2)u∏

i=1

(r − 1)δinti

)( n−(s−1)|Q|∏

i=1

(r)δreg
i

)
.
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For a given (δreg, δext, δint), by (6), the number of trees in Tn′(δreg, δext, δint) is

s− 1
( u∏

i=1

(δexti − 1)!

)( (s−2)u∏

i=1

(δinti − 1)!

)( n−(s−1)|Q|∏

i=1

(δregi − 1)!

) × (n′ − 2)!

((s− 1)!)
n′

−1
s−1

.

Substituting these expressions into (33) shows that

s2(x, I) =
∑

(δext,δint)∈Dirreg

A(δext,δint)

(
u∏

i=1

(di)δexti

(δexti − 1)!

)


(s−2)u∏

i=1

(r − 1)δinti

(δinti − 1)!


 (34)

where

A(δext,δint) =
(s− 1)(n′ − 2)!

((s− 1)!)
n′

−1
s−1

∑

δ∈Dreg(δext,δint)

n−(s−1)|Q|∏

i=1

(r)δregi

(δregi − 1)!

=
(s− 1)(n′ − 2)!

((s− 1)!)
n′

−1
s−1

[
zs(n

′−1)/(s−1)−|δext|−|δint|] (rz(1 + z)r−1
)n−(s−1)|Q|

=
(s− 1)(n′ − 2)! rn−(s−1)|Q|

((s− 1)!)
n′

−1
s−1

(
(r − 1)(n− (s− 1) |Q|)

s(n′−1)
s−1

− |δext| −
∣∣δint

∣∣− (n− (s− 1) |Q|)

)
.

(The square bracket in the second line denotes coefficient extraction.) Using Stirling’s formula,
we have

A(δext,δint) ∼ Au (s− 1)(s−1)u (rs− r − s)u−|δext|−|δint|

= Au

u∏

i=1

s− 1

(rs− r − s)δ
ext
i −1

(s−2)u∏

i=1

s− 1

(rs− r − s)δ
int
i

(35)

where

Au =
(r − 1)1/2 (s− 1)2 ((s− 1)!)

1
s−1

(rs− r − s)
3s−1
2(s−1) n2

(
(rs− r − s)s−1 ns−1

(s− 1)s−1 (s− 1)!

)u

×
(

(rs− r − s)rs−r−s (s− 1)!

((r − 1)(s− 1))(r−1)(s−1) rs−1 ns−1

)|Q|
(

r(r − 1)r−1(s− 1)r−1 n

e((s− 1)!)
1

s−1 (rs− r − s)
rs−r−s

s−1

)n

. (36)

Next, note that
ℓ∑

i=1

m−1∑

k=0

qk(Ii) =

ℓ∑

i=1

ui = u.

By counting the cells in Q, we have

(s− 1) |Q| = (s− 2)u+

ℓ∑

i=1

m−1∑

k=0

((s− 1)k + 1) qk(Ii).
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It follows that
ℓ∑

i=1

m−1∑

k=0

k qk(Ii) = |Q| − u.

Therefore,

∑

δext

(
u∏

i=1

(di)δexti
(s− 1)

(δexti − 1)! (rs− r − s)δ
ext
i −1

)

=

m−1∏

k=0

ℓ∏

i=1




(rs−r−s)k+r−2∑

j=1

(
(rs− r − s)k + r − 2

)
j
(s− 1)

(j − 1)! (rs− r − s)j−1




qk(Ii)

=
m−1∏

k=0

ℓ∏

i=1


((rs− r − s)k + r − 2

)
(s− 1)

(rs−r−s)k+r−2∑

j=1

(
(rs−r−s)k+r−3

j−1

)

(rs− r − s)j−1




qk(Ii)

=

m−1∏

k=0

ℓ∏

i=1

((
k +

r − 2

rs− r − s

)
(rs− r − s)(s− 1)

(
1 +

1

rs− r − s

)(rs−r−s)k+r−3
)qk(Ii)

=

(
(rs− r − s)2

r − 1

)u(
(r − 1)(s− 1)

rs− r − s

)(rs−r−s)|Q|−(r−1)(s−2)u m−1∏

k=0

(
k +

r − 2

rs− r − s

)∑ℓ
i=1 qk(Ii)

.

