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ON THE SMALLEST SINGULAR VALUE OF SYMMETRIC RANDOM

MATRICES

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. We show that for an n×n random symmetric matrix An, whose entries on and above
the diagonal are independent copies of a sub-Gaussian random variable ξ with mean 0 and variance
1,

P[sn(An) ≤ ǫ/
√
n] ≤ Oξ(ǫ

1/8 + exp(−Ωξ(n
1/2))) for all ǫ ≥ 0.

This improves a result of Vershynin, who obtained such a bound with n1/2 replaced by nc for a
small constant c, and 1/8 replaced by (1/8) + η (with implicit constants also depending on η > 0).
Furthermore, when ξ is a Rademacher random variable, we prove that

P[sn(An) ≤ ǫ/
√
n] ≤ O(ǫ1/8 + exp(−Ω((log n)1/4n1/2))) for all ǫ ≥ 0.

The special case ǫ = 0 improves a recent result of Campos, Mattos, Morris, and Morrison, which
showed that P[sn(An) = 0] ≤ O(exp(−Ω(n1/2))).

The main innovation in our work are new notions of arithmetic structure – the Median Regu-
larized Least Common Denominator and the Median Threshold, which we believe should be more
generally useful in contexts where one needs to combine anticoncentration information of different
parts of a vector.

1. Introduction

Let Mn denote an n× n random matrix, each of whose entries is an independent copy of a sub-
Gaussian random variable ξ with mean 0 and variance 1. Prominent well-studied examples include
the Ginibre ensemble (corresponding to ξ = N (0, 1)) and i.i.d. Rademacher matrices (corresponding
to the Rademacher random variable ξ = ±1 with probability 1/2 each).

A landmark result of Rudelson and Vershynin [21] shows that there are absolute constants C, c >
0, depending only on the sub-Gaussian norm of ξ, for which

P[sn(Mn) ≤ ǫ/
√
n] ≤ Cǫ+ 2e−cn for all ǫ ≥ 0, (1.1)

where sn(Mn) = infv∈Sn−1‖Mv‖2 denotes the smallest singular value of Mn. Up to the constants
C, c > 0, the above result is optimal, as can be seen by considering the two examples mentioned
above. In particular, this result shows that the probability that an i.i.d. Rademacher matrix is
singular is at most 2 exp(−cn) (for some c > 0), thereby recovering (and substantially generalising)
a well-known result of Kahn, Komlós, and Szemerédi [9]. We remark that after a series of inter-
mediate works [2, 22, 23], a breakthrough result of Tikhomirov [24] established that the probability
of singularity of an i.i.d. Rademacher matrix is at most (1/2 + on(1))

n, which is optimal up to the
on(1) term.

In this paper, we will be concerned with n×n symmetric random matrices An i.e. (An)ij = (An)ji,
each of whose entries on and above the diagonal is an independent copy of a sub-Gaussian random
variable ξ with mean 0 and variance 1. We note that the identical distribution assumption may be
significantly relaxed (in particular, allowing for the diagonal entries to have a different distribution),
although for the sake of simplicity, we do not deal with this modification here; the interested reader
is referred to [25] and [12].

While symmetric matrices are especially convenient to work with linear algebraically, the lack of
independence between the entries of An makes the non-asymptotic study of its smallest singular
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value considerably more challenging than that of Mn. In the early 1990s, it was conjectured by
Weiss that An(Rad) (i.e. An where ξ is a Rademacher random variable) is invertible with probability
1 − on(1). This was only resolved in 2005 by Costello, Tao, and Vu [4], despite the corresponding
statement for Mn (due to Komlós [10]) having been established almost 40 years prior.

Vershynin [25] showed that for any sub-Gaussian random variable ξ with mean 0 and variance 1,
there are constants c, Cη depending only on the sub-Gaussian norm of ξ such that

P[sn(An) ≤ ǫ/
√
n] ≤ Cηǫ

1/8+η + 2e−nc
. (1.2)

This improves (and generalizes) the nearly concurrent estimate of OC(n
−C) on the singularity

probability of An(Rad) obtained by Nguyen [17] using a novel quadratic variant of the inverse
Littlewood–Offord theory. We note that in a subsequent work [18], Nguyen obtained estimates on
the lower tail of sn(An) for a large class of random variables ξ, including those not covered by [25],
although the quantitative bounds in this work are much weaker than (1.2).

Recently, the upper bound on the singularity probability of An(Rad) has been improved in a
couple of works. Building on novel combinatorial techniques in [6], it was shown by Ferber and
Jain [5] that this probability is at most exp(−Ω(n1/4

√
log n)). Subsequently, using a different

combinatorial method inspired by the method of hypergraph containers [1], Campos, Mattos, Morris,
and Morrison improved the bound to exp(−Ω(

√
n)). We note that both of these works deal only

with An(Rad), and only with the singularity probability as opposed to quantitative estimates on
sn(An(Rad)).

The first main result of this paper is a strengthening of (1.2); the quantitative bounds are suffi-
ciently powerful to generalize the aforementioned result of Campos et al. to all sub-Gaussian random
variables.

Theorem 1.1. Let An denote an n × n random symmetric matrix, each of whose entries on and
above the diagonal is an independent copy of a sub-Gaussian random variable ξ with mean 0 and
variance 1. Then, there are constants C1.1, c1.1 depending only on the sub-Gaussian norm of ξ such
that, for all ǫ ≥ 0,

P[sn(An) ≤ ǫ/
√
n] ≤ C1.1ǫ

1/8 + 2e−c1.1n
1/2

.

Next, we consider the particularly well studied case ξ = Rad; setting ǫ = 0 in the theorem below
improves the result of Campos et al. (see (3) in the Remark below).

Theorem 1.2. Let An denote an n × n random symmetric matrix, each of whose entries on and
above the diagonal is an independent Rademacher random variable. Then, there are absolute con-
stants C1.2, c1.2 such that, for all ǫ ≥ 0,

P[sn(An) ≤ ǫ/
√
n] ≤ C1.2ǫ

1/8 + 2e
−c1.2n

1/2(logn)1/4
.

Remark. (1) We note that Theorem 1.2 can be extended to the setting of discrete random variables
covered in recent work of the authors [7]. We leave the details to an interested reader.

(2) The ǫ1/8 term on the right hand side in Theorem 1.1 improves on the ǫ1/8+η in [25]. It is
believed that the correct dependence on ǫ is O(ǫ), which would be optimal in light of the Gaussian
example.

(3) The term exp(−Ω(n1/2)) on the right hand side in Theorem 1.1 extends the result of Campos
et al. to general sub-Gaussian random variables, whereas Theorem 1.2 improves this result by a
factor of (log n)1/4 in the exponent, in the special case when ξ = Rad. A well-known conjecture is
that one should be able to replace this with exp(−Ω(n)), although this will likely require significant
new ideas. Indeed, as can be seen from our proof (see also the discussion in [3, Section 2.2]),

exp(−Ω̃(n1/2)) is a natural barrier for techniques based on combining uniform anticoncentration
estimates for a symmetric matrix row-vector product with tensorization.
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The main innovation in our work are new notions of arithmetic structure of vectors, which we call
the Median Regularized Least Common Denominator (MRLCD) (see Section 3) and the Median
Threshold (see Section 4). Compared to the Regularized Least Common Denominator (RLCD)
introduced in [25], and its natural threshold analogue, the MRLCD and median threshold are able
to exploit the information that many different projections of a vector are arithmetically unstructured
in a simple and transparent manner. Moreover, we are able to show that level sets of the MRLCD
and median threshold admit sufficiently small nets at the appropriate scale – for the MRLCD, this
follows by suitably adapting by-now standard bounds due to Rudelson and Vershynin [21], whereas
for the median threshold, we adapt work of Tikhomirov [24] on the singularity of i.i.d Bernoulli
random matrices. As the details are anyway short, we defer further discussion to Sections 3 and 4.

