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CLUuSTERED CoLOURING OF GRAPH CLASSES
wiTH BOUNDED TREEDEPTH OR PATHWIDTH

Sergey NorinT  Alex Scott*  David R. Wood!

Abstract. The clustered chromatic number of a class of graphs is the minimum integer k
such that for some integer c every graph in the class is k-colourable with monochromatic
components of size at most c¢. We determine the clustered chromatic number of any
minor-closed class with bounded treedepth, and prove a best possible upper bound on
the clustered chromatic number of any minor-closed class with bounded pathwidth. As
a consequence, we determine the fractional clustered chromatic number of every minor-
closed class.

1 Introduction

This paper studies improper vertex colourings of graphs with bounded monochromatic
degree or bounded monochromatic component size. This topic has been extensively
studied recently [1-6, 8, 10, 12-21, 23-25]; see [26] for a survey.

A k-colouring of a graph G is a function that assigns one of k colours to each vertex of
G. In a coloured graph, a monochromatic component is a connected component of the
subgraph induced by all the vertices of one colour.

A colouring has defect d if each monochromatic component has maximum degree at
most d. The defective chromatic number of a graph class ¢, denoted by Xa(%), is the
minimum integer k such that, for some integer d, every graph in % is k-colourable with
defect d.

A colouring has clustering c if each monochromatic component has at most ¢ vertices.
The clustered chromatic number of a graph class 9, denoted by X (%), is the minimum
integer k such that, for some integer ¢, every graph in ¢4 has a k-colouring with clustering
c. We shall consider such colourings, where the goal is to minimise the number of colours,
without optimising the clustering value.

Every colouring of a graph with clustering ¢ has defect ¢ — 1. Thus XaA(%9) < X«(%) for
every class 4.

The following is a well-known and important example in defective and clustered graph
colouring. Let T be a rooted tree. The depth of T is the maximum number of vertices
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on a root—to—Lleaf path in T. The closure of T is obtained from T by adding an edge
between every ancestor and descendant in T. For h,k > 1, let C(h, k) be the closure
of the complete k-ary tree of depth h, as illustrated in Figure 1.

Figure 1: The standard example C'(4,2).

It is well known and easily proved (see [26]) that there is no (h —1)-colouring of C'(h, k)
with defect k—1, which implies there is no (h—1)-colouring of C'(h, k) with clustering k.
This says that if a graph class 4 includes C(h, k) for all k, then the defective chromatic
number and the clustered chromatic number are at least h. Put another way, define the
tree-closure-number of a graph class % to be

ten(9) := min{h : Ik C(h, k) € G} = max{h : VkC(h, k) € 4} + 1;

then
X«(9) > Xa(9) > ten(¥) — 1.

Our main result, Theorem 1 below, establishes a converse result for minor-closed classes
with bounded treedepth. First we explain these terms. A graph H is a minor of a graph
G if a graph isomorphic to H can be obtained from some subgraph of G by contracting
edges. A class of graphs A is minor-closed if for every graph G € A every minor
of G is in A, and A is proper minor-closed if, in addition, some graph is not in
M. The connected treedepth of a graph H, denoted by td(H), is the minimum depth
of a rooted tree T such that H is a subgraph of the closure of 7. This definition
is a variant of the more commonly used definition of the treedepth of H, denoted by
td(H), which equals the maximum connected treedepth of the connected components of
H. (See [22] for background on treedepth.) If H is connected, then td(H) = td(H).
In fact, td(H) = td(H) unless H has two connected components H; and Hy with
td(Hy) = td(Hs) = td(H), in which case td(H) = td(H) + 1. It is convenient to
work with connected treedepth to avoid this distinction. A class of graphs has bounded
treedepth if there exists a constant ¢ such that every graph in the class has treedepth
at most c.



Theorem 1. For every minor-closed class 4 with bounded treedepth,

Xa(9) = X«(9) = ten(9) — 1.

Our second result concerns pathwidth. A path-decomposition of a graph G consists of a
sequence (Bjy,...,By), where each B; is a subset of V(G) called a bag, such that for
every vertex v € V(G), the set {i € [1,n] : v € B;} is an interval, and for every edge
vw € E(G) there is a bag B; containing both v and w. Here [a,b] :== {a,a +1,...,b}.
The width of a path decomposition (By,...,By) is max{|B;| : i € [1,n]} — 1. The
pathwidth of a graph G is the minimum width of a path-decomposition of G. Note that
paths (and more generally caterpillars) have pathwidth 1. A class of graphs has bounded
pathwidth if there exists a constant ¢ such that every graph in the class has pathwidth
at most c.