(37)

Similarly, we have

∑

δint




(s−2)u∏

i=1

(r − 1)δinti
(s− 1)

(δinti − 1)!(rs− r − s)δ
int
i


 =

(
r−1∑

j=1

(r − 1)j(s− 1)

(j − 1)!(rs− r − s)j

)(s−2)u

=

(
(r − 1)(s− 1)

rs− r − s

r−1∑

j=1

(
r − 2

j − 1

)
1

(rs− r − s)j−1

)(s−2)u

=

(
(r − 1)(s− 1)

rs− r − s

)(r−1)(s−2)u

. (38)

The proof is completed by substituting (36), (37) and (38) into (34), using (35).

A.2 Proof of Lemma 5.3

We assume that r, s > 2 are fixed integers such that s > 5 and r > ρ(s), or s ∈ {2, 3, 4} and
(r, s) 6= (2, 2). Recall the definition of K and ϕ from (25), (31). The partial derivatives of
ϕ : K → R are

ϕα(α, β) = log

(
(α + β)(r − 1)(1− (s− 1)α− β)

α(r − 1− α− β)

)
,
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ϕβ(α, β) = log

(
(α + β)(r − 1)

r − 1− α− β

)
+

1

s− 1
log

(
(1− (s− 1)α− β)(rs− r − s− sβ)

β2

)
.

For x > −1, let

α(x) =
1 + x

rs− r + sx+ x(x+1)
r−1

, β(x) =
rs− r − s

rs− r + sx+ x(x+1)
r−1

.

Note that

(α(x), β(x)) lies in the interior of the domain K, for any x ∈ (−1,∞).

Indeed, we have α(x) > 0, β(x) > 0, and

1− (s− 1)α(x)− β(x) =
1 + x+ x(x+1)

r−1

rs− r + sx+ x(x+1)
r−1

(39)

which is strictly positive for all x > −1.
Our interest in this particular curve (α(x), β(x)) is clarified by the following lemma, which

shows that it is a parameterisation of a ridge containing any stationary point of ϕ in K.

Lemma A.1. Let K, ϕ : K → R, α(x), β(x) be defined as above. Then, the following holds.

(a) Any local maxima of ϕ on K either equals (0, 0) or lies in the interior of K.

(b) For any stationary point (α, β) in the interior of K of the function ϕ there exists some
x ∈ (−1,∞) such that α = α(x) and β = β(x) and

(rs− r − s)
(
1 + x

r−1

)s−2

= (1 + x)
(
rs− r − s+ sx+

x(x+1)
r−1

)
. (40)

(c) Let f : (−1,∞) → R be defined by f(x) = ϕ(α(x), β(x)). If x ∈ (−1,∞) is a stationary
point of f then x solves (40).

Proof. To prove (a), we need to show that none of the following points is a local maximum:

(i) (α, 0) for all 0 < α 6
1

s−1
;

(ii) (0, β) for all 0 < β 6 1;

(iii) (α, β) for all positive α, β that β = 1− (s− 1)α.

For (i), observe that if α → 1
s−1

then ϕα(α, 0) = O(1) + log(1− (s− 1)α) → −∞. Hence

ϕ(α, 0) > ϕ( 1
s−1

, 0) for sufficiently large α < 1
s−1

. Next, if 0 < α < 1
s−1

and β → 0 then

ϕβ(α, β) = O(1) − 2
s−1

log(β) → +∞. Therefore, ϕ(α, β) > ϕ(α, 0) for sufficiently small
positive β.

For (ii), observe that if β → 1 then ϕβ(0, β) = O(1) + 1
s−1

log(1 − β) → −∞. Hence
ϕ(β, 0) > ϕ(1, 0) for sufficiently large β < 1. Next, if 0 < β < 1 and α → 0 then ϕα(α, β) =
O(1)− log(α) → −∞. Therefore, ϕ(α, β) > ϕ(α, 0) for sufficiently small positive α.
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Finally, for (iii), observe that for fixed α with 0 < α < 1
s−1

and β → 1− (s− 1)α we have
ϕα(α, β) = O(1)+ log(1− (s−1)α−β) → −∞. So ϕ(α, 1− (s−1)α−ε) > ϕ(α, 1− (s−1)α)
for sufficiently small positive ε. This completes the proof of (a).