We note that since its first appearance in [25], the RLCD has been used in many works (see,
e.g., [13, 14, 16, 19, 26]); the MRLCD (and median threshold, for discrete distributions) can replace
these applications in a black-box manner, and likely lead to improved quantitative estimates. We
also note that a related use of combinatorially incorporating arithmetic unstructure of different
projections of a vector appeared in recent work of the authors [8]; however, the interaction with
both the net and anticoncentration estimates is more delicate here.

1.1. Notation. We will drop the dimension in the subscript, henceforth denoting An by A, and
denoting its rows by A1, . . . , An. For an integer N , SN−1 denotes the set of unit vectors in R

N , and
B
N
2 denotes the unit ball in R

N (i.e., the set of vectors of Euclidean norm at most 1). ‖·‖2 denotes
the standard Euclidean norm of a vector, and for a matrix A = (aij), ‖A‖ is its spectral norm (i.e.,
ℓ2 → ℓ2 operator norm), and ‖A‖HS is its Hilbert-Schmidt norm, defined by ‖A‖2HS =

∑
i,j a

2
ij .

We will let [N ] denote the interval {1, . . . , N}, S[N ] denote the set of permutations of [N ], and([N ]
k

)
denote the set of subsets of [N ] of size exactly k. We will denote multisets by {{}}, so that

{{a1, . . . , an}}, with the ai’s possibly repeated, is a multi-set of size n. For a vector v ∈ R
N and

T ⊆ [N ], v|T denotes the |T |-dimensional vector obtained by only retaining the coordinates of v in
T . We write u ‖ v for u, v ∈ R

N if there is t ∈ R such that u = tv or tu = v.
We will also make use of asymptotic notation. For functions f, g, f = Oα(g) (or f .α g means that

f ≤ Cαg, where Cα is some constant depending on α; f = Ωα(g) (or f &α g) means that f ≥ cαg,
where cα > 0 is some constant depending on α, and f = Θα(g) means that both f = Oα(g) and
f = Ωα(g) hold.

All logarithms are natural, unless indicated otherwise, and floors and ceilings are omitted when
they make no essential difference.

1.2. Acknowledgements. We thank Roman Vershynin for comments on the manuscript. The
last two authors were supported by the National Science Foundation Graduate Research Fellowship
under Grant No. 1745302.

2. Preliminaries

We will need the decomposition of the unit sphere into compressible and incompressible vectors,
as formalized by Rudelson and Vershynin [21].

Definition 2.1 (Compressible and incompressible vectors). For c0, c1 ∈ (0, 1), Comp(c0, c1) consists
of all vectors v ∈ S

n−1 which are within Euclidean distance c1 of some vector w ∈ R
n satisfying

|Supp(w)| ≤ c0n. Moreover, Incomp(c0, c1) := S
n−1 \ Comp(c0, c1).

In order to prove Theorem 1.1, it suffices to analyze infx∈Incomp(c0,c1)‖Ax‖2 due to the following.
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Lemma 2.2. There exist c0, c1, c ∈ (0, 1) depending only on the sub-Gaussian moment of ξ so that
for any vector u ∈ R

n, we have

P

[
inf

v∈Comp(c0,c1)
‖Av − u‖2 < c

√
n

]
≤ 2 exp(−cn).

Proof. This follows immediately by combining [25, Proposition 4.2] with the concentration of the op-
erator norm of random matrices with independent, uniformly sub-Gaussian centered entries (cf. [25,
Lemma 2.3]). �

Lemma 2.3 (Incompressible vectors are spread, cf. [25, Lemma 3.8]). For every c0, c1 ∈ (0, 1), we
can choose c2.3 := c2.3(c0, c1) ∈ (0, 1/5) depending only on c0, c1 such that the following holds. For
every v ∈ Incomp(c0, c1), there are at least 2⌈c2.3n⌉ indices k ∈ [n] such that

c1√
2n

≤ |vk| ≤
1√
c0n

.

Definition 2.4 (Spread set). For every c0, c1 ∈ (0, 1), and for every v ∈ Incomp(c0, c1), we assign
a subset Spread(v) ⊆ [n] such that

|Spread(v)| = ⌈c2.3n⌉, and

c1√
2n

≤ |vk| ≤
1√
c0n

for all k ∈ Spread(v).

Definition 2.5. For every c0, c1 ∈ (0, 1) and for λ ∈ (0, c2.3/2), let c2.5(λ)n be the largest multiple

of ⌈λn⌉ less than or equal to ⌈c2.3n⌉. Note that c2.5(λ) ≥
c2.3
2 .

To every v ∈ Incomp(c0, c1), we assign Spreadλ(v) ⊆ Spread(v) such that

|Spreadλ(v)| = c2.5(λ)n,

and choose a partition

Spreadλ(v) =
k⊔

j=1

Spreadjλ(v)

into k = c2.3(λ)n/⌊λn⌋ disjoint subsets of size ⌊λn⌋. We further assume that the choice of

Spreadλ(v) and Spreadjλ(v) is uniform for a given choice of λ and Spread(v) (in particular, these
choices do not depend directly on v).

We recall the definition of the Lévy concentration function.

Definition 2.6. For a random variable X and ǫ ≥ 0, the Lévy concentration of X of width ǫ is

L(X, ǫ) = sup
x∈R

P[|X − x| ≤ ǫ].

We will also need a slight variant of the standard tensorization lemma, whose proof follows from
the usual argument (cf. [21, Lemma 2.2]). We include the details for completeness.

Lemma 2.7 (Tensorization). Let X = (X1, . . . ,XN ) be a random vector in R
N with independent

coordinates. Suppose that for all k ∈ [N ], there exist ak, bk ≥ 0 such that

sup
X1,...,Xk−1

L(Xk|X1, . . . ,Xk−1, ǫ) ≤ akǫ+ bk for all ǫ ≥ 0.

Then

L(X, ǫ
√
N) ≤ eN

N∏

k=1

(akǫ+ bk).
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Proof. We have

P[|X| ≤ ǫ
√
N ] = P

[ N∑

j=1

X2
j ≤ ǫ2N

]
= P

[
N − 1

ǫ2

N∑

j=1

X2
j ≥ 0

]

≤ E exp

(
N − 1

ǫ2

N∑

j=1

X2
j

)

≤ eN
N∏

j=1

sup
X1,...,Xj−1

E exp(−X2
j /ǫ

2|X1, . . . ,Xj−1).

We finish by noting that for any realization of X1, . . . ,Xj−1,

E exp(−X2
j /ǫ

2|X1, . . . ,Xj−1) =

∫ ∞

0
2ue−u2

P[|Xk| < ǫu|X1, . . . ,Xj−1] du

≤
∫ ∞

0
2ue−u2

(ajǫu+ bj) du ≤ ajǫ+ bj. �

We also recall the definition of essential least common denominator (LCD). We use a log-
normalized version due to Rudelson (unpublished), which also appears in [25].

Definition 2.8 (LCD). For L ≥ 1 and v ∈ S
N−1, the least common denominator (LCD) DL(v) is

defined as

DL(x) = inf

{
θ > 0 : dist(θv,ZN ) < L

√
log+(θ/L)

}
.

Finally we will require the following anticoncentration inequality of Miroshnikov and Rogozin
[15]; this generalizes a well-known inequality of Lévy-Kolmogorov-Rogozin [20].