Theorem 2. For every minor-closed class % with bounded pathwidth,

Xa(¥) < Xu(9) <2ten(9) — 2.

Theorems 1 and 2 are respectively proved in Sections 2 and 3. These results are best
possible and partially resolve a number of conjectures from the literature, as we now
explain.

Ossona de Mendez et al. [24] studied the defective chromatic number of minor-closed
classes. For a graph H, let #y be the class of H-minor-free graphs (that is, not
containing H as a minor). Ossona de Mendez et al. [24] proved the lower bound,
Xa(M ) = td(H) — 1 and conjectured that equality holds.

Conjecture 3 ([24]). For every graph H,
Xa(My) =td(H) — 1.

Conjecture 3 is known to hold in some special cases. Edwards et al. [10] proved it if
H = Ky; that is, Xa(Mk,) = t — 1, which can be thought of as a defective version
of Hadwiger's Conjecture; see [25] for an improved bound on the defect in this case.
Ossona de Mendez et al. [24] proved Conjecture 3 if td(H) < 3 or if H is a complete
bipartite graph. In particular, Xa(#x, ,) = min{s, t}.

Norin et al. [23] studied the clustered chromatic number of minor-closed classes. They
showed that for each k£ > 2, there is a graph H with treedepth k and connected treedepth
k such that X, (M) > 2k — 2. Their proof in fact constructs a set % of graphs in My
with bounded pathwidth (at most 2k — 3 to be precise) such that X.(%) > 2k — 2. Thus
the upper bound on X,(%) in Theorem 2 is best possible.

Norin et al. [23] conjectured the following converse upper bound (analogous to Conjec-
ture 3):

Conjecture 4 ([23]). For every graph H,

Xu(Mpy) < 2td(H) — 2.



While Conjectures 3 and 4 remain open, Norin et al. [23] showed in the following theorem
that Xa(M ) and X (A ) are controlled by the treedepth of H:

Theorem 5 ([23)). For every graph H, X (M) is tied to the (connected) treedepth of
H. In particular, -
td(H) — 1 < Xy(yr) < 209+ _yg,

Theorem 1 gives a much more precise bound than Theorem 5 under the extra assumption
of bounded treedepth.

graph G is

Our third main result concerns fractional colourings. For real ¢t > 1, a
s € V(G) and

fractionally t-colourable with clustering c if there exist Y7, Ya,...,
ai,...,as € [0,1] such that:

e Every component of G[Y;] has at most ¢ vertices,
i 25:1 o; <1,
® > ivey; @i = 1for every v € V(G).

The fractional clustered chromatic number XI((Q) of a graph class % is the infimum
of t > 0 such that there exists ¢ = ¢(¢t,%9) such that every G € 9 is fractionally
t-colourable with clustering c.

Fractionally t-colourable with defect d and fractional defective chromatic number X£(C§)
are defined in exactly the same way, except the condition on the component size of G[Y}]
is replaced by “the maximum degree of G[Y;] is at most d".

The following theorem determines the fractional clustered chromatic number and frac-
tional defective chromatic number of any proper minor-closed class.

Theorem 6. For every proper minor-closed class 4,

XA(9) = XL(4) = ten(4) — 1.

This result is proved in Section 4.

We now give an interesting example of Theorem 6.

Corollary 7. For every surface %, if Gy is the class of graphs embeddable in ¥, then
XA (%5) = X{(4s) = 3.

Proof. Note that C(3, k) is planar for all k. Thus ten(¥9y) > 4. Say X has Euler genus
g. It follows from Euler’s formula that K3 9413 & ¥x. Since K32443 C C(4,29 + 3), we
have C(4,2g + 3) € Yx.. Thus tcn(¥Yy) = 4. The result follows from Theorem 6. O

In contrast to Corollary 7, Dvofak and Norin [8] proved that X,(%s) = 4. Note that
Archdeacon [2] proved that Xa(%sx) = 3; see [5] for an improved bound on the defect.

"1If ¢ = 1, then this corresponds to a (proper) fractional t-colouring, and if the a; are integral, then this
yields a t-colouring with clustering c.