Next we proceed to (b). Let (α, β) be a stationary point of ϕ in the interior of K. We put

x =
α(rs− r − s)

β
− 1. (41)

Clearly x ∈ (−1,∞) since both α and β are positive. From ϕα(α, β) = 0, we find that

1− (s− 1)α− β = α
α+β

− α
r−1

.

Substituting β = α(rs−r−s)
x+1

, we find that

1− α
(
s− 1 + rs−r−s

x+1

)
= x+1

x+1+rs−r−s
− α

r−1
.

After rearranging, we see that this identity is equivalent to α = α(x). Then, from (41) we
find that β = β(x). Hence

α + β =
(rs− r − s+ x+ 1)α

x+ 1

and
r − 1− α− β

(r − 1)(α+ β)
= 1 +

x

r − 1
.

The definition of β(x) implies that

rs− r − s− sβ

β
= rs− r − s+ sx+

x(x+ 1)

r − 1

while (39) implies that

1− (s− 1)α− β

β
=

(1 + x)
(
1 + x

r−1

)

rs− r − s
.

Substituting the above expressions into ϕβ(α, β) = 0 leads to equation (40) and, thus, com-
pletes the proof of (b).

Next, observe that after much rearranging, ϕα(α(x), β(x)) = 0 for any x ∈ (−1,∞).
Therefore

f ′(x) = ϕβ(α(x), β(x)) β
′(x).

But β(x) is strictly decreasing, so f ′(x) = 0 if and only if ϕβ(α(x), β(x)) = 0. Therefore (c)
follows from (b).

Next, we show that equation (40) has at most two solutions.

Lemma A.2. Let r, s > 2 be fixed integers. Equation (40) has a solution at x = 0. Moreover,
the following holds.
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(a) If s ∈ {2, 3, 4} and (r, s) 6= (2, 2) then x = 0 is the unique solution of equation (40) on
(−1,∞).

(b) If s > 5 and r > s− 1 then equation (40) has no solutions on (−1, 0) and at most one
solution on (0,∞).

Proof. Let functions L,R : (−1,∞) → R stand for the LHS and the RHS of (40):

L(x) = (rs− r − s)
(
1 + x

r−1

)s−2

, R(x) = (1 + x)
(
rs− r − s+ sx+

x(x+1)
r−1

)
.

Observe that L(0) = R(0) = rs− r − s, so x = 0 is a solution of (40).
First, assume that s ∈ {2, 3}. Then the function (1+x)−1L(x) decreases on (−1,∞). Note

also that (1+ x)−1R(x) is a strictly increasing function on (−1,∞). Thus, there are no other

solutions of (40) except x = 0. Similarly, for s = 4, the function (1 + x)−1
(
1 + x

r−1

)−1
L(x)

decreases on (−1,∞). On the other hand,

R(x)

(1 + x)
(
1 + x

r−1

) = rs− r − s+ 2 + x− 2

1 + x
r−1

is strictly increasing on (−1,∞). Part (a) follows.
We proceed to the case s > 5 and r > s−1. As above, (1+x)−1R(x) is a strictly increasing

function on (−1,∞). The function (1 + x)−1L(x) decreases on (−1, 0) because

(
(s− 2) log

(
1 + x

r−1

)
− log(1 + x)

)′
=

s− 2

r − 1 + x
− 1

1 + x
<

s− r − 1

(r − 1 + x)(1 + x)
6 0.

This proves that (40) has no solutions on (−1, 0).
Next, we compute

L′(0) =
(rs− r − s)(s− 2)

r − 1
< rs− r +

1

r − 1
= R′(0);

L′′(x) =
(rs− r − s)(s− 2)(s− 3)

(r − 1)2

(
1 + x

r−1

)s−4

;

R′′(x) = 2s+
4 + 6x

r − 1
.

First suppose that L′′(x) < R′′(x) for all x ∈ [0,∞). Then L′(x)−R′(x) < L′(0)−R′(0) < 0.
This implies that the function L(x) − R(x) < L(0) − R(0) = 0 so (40) has no solutions on
(0,∞). For future reference, note that this case holds when s = 5 and r > 5, as can be
verified directly.