Lemma 2.9 ([15, Corollary 1]). Let ξ1, . . . , ξN be independent random variables. Then, for any real
numbers r1, . . . , rN > 0 and any real r ≥ maxi∈[N ] rN , we have

L
( N∑

i=1

ξi, r

)
≤ C2.9r

( N∑

i=1

r2i (1− L(ξi, ri))
L(ξi, ri)2

)−1/2

,

where C2.9 > 0 is an absolute constant.

3. Median Regularized LCD (MRLCD)

In this section, we introduce the median regularized LCD (MRLCD), which is the notion of
arithmetic structure that we will use in the proof of Theorem 1.1. As opposed to the regularized
LCD (RLCD) (introduced in [25]) which guarantees only one arithmetically unstructured projection
of the vector, a large MRLCD guarantees many arithmetically unstructured projections of the vector.
This simple change allows the MRLCD to piece together various unstructured parts of the vector
to obtain significantly better small-ball probability estimates (Proposition 3.5), while at the same
time not significantly impacting the size of nets of level sets (Proposition 3.3).

Definition 3.1 (Median Regularized LCD). For v ∈ Incomp(c0, c1), λ ∈ (0, c2.3), and L ≥ 1, the

median regularized LCD, denoted M̂DL(v, λ), is defined as

M̂DL(v, λ) = median{{DL(vI/‖vI‖2) : I = Spreadjλ(v) for some j}}.
Here, the median of an even number of elements is not an average, but instead the value of the

upper half. We denote by IM (v) the set Spreadjλ(v) achieving the median (arbitrarily chosen from
5



among all such sets), and IM (v) the collection of sets attaining values at least that of the median.
We let JM (v) be the collection of sets attaining values at most that of the median.

We will consider level sets obtained by dyadically chopping the range of the MRLCD.

Definition 3.2 (Level sets of MRLCD). For λ ∈ (0, c2.3), L ≥ 1, and D ≥ 1, we define the set

SD = {v ∈ Incomp(c0, c1) : M̂DL(v, λ) ∈ [D, 2D]}.
3.1. Nets for level sets of MRLCD. The main result of this subsection is the following.

Proposition 3.3. Let c0, c1 ∈ (0, 1). There exists C3.3 = C3.3(c0, c1) > 0 for which the following
holds. Let λ ∈ (C3.3/n, c2.3/2) and L ≥ 1. For every D ≥ 1, SD has a β-net N such that

β =
L
√

log(2D)

D
, |N | ≤ D1/λ

(
C3.3D√
log(2D)

)n

·
(√

log(2D)√
λn

)c2.3n/8
.

Remark. By changing C3.3 by a constant factor we can further assume that N ⊆ SD. Also, the

L dependence here is not optimal – one can save a factor of Ln(1−c2.3/8) by being more careful,
although this does not affect the overall bounds if L is of constant order as in our application.

The proof of Proposition 3.3 relies on a bound on the size of nets for level sets of the LCD.

Lemma 3.4 (Corollary of Lemma 7.8 in [25]). Let m ∈ N, D ≥ 1, and c ∈ (0, 1) be such that
D > c

√
m ≥ 2. There exists a constant C depending only on c for which the following holds. Let

χ > 1, L ≥ 1, and λ > 0. Then the set

{x ∈
√
χλBm

2 : c
√
m < DL(x/‖x‖2) ≤ D}

has a β
√
χλ-net N such that

β =
4L
√

log(2D)

D
, |N | ≤

(
CD√
m

)m

D2.

Now we conclude the result.

Proof of Proposition 3.3. Let r = ⌈λn⌉ and k = c2.5(λ)n, so that r|k by definition.
Now, we pay a factor of 2n in a union bound over possible realizations of Spread(v), which

determines Spreadλ(v) and Spreadjλ(v) for 1 ≤ j ≤ k/r. We pay an additional factor of at most 2n to

reveal which sets Spreadjλ(v) are in JM (v). Let J ⊆ [k/r] be the collection of corresponding indices

j. We see |J | ≥ k/(2r) by definition of median. Write J = {j1, . . . , jt} and let Ii = Spreadjiλ (v).
Note that, given I1, . . . , It, we know that DL(vIi/‖vIi‖2) ≤ 2D for all 1 ≤ i ≤ t. Moreover,

since Ii ⊆ Spreadλ(v), it follows that ‖vIi‖2 ≤ √
χλ for some χ depending only on c0. Further, by

[25, Lemma 6.2], it follows (again, since Ii ⊆ Spreadλ(v)) that DL(vIi/‖vIi‖2) ≥ c
√

⌈λn⌉ for some
c depending only on c0, c1. Hence, by Lemma 3.4, we have a β

√
χλ-net for vIi where

β =
2L
√

log(4D)

D

of size at most (
CD√
⌈λn⌉

)⌈λn⌉

D2.

Finally, we take a product of these nets over 1 ≤ i ≤ t, along with a standard β-net of BI0
2 (this net

has size at most (1+3/β)|I0|), where we let I0 = [n]\ (I1 ∪ · · · ∪ It), to obtain the desired conclusion
upon adjusting the value of β by standard arguments. �
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3.2. Anticoncentration via MRLCD. We derive anticoncentration for a fixed vector with re-
spect to MRLCD; the key idea is to patch together anticoncentration estimates on different segments
of the vector through the use of Lemma 2.9.

Proposition 3.5 (Anticoncentration via the MRLCD). Let ξ1, . . . , ξn be i.i.d. random variables.
Suppose that there exist ǫ0, p0,M0 > 0 such that L(ξk, ǫ0) ≤ 1 − p0 and E[|ξk|] ≤ M0 for all k.
Finally, let c0, c1 ∈ (0, 1). Then, there exist C3.5, depending only on ǫ0, p0,M0 and C ′

3.5 depending
on ǫ0, p0,M0, c0, c1 such that the following holds.

Let L ≥ p
−1/2
0 , λ ∈ (C ′

3.5L
2/n, c2.3), v ∈ Incomp(c0, c1), J ⊆ Spreadλ(v), and SJ =

∑
k∈J vkξk.

Suppose that J is a union of sets in IM (v). Then for every ǫ ≥ 0, we have for sufficiently large n
(depending on ǫ0, p0,M0, c0, c1) that

L(SJ , ǫ) ≤ C3.5L

(
ǫ√
|J |/n

+

√
λn/|J |

M̂DL(v, λ)

)
.

Remark. The above proposition should be compared with [25, Proposition 6.9], which bounds the
Lévy concentration function in terms of the regularized LCD. The key difference is that the term√

|J |/n in the denominator of our bound is replaced by
√
λ, which is always smaller. In fact, in the

application considered here, λ must be chosen to be O(1/
√
n), which makes the above proposition

significantly more efficient than the corresponding proposition in [25] for most of the matrix row-
vector products (which satisfy |J |/n = Θ(1)).

Proof. Since v ∈ Incomp(c0, c1), we have M̂DL(v, λ) ≥ c
√

⌈λn⌉ for some c depending only on c0, c1
([25, Lemma 6.2]).

First, assume that ǫ ≤ 1/(c
√
n). Let r = ⌈λn⌉ and k = c2.5(λ)n, so that r|k by definition. For

i ∈ [k/r], let

Si =
∑

k∈Spreadiλ(v)

vkξk.

Let I be such that J = ∪i∈I Spread
i
λ(v). Since J is a union of sets in IM (v), and DL(vI/‖vI‖2) ≥

M̂DL(v, λ) for each I ∈ IM (v), it follows by standard anticoncentration estimates based on the
LCD (see [25, Proposition 6.9] for the logarithmic version), that there exists an absolute constant
C > 0 such that

L(Si, ǫ) ≤ CL

(
ǫ√
λ
+

1

M̂DL(v, λ)

)
<

1

2

for all i ∈ I, where the latter inequality follows from the assumption that ǫ ≤ 1/(c
√
n), along with

the lower bound on λ (by taking C ′
3.5 sufficiently large depending on various parameters).