2 Treedepth

Say G is a subgraph of the closure of some rooted tree T'. For each vertex v € V(T),
let T}, be the maximal subtree of T" rooted at v (consisting of v and all its descendants),
and let G[T,] be the subgraph of G induced by V(T,).

The weak closure of a rooted tree T' is the graph G with vertex set V(T), where two
vertices v,w € V(T') are adjacent in G whenever v is a leaf of 7" and w is an ancestor
of v in T. As illustrated in Figure 2, let W(h, k) be the weak closure of the complete
k-ary tree of height h.

Figure 2: The weak closure W (4,2).

Note that W(h,k) is a proper subgraph of C(h,k) for h > 3. On the other hand,
Norin et al. [23] showed that W {h, k) contains C(h,k — 1) as a minor for all h,k > 2.
Therefore Theorem 1 is an immediate consequence of the following lemma.

Lemma 8. For all d,k,h € N there exists ¢ = ¢(d, k, h) € N such that for every graph G
with treedepth at most d, either G contains a W {h, k)-minor or G is (h — 1)-colourable
with clustering c.

Proof. Throughout this proof, d, k and h are fixed, and we make no attempt to optimise
c.

We may assume that G is connected. So G is a subgraph of the closure of some rooted
tree of depth at most d. Choose a tree T of depth at most d rooted at some vertex r,
such that G is a subgraph of the closure of 7', and subject to this, ZUGV(T) disty (v, 1)
is minimal. Suppose that G[T,] is disconnected for some vertex v in T. Choose such a
vertex v at maximum distance from 7. Since G is connected, v # r. By the choice of v,
for each child w of v, the subgraph G[T,] is connected. Thus, for some child w of v, there
is no edge in G joining v and G[T},]. Let u be the parent of v. Let 7" be obtained from T
by deleting the edge vw and adding the edge ww, so that w is a child of u in T”. Note
that G is a subgraph of the closure of 7" (since v has no neighbour in G[T},]). Moreover,



distyv (z,r) = disty(z,7) — 1 for every vertex x € V(T,,), and disty (y, r) = distr(y, )
for every vertex y € V(T) \ V(Tw). Hence 3_ cy (g distr (v, 1) < 3 ey () distr (v, 7),
which contradicts our choice of T'. Therefore G|[T,] is connected for every vertex v of 7.

Consider each vertex v € V(T'). Define the level £(v) := distp(r,v) € [0,d — 1]. Let
T, be the subtree of T' consisting of T}, plus the vr-path in T, and let G[T}] be the
subgraph of G induced by V(T,). For a subtree X of T rooted at vertex v, define the
level £(X) := £(v).

A ranked graph (for fixed d) is a triple (H, L, <) where:

e H is a graph,
e L:V(H)— [0,d—1]is a function,
e < is a partial order on V(H) such that L(v) < L(w) whenever v < w.

Here and throughout this proof, v < w means that v < w and v # w. Up to isomorphism,
the number of ranked graphs on n vertices is at most 2(3) d”3(g). For a vertex v of T,
a ranked graph (H, L, <) is said to be contained in G[T,] if there is an isomorphism ¢
from H to some subgraph of G[Tf] such that:

(A) for each vertex v € V(H) we have L(v) = ¢(¢(v)), and

(B) for all distinct vertices v,w € V(H) we have that v < w if and only if ¢(v) is an
ancestor of ¢(w) in T

Say (H,L,=) is a ranked graph and i € [0,d — 1]. Below we define the i-splice of
(H,L,=) to be a particular ranked graph (H', L', <'), which (intuitively speaking) is
obtained from (H, L, <) by copying k times the subgraph of H induced by the vertices
v with L(v) > i. Formally, let

V(H') :={(v,0) :v € V(H), L(v) € [0,i]} U
{(v,7) :veV(H),L(v) € i+ 1,d],j € [1,k]}

E(H") :={(v,0)(w,0) : vw € E(H), L(v) € [0,1], L(w) € [0,i]} U
{(v,0)(w,j) : vw € E(H),L(v) € [0,i], L(w) € [i+ 1,d],5 € [1,k]} U
{(v,j)(w,j) :vw € E(H),L(v) € [i +1,d], L(w) € [i + 1,d],7 € [1,k]}.

