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On Turán exponents of bipartite graphs
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Abstract

A long-standing conjecture of Erdős and Simonovits asserts that for every rational number

r ∈ (1, 2) there exists a bipartite graph H such that ex(n,H) = Θ(nr). So far this conjecture is

known to be true only for rationals of form 1+ 1/k and 2− 1/k, for integers k ≥ 2. In this paper

we add a new form of rationals for which the conjecture is true; 2− 2/(2k+1), for k ≥ 2. This in

its turn also gives an affirmative answer to a question of Pinchasi and Sharir on cube-like graphs.

Recently, a version of Erdős and Simonovits’s conjecture where one replaces a single graph by

a family, was confirmed by Bukh and Conlon. They proposed a construction of bipartite graphs

which should satisfy Erdős and Simonovits’s conjecture. Our result can also be viewed as a first

step towards verifying Bukh and Conlon’s conjecture.

We also prove the an upper bound on the Turán’s number of θ-graphs in an asymmetric setting

and employ this result to obtain yet another new rational exponent for Turán exponents; r = 7/5.

1 Introduction

Given a family H of graphs, a graph G is called H-free if it contains no member of H as a subgraph.

The Turán number ex(n,H) ofH is the maximum number of edges in an n-vertexH-free graph. When

H consists of a single graph H, we write ex(n,H) for ex(n, {H}). The study of Turán numbers plays

a central role in extremal graph theory. The celebrated Erdős-Simonovits-Stone theorem [10, 12]

states that if χ(H) denotes the minimum chromatic number of a graph in H, then

ex(n,H) =

(

1− 1

χ(H)− 1

)(

n

2

)

+ o(n2).

Thus, the function is asymptotically determined if χ(H) ≥ 3. If χ(H) = 2, that is, if H contains

a bipartite graph, then this only gives ex(n,H) = o(n2). We will refer to ex(n,H) with χ(H) = 2
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as degenerate Turán numbers, as in [18]. Concerning degenerate Turán numbers, there are several

general conjectures (see [18]). First, Erdős and Simonovits conjectured that ifH is a finite family with

χ(H) = 2 then there is a rational r ∈ [1, 2) and a constant c > 0 such that limn→∞ ex(n,H)/nr = c.

(See Conjecture 1.6 of [18]). This conjecture is still wide open. In fact the order of magnitude of

ex(n,H) where χ(H) = 2 is known only for very few families H. Another conjecture, which may

be viewed as the inverse extremal problem of the previous one, is that for very rational r ∈ [1, 2)

there exists a finite family H of graphs such that c1n
r < ex(n,H) < c2n

r for some constants c1, c2.

(See Conjecture 2.37 of [18].) In a recent breakthrough work by Bukh and Conlon [4], this second

conjecture has been verified, using a random algebraic method (developed earlier in [2, 3, 7]).

However, the following analogous problem on the Turán number of a single bipartite graph, raised

by Erdős and Simonovits [8], on the other hand, is still wide open.

Question 1.1 ([8]) Is it true that for every rational number r in (1, 2) there exists a single bipartite

graph Hr such that ex(n,Hr) = Θ(nr)?

We will refer to a rational r for which Problem 1.1 has an affirmative answer as a Turán exponent

for a single graph. The only known Turán exponents for single graphs from the literature are

rational numbers of the forms 1 + 1
s and 2 − 1

s for all integers s ≥ 2. Specifically it is known that

ex(n,Ks,t) = Θ(n2−1/s) when t > (s − 1)! (by [23, 22, 1]). Let θs,p denote the graph obtained by

taking the union of p internally disjoint paths of length s between a pair of vertices. Faudree and

Simnovits [13] showed that ex(n, θs,p) = O(n1+1/s) for all p ≥ 2 (see [5] for a recent improvement

on the specific bound) while Conlon [7] showed that for every s ≥ 2 there exists a p0 such that

for all p ≥ p0 we have ex(n, θs,p) = Ω(n1+1/s). Hence for each s and sufficiently large p we have

ex(n, θs,p) = Θ(n1+1/s). For a more thorough introduction to degenerate Turán numbers, the reader

is referred to the recent survey by Füredi and Simonovits [18].

Our main theorem is as follows, which in particular establishes an infinite sequence of new Turán

exponents.

Theorem 1.2 For any rational number r = 2 − 2
2s+1 , where s ≥ 2 is an integer, or r = 7

5 , there

exists a single bipartite graph Hr such that ex(n,Hr) = Θ(nr).

In establishing the first part of our main theorem, we establish a stronger result concerning the

Turán numbers of cube-like graphs, which answers a question of Pinchasi and Sharir [25]. This result

may be of independent interest. To establish the second part of our main result, we develop an

asymmetric Turán bound on θs,p which may be viewed as a common generalization (in a general

sense) of [13] and [24], and may also be of independent interest.

To describe our results, we need some more detailed background, which we discuss over several

subsections.

1.1 The theorem of Bukh and Conlon and a conjecture

To describe Bukh and Conlon’s results, we need some definitions. Given a tree T together with an

independent set R ⊆ V (T ), we call (T,R) a rooted tree and R the root set. Given any S ⊆ V (T ) \R,

let e(S) denote the number of edges of T with at least one endpoint in S. Let ρS = e(S)/|S|. Let



Jiang, Ma, Yepremyan: On Turán exponents of bipartite graphs 3

ρT = ρ(V (T ) \ R). We say that the rooted tree (T,R) is balanced if ρS ≥ ρT for all S ⊆ V (T ) \ R.

Given a rooted tree (T,R) and a positive integer p, let T p
R denote the family of graphs consisting of

all possible union of p distinct labelled copies of T , each of which agree on the root set R. We call

T p
R the pth power of (T,R). The key result of Bukh and Conlon [4] is the following

Theorem 1.3 ([4]) For any balanced rooted tree (T,R), there exists a p0 such that for all p ≥ p0,

ex(n,T p
R) = Ω(n2−1/ρT ).