Now note that

SJ =
∑

i∈I

Si

and that the Si are independent. Also, note that |I| = |J |/⌈λn⌉. Therefore, by Lemma 2.9, we have

L(SJ , ǫ) ≤ C2.9ǫ

(∑

i∈I

ǫ2(1− L(Si, ǫ))
L(Si, ǫ)2

)−1/2

≤ C2.9
√
2√

|I|
max
i∈I

L(Si, ǫ) ≤
2C2.9√
|J |/n

· CL
(
ǫ+

√
λ

M̂DL(v, λ)

)
,

which proves the desired conclusion for ǫ ≤ 1/c
√
n.
7



Finally, for ǫ > 1/(c
√
n), we note that any interval of length 2ǫ can be tiled by at most 2ǫ/ǫ0

intervals of length 2ǫ0, where ǫ0 = 1/(2c
√
n). Moreover, for such ǫ0, we have

ǫ0 +

√
λ

M̂DL(v, λ)
≤ 4ǫ0.

Hence, we have that for all ǫ > 1/(c
√
n),

L(SJ , ǫ) ≤
2ǫ

ǫ0
· L(SJ , ǫ0)

≤ 2ǫ

ǫ0
· 2C2.9CL√

|J |/n
· 4ǫ0 ≤ 16C2.9CL · ǫ√

λ
,

as desired. �

Next, we derive a small-ball result for (symmetric) matrix-vector products.

Lemma 3.6. Fix K ≥ 1, c0, c1 ∈ (0, 1) and v ∈ Incomp(c0, c1). There exists L depending only on
the sub-Gaussian norm of ξ, and c3.6, C3.6 depending on the sub-Gaussian norm of ξ and on c0, c1
such that the following holds.

Let λ ∈ (C3.6/n, c3.6) and suppose that v ∈ SD (with MRLCD defined with respect to λ,L).
Then, for any u ∈ R

n, we have

P[‖Av − u‖2 ≤ Kβ
√
n] ≤

(
C3.6L

2
√

log(2D)

D

)n−⌈λn⌉

,

where

β =
L
√

log(2D)

D
.

Proof. Fix u ∈ R
n and v ∈ SD. Note that for any permutation matrix P , ‖Av − u‖2 ≤ Kβ

√
n

occurs if and only if

‖(PAP−1)Pv − Pu‖ ≤ Kβ
√
n.

Furthermore, PAP−1 = PAP ⊺ has the same distribution as A. Therefore, we will be able to
permute the indices of [n] at our convenience (depending on v).

In particular, we may assume that Spreadλ(v) = [c2.5(λ)n]. Let At = {k ∈ [n] : t⌈λn⌉ < k ≤
(t+ 1)⌈λn⌉} (defined for 0 ≤ t ≤ T − 1), where

T =
c2.5(λ)n

⌈λn⌉ .

We may also assume that At ∈ IM (v) for all t ≤ ⌈T/2⌉ − 1. Then, for all ⌈λn⌉ ≤ j ≤ c2.5(λ)n, the
set J = [j] has a subset of at least half the size which satisfies the assumptions of Proposition 3.5
(namely, the union of the first ⌊j/⌈λn⌉⌋ sets At).

Therefore Proposition 3.5 implies that for all L sufficiently large depending on the sub-Gaussian
norm of ξ, if j ≥ ⌈λn⌉ and ǫ ≥ 0, then

L((Av − u)j |(Av − u)j+1,...,n, ǫ) ≤ CC3.5L

(
ǫ√
j/n

+

√
λn/j

D

)
,

where C depends only on c0, c1. Here, we have used that the first j elements of the jth row are
independent of rows j + 1, . . . , n, and that the Lévy concentration is monotone under removing
independent random variables from a sum.
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Let j′ = min(j, c2.5(λ)n). Then, by Lemma 2.7, we deduce

P[‖Av − u‖2 ≤ Kβ
√
n] ≤ P




n∑

j=⌈λn⌉

(Av − u)2j ≤ K2β2n




≤ (CL)n
n∏

j=⌈λn⌉

(
Kβ
√
n/(n− ⌈λn⌉)√
j′/n

+

√
λn/j′

D

)

≤ (CL)n
n∏

j=⌈λn⌉

(
KL

√
n log(2D)

D
√
j′

)

≤
(
CL2

√
log(2D)

D

)n−⌈λn⌉

,

where the last inequality uses
∏n

j=1(n/j) ≤ en. �

3.3. Structure theorem. We will need the following structure theorem, which shows that, except
with exponentially small probability, the preimage under A of any fixed vector is highly unstructured.
This is our replacement for the key [25, Theorem 7.1]. As usual, A denotes a random n×n symmetric
matrix with independent ξ entries on and above the diagonal.

Theorem 3.7. Fix K ≥ 1. Depending on the sub-Gaussian norm of ξ, we can choose L, c, C so
that the following holds. For all λ ∈ (C/n, 1/

√
n), we have for any u ∈ R

n that

P[∃v ∈ S
n−1 : (Av ‖ u) ∧ (v ∈ Comp(c0, c1) ∨ M̂DL(v, λ) ≤ 2λn/C) ∧ (‖A‖ ≤ K

√
n)] ≤ 2e−cn.

Proof. This is an immediate consequence of Proposition 3.3 and Lemmas 2.2 and 3.6. Note that if
Av = tu for t ∈ R, then ‖A‖ ≤ K

√
n implies ‖tu‖2 ≤ K

√
n. For compressible vectors v, we use

Lemma 2.2 on a constant amount of target vectors parallel to u so as to cover the full range. For
the rest, if the MRLCD is between D and 2D (for some D ≤ 2λn/C), we take a net constructed in
Lemma 3.4 along with a 1/D-net for {tu : ‖tu‖2 ≤ K

√
n}, which adds an additional (unimportant)

factor of KD
√
n to the size of our nets. Since

KD
√
n ·D1/λ

(
C3.3D√
log(2D)

)n

·
(√

log(2D)√
λn

)c2.3n/8 ×
(
C3.6L

2
√

log(2D)

D

)n−⌈λn⌉

= KD
√
n ·D1/λ

(
C ′D√
log(2D)

)⌈λn⌉(√log(2D)√
λn

)c2.3n/8

≤ C ′n · 2λ2n2/C · (1/C)c2.3n/8

≤ C ′n2n/C(1/C)c2.3n/8,

the result follows by a union bound upon taking C sufficiently large. We omit the standard details,
referring the reader to the proof of [25, Theorem 7.1] for a more detailed calculation. �

4. Median Threshold

We begin by defining an alternate notion of structure, based on the so-called threshold function
(Definition 4.1), which will allow us to use results of Tikhomirov [24] to obtain a stronger bound for
the probability of singularity Rademacher random symmetric matrices. We note that, although we
have chosen to focus on the Rademacher case, our analysis can be extended to general real discrete
distributions using recent results of the authors [7].

9



For a technical reason that will become clear later, we fix a sufficiently small absolute constant
p ∈ (0, 1/2] throughout this section; for the case of Rademacher random variables, which is our
focus, one can take p = 1/10.

Definition 4.1. For p ∈ (0, 1), L ≥ 1, and v ∈ S
N−1, the threshold Tp,L(v) is defined as

Tp,L(v) = sup

{
t ∈ (0, 1) : L

( N∑

i=1

b′ivi, t

)
> Lt

}
,

where the b′i are i.i.d. random variables distributed as Ber(p)− Ber′(p).