Define L'((v,j)) := L(v) for every vertex (v,j) € V(H’). Now define the following
partial order =" on V(H'):

(v,7) =" (v,7) for all (v,5) € V(H');

if v <w and L(v), L(w) € [0,i], then (v,0) <’ (w,0);

e if v < wand L(v) € [0,¢] and L(w) € [i + 1,d], then (v,0) <" (w,j) for all
j €[1,k]; and

if v <w and L(v), L(w) € [i +1,d], then (v, j) <" (w, ) for all j € [1, &].

Note that if (v,a) <’ (w,b), then a < b and v < w (implying (L(v) < L(w)). It
follows that <’ is a partial order on V(H’) such that L'((v,a)) < L'((w, b)) whenever
(v,a) <" (w,b). Thus (H', L', <) is a ranked graph.



For ¢ € [0,d — 1], let
Np:=(d+1)(h—1)(k+ 1)1

For each vertex v of T', define the profile of v to be the set of all ranked graphs (H, L, <)
contained in G[T,f] such that |V (H)| < Ny(,). Note that if v is a descendant of u, then
the profile of v is a subset of the profile of u. For £ € [0,d — 1], if N = N then let

M, = 22(13]) daN 3(15])

Then there are at most M, possible profiles of a vertex at level /.

We now partition V(T') into subtrees. Each subtree is called a group. (At the end of the
proof, vertices in a single group will be assigned the same colour.) We assign vertices
to groups in non-increasing order of their distance from the root. Initialise this process
by placing each leaf v of T into a singleton group. We now show how to determine
the group of a non-leaf vertex. Let v be a vertex not assigned to a group at maximum
distance from r. So each child of v is assigned to a group. Let Y, be the set of children
y of v, such that the number of children of v that have the same profile as y is in the
range [1,k —1]. If Y, = () start a new singleton group {v}. If Y, # () then merge all the
groups rooted at vertices in Y, into one group including v. This defines our partition
of V(T') into groups. Each group X is rooted at the vertex in X closest to r in 7. A
group Y is above a distinct group X if the root of Y is on the path in 7" from the root
of X tor.

The next claim is the key to the remainder of the proof.

Claim 1. Let uv € E(T) where u is the parent of v, and u is in a different group to v.
Then for every ranked graph (H, L, =) in the profile of v, the {(u)-splice of (H, L, <)
is in the profile of u.

Proof. Since (H, L, <) is in the profile of v, there is an isomorphism ¢ from H to some
subgraph of G[T,f] such that for each vertex € V(H) we have L(z) = {(¢(x)), and for
all distinct vertices x,y € V(H) we have that x < y if and only if ¢(z) is an ancestor

of ¢(y) in T.

Since u and v are in different groups, there are k children yi,...,yx of u (one of which
is v) such that the profiles of yi,...,yx are equal. Thus (H, L, =) is in the profile of
each of yi,...,yr. That is, for each j € [1, k|, there is an isomorphism ¢; from H to
some subgraph of G[TZZ] such that for each vertex x € V(H) we have L(z) = ¢(¢;(x)),
and for all distinct vertices z,y € V(H) we have that z < y if and only if ¢;(z) is an
ancestor of ¢;(y) in T.

Let (H', L', =') be the £(u)-splice of (H, L, <). We now define a function ¢’ from V(H")
to V(G[T,f]). For each vertex (z,0) of H' (thus with x € V(H) and L(x) € [0, £(u)]),
define ¢'((,0)) := ¢(x). For every other vertex (z,j) of H' (thus with z € V(H) and
L(z) € [((u) +1,d—1] and j € [1,k]), define ¢'((z, j)) := ¢;(x).

We now show that ¢’ is an isomorphism from H’ to a subgraph of G[T,/]. Consider an
edge (x,a)(y,b) of H'. Thus zy € E(H). It suffices to show that ¢/((z,a))¢'((y,b)) €