A straightforward counting argument shows that ex(n,T p
R) = O(n2−1/ρT ) and thus implies that

ex(n,T p
R) = Θ(n2−1/ρT ) for sufficiently large p. Bukh and Conlon [4] also showed that for each

rational r in (1, 2), there exists a balanced rooted tree (T,R) with ρT = 1
2−r , thereby establishing

the existence of a family Hr with ex(n,Hr) = Θ(nr) for each rational r ∈ (1, 2).

Let (T,R) be a balanced rooted tree. Let T p
R denote the unique member of T p

R in which the p

labelled copies of T are pairwise vertex disjoint outside R. By Theorem 1.3,

ex(n, T p
R) ≥ ex(n,T p

R) = Ω(n2−1/ρT ).

If there exists a matching upper bound on ex(n, T p
R), then together with earlier discussion this would

answer Question 1.1 in the affirmative in a very strong way. Indeed Bukh and Conlon conjectured

that a matching upper bound indeed exists.

Conjecture 1.4 ([4]) If (T,R) is a balanced rooted tree, then

ex(n, T p
R) = O(n2−1/ρT ).

Let Ds be the tree obtained by taking two disjoint stars with s leaves and joining the two central

vertices by an edge, and R the set of all the leaves in Ds. It is easy to check that (Ds, R) is balanced

with ρDs =
2s+1
2 . Let Ts,t = DR

s . We will show that (in Corollary 1.8) that ex(n, Ts,t) = O(n2− 2

2s+1 )

for all t ≥ s ≥ 2 and thereby verifying Conjecture 1.4 for T = Ds, R be its set of leaves, making a

first step towards Conjecture 1.4.

1.2 The cube and its generalization

Let Q8 denote the 3-dimensional cube, that is, the graph obtained from two vertex-disjoint C4’s by

adding a perfect matching between them. The well-known cube theorem of Erdős and Simonovits

[11] states that

ex(n,Q8) = O(n8/5). (1)

Pinchasi and Sharir [25] gave a new proof of this and extended to the bipartite setting. More recently,

Füredi [17] showed that ex(n,Q8) ≤ n8/5 + (2n)3/2, giving another new proof of the cube theorem.

Pinchasi and Sharir’s approach is motivated by certain geometric incidence problems. In their

approach it is more convenient to view Q8 as a special case of the graph Hs,t defined as follows. Let

t ≥ s ≥ 2 be positive integers. Let M be an s-matching a1b1, a2b2, . . . , asbs, and N a t-matching

c1d1, c2d2, . . . , ctdt, where M and N are vertex disjoint. Let Hs,t be obtained from M ∪N by adding

edges aidj and bicj over all i ∈ [s] and j ∈ [t].
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Alternatively, we may viewHs,t as being obtained from two vertex disjoint copies ofKs,t by adding

a matching that joins the two images of every vertex in Ks,t. In particular, we see that Q8 = H2,2.

In addition to giving a new proof of (1), Pinchasi and Sharir [25] proved that if G is an n-vertex

graph that contains neither a copy of Hs,t nor a copy of Ks+1,s+1, then e(G) ≤ O(n2−2/(2s+1)).

Question 1.5 [25] Is it true that for all t ≥ s ≥ 2,

ex(n,Hs,t) = O(n2− 2

2s+1 )?

This was answered affirmatively if s = t in [20].

In this paper, we answer Pinchasi and Sharir’s question affirmatively as follows.

Theorem 1.6 For any t ≥ s ≥ 2, ex(n,Hs,t) = O
(

n2−2/(2s+1)
)

.

Note that Ts,t ⊆ Hs,t. Hence, by Theorem 1.3 we have the following.

Proposition 1.7 There exists a function ℓ such that for all s ≥ 2 and t ≥ ℓ(s),

ex(n,Hs,t) ≥ ex(n, Ts,t) ≥ ex(n,T t
R) ≥ Ω

(

n2−2/(2s+1)
)

.

Theorem 1.6 and Proposition 1.7 now give

Corollary 1.8 There exists a function ℓ such that for all s ≥ 2 and t ≥ ℓ(s),

ex(n,Hs,t) = Θ(n2−2/(2s+1)) and ex(n, Ts,t) = Θ(n2−2/(2s+1)).

1.3 Theta graphs and 3-comb-pastings

For the second part of our work, we give another new Turán exponent of 7/5 for a bipartite graph

Sp which we define below.

By a 3-comb T3, we denote the tree obtained from a 3-vertex path P = abc by adding three new

vertices a′, b′, c′ and three new edges aa′, bb′, cc′. For each p ≥ 2, a 3-comb-pasting, denoted by Sp, is

the graph obtained by first taking p vertex disjoint copies of T3 and then combining the images of a′

into one vertex, the images of b′ into one vertex, and the images of c′ into one vertex.

Let R denote the set of leaves of T3. It is easy to see that (T3, R) is balanced with density 5/3,

while the 3-comb-pasting Sp is just a member in the pth power of (T3, R). Hence, by Theorem 1.3,

there exists p0 such that for all p ≥ p0, ex(n, Sp) ≥ Ω(n7/5).

We prove a matching upper bound as follows.

Theorem 1.9 For all p ≥ 2, it holds that ex(n, Sp) = O(n7/5).

Corollary 1.10 There exists a positive integer p0 such that for all p ≥ p0, it holds that

ex(n, Sp) = Θ(n7/5).
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A key step in the proof of Theorem 1.9 is to study Turán numbers of theta graphs in the bipartite

setting, which continue the line of work of Faudree and Simonovits [13] and of Naor and Verstraete

[24] and may be of independent interest.