Definition 4.2. For p ∈ (0, 1), v ∈ Incomp(c0, c1), λ ∈ (0, c2.3), and L ≥ 1, the median threshold,

denoted T̂p,L(v, λ), is defined as

T̂p,L(v, λ) = median{{Tp,L(vI/‖vI‖2) : I = Spreadjλ(v) for some j}}.
4.1. Threshold of random lattice points. We next recall the key technical result of Tikhomirov
[24], which upper bounds the number of vectors with “large” threshold within a lattice of appropriate
size. The important fact is that the number of such vectors is superexponentially small compared to
the size of the lattice, which is the key difference with the results coming from the MRLCD. First,
we must establish some notation.

Definition 4.3. Choose N,n ≥ 1 and δ ∈ (0, 1], as well as K ≥ 1. We say that A ⊆ Z
n is

(N,n,K, δ)-admissible if the following hold:

• A = A1 × · · · ×An, where each Ai is an origin-symmetric subset of Z ∩ (−nN,nN),
• Ai is an integer interval of size at least 2N + 1 for all i > δn,
• Ai is a union of two integer intervals of total size at least 2N and Ai ∩ [−N,N ] = ∅ for all
i ≤ δn, and

• |A| ≤ (KN)n.

Theorem 4.4 (From [24, Corollary 4.3]). Let δ, ǫ ∈ (0, 1], p ∈ (0, 1/2], and K,M ≥ 1. There exist
n4.4 = n4.4(δ, ǫ,K,M) ≥ 1 and L4.4 = L4.4(δ, ǫ,K) > 0 such that the following holds. If n ≥ n4.4,
1 ≤ N ≤ (1− p+ ǫ)−n, and A is (N,n,K, δ)-admissible, then

∣∣∣∣
{
x ∈ A : L

( n∑

i=1

bixi,
√
n

)
≥ L4.4N

−1

}∣∣∣∣ ≤ exp(−Mn)|A|,

where the bi are i.i.d. Ber(p) random variables. Furthermore, n4.4 = exp(C4.4(δ, ǫ,K)M2) is
allowable.

Remark. This is the same as [24, Corollary 4.3], except that we have claimed an explicit dependence

between n and M , namely that one can take M growing as (log n)1/2 (all other parameters fixed).
This is an immediate consequence of unraveling the parameter dependencies in [24, Theorem 4.2].
We give a brief sketch, using the notation of [24, Theorem 4.2]. In the proof of [24, Theorem 4.2],
one sets L = L4.5(2M,p, δ, ǫ/2), which can be checked to grow exponentially in M by examining
the last line of the proof of [24, Proposition 4.5]. This shows that the parameter q in the proof of
[24, Theorem 4.2] is chosen to be linear in M , and hence, the parameter ǫ̃ grows as M−1. Next, it is

required that n ≥ n4.10(p, ǫ̃,max(16R̃, L), R̃, 2M) and n ≥ n4.5(2M,p, δ, ǫ/2). The more restrictive
condition comes from [24, Proposition 4.10], and indeed, an examination of the first few lines of
the proof of this proposition reveals that it suffices to have n growing as exp(Θ(M2)). One also

sees that η4.2 = η4.10(p, ǫ̃,max(16R̃, L), R̃, 2M) decays as exp(−Θ(M2)). Finally, the deduction of
[24, Corollary 4.3] from [24, Theorem 4.2] requires n−1/2 ≤ η, for which n growing as exp(Θ(M2))
is sufficient in light of the decay of η discussed above.
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4.2. Replacement. In order to relate the anticoncentration of a vector with respect to Rademacher
random variables to Definitions 4.1 and 4.2, we will require the following inequality. This is closely
related to the replacement trick employed by Kahn, Komlós, and Szemerédi [9] and later by Tao
and Vu [23] (although the application here is substantially simpler).

Lemma 4.5. There exists an absolute constant C4.5 for which the following holds. Let v ∈ R
n and

r > 0. Then, for any 0 < p ≤ (2−
√
2)/4,

L
( n∑

i=1

bivi, r

)
≤ C4.5L

( n∑

i=1

b′ivi, r

)
,

where bi are independent Rademacher random variables and b′i are distributed as Ber(p)− Ber′(p).

Proof. Note that by scaling v, we may assume without loss of generality that r = 1. Let X =∑n
i=1 b

′
ivi. By Esseen’s inequality and | cos t| ≤ (3 + cos(2t))/4, we find

L
( n∑

i=1

bivi, 1

)
≤ C

∫ 2

−2

n∏

i=1

| cos(viθ)|dθ ≤ C

∫ 2

−2

n∏

i=1

(
3

4
+

1

4
cos(2viθ)

)
dθ

≤ C

∫ 2

−2

n∏

i=1

E exp

(
iθ · 2b′ivi

)
dθ ≤ 2C

∫

R

1[−2,2] ∗ 1[−2,2](θ)E exp(iθ(2X))dθ

= 4CE

(
sin(4X)

2X

)2

≤ 4CE

(
sin(4X)

2X
· 1X∈[−1,1]

)2

+
∞∑

k=1

4CE

(
sin(4X)

2X
· 1±X∈[2k−1,2k+1]

)2

≤ 16CL(X, 1) + C
∞∑

k=1

L(X, 1)
(2k − 1)2

≤ C ′L(X, 1).

The third inequality uses p ≤ (2−
√
2)/4, and the penultimate inequality uses sin(4x)/(2x) ≤ 2 for

x ∈ [−1, 1]. �

4.3. Randomized rounding. We will make use of a slight modification of [24, Lemma 5.3], proved
using randomized rounding (cf. [11]). As the proof is identical we omit the details.

Lemma 4.6. Let y = (y1, . . . , yn) ∈ R
n be a vector, ∆ be a fixed distribution supported in [−1, 1]n,

and let µ > 0, ψ ∈ R be fixed. There exist absolute constants c4.6 and C4.6 for which the following
holds.

Suppose that for all t ≥ √
n,

P

[∣∣∣∣
n∑

i=1

biyi − ψ

∣∣∣∣ ≤ t

]
≤ µt,

where (b1, . . . , bn) are independent and distributed as ∆. Then, there exists a vector y′ ∈ Z
n satis-

fying

(R1) ‖y − y′‖∞ ≤ 1,
(R2) P[|∑n

i=1 biy
′
i − ψ| ≤ t] ≤ C4.6µt for all t ≥ √

n, and
(R3) L(∑n

i=1 biy
′
i,
√
n) ≥ c4.6L(

∑n
i=1 biyi,

√
n).

Next, we prove a version of the above proposition for the case when ∆ = Ber(p) − Ber′(p) with
p sufficiently small. The main difference is that the left hand side in (R2) above can be replaced
by the Lévy concentration at width t; this can be done since for a distribution with non-negative
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characteristic function, the maximum concentration of given width is essentially obtained around
ψ = 0.

Lemma 4.7. Let y = (y1, . . . , yn) ∈ R
n be a vector, p ∈ (0, 1), and let µ > 0, ψ ∈ R be fixed. There

exist absolute constants c4.7 and C4.7 for which the following holds.
Suppose that for all t ≥ √

n,

L
( n∑

i=1

b′iyi, t

)
≤ µt,

where the b′i are independent and distributed as Ber(p) − Ber′(p). Then, there exists a vector y′ =
(y′1, . . . , y

′
n) ∈ Z

n satisfying

(R1) ‖y − y′‖∞ ≤ 1,
(R2) L(∑n

i=1 b
′
iy

′
i, t) ≤ C4.7µt for all t ≥ √

n, and
(R3) L(∑n

i=1 b
′
iy

′
i,
√
n) ≥ c4.7L(

∑n
i=1 b

′
iyi,

√
n).