E(G[T;]). First suppose that a = b = 0. So L(z) € [0,4(u)] and L(y) € [0, £(u)].
Thus ¢'((z,a)) = ¢(x) and ¢'((y,b)) = ¢(y). Since ¢ is an isomorphism to a sub-
graph of G[T}], we have ¢(z)¢(y) € E(G[T,}]), which is a subgraph of G[T,}]. Hence
¢ ((z,a))9'((y,b)) € E(G[T,}]), as desired. Now suppose that a = 0 and b € [1,k].
Thus ¢'((z,a)) = ¢(x) and ¢'((y,b)) = ¢p(y). Moreover, both £(¢(x)) and £(dp(x))
equal L(z) € [0,4(u)]. There is only vertex z in T, with ¢(z) equal to a specific number
n [0,4(u)]. Thus ¢'((x,a)) = ¢(x) = ¢p(x) (= 2). Since ¢ is an isomorphism to a
subgraph of G[T,'], we have ¢y(2)dy(y) € E(G[T,]), which is a subgraph of G[T,}].
Hence ¢'((z,a))¢'((y,b)) € E(G[T,[]), as desired. Finally, suppose that a = b € [1, k].
Thus ¢'((z,a)) = ¢a(z) and ¢'((y,b)) = dp(y) = ¢a(y). Since ¢, is an isomorphism to
a subgraph of G[T,}], we have ¢4(x)¢4(y) € E(GI[T,)]), which is a subgraph of G[T;}].
Hence ¢/((z,a))¢'((y,b)) € E(G[T,}]), as desired. ThlS shows that ¢’ is an isomorphism
from H' to a subgraph of G[T}f].

We now verify property (A) for (H', L', <’). For each vertex (z,0) of H' (thus with
x € V(H) and L(z) € [0,4(u)]) we have L'((x,0)) = L(z) = £(¢(x)) = £(¢'((x,0))),
as desired. For every other vertex (z,j) of H' (thus with x € V(H) and L(z) €
(€(u)+1,d— 1] and j € [1, K)) we have /(z, 1)) = L(z) = £(65(x)) = (¢ ((z,5))), as
desired. Hence property (A) is satisfied for (H', L', <').

We now verify property (B) for (H',L’,=’). Consider distinct vertices (z,a), (y,b) €
V(H'). First suppose that a = 0 and b = 0. Then (z,a) <’ (y,b) if and only if z < y
if and only if ¢(z) is an ancestor of ¢(y) in T if and only if ¢'((z,a)) is an ancestor of
¢ ((y,b)) in T, as desired. Now suppose that a = 0 and b € [1,k]. Then (x,a) <’ (y,b)
if and only if z < y if and only if ¢(z) is an ancestor of ¢, (y) in T' if and only if ¢'((z,a))
is an ancestor of ¢/((y,b)) in T, as desired. Now suppose that a = b € [1,k]. Then
(z,a) <" (y,b) if and only if z < y if and only if ¢,(x) is an ancestor of ¢p(y) in T if
and only if ¢'((x,a)) is an ancestor of ¢'((y,b)) in T, as desired. Finally, suppose that
a,b € [1,k] and a # b. Then (x,a) and (y,b) are incomparable under </, and ¢'((z,a))
and ¢'((y,b)) in T are unrelated in T, as desired. Hence property (B) is satisfied for
(H',L',<).

So ¢/ is an isomorphism from H’ to a subgraph of G[T}] satisfying properties (A) and (B).
Thus (H', L', <) is contained in G[T}/], as desired. Since (H, L, <) is in the profile of v,
we have |V (H)| < (d+1)(h—1)(k+1)"*®). Since |V (H")| < (k+1)|V(H)| and £(u) =
£(v) —1, we have |V(H")| < (d+1)(h—1)(k+ 1)) = (d+1)(h— 1) (k+ 1)),
Thus (H', L', <’) is in the profile of u. O

The proof now divides into two cases. If some group X is adjacent in G to at least h—1
other groups above Xy, then we show that G contains W (h, k) as a minor. Otherwise,
every group X is adjacent in G to at most h — 2 other groups above X, in which case
we show that G is (h — 1)-colourable with bounded clustering.



Finding the Minor

Suppose that some group X is adjacent in G to at least h—1 other groups X, ..., X1
above X(y. We now show that G contains W {h, k) as a minor; refer to Figure 3. For
i € [1,h—1], since X; is above X, the root v; of X; is on the vgr-path in 7. Without loss
of generality, vo, v1, ..., v,—1 appear in this order on the vor-path in T'. Fori € [1, h—1],
let w; be a vertex in X; adjacent to some vertex z; in Xy; since G is a subgraph of the
closure of T, w; is on the wor-path in T. For i € [0,h — 2], let u; be the parent of v;
in T (which exists since v,_o # 7). So w; is not in X; (but may be in X;11). Note that
V0, UQy W1, V1, ULy -« « y Wh—2, Uh—2, Up—2, Wh—1, Vh—1 @ppear in this order on the vgr-path
in T, where vg, v1,...,v,—1 are distinct (since they are in distinct groups).