Otherwise, let x∗ = inf{x ∈ [0,∞) : L′′(x) > R′′(x)}. As before, x = 0 is the unique
solution L(x) = R(x) on [0, x∗] because the function L′(x) − R′(x) is strictly decreasing on
this interval. In particular, we get

L(x∗)− R(x∗) 6 x∗(L′(0)− R′(0)) 6 0.
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By continuity, we have x∗ ∈ [0,∞) and L′′(x∗) > R′′(x∗). Observe that

L(3)(x∗) = L′′(x∗)
s− 4

r − 1 + x∗
> R′′(x∗)

3

s(r − 1) + (2 + 3x∗)
= R(3)(x∗).

Note that R(3)(x) is a constant. For s > 6 the function L(3)(x) is strictly increasing. When
s = 5 we need only consider r = 4, since r > 5 is covered by the earlier argument. Here
L(3(x) is also a constant and we can check directly that L(3)(x) > R(3)(x). In all cases, we
conclude that L(3)(x) − R(3)(x) > 0 for any x > x∗. Therefore, L′′(x) − R′′(x) > 0 for any
x > x∗ so the function L(x) − R(x) is strictly convex on (x∗,∞). Since L(x∗) − R(x∗) 6 0
we conclude that L(x) − R(x) = 0 for at most at one point x ∈ (x∗,∞). This completes the
proof of (b).

We show that (α0, β0) is a local maximiser of ϕ and that the Hessisan at this point is
strictly negative definite.

Lemma A.3. Fix integers r, s > 2 such that (23) holds. Then (α0, β0) is a local maximiser
of ϕ on K and the Hessian evaluated at the point (α0, β0) is strictly negative definite.

Proof. Direct substitution shows that (α0, β0) is a stationary point of ϕ. We will show that
the Hessian H0 at the point (α0, β0) has a positive determinant and a negative trace, and is
therefore strictly negative definite. This will also imply that (α0, β0) is a local maximiser.
Now

det(H0) =
r3(s− 1)2 (r2 − rs+ r + s− 1)

(r − 1)2(rs− r − s)
, (42)

tr(H0) = −
(

r2

(r − 1)(rs− r − s)2
+

r(2r − 1)

(r − 1)(rs− r − s)
+

(r2 − 4r + 1) r

(r − 1)2
+ rs(s− 1)

)
.

Recalling (24) we see that det(H0) > 0. To show tr(H0) < 0, observe that every term inside
the parentheses is positive when r > 4. The only other cases are (r, s) ∈ {(2, 3), (3, 2), (3, 3)},
and direct substitution shows that tr(H0) is also negative in these cases.

We can now prove Lemma 5.3.

Proof of Lemma 5.3. The assumptions of the lemma imply that (23) holds. First, observe
that α0 = α(0) and β0 = β(0). Next, observe that the condition ϕ(0, 0) < ϕ(α0, β0) holds if
and only if L(r, s) > 0, and L(r, s) > 0 by the assumptions on (r, s), using Lemma 6.1 and
Lemma 6.2.

Let (α, β) be any global maximum of ϕ on K. By Lemma A.1(a),(b) and the assumption
that ϕ(0, 0) < ϕ(α0, β0), we conclude that (α, β) lies in the interior of K and α = α(x),
β = β(x) for some x ∈ (−1,∞). Since (α, β) is a global maximum of ϕ, it follows that x is
a global maximum of f(x) = ϕ(α(x), β(x)). Similarly, by assumption, 0 is a local maximum
of f(x). If x 6= 0 then the function f would have another stationary point between 0 and x,
but this is impossible by Lemma A.2. Thus x = 0, which shows that (α0, β0) is the unique
maximum of ϕ on K.

Now det(−H0) = (−1)2 det(H0) is given in (42), matching the value given in the statement
of Lemma 5.3, while direct substitution shows that that the value of ϕ(α0, β0) stated in
Lemma 5.3 is correct. This completes the proof.
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A.3 Proof of Lemma 6.2

Recall the function L defined at the start of Section 6. For reference, the first and second
derivatives of Ls(r) with respect to r are

L′
s(r) =

1

r
+ log(r − 1)− s− 1

s
log r − 1

s
log

(
r − s

s− 1

)
, (43)

L′′
s(r) =

1

r2

(
1

r − 1
− r

rs− r − s

)
. (44)

When s = 5 we have L5(2) < 0 and L′
5(r) > 0 for r > 2. Hence Lemma 6.2 holds when s = 5.