Proof. We apply Lemma 4.6 to the distribution ∆ = Ber(p)− Ber′(p) and ψ = 0. From (R2),

P

[∣∣∣∣
n∑

i=1

b′iyi

∣∣∣∣ ≤ t

]
≤ C4.6µt

for all t ≥ √
n. Now let t ≥ √

n and X = (
∑n

i=1 b
′
iy

′
i)/t, and note that X has nonnegative

characteristic function since b′i does. Thus, for all ψ ∈ R,

P[|X − ψ| ≤ 1] = E[1[−1,1](X − ψ)] ≤ E[1[−1,1] ∗ 1[−1,1](X − ψ)]

=

∫

R

(
2 sin θ

θ

)2

E exp(iθ(X − ψ))dθ

≤
∫

R

(
2 sin θ

θ

)2

|E exp(iθX)|dθ

=

∫

R

(
2 sin θ

θ

)2

E exp(iθX)dθ

= E[1[−1,1] ∗ 1[−1,1](X)] ≤ 2P[|X| ≤ 2] ≤ 4C4.6µt. �

4.4. Threshold structure theorem. We now prove the following improved version of Theorem 3.7.

Theorem 4.8. Fix K ≥ 1 and 0 < p ≤ (2 −
√
2)/4. We can choose L, c > 0 and c′ = c′(p) so that

the following holds for sufficiently large n. For all λ ∈ (n−2/3, c(log n)1/4n−1/2), we have for any
u ∈ R

n that

P[∃v ∈ S
n−1 : (Av ‖ u) ∧ (v ∈ Comp(c0, c1) ∨ T̂p,L(v, λ) ≥ 2−c′λn) ∧ (‖A‖ ≤ K

√
n)] ≤ 2e−cn,

where A is a symmetric matrix with entries on and above the diagonal i.i.d. and distributed as the
sum of a Rademacher random variable, and a Gaussian random variable of mean 0 and variance
n−2n.

Remark. The Gaussian perturbation of the entries of A is not important here, and will only be used
later, where it will be convenient to assume that various sub-matrices of A are invertible almost
surely. Moreover, the variance of the Gaussian is chosen sufficiently small so that all anticoncentra-
tion claims that we need are essentially unaffected by this perturbation.

Proof. As in the proof of Theorem 3.7, we can deal with compressible vectors using Lemma 2.2.
Therefore, it remains to deal with incompressible vectors with “large” median threshold.
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By standard small-ball estimates for incompressible vectors (see [24, Lemma 5.1]), for v ∈
Incomp(c0, c1), there is C0 = C0(p, c0, c1) such that T̂p,L(v, λ) ≤ C0(λn)

−1/2. We let r = ⌈λn⌉
and k = c2.5(λ)n, so that r|k by definition, and let m = ⌊k/(2r)⌋.

Step 1: Randomized rounding. We consider the case T̂p,L(v, λ) ∈ [1/T, 2/T ], where T ∈
[C−1

0

√
λn, 2c

′λn]. Then, by definition, there exist intervals I1, . . . , Im of the form Spreadjλ(v) with

Tp,L(vIi/‖vIi‖2) ≤ 2/T

for all i ∈ [m].
Let D = C1

√
nT , where C1 = C1(p, c0, c1) ≥ 1 will be an integer chosen later. Let y = Dv. By

the definition of the threshold, for all t ≥
√

⌈λn⌉ we have

L
(∑

j∈Ii

b′jyj, t

)
= L

(∑

j∈Ii

b′jvj ,
t

D

)
= L

(∑

j∈Ii

b′j
vj

‖vIi‖2
,

t

D‖vIi‖2

)

≤ L
(∑

j∈Ii

b′j
vj

‖vIi‖2
,

√
2t

c1C1

√
⌈λn⌉T

)
≤ L

T
· 2t√

⌈λn⌉
,

as long as we chose C1 >
√
2/c1, where the b′i are independent random variables distributed as

Ber(p) − Ber′(p). Applying Lemma 4.7 to the ⌈λn⌉-dimension vector yIi, we see that there is

y′Ii ∈ Z
⌈λn⌉ satisfying the conclusions of Lemma 4.7 (with n replaced by ⌈λn⌉). In particular, by

(R3), we see that

L
(∑

j∈Ii

b′jy
′
j,
√

⌈λn⌉
)

≥ c4.7L
(∑

j∈Ii

b′jvj ,
√
λ/(C1T )

)

≥ c4.7L
(∑

j∈Ii

b′j
vj

‖vIi‖2
,

2
√
λ

C1T ·
√
λ/c0

)

≥ C−1
1

√
c0 · c4.7L

(∑

j∈Ii

b′j
vj

‖vIi‖2
, 2/T

)

≥ C−1
1

√
c0 · c4.7 · 2LT−1. (4.1)

Let I0 = [n] \ (I1 ∪ · · · ∪ Im). Then, by approximating each coordinate of yI0 by the nearest integer,
and combining with the above integer approximations of yI1 , . . . , yIm , we obtain an integer vector
y′ ∈ Z

n.
Step 2: Size of nets of level sets. We now estimate the number of possible realizations

y′. This is the analogue of Proposition 3.3 in the present context. By paying an overall factor of

at most 6n, we may fix Spread(v) (hence all the Spreadjλ(v)), as well as which Spreadjλ(v) are in

IM(v) and JM (v). As above, let us denote the intervals Spreadjλ(v) in IM(v) by I1, . . . , Im, and let
I0 = [n] \ (I1 ∪ · · · ∪ Im).

First, note that the number of choices for y′I0 is at most (CD/
√
n)|I0| for an absolute constant

C – this follows since y′I0 is an integer point in a ball of radius D ≥ √
n ≥

√
|I0| (provided that

C1 is chosen sufficiently large), at which point, we can use a standard volumetric estimate for the

number of integer points in R
I0 in a ball of radius R ≥

√
|I0|, together with the bound |I0| ≥ n/2.

Next, we fix i ∈ [m], and bound the number of choices for y′Ii . Note that for any r ≥ 0,

L


∑

j∈Ii

bjy
′
j, r


 ≥ L


∑

j∈Ii

(bj − b̃j)y
′
j, r


 ,
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where bi, b̃i are independent copies of Ber(p). Since b′j is distributed as bj − b̃j, it follows from (4.1)
that

L
(∑

j∈Ii

bjy
′
j,
√

⌈λn⌉
)

≥ c2LN
−1,

where bj are i.i.d. Ber(p) random variables. From the definition of Spreadλ(v) and (R1), we see
that y′Ii lies within a (D/(C2

√
n), ⌈λn⌉,K ′, 1)-admissible set A for C2 and K ′ sufficiently large

depending on c0, c1. Then, for L sufficiently large depending on c0, c1, p, by Theorem 4.4 (noting

that D is bounded by n2c
′λn for all sufficiently large n, and that we can take c′ to be sufficiently

small depending on p), we deduce that the number of potential y′Ii ∈ Z
Ii is bounded by

exp(−M |Ii|)(CD/
√
n)|Ii|,

where C depends on c0, c1, and M grows as
√

log⌈λn⌉, hence as
√
log n. Explicitly, we can pick

M ≥ c3
√
log n for some small c3 > 0 depending only on c0, c1, p. Multiplying the total number of

possibilities for y′0, y
′
1, . . . , y

′
m, we see that the total number of possibilities for y′ ∈ Z

n is at most

exp(−c2.3Mn/8)(CD/
√
n)n,

for C depending on c0, c1 and M ≥ c3
√
log n with c3 depending on c0, c1, p.