Given a family H of graphs and positive integers m,n, the asymmetric bipartite Turán number

z(m,n,H) of H denote the maximum number of edges in an m by n bipartite graph that does

not contain any member of H as a subgraph. If H has just one member H, we write z(m,n,H)

for z(m,n, {H}). The function z(m,n,C2k) had been studied in the context of number theoretic

problems and geometric problems. Naor and Verstraëte [24] proved that for m ≤ n and k ≥ 2,

z(m,n,C2k) ≤
{

(2k − 3) · [(mn)
k+1

2k +m+ n] if k is odd,

(2k − 3) · [m k+2

2k n
1

2 +m+ n] if k is even.

A different form of upper bounds on z(m,n,C2k) can be found in [19].

Recall the theta graph θk,p, that is the graph consisting of the union of p internally disjoint paths

of length k joining a pair of vertices. In particular, θk,2 = C2k. The following result can be viewed

as a common generalization of the results in [13, 24].

Theorem 1.11 Let m,n, k, p ≥ 2 be integers, where m ≤ n. There exists a positive constant

c = c(k, p) such that

z(m,n, θk,p) ≤
{

c · [(mn)
k+1

2k +m+ n] if k is odd,

c · [m k+2

2k n
1

2 +m+ n] if k is even.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries. In Section

3, we prove Theorem 1.6. In Section 4, we prove Theorem 1.11. In Section 5, we prove Theorem 1.9.

2 Preliminaries

In this section we present some of the auxiliary lemmas which are used in the proofs of main results.

The first three are folklore, the proofs of the other two can also be found in [20].

Lemma 2.1 If G is a graph with average degree d then it contains a bipartite subgraph G1 with

e(G1) ≥ 1
2e(G) and a subgraph G2 with minimum degree δ(G2) ≥ 1

2d.

Lemma 2.2 Let G be a bipartite graph with a bipartition (A,B). Let dA = e(G)/|A| and dB =

e(G)/|B|. There exists a subgraph G′ of G with e(G′) ≥ 1
2e(G) such that each vertex in V (G′) ∩ A

has degree at least 1
4dA in G′ and each vertex in V (G′) ∩B has degree at least 1

4dB in G′.

Lemma 2.3 Let k be a positive integer and T be a rooted tree with k edges. If G is a graph with

minimum degree at least k and v is any vertex in G, then G contains a copy of T rooted at v.

Lemma 2.4 ([20], Lemma 5.3) Let t be a positive integer and G be an n-vertex bipartite graph

with at least 4tn edges. Then the number of t-matchings in G is at least
e(G)t

2tt! .



Jiang, Ma, Yepremyan: On Turán exponents of bipartite graphs 6

Lemma 2.5 ([20], Lemma 5.5) Let t be a positive integer and G be an n-vertex bipartite graph

with a bipartition (A,B). Suppose G has at least 4
√
2tn3/2 edges. Then the number of H1,t’s in G is

at least
1

25t+2t!
· e(G)3t+1

|A|2t|B|2t .

We also need the following regularization theorem of Erdős and Simonovits which is an important

tool for Turán-type problems of sparse graphs. Recently, the first and third author have developed

a version of this result for linear hypergraphs [21]. For a positive real λ, G is called λ-almost-regular

if ∆(G) ≤ λ · δ(G).

Theorem 2.6 ([11]) Let α be any real in (0, 1), λ = 20 · 2(1/α)2 , and n be a sufficiently large integer

depending only on α. Suppose G is an n-vertex graph with e(G) ≥ n1+α. Then G has a λ-almost-

regular subgraph on m vertices, where m > nα 1−α
1+α such that e(G′) > 2

5m
1+α.

3 Turán numbers of generalized cubes

In this section we prove Theorem 1.6. Our proof is partly based on the ideas of Pinchasi and Sharir

[25]. The key new idea is Lemma 3.1. To state the lemma, we need some notation.

In a graph G, for any S ⊆ V (G), the common neighbourhood of S in G is defined by NG(S) =
⋂

v∈S NG(v), and the common degree of S in G is dG(S) = |NG(S)|. When G is clear from the

context, we will drop the subscripts. For a matching M in the bipartite graph G with bipartition

(A,B), we define AM = V (M) ∩A, BM = V (M) ∩B. We call the subgraph induced by the vertex

sets N(BM ) \ V (M) and N(AM ) \ V (M) the neighbourhood graph of M and with some abuse of

notation, for brevity, we denote it by N(M).

Let M and L be two matchings in G. We write M ∼ L if L is a subgraph in N(M). For t

non-negative integer, we say that an ordered pair (M,L) of matchings is t-correlated if M ∼ L and

there exists a vertex v in V (M) such that dN(L)(v) ≥ t.

Lemma 3.1 Let G be an Hs,t-free bipartite graph and M be an (s − 1)-matching in G. Then the

number of s-matchings L in N(M) such that (M,L) is 2t-correlated is at most (s − 1)(t − 1) ·
e(N(M))s−1v(N(M)).

Proof. It suffices to prove that for any x ∈ AM , L′ an (s − 1)-matching in N(M), and y ∈
(V (N(M)) ∩ B) \ V (L′), the number of s-matchings L in N(M) that contain L′ and y and satisfy

dN(L)(x) ≥ 2t is at most t− 1.

Suppose otherwise, let L′ = {c1d1, . . . , cs−1ds−1}, where c1, . . . , cs−1 ∈ A and d1, . . . , ds−1 ∈ B

for whih the claim fails. Then there exist t distinct s-matchings L1, . . . , Lt in N(M) containing L′

and y that satisfy dN(Li)(x) ≥ 2t. Let u1, u2, . . . , ut be distinct vertices such that Li = L′ ∪ {uiy}.
For each i ∈ [t], since dN(Li)(x) ≥ 2t, we have |NN(Li)(x) \BM | ≥ t. We can therefore find t distinct

vertices v1, . . . , vt such that for each i ∈ [t] vi ∈ NN(Li)(x) \BM .