Now suppose that s > 6. It follows from (44) that L′′
s(r) > 0 when

r 6 r0 =
1
2

(
s+

√
s(s− 4)

)
,

and L′′
s(r) < 0 otherwise. The point of inflection r0 satisfies 2 < s/2 < r0 < s. Next, using

(32) with a = −1, b = s, we have

e

(
1− 1

s

)s

>
s− 1

s
>
s− 2

s− 1
.

This implies that L′
s(s) > 0 when s > 6. It follows that the maximum of Ls(r) on [2, s] is

either Ls(2) or Ls(s).
Next, observe that if (s − 1)s < 2(s−2)2 then Ls(2) < 0. This sufficient condition holds

when s = 6, and if (k − 1)k < 2(k−2)2 for some k > 6 then

kk+1 = k

(
k

k − 1

)k

(k − 1)k < 2k−3 2k 2(k−2)2 = 2(k−1)2 .

Hence, by induction, Ls(2) < 0 for all s > 6. Furthermore, we claim that Ls(s) < 0 for all
s > 6. Now

Ls(s) = log

(
(s− 1)s

s
s(s−2)
s−1 (s− 2)

s−2
s−1

)

and direct substitution shows that L6(6) < 0. When s > 7, note that

(s− 1)s

s
s(s−2)
s−1 (s− 2)

s−2
s−1

< s
e(s−2)

(
s(s− 2)

) 1
s−1 ,

and observe that the right hand side is a decreasing function of s. Therefore for s > 7,

Ls(s) < log

(
7

5e
351/6

)
< 0.

This establishes that Ls(r) < 0 for all r ∈ [2, s].
Applying (32) with a = −1 we see that when r > s,

es
(
1− 1

r

)rs

>

(
1− 1

r

)s

>

(
1− 1

r

)r

>

(
1− s

r(s− 1)

)r

.
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This inequality is equivalent to L′
s(r) > 0, so Ls(r) is strictly monotonically increasing on

r > s. Finally,

rs− r − s

s
log

(
r − 1

r

)
→ −s− 1

s
,

rs− r − s

s(s− 1)
log

(
r − 1

r − s/(s− 1)

)
→ 1

s− 1
,

so

lim
r→∞

Ls(r) =
1

s− 1
log(s− 1)− s− 2

s− 1
+ lim

r→∞

1

s− 1
log(r − 1) = ∞.

A.4 Proof of Lemma 6.3

The proof of Lemma 6.2 showed that Ls(r) is monotonically increasing for r > s > 5. Hence,
for the first statement it suffices to show that

Ls(ρ
−(s)) < 0 and Ls(ρ

+(s)) > 0. (45)

These inequalities hold for s ∈ {5, 6, . . . , 11}, as may be verified by direct computation (see
Table 2). For the remainder of the proof of the first statement, assume that s > 12.

s 5 6 7 8 9 10 11

Ls

(
ρ−(s)

)
−0.0051 −0.0027 −0.0012 −0.00047 −0.00018 −0.000066 −0.000025

Ls

(
ρ+(s)

)
0.012 0.0039 0.0013 0.00045 0.00016 0.000057 0.000021

Table 2: The values of Ls(ρ
−(s)) and Ls(ρ

+(s)) for s = 5, . . . , 11, to 2 significant figures

To prove the upper bound, let f(x) = log(1− x) and R2(x) = f(x) + x+ x2

2
. We write

Ls

(
ρ−(s)

)

=
s− 2

s− 1
+

(
es−2

s− 1
− s

2
− 1

2

)
log

(
1− (s+ 1)(s− 1)

2es−2

)

−
(
es−2

s
− s

2
− 1

2s

)
log

(
1− (s− 1)2

2es−2

)
−
(

es−2

s(s− 1)
− s2 + 1

2s(s− 1)

)
log

(
1− s2 + 1

2es−2

)