Step 3: Small-ball probability for net points. Fix y′ ∈ Z
n resulting from the randomized

rounding process and u ∈ R
n. Our goal is to bound P[‖Ay′ − u‖2 ≤ Kn]. As in the proof of

Lemma 3.6, we can without loss of generality permute the coordinates of y′ so that I1, . . . , Im are
the first m blocks of size ⌈λn⌉ within [n]. Then, for all ⌈λn⌉ ≤ j ≤ c2.5(λ)n, we have for all ǫ ≥ 0
that

L((Ay′ − u)j |(Ay′ − u)j+1,...,n,Dǫ) ≤ CL

(
ǫ√
j/n

+

√
λn/j

T

)
,

where C is an absolute constant. To deduce this, we use that the first j elements of row j are
independent of rows j + 1, . . . , n, then use Lemma 4.5 to replace the Rademacher entries of A
(plus the small Gaussian perturbation, which has variance so small that it can be disregarded) by
Ber(p) − Ber′(p), and finally use Lemma 2.9 (as in the proof of Proposition 3.5) to stitch together
the Lévy concentration properties of each y′Ii (guaranteed by (R3) of Lemma 4.7). Combining this

with Lemma 2.7, we see that for y′, u as above,

P[‖Ay′ − u‖2 ≤ Kn] ≤
(
C ′′L

√
n

D

)n−⌈λn⌉

,

where C ′′ depends only on c0, c1, p.
Step 4: Union bound. On the event ‖A‖ ≤ K

√
n, Av = tu with ‖tu‖2 ≤ K

√
n. By splitting

the range {tu} into (4D/
√
n)2 intervals, and rounding v as in Step 2, we see that the probability of

the event in question is bounded above by

exp(−c2.3Mn/8)

(
CD√
n

)n+2

sup
y′,u

P[‖Ay′ − u‖2 ≤ Kn],

where the supremum is over u ∈ R
n and y′ ∈ Z

n such that each y′Ii for i ∈ [m] satisfies the

conclusions of Lemma 4.7 (with n replaced by ⌈λn⌉). Controlling the final factor by Step 3, we see
that the probability is bounded above by

exp(−c2.3Mn/8)CnD⌈λn⌉+2,

where C depends on c0, c1, p. Finally, since D ≤ 22c
′λn for all n sufficiently large (depending on

c0, c1, p), we obtain an overall upper bound of

exp(−c2.3Mn/8 + n logC + 2c′λ2n2 + 6c′λn).
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Since M ≥ c3
√
log n, for c3 depending on c0, c1, p, the desired result follows by choosing λ <

c(log n)1/4n−1/2 for c sufficiently small depending on c0, c1, p, so that the quantity above is bounded

by exp(−Ω(n(log n)1/2)). �

5. Proof of Theorem 1.1

In this section (along with Appendix A), we complete the proof of Theorem 1.1 by closely follow-
ing [25] with appropriate modifications. Since the smallest singular value is a continuous function
of the entries of the matrix, by perturbing each entry of the random matrix by a Gaussian variable
with arbitrarily small variance, one may assume that ξ is absolutely continuous with respect to the
Lebesgue measure; in particular, one may freely assume that various square matrices whose entries
are independent copies of ξ are invertible.

5.1. Quadratic small-ball probabilities. To prove Theorems 1.1 and 1.2, we need the following
small-ball inequalities for quadratic forms. The derivation is almost identical to the approach in
[25, Theorem 8.1], with improvements coming from Theorem 3.7 and Proposition 3.5 (respectively
Theorem 4.8). We include details in the appendix for the reader’s convenience.

Theorem 5.1. Let A be an n × n symmetric random matrix whose independent entries are iden-
tical copies of a sub-Gaussian random variable ξ with variance 1. Suppose X is a random vector
(independent of A) whose entries are independent copies of ξ. Then, for every ǫ ≥ 0 and u ∈ R, we
have

P

[ |〈A−1X,X〉 − u|√
1 + ‖A−1X‖22

≤ ǫ ∧ ‖A‖ ≤ K
√
n

]
≤ C5.1ǫ

1/8 + 2exp(−c5.1n1/2).

We similarly derive the following strengthening for Rademacher entries.

Theorem 5.2. Let A be an n × n symmetric random matrix whose independent entries are dis-
tributed as the sum of a Rademacher random variable and a centered Gaussian with variance n−2n.
Suppose X is a random vector (independent of A) whose entries are independent Rademachers.
Then, for all sufficiently large n, and for every ǫ ≥ 0 and u ∈ R, we have

P

[ |〈A−1X,X〉 − u|√
1 + ‖A−1X‖22

≤ ǫ ∧ ‖A‖ ≤ K
√
n

]
≤ C5.1ǫ

1/8 + 2exp(−c5.1n1/2(log n)1/4).

5.2. Putting it together. Given the above, the proofs of Theorems 1.1 and 1.2 follows from a
modification (due to Vershynin) of the invertibility-via-distance paradigm due to Rudelson and
Vershynin. We reproduce the details from [25] for the reader’s convenience

Proof of Theorems 1.1 and 1.2. Fix c0, c1, c ∈ (0, 1), as guaranteed by Lemma 2.2. We can clearly
assume that ǫ ≤ c. Then, by the union bound and Lemma 2.2, we have

P[sn(A) ≤ ǫ/
√
n] ≤ P[∃v ∈ Comp(c0, c1) : ‖Av‖2 ≤ c

√
n] + P[∃v ∈ Incomp(c0, c1) : ‖Av‖2 ≤ ǫ/

√
n]

≤ 2 exp(−cn) + P[∃v ∈ Incomp(c0, c1) : ‖Av‖2 ≤ ǫ/
√
n].

Let A1, . . . , An denote the rows of A, and note that, by symmetry,

Av =

n∑

i=1

viA
T
i .

In particular,

‖Av‖2 ≥ |vi|dist(Ai,Hi),
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where Hi is the span of the rows Aj for j 6= i. Since |vi| ≥ c1/2
√
n for all i ∈ Spread(v), it follows

that if ‖Av‖2 ≤ ǫ/
√
n for some v ∈ Incomp(c0, c1), then we must necessarily have

dist(Ai,Hi) ≤
ǫ
√
2

c1

for at least c2.3n indices i ∈ [n]. Thus, we see that the probability that sn(A) ≤ ǫ/
√
n is at most

2 exp(−cn) + 1

c2.3n

n∑

i=1

P

[
dist(Ai,Hi) ≤

ǫ
√
2

c1

]
.

Therefore, for Theorem 1.1 it suffices to show that

P[dist(A1,H1) ≤ ǫ] ≤ Cǫ1/8 + 2exp(−cn1/2).
A direct computation ([25, Proposition 5.1]) shows that

dist(A1,H1) =
|〈(A′)−1X,X〉 − a11|√

1 + ‖(A′)−1X‖22
,

where A′ is the bottom right (n− 1)× (n− 1) block of A, and X is the first column of A with the
top element removed. At this point, we can apply Theorem 5.1 to conclude. If A has Rademacher
entries, by continuity we can transfer the singular value estimate to the model where the distribution
is perturbed by a centered Gaussian with sufficiently small variance, at which point, an application
of Theorem 5.2 allows us to conclude. �
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Appendix A. Quadratic small-ball probabilities

The purpose of this appendix is to prove Theorem 5.1 for completeness. We will also briefly note
the necessary modifications to deduce Theorem 5.2.

We essentially replicate the argument in [25, Section 8] with the obvious modifications. In brief,

our improved anticoncentration estimate Proposition 3.5 will allow us to replace the ǫ1/8+η depen-
dence in [25] with ǫ1/8, and the improved range of arithmetic structure derived in Theorem 3.7 will
allow us to achieve an error term of exp(−Ω(

√
n)). For the sake of simplicity, we define the event

EK := {‖A‖ ≤ K
√
n}.