Let B∗ = {b1, . . . , bs−1, y}, C∗ = {x, c1, . . . , cs−1}, U∗ = {u1, . . . , ut}, and V ∗ = {v1, . . . , vt}. It

is easy to see that G1 := G[B∗ ∪ U∗], G2 := G[C∗ ∪ V ∗] are both copies of Ks,t. Let M1 :=
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{u1v1, . . . , utvt}, M2 = {b1c1, . . . , bs−1cs−1, xy}. One can easily check that G1 ∪ G2 ∪M1 ∪M2 is a

copy of Hs,t in G, contradicting G being Hs,t-free.

Proof of Theorem 1.6. Our choice of constant C here will be explicit. Let α = 2s−1
2s+1 . As s ≥ 2, we

have 3
5 ≤ α < 1. Let λ be the constant derived from Theorem 2.6 applied for α. By Theorem 2.6, it

suffices to show that there is a constant C = C(s, t) > 0 such that the following holds for sufficiently

large n: if G is a λ-almost-regular graph with n vertices and m ≥ Cn1+α edges, then G contains

a copy of Hs,t. By Proposition 2.1, we may further assume that G is bipartite with a bipartition

(A,B). Let M be the collection of all (s− 1)-matchings in G. Denote

M1 = {M : M ∈ M, e(N(M)) ≤ 2s+1s!(s− 1)(t − 1)v(N(M))},
M2 = M\M1,

M2t,s
2 = {(M,L) : M ∈ M2, L ∈ L, L is an s-matching,M ∼ L, (M,L) is not 2t-correlated}.

We suppose that G is Hs,t-free and derive a contradiction on the number of edges of the graph

G. For doing so, we will use upper and lower bounds on the size of the set M2t,s
2 .

Claim 1.6.1.
∑

M∈M2
e(N(M)) = Ω(m

3s−2

n4s−4 ).

Proof of Claim. Let us call a tree obtained from K1,p by subdividing each edge once a p-spider of

height 2. Note that
∑

M∈M v(N(M)) counts the number of (s − 1)-spiders of height 2 in G. Since

G is λ-almost-regular, ∆ := ∆(G) ≤ λ · δ(G) ≤ λ · 2m/n. Thus,

∑

M∈M

v(N(M)) ≤ n∆2s−2 = O

(

m2s−2

n2s−3

)

.

By the definition of M1, we have
∑

M∈M1
e(N(M)) = O

(
∑

M∈M1
v(N(M))

)

= O
(

m2s−2

n2s−3

)

.

On the other hand,
∑

M∈M e(N(M)) counts the number of H1,s−1’s in G. So by Lemma 2.5, we

have
∑

M∈M e(N(M)) = Ω
(

m3s−2

n4s−4

)

. Since m ≥ Cn4s/(2s+1) and n is sufficiently large, we have

m3s−2

n4s−4 ≫ m2s−2

n2s−3 thus the claim follows.

Now consider a matching M ∈ M2. By Lemma 2.4, the number of s-matchings L in N(M) is at

least (1/2ss!)e(N(M))s. By Lemma 3.1 and the definition of M2, the number of s-matchings L in

N(M) such that (M,L) is 2t-correlated is at most

(s− 1)(t − 1)e(N(M))s−1v(N(M)) ≤ e(N(M))s

2s+1s!
.

Hence the number of s-matchings L in N(M) such that (M,L) is not 2t-correlated is at least

(1/2)(1/2ss!)e(N(M))s.

By Claim 1.6.1, the convexity of the function f(x) = xs and the fact that |M2| ≤ ms−1,

|M2t,s
2 | ≥ (1/2s+1s!)

∑

M∈M2

e(N(M))s = Ω

(

(
∑

M∈M2
e(N(M)))s

|M2|s−1

)

= Ω

(

m2s2−1

n4s2−4s

)

.



Jiang, Ma, Yepremyan: On Turán exponents of bipartite graphs 8

Claim 1.6.2. |M2t,s
2 | ≤

(

t−1
s−1

)

(2t− 1)s−1ms.

Proof of Claim. Let L be an s-matching in G. Since G is Hs,t-free, N(L) has matching number

at most t − 1. Since N(L) is bipartite, by the König-Egerváry theorem it has a vertex cover Q of

size at most t − 1. Let Q+ denote the set of vertices in Q that have degree at least 2t in N(L)

and Q− = Q \ Q+. If M is an (s − 1)-matching in G that satisfies M ∼ L and that (M,L) is

not 2t-correlated, then M is contained in N(L) and could not contain any vertex in Q+. Since

Q = Q+ ∪Q− is a vertex cover in N(L), each edge of M must contain a vertex in Q−. Thus,

|M2t,s
2 | ≤

( |Q−|
s− 1

)

(2t− 1)s−1ms ≤
(

t− 1

s− 1

)

(2t− 1)s−1ms.

Combining the lower and upper bounds on |M2t,s
2 |, we get that m2s2−1

n4s2−4s
= O(ms), which implies

that m = O(n4s/(2s+1)), where the constant factor in O(·) only depends on s and t. This contradicts

that m ≥ Cn4s/(2s+1), assuming C is chosen to be sufficiently large.

4 Asymmetric bipartite Turán numbers of Theta graphs

In this section we establish a upper bound (i.e., Theorem 1.11) of the asymmetric bipartite Turán

numbers of theta graphs θk,p. This, in turn, will be crucial in the proof of Theorem 1.9.

Our proof, in a conspectus, employs the standard breadth-first-search tree (BFS-tree) approach

and thus the major challenge is to show that the distance levels of the BFS-tree should grow in

magnitude rapidly. This will be essentially unravelled by the following lemma, where we adopt a

modification of the so-called “blowup method” by Faudree and Simonovits [13]. A similar lemma

was proved in [21].