=
s− 2

s− 1

+

(
es−2

s− 1
− s

2
− 1

2

)(
−(s+ 1)(s− 1)

2es−2
− 1

2

(
(s+ 1)(s− 1)

2es−2

)2

+R2

(
(s+ 1)(s− 1)

2es−2

))

−
(
es−2

s
− s

2
− 1

2s

)(
−(s− 1)2

2es−2
− 1

2

(
(s− 1)2

2es−2

)2

+R2

(
(s− 1)2

2es−2

))

−
(

es−2

s(s− 1)
− s2 + 1

2s(s− 1)

)(
−s

2 + 1

2es−2
− 1

2

(
s2 + 1

2es−2

)2

+R2

(
s2 + 1

2es−2

))
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All inputs to R2(·) in the above expression lie in [0, 145
2e10

] as s > 12, and −c1 6 f ′′′(x) 6 −2

where c1 = 16e30

(2e10−145)3
≈ 2.01988. Hence, by Taylor’s Theorem, we conclude that −c1x3/6 6

R2(x) 6 −x3/3. This implies that

96(s− 1)e3(s−2) Ls

(
ρ−(s)

)

6 −
(
2es−2

(
24ses−2 − c1(s

2 − 1)3
)
+ (s2 − 1)3

(
(c1 − 2)s2 + c1 + 2

)

+ 4es−2
(
s6 − 6s5 + 18s4 − 18s3 + 21s2 − 12s+ 8

))
,

which is negative when s > 12. This establishes the first inequality in (45).
The second inequality follows similarly, writing

Ls

(
ρ+(s)

)

=
s− 2

s− 1
+

(
es−2

s− 1
− s− 1

2

)(
−(s− 1)2

2es−2
− 1

2

(
(s− 1)2

2es−2

)2

+R2

(
(s− 1)2

2es−2

))

−
(
es−2

s
− s

2
+ 1− 3

2s

)(
−(s− 1)(s− 3)

2es−2
− 1

2

(
(s− 1)(s− 3)

2es−2

)2

+R2

(
(s− 1)(s− 3)

2es−2

))

−
(

es−2

s(s− 1)
− s2 − 2s+ 3

2s(s− 1)

)(
−s

2 − 2s+ 3

2es−2
− 1

2

(
s2 − 2s+ 3

2es−2

)2

+R2

(
s2 − 2s+ 3

2es−2

))

and using the bound −c2x3/6 6 R2(x) 6 −x3/3 for x ∈ [0, 123
2e10

], where c2 = 16e30

(2e10−123)3
≈

2.01685. This leads to

96(s− 1)e3(s−2) Ls

(
ρ+(s)

)

> 2es−2
(
24es−2(s− 2)− c2(s− 1)6

)
+ 4es−2

(
s6 − 6s5 + 18s4 − 34s3 + 29s2 − 12

)

+ c2(s− 1)8 − 2
(
s8 − 14s7 + 90s6 − 334s5 + 796s4 − 1258s3 + 1302s2 − 810s+ 243

)

which is positive when s > 12. This concludes the proof of the first statement of the lemma.
For the second statement, observe from (2) that the definition of ρ(s) can be rewritten as

log(s− 1) + log(ρ− 1)

ρs− ρ− s
=
s− 1

s
log

(
1 +

s

ρs− ρ− s

)
− log

(
1 +

1

ρs− ρ− s

)
. (46)

It follows from the first statement of Lemma 6.3 that

ρs− ρ− s = es−2
(
1 +O(s3 e−s)

)
.

Using Taylor’s theorem, we find that, as s→ ∞,

(ρs− ρ− s) log

(
1 +

s

ρs− ρ− s

)
= s− s2

2(ρs− ρ− s)
+O(s3e−2s)

= s− s2

2es−2
+O(s5e−2s).

37



Similarly, we have

(ρs− ρ− s) log

(
1 +

1

ρs− ρ− s

)
= 1− 1

2es−2
+O(s3e−2s).

Substituting these bounds into (46), we find that

(s− 1)(ρ− 1) = exp

(
s− 2− s(s− 1)

2es−2
+

1

2es−2
+O(s5e−2s)

)

= es−2 − (s2 − s− 1)

2
+O(s5e−s).

The proof is completed by solving for ρ.
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