U3

Figure 3: Construction of a W (4, k) minor (where u; might be in X;41).

Let P; be the zjr-path in T for j € [1,h — 1]. Let Hy be the graph with V(Hj) :=
V(PLU---UP,_1) and E(Hp) := {zjw; : j € [1,h — 1]}. Define the function Ly :
V(Hp) — [0,d — 1] by Lo(z) := £(x) for each x € V(H). Define the partial order
<o on V(Hy), where = <¢ y if and only if = is ancestor of y in T. Thus (Hy, Lo, <o)
is a ranked graph. By construction, (Ho, Lo, <o) is contained in G[T,']. Since Hy has
less than (d + 1)(h — 1) vertices, Hy is in the profile of vg. For i =0,1,...,h — 2, let
(Hit1, Lit1,<i+1) be the £(u;)-splice of (H;, L, <;).

By induction on 4, using Claim 1 at each step and since G[T;/] C G[T,;, ], we conclude
that for each ¢ € [0, h — 1], the ranked graph (H;, L;, <;) is in the profile of v;. In partic-
ular, (Hp—1, Lp—1,<p—1) is in the profile of v_1, and Hj_1 is isomorphic to a subgraph



of G. Note that each vertex of Hj,_; is of the form (((... (z,d1),d2),...),dn—1) for some
x € V(Hpy) and dy,...,dn—1 € [0,k]. For brevity, call such a vertex z(dy,...,dp—1).
Note that if z = w; for some j € [1,h — 1], then dy = --- = d; = 0 (since w; is above
u; whenever i < j, and (H;41, Lit+1, <i+1) is the £(u;)-splice of (H;, L;, =;)).

For x € V(Hy), let A, be the set of vertices x(dy,...,dp_1) in Hy_1. By construction,
no two vertices in A, are comparable under <;,_1. Therefore, by property (B), V(7,) N
V(Tp) = 0 for all distinct a,b € Ag. In particular, V(T,) NV (Tp) = 0 for all distinct
a,b € Ay,. As proved above, G[T,] is connected for each a € V(T). Let G’ be the
graph obtained from G by contracting G[T,] into a single vertex a(dy,...,d,—1), for
each a = vo(dy,...,dp_1) € Ay,. So G’ is a minor of G.

Let U be the tree with vertex set
{<d1,...,dh_1>23j€ [O,h—l] dlz---:dj:()and dj+1,...,dh_1 S [1,]45]},

where the parent of (0,...,0,dj1,dj42,...,dp—1)is (0,...,0,djt2,...,dp—1). ThenU
is isomorphic to the complete k-tree of height A rooted at (0, ...,0). We now show that
the weak closure of U is a subgraph of G, where each vertex (0,...,0,dj41,...,dp_1)
of U with j € [1,h — 1] is mapped to vertex w;(0,...,0,djt1,...,dp—1) of G,
and each other vertex (di,...,dp—1) of U is mapped to a(di,...,dn—1) of G'. For
all dy,...,dp—1 € [1,k] and j € [1,h — 1] the vertex z;(di,...,dp—1) of G is
contracted into the vertex a(di,...,dn—1) of G'. By construction, z;(dy,...,dp_1)
is adjacent to w;(0,...,0,dj11,...,dp—1) in G. So «(di,...,dp_1) is adjacent to
w;(0,...,0,dj41,...,dp—1) in G'. This implies that the weak closure of U (that is,
W (h, k)) is isomorphic to a subgraph of G', and is therefore a minor of G.

Finding the Colouring

Now assume that every group X is adjacent in G to at most h — 2 other groups above
X. Then (h — 1)-colour the groups in order of distance from the root, such that every
group X is assigned a colour different from the colours assigned to the neighbouring
groups above X. Assign each vertex within a group the same colour as that assigned
to the whole group. This defines an (h — 1)-colouring of G.

Consider the function s : [0,d — 1] — N recursively defined by
1 fl=d-1
s(f) := L
(k=1)-Mpyq-s(0+1) iHLe[0,d—2].