Lemma 4.1 Let k, p, t be positive integers, where k, p ≥ 2 and t ≤ k− 1. Let T be a tree of height t

rooted at a vertex x. Let A be the set of vertices at distance t from x in T . Let B be set of vertices

disjoint from V (T ). Let G be a bipartite graph with a bipartition (A,B). If T ∪ G is θk,p-free then

e(G) ≤ 2ktpt · (|A|+ |B|).

Proof. We use induction on t. For the basis case t = 1, let

B+ = {y ∈ B : dG(y) ≥ pk} and B− = B \B+.

By definition, e(G[A ∪ B−]) ≤ pk|B−|. We show that e(G[A ∪B+]) ≤ pk|A ∪ B+|. Suppose that is

not the case. Then G[A∪B+] has average degree at least 2pk and hence (by Proposition 2.1) contains

a subgraph H with minimum degree at least pk. If k is odd then let v be a vertex in V (H)∩A. If k

is even then let v be a vertex in V (H) ∩B. Let F denote the union of p paths of length k − 2 that

share a common endpoint u but are otherwise vertex disjoint, and view u as the root of the tree F .

By Lemma 2.3, H contains a copy F ′ of F which has v as its root. Let v1, . . . , vp denote the leaves

of F ′. By our choice of v, we have v1, . . . , vp ∈ V (H) ∩ B+. By the definition of B+, dG(vi) ≥ pk

for each i ∈ [p]. Hence we can find distinct vertices w1, . . . , wp in A that lie outside V (F ′) such that

viwi ∈ E(G) for each i ∈ [p]. Now, F ′ ∪ {v1w1, . . . , vpwp} ∪ {xw1, . . . , xwp} forms a copy of θk,p in
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T ∪ G, a contradiction. Hence, we have e(G[A ∪ B+]) ≤ pk|A ∪ B+|. Putting everything together,

we have e(G) ≤ pk(|A|+ |B|). So the basis case holds.

For the induction step, let us consider t ≥ 2. Let x1, . . . , xq denote all children of x in T . For each

i ∈ [q], let Ti denote the subtree of T − x that contains xi and let Si = V (Ti) ∩ A. Then S1, . . . , Sq

partition A. For each u ∈ A, let Pu denote the unique path from u to x in T . Then for each u ∈ A,

Pu has length t, and if u, v lie in different Si’s then V (Pu) ∩ V (Pv) = {x}. Let

B∗ = {y ∈ B : dG(y) < kp2}.

By definition, it is clear that we have

e(G[A ∪B∗]) ≤ kp2 · |B∗|. (2)

We further partition B \B∗ into the following two sets. Let

B+ = {y ∈ B \B∗ : for ∀i ∈ [q], y has no more than dG(y)/p neighbours in Si}

and B− = B \ (B∗ ∪B+). We now observe the following property for B+.

Claim 1. For each y ∈ B+ and any subset I ⊆ [q] of size p− 1, we have |NG(y) \
⋃

i∈I Si| > kp.

Proof of Claim 1. Since y ∈ B+, for any i ∈ I, we have |NG(y) ∩ Si| < dG(y)/p. Hence,

∣

∣

∣

∣

∣

NG(y) \
⋃

i∈I

Si

∣

∣

∣

∣

∣

≥
(

1− p− 1

p

)

· dG(y) =
dG(y)

p
≥ kp,

proving the claim.

We prove two more claims, which bounds e(G[A ∪B+]) and e(G[A ∪B−]), respectively.

Claim 2. e(G[A ∪B+]) ≤ kp · |A ∪B+|.

Proof of Claim 2. Let F be the tree consisting of p paths of length k − t− 1 that share a common

endpoint u but are otherwise vertex disjoint; also view u as the root of F . So F has p(k − t − 1)

edges. Suppose for a contradiction that e(G[A ∪ B+]) > kp · |A ∪ B+|. Then by Proposition 2.1,

G[A ∪ B+] contains a subgraph H with minimum degree more than kp. If k − t − 1 is odd, then

let v be a vertex in V (H) ∩ A; and if k − t − 1 is even, then let v be a vertex in V (H) ∩ B+. By

Lemma 2.3, H contains a copy F ′ of F which has v as its root. Let v1, . . . , vp denote the leaves of

F ′. By our choice of v, we have v1, . . . , vp ∈ V (H)∩B+. By Claim 1, we can find vertices w1, . . . , wp

outside V (F ′) such that they all lie in different Si’s and v1w1, v2w2, . . . , vpwp ∈ E(G). Indeed, for

any ℓ ≤ p, suppose we have found w1, . . . , wℓ−1. By Claim 1, vℓ has at least kp neighbours that lie

outside the Sj’s that contain vertices in {w1, . . . , wℓ−1}. Among these neighbours we can find one

that also does not lie in V (F ′). We let wℓ be such a vertex. Since w1, . . . , wp all lie in different Si’s,

the paths Pw1
, . . . , Pwp pairwise intersect only in vertex x. Now F ′ ∪ {v1w1, . . . , wpwp} ∪

⋃k
i=1 Pwi

forms a copy of θk,p in G, a contradiction. Hence we must have e(G[A ∪B+]) ≤ kp · |A ∪B+|.