Proposition A.1 (Analogue of [25, Proposition 8.2]). Let A be a symmetric random matrix whose
independent entries are identical copies of a sub-Gaussian random variable with mean 0 and variance
1. Let X be a random vector (independent of A) whose coordinates are i.i.d. copies of ξ. There exist
constants C, c > 0 depending only on the sub-Gaussian moment of ξ for which the following holds.

For λ ∈ (C/n, 1/
√
n), A satisfies the following with probability at least 1 − 2e−cn: if EK holds,

then for every ǫ > 0:

• ‖A−1X‖2 ≥ c with probability at least 1− e−cn in the randomness of X.

• ‖A−1X‖2 ≤ ǫ−1/2‖A−1‖HS with probability at least 1− ǫ in the randomness of X.
• ‖A−1X‖2 ≥ ǫ‖A−1‖HS with probability at least 1− Cǫ− 2e−cλn in the randomness of X.

Proof. The first two parts have the same proof as in [25, Proposition 8.2]. The last part also has
essentially the same proof, except that we use Proposition 3.5 in place of [25, Proposition 6.9] and
use Theorem 3.7 in place of [25, Theorem 7.1]. �

Remark. For Theorem 5.2, we note that if A has entries which are Rademacher plus a centered
Gaussian with sufficiently small variance, we can prove the same statement with n−2/3 < λ <
c(log n)1/4n−1/2. We use Theorem 4.8 instead of Theorem 3.7 and the analogue of Proposition 3.5
for the threshold. The remaining part of the proof is exactly the same.

Next, we require the following decoupling lemma from [25]; this use of decoupling to establish
singularity for symmetric random matrices originates in work of Costello, Tao, and Vu [4], and has
been used in essentially all follow-up works.

Lemma A.2 ([25, Lemma 8.4]). Let G be an arbitrary symmetric n × n matrix, and let X,X ′ be
independent samples of a random vector in R

n with independent coordinates. Let J ⊆ [n]. Then,
17



for every ǫ ≥ 0 we have

L(〈GX,X〉, ǫ)2 ≤ PX,X′ [|〈GPJc(X −X ′), PJX〉 − v| ≤ ǫ]

for some random variable v determined by G|Jc×Jc and PJcX,PJcX ′.

We can now prove Theorem 5.1; we refer the reader to [25] for a more detailed exposition.

Proof of Theorem 5.1. We randomly choose J ⊆ [n] by sampling elements independently with prob-
ability 1− c2.3/2. We trivially see by the Chernoff bound that if EJ = {|Jc| ≤ c2.3n}, then

P[EJ ] ≥ 1− 2e−cn.

For J satisfying EJ , let us assign the set Spread(v) for v ∈ Incomp(c0, c1) in a way such that
Spread(x) ⊆ |J |. We can do this since, in Lemma 2.3, we chose c2.3 so as to have at least 2c2.3n
spread coordinates. We will then use this assignment to obtain the median regularized LCDs that
are used.

Next, consider the event ED given by

ǫ
1/2
0

√
1 + ‖A−1X‖22 ≤ ‖A−1‖HS ≤ 1

ǫ0
‖A−1PJc(X −X ′)‖2.

Applying Proposition A.1 to X and Yi = δi(Xi − X ′
i), where δi is the indicator of i ∈ Jc, and

adjusting constants appropriately, we find that

PJ,A,X,X′[ED ∨ Ec
K ] ≥ 1− Cǫ0 − 2e−cλn − 2e−cn,

where the constants depend only on the sub-Gaussian norm of ξ. Now define

x0 =
A−1PJc(X −X ′)

‖A−1PJc(X −X ′)‖2
,

which is a random vector. If the denominator is 0, we can use an arbitrary fixed vector. Let EU be
the event (analogue of [25, Equation 8.11]) that

x0 ∈ Incomp(c0, c1), M̂DL(x0, λ) ≥ 2λn/C ,

where we choose L as in Theorem 3.7.
Now condition on some J satisfying EJ and some X,X ′. By Theorem 3.7, we deduce that

PA[EU ∨ Ec
K |X,X ′, J ] ≥ 1− 2e−cn.

Thus (analogue of [25, Equation 8.12])

PJ,A,X,X′[(EJ ∧ ED ∧ EU ) ∨ Ec
K ] ≥ 1− p0,

where p0 = Cmax(ǫ0, 2
−λn/C). Hence, there is a realization of J such that EJ holds and

PA,X,X′ [(ED ∧ EU ) ∨ Ec
K ] ≥ 1− p0.

We fix this choice of J for the remainder of the proof. Now let EA be the event, dependent only on
A, that simultaneously EK and

PX,X′ [ED ∧ EU |A] ≥ 1− p
1/2
0 .

By Fubini’s theorem, Markov’s inequality, and the fact that EK depends only on A, we see from the
above that (analogue of [25, Equation 8.13])

PA[EA ∨ Ec
K ] ≥ 1− p

1/2
0 .

Now, if E is the desired event
|〈A−1X,X〉 − u|√

1 + ‖A−1X‖22
≤ ǫ,
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then

PA,X [E ] ≤ P[Ec
K ] + p

1/2
0 + sup

A∈EA

PX [E|A].

Fix some A ∈ EA for the remainder of the proof. We need to bound

PX [E|A] ≤ PX,X′ [E ∧ ED|A] + p
1/2
0 .

Using ED along with E , we see that

PX,X′ [E ∧ ED|A] ≤ PX,X′ [|〈A−1X,X〉 − u| ≤ ǫǫ
−1/2
0 ‖A−1‖HS|A] =: p1.

Then by Lemma A.2, we find that this satisfies

p21 ≤ PX,X′ [|〈A−1PJc(X −X ′), PJX〉 − v| ≤ ǫǫ
−1/2
0 ‖A−1‖HS|A],

where v = v(A−1, PJcX,PJcX ′) is some random variable depending on these parameters only. This
last probability is at most

p
1/2
0 + PX,X′ [|〈A−1PJc(X −X ′), PJX〉 − v| ≤ ǫǫ

−1/2
0 ‖A−1‖HS ∧ ED ∧ EU |A].

Now by using ED again, and dividing the inequality in question by ‖A−1PJc(X−X ′)‖2, we see that
(analogue of [25, Equation 8.15])

p21 ≤ p
1/2
0 + PX,X′ [|〈x0, PJX〉 − w| ≤ ǫ

−3/2
0 ǫ ∧ EU |A].

Finally, we can apply Proposition 3.5 to this random variable. Note that x0, w do not depend on

PJX. Also, we know from EU that M̂DL(x0, λ) ≥ 2λn/C . It suffices to check that Spreadλ(x0) ⊆ J
by the definitions chosen at the beginning; hence, we can drop the randomness in PJX of all
coordinates except for those in the spread set and apply the result. We again technically need to
check that Spreadλ(x0) satisfies the conditions on Proposition 3.5, which we have already implicitly
verified before. Overall, we deduce

PX,X′ [|〈x0, PJX〉 − w| ≤ ǫ
−3/2
0 ǫ ∧ EU |A] ≤ Cǫ

−3/2
0 ǫ+ 2−λn/C .

Finally, tracing it all back, we have

P[E ] ≤ P[Ec
K ] + 2p

1/2
0 + p1 ≤ 2e−cn + Cǫ

1/2
0 +Cǫ

1/4
0 + Cǫ

−3/4
0 ǫ1/2 + 2−λn/C

by sub-Gaussian concentration of the operator norm of A ([25, Lemma 2.3]). Now choosing ǫ0 = ǫ1/2

and λ = 1/
√
n, which is the biggest permitted by Theorem 3.7, we are done. �
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