Claim 3. e(G[A ∪B−]) ≤ 2k(t− 1)pt · |A ∪B−|.
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Proof of Claim 3. For each y ∈ B− by definition there exists i(y) ∈ [q] such that |NG(y) ∩ Si(y)| ≥
dG(y)/p; let us fix such an i(y). We then define a subgraph H obtained from G[A ∪ B−] by only

taking the edges from every y ∈ B− to NG(y) ∩ Si(y). By the definition of H, we see that e(H) ≥
1
pe(G[A ∪ B−]). Now, for each j ∈ [q] let Bj = {y ∈ B− : i(y) = j}. Then in fact H is the vertex-

disjoint union of H[S1 ∪ B1],H[S2 ∪ B2], . . . ,H[Sq ∪ Bq]. Let j ∈ [q]. Note that Tj is tree of height

t− 1 rooted at xj and Bj is the set of vertices at distance t− 1 from xj. Also, Bj is vertex disjoint

from Tj and H[Sj ∪ Bj] is a bipartite graph with a bipartition (Sj, Bj). Since Tj ∪ H[Sj ∪ Bj] is

θk,p-free, by the induction hypothesis, e(H[Sj , Bj ]) ≤ 2k(t− 1)pt−1 · |Sj ∪Bj|. Hence,

e(H) =

p
∑

j=1

e(H[Sj , Bj ]) ≤ 2k(t− 1)pt−1 ·
p
∑

j=1

|Sj ∪Bj| ≤ 2k(t− 1)pt−1 · |A ∪B−|,

implying that e(G[A ∪B−]) ≤ p · e(H) ≤ 2k(t− 1)pt · |A ∪B−|. This proves Claim 3.

Finally, combining (2) with Claims 2 and 3, we have that

e(G) = e(G[A ∪B∗]) + e(G[A,B+]) + e(G[A,B−])

≤ kp2 · |B∗|+ kp · (|A| + |B+|) + 2k(t− 1)pt · (|A|+ |B−|) < 2ktpt · (|A|+ |B|),

finishing the proof of Lemma 4.1.

We are ready to show Theorem 1.11.

Proof of Theorem 1.11: Let G be a θk,p-free bipartite graph with a bipartition (A,B) where

|A| = m and |B| = n. Let c = 16k2pk. If k is odd, then we assume e(G) ≥ c · (mn)
1

2
+ 1

2k + c · (m+n).

If k is even, then assume e(G) ≥ c ·m 1

2
+ 1

kn
1

2 + c · (m+ n). Let dA = e(G)/|A| and dB = e(G)/|B|.
So each of dA, dB is more than c = 16k2pk.

By Lemma 2.2, G contains a subgraph G′ with e(G′) ≥ 1
2e(G) such that each vertex in V (G′)∩A

has degree at least 1
4dA in G′ and that each vertex in V (G′) ∩B has degree at least 1

4dB in G′. Fix

a vertex x ∈ V (G′) ∩ A. For each integer i ≥ 0, let Li denote the set of vertices at distance i from

x in G′, and let di = dA if i is odd and di = dB if i is even. So we see that every vertex in Li−1 has

degree at least 1
4di in G′.

Using Lemma 4.1, we show that the (growth) ratio of two consecutive levels must be large in the

following

Claim. For each i ∈ [k], we have |Li|/|Li−1| ≥ di
16kipi

. In particular, |Li| ≥ |Li−1| holds.

Proof of Claim. Since di ≥ 16k2pk for each i, we observe that the second statement follows easily by

the first statement. So it suffices to prove the first statement, which we will prove by induction on

i. If i = 1, then we have |L1|
|L0|

≥ 1
4dA ≥ d1

16kp . So the claim holds for the basis step.

For the inductive step, consider i ≥ 2. Let Ti−1 be a breadth-first-search tree in G′ rooted at x

with vertex set L0 ∪ L1 ∪ · · · ∪ Li−1. Applying Lemma 4.1 to Ti−1 and G′[Li−1 ∪ Li], we get

e(G′[Li−1, Li]) ≤ 2k(i− 1)pi−1(|Li−1|+ |Li|).
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Similarly, it holds that

e(G′[Li−2 ∪ Li−1|) ≤ 2k(i− 2)pi−2(|Li−2|+ |Li−1|) ≤ 4k(i− 2)pi−2|Li−1|,

where the last step holds because |Li−1| ≥ |Li−2| by the induction hypothesis. All edges in G′[Li−2∪
Li−1 ∪ Li] are either in (Li−2, Li−1) or in (Li−1, Li), so we get that

e(G′[Li−2 ∪ Li−1 ∪ Li]) = e(G′[Li−2 ∪ Li−1|) + e(G′[Li−1, Li]) ≤ 2kipi · (|Li−1|+ |Li|).

On the other hand, each vertex in Li−1 has degree at least 1
4di in G′, and all edges of G′ incident to

Li−1 lie in G′[Li−2 ∪ Li−1 ∪ Li]. Hence, we have

1

4
di · |Li−1| ≤ e(G′[Li−2 ∪ Li−1 ∪ Li]) ≤ 2kipi · (|Li−1|+ |Li|).

Solving for |Li|, we get |Li| ≥
(

di
8kipi

− 1
)

· |Li−1| ≥ di
16kipi

· |Li−1|, proving the claim.

By the claim, we have

|Lk| ≥ α ·
k
∏

i=1

di · |L0| = α ·
k
∏

i=1

di,

where α =
∏k

i=1
1

16kipi
. Recall that c = 16k2pk. So αck > 1. Suppose first that k is odd, say

k = 2s + 1. Then it follows that Lk ⊆ B and

|Lk| ≥ α · ds+1
A dsB = α · e(G)k

ms+1ns
.

By the assumption, we have e(G) > c · (mn)
1

2
+ 1

2k , which shows that |Lk| ≥ αckn > n. This is a

contradiction, since Lk ⊆ B and |B| = n. Now consider that k is even, say k = 2s. Then we have

|Lk| ≥ α · dsAdsB = α · e(G)k

msns
.

In this case e(G) > c · m 1

2
+ 1

kn
1

2 . This gives that |Lk| ≥ αck ·
(

m
1

2
+ 1

kn
1

2

)k
/msns = αck · m > m,

again a contradiction, since Lk ⊆ A and |A| = m. This completes the proof of Theorem 1.11.

One can promptly derive the following special case of Theorem 1.11, which will play an important

role in the proof of Theorem 1.9.

Corollary 4.2 Let m,n ≥ 2 be integers. Then it holds that

z(m,n, θ3,p) ≤ 144p3 ·
(

(mn)2/3 +m+ n
)

.

5 The Turán exponent of 7/5

Here we prove the existence of the Turán exponent of 7/5. This is achieved by the combination of

Theorem 1.9, which states that ex(n, Sp) = O(n7/5) for all p ≥ 2, and the matched lower bound of
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this function for sufficiently large p from [4].

By considering a supergraph1 of Sp, in fact we will prove a slightly stronger result than Theorem

1.9. We start with a definition introduced by Faudree and Simonovits [13]. Let H be a bipartite

graph with an ordered pair (A,B) of partite sets and t ≥ 2 be an integer. Define Lt(H) to be the

graph obtained from H by adding a new vertex u and joining u to all vertices of A by internally

disjoint paths of length t− 1 such that the vertices of these paths are disjoint from V (H).

We observe that the theta graph θ3,p are symmetric between its two partite sets. So L3(θ3,p) is

uniquely defined. The following proposition can be verified easily.

Proposition 5.1 For each p ≥ 2, we have Sp ⊆ L3(θ3,p) and thus ex(n, Sp) ≤ ex(n,L3(θ3,p)).

Note that as a special case, the graph L3(θ3,2) also denotes the subdivision of K4, where each edge

of K4 is replaced by an internally disjoint path of length two.

We are now in a position to prove the following strengthening of Theorem 1.9.

Theorem 5.2 For each p ≥ 2, there exists a positive constant cp such that

ex(n,L3(θ3,p)) ≤ cpn
7/5.

Proof. We will show that it suffices to choose cp = 124p6. Suppose for a contradiction that there

exists an n-vertex L3(θ3,p)-free graph G with e(G) > cpn
7/5. By Proposition 2.1, G contains a

bipartite subgraph G1 with

d := δ(G1) ≥ d(G)/4 ≥ (cp/2) · n2/5 > (4 · 123p6) · n2/5. (3)

Let x be a vertex of minimum degree in G1. For each i ≥ 0, let Li denote the set of vertices at

distance i from x in G1. Then |L1| = |δ(G1)| = d. Let L+
2 denote the set of vertices v in L2 such

that |NG1
(v) ∩ L1| ≥ 2p+ 2, and L−

2 = L2 \ L+
2 .

Claim 1. G1[L1 ∪ L+
2 ] is θ3,p-free.

Proof of Claim 1. Suppose for contradiction that G1[L1 ∪ L+
2 ] contains a copy F of θ3,p. Let A,B

denote the two partite sets of F where A ⊆ L1 and B ⊆ L+
2 . Then |A| = |B| = p + 1. Suppose

B = {b1, . . . , bp+1}. Since each vertex in L+
2 has at least 2p+2 neighbours in L1, we can find distinct

vertices c1, . . . , cp+1 in L1 \A such that b1c1, . . . , bp+1cp+1 ∈ E(G1). Now F together with the paths

b1c1x, . . . , bp+1cp+1x form a copy of L3(θ3,p) in G, a contradiction.

Claim 2. |L2| ≥ d2/(243p9/2).

Proof of Claim 2. By Claim 1 and Corollary 4.2, we have

e(G1[L1 ∪ L+
2 ]) ≤ 144p3 ·

(

|L1|2/3|L+
2 |2/3 + |L1|+ |L+

2 |
)

;

and by the definition of L−
2 , e(G1[L1 ∪ L−

2 ]) ≤ (2p+ 2) · |L−
2 |. Adding these inequalities up, we have

e(G1[L1, L2]) = e(G1[L1 ∪ L+
2 ]) + e(G1[L1 ∪ L−

2 ]) ≤ 144p3 ·
(

|L1|2/3|L2|2/3 + |L1|+ |L2|
)

. (4)

1i.e., a graph containing Sp as its subgraph.
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Since every vertex in L1 has at least d− 1 ≥ 3d/4 neighbours in L2, it follows that

(3d/4)|L1| ≤ e(G1[L1, L2]) ≤ 144p3 ·
(

|L1|2/3|L2|2/3 + |L1|+ |L2|
)

.

Since d ≥ 4 · 123p6, we see 144p3|L1| ≤ (d/4)|L1|. Thus it follows that either 144p3|L1|2/3|L2|2/3 ≥
(d/4)|L1| or 144p3|L2| ≥ (d/4)|L1|. Using |L1| = d, we get that

|L2| ≥ min

{

d2

243p9/2
,

d2

242p3

}

=
d2

243p9/2
,

proving this claim.

Next we consider the subgraph H of G1 induced on L2 ∪ L3, i.e.,

H = G1[L2 ∪ L3].

Our goal in the rest of the proof is to reach a contradiction by showing that H can not contain theta

graphs θ3,s for large s, which in turn shows that |L3| must be Ω(d5/2) and thus exceed the total

number of vertices in G.

Let T be a breadth-first search tree rooted at x with vertex set {x} ∪L1 ∪L2. Let x1, . . . , xm be

the children of x in T . For each i ∈ [m], let Si be the set of children of xi in T . Then S1, . . . , Sm

partition L2. Since each vertex in L2 has degree at least d in G1, we have

e(G1[L1 ∪ L2]) + e(G1[L2 ∪ L3]) ≥ d|L2|.

On the other hand, by (3) and Claim 2, we have d ≥ 4 · 123p6 and thus (d|L2|)1/3 ≥ 4 · 144 · p3, which
together with (4) imply that

e(G1[L1 ∪ L2]) ≤ d|L2|/4 + 144p3(|L1|+ |L2|) ≤ d|L2|/2.

Hence

e(H) = e(G1[L2 ∪ L3]) ≥ d|L2|/2. (5)

Given a vertex u ∈ L3 and some Si, we say the pair (u, Si) is rich, if u has at least 2p + 1

neighbours of H in Si. Let EH(u, Si) denote the set of all edges in H between u and Si. We now

partition H into two (spanning) subgraphs H1,H2 such that

E(H1) =
⋃

EH(u, Si) and E(H2) = E(H) \ E(H1),

where the union in E(H1) is over all rich pairs (u, Si). Note that by this definition, any u ∈ L3 has

at most 2p neighbours of H2 in any Si, i.e., |EH2
(u, Si)| ≤ 2p. Let H3 be a subgraph of H2 obtained

by including exactly one edge in EH2
(u, Si) over all pairs (u, Si) with |EH2

(u, Si)| ≥ 1. By the above

discussion, it follows that

e(H3) ≥ e(H2)/(2p), (6)

and for any u ∈ L3, all its neighbours in H3 belong to distinct Si’s.
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Claim 3. H1 is θ3,p2-free.

Proof of Claim 3. Suppose for contradiction that H1 contains a copy F of θ3,p2 . Suppose F consists

of p2 internally disjoint paths of length three between u and v where u ∈ L3 and v ∈ L2. Let these

paths be ua1b1v, ua2b2v, . . . , uap2bp2v, where a1, . . . , ap2 ∈ L2 and b1, . . . , bp2 ∈ L3.

We consider two cases. First, suppose that there exists some Si which contains p different

aj ’s. Without loss of generality, suppose that S1 contains a1, . . . ap. For each j ∈ [p], since bjaj ∈
E(H1), by definition (bj , S1) is a rich pair, i.e., there are at least 2p + 1 edges of H from bj to

S1. Similarly as ua1 ∈ E(H1), there are at least 2p + 1 edges of H from u to S1. Hence we can

find distinct vertices u′, a′1, . . . , a
′
p ∈ S1 \ {a1, . . . , ap} such that uu′, a′1b1, . . . , a

′
pbp ∈ E(H). Now

F ∪ {uu′, a′1b1, . . . , a′pbp} ∪ {x1u′, x1a′1, . . . , x1a′p} forms a copy of L3(θ3,p) in G, a contradiction.

Next, suppose that each Si contains at most p − 1 different aj ’s. Then among a1, . . . , ap2 we

can find p + 1 of them, say a1, . . . , ap+1 that all lie in different Si’s. Furthermore, we may assume

that a1, . . . , ap are outside the Si’s that contains v. Now F together with the paths in T from x to

a1, . . . , ap, v form a copy of L3(θ3,p) in G, a contradiction. Hence H1 must be θ3,p2-free.

Claim 4. H3 is θ3,p-free.

Proof of Claim 4. Suppose for contradiction that H3 contains a copy F of θ3,p. Suppose F consists

of p internally disjoint paths of length three between u and v, where u ∈ L3 and v ∈ L2. Suppose

these paths are ua1b1v, . . . , uapbpv, where a1, . . . , ap ∈ L2 and b1, . . . , bp ∈ L3. By the definition of

H3, since ua1, . . . , uap ∈ E(H3), a1, . . . , ap must all lie in different Si’s. Also, for each j ∈ [p] since

bjaj, bjv ∈ E(H3), aj and v must lie in different Si. So a1, . . . , ap and v all lie in different Si’s. Now,

F together with the paths in T from x to a1, . . . , ap, v respectively form a copy of L3(θ3,p) in G, a

contradiction.

Now, we consider two cases.

Case 1. e(H1) ≥ e(H)/2. In this case, by (5), we have e(H1) ≥ d|L2|/4. On the other hand, by

Claim 3, we see that H1 is θ3,p2-free, so by Corollary 4.2, we have

d|L2|/4 ≤ e(H1) ≤ 144p6 ·
(

|L2|2/3|L3|2/3 + |L2|+ |L3|
)

. (7)

Since 144p6|L2| ≤ d|L2|/12, we have either

144p6|L2|2/3|L3|2/3 ≥ d|L2|/12 or 144p6|L3| ≥ d|L2|/12.

Using this and Claim 2 that |L2| ≥ d2/(243p9/2), we can get

|L3| ≥ min

{

d3/2|L2|1/2
129/2p9

,
d|L2|
123p6

}

=
d3/2|L2|1/2
129/2p9

≥ d5/2

23/2126p45/4

Since d ≥ (4 · 123p6) · n2/5, this yields |L3| > n, a contradiction.

Case 2. e(H2) ≥ e(H)/2. Then by (5) and (6), we have e(H3) ≥ e(H)/4p ≥ d|L2|/8p. By Claim
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4, H3 is θ3,p-free. Thus, by Corollary 4.2 we get

d|L2|/8p ≤ e(H3) ≤ 144p3 ·
(

|L2|2/3|L3|2/3 + |L2|+ |L3|
)

.

Since p ≥ 2, the above inequality would also imply (7). So we can apply the same analysis as in

Case 1 to get a contradiction.

This completes the proof of Theorem 5.2 (and thus of Theorem 1.9).

We proved in Theorem 5.2 that ex(n,L3(θ3,p)) ≤ O(n7/5). An important idea in this proof is

to use the asymmetric bipartite Turán number of θ3,p, which help showing that the BFS-tree grow

rapidly. The use of asymmetric bipartite Turán numbers may find applications in other Turán type

extremal problems.
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[24] A. Naor and J. Verstraëte, A note on bipartite graphs without 2k-cycles, Combin. Probab.

Comput. 14 (2005), 845-849.

[25] R. Pinchasi and M. Sharir, On graphs that do not contain the cube and related problems,

Combinatorica 25 (5) (2005), 615-623.

http://arxiv.org/abs/1307.1062
http://arxiv.org/abs/1306.5167

	1 Introduction
	1.1 The theorem of Bukh and Conlon and a conjecture
	1.2 The cube and its generalization
	1.3 Theta graphs and 3-comb-pastings

	2 Preliminaries
	3 Turán numbers of generalized cubes
	4 Asymmetric bipartite Turán numbers of Theta graphs
	5 The Turán exponent of 7/5