Then every group at level ¢ has at most s(¢) vertices. By construction, our (h — 1)-
colouring of G has clustering s(0), which is bounded by a function of d, k£ and h, as
desired. O]

3 Pathwidth

The following lemma of independent interest is the key to proving Theorem 2. Note that
Eppstein [11] independently discovered the same result (with a slightly weaker bound
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on the path length). The decomposition method in the proof has been previously used,
for example, by Dujmovi¢, Joret, Kozik, and Wood [7, Lemma 17].

Lemma 9. Every graph with pathwidth at most w has a vertex 2-colouring such that
each monochromatic path has at most (w + 3)" vertices.

Proof. We proceed by induction on w > 1. Every graph with pathwidth 1 is a caterpillar,
and is thus properly 2-colourable. Now assume w > 2 and the result holds for graphs
with pathwidth at most w — 1. Let G be a graph with pathwidth at most w. Let
(B1,...,By) be a path-decomposition of G with width at most w. Let ¢,t9,...,t,, be
a maximal sequence such that ¢t; = 1 and for each ¢ > 2, ¢; is the minimum integer such
that By, N B, , = 0. For odd i, colour every vertex in By, ‘red’. For even i, colour every
vertex in By, ‘blue’. Since By, N By, , = () for i > 2, no vertex is coloured twice. Let G’
be the subgraph of G induced by the uncoloured vertices. By the choice of By, for i > 2
each bag B; with j € [t;_1+1,t;—1] intersects By, ,. Thus (BiNV(G),...,B,NV(G"))
is a path-decomposition of G’ of width at most w — 1. By induction, G’ has a vertex
2-colouring such that each monochromatic path has at most (w + 3)“~! vertices. Since
By, U By,,, separates By, 11 U---U By, , 1 from the rest of G, each monochromatic
component of G is contained in By, 1 U---UBy, , 1 for some i € [0,n —2]. Consider a
monochromatic path P in G[By, 11 U---U By, 1]. Then P has at most w + 1 vertices
in By,,,. Note that P — By, , is contained in G’. Thus P consists of up to w + 2
monochromatic subpaths in G’ plus w + 1 vertices in By, ,. Hence P has at most
(w+2)(w+3)*" 1+ (w+1) < (w+ 3)¥ vertices. O

Nesetfil and Ossona de Mendez [22] showed that if a graph G contains no path on &
vertices, then td(G) < k (since G is a subgraph of the closure of a DFS spanning tree
with height at most k). Thus Lemma 9 implies:

Corollary 10. Every graph with pathwidth at most w has a vertex 2-colouring such that
each monochromatic component has treedepth at most (w + 3)*.

Proof of Theorem 2. Let 4 be a minor-closed class of graphs, each with pathwidth at
most w. Let h be the minimum integer such that C(h, k) & 4 for some k € N. Consider
G € 4. Thus W(h,k + 1) is not a minor of G (since C(h, k) is a minor of W (h,k + 1), as
noted above). By Corollary 10, G has a vertex 2-colouring such that each monochromatic
component H of G has treedepth at most (w +3)". Thus W (h, k + 1) is not a minor of
H. By Lemma 8, H is (h— 1)-colourable with clustering c¢((w+3)",k+1, h). Taking a
product colouring, G is (2h — 2)-colourable with clustering ¢((w+3)",k+ 1, h). Hence
Xa(¥) < X«(%) <2h—2. O

Note that Lemma 9 cannot be extended to the setting of bounded tree-width graphs:
Esperet and Joret (see [17, Theorem 4.1]) proved that for all positive integers w and d
there exists a graph G with tree-width at most w such that for every w-colouring of G
there exists a monochromatic component of G with diameter greater than d (and thus
with a monochromatic path on more than d vertices, and thus with treedepth at least
log, d).
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4 Fractional Colouring

This section proves Theorem 6. The starting point is the following key result of Dvorak
and Sereni [9]2

Theorem 11 ([9]). For every proper minor-closed class % and every § > 0 there exists
d € N satisfying the following. For every G € %4 there exists € N and X1, X»,..., X5 C
V(G) such that:

o td(G[X;]) < d, and
e every v € V(G) belongs to at least (1 — &)s of these sets.

We now prove a lower bound on the fractional defective chromatic number of the closure
of complete trees of given height.

Lemma 12. Let €;, := {C(h, k)}ren. Then XA(€1) = h.

Proof. We show by induction on h that if C'(h, k) is fractionally ¢-colourable with defect
d, then t > h — (h — 1)d/k. This clearly implies the lemma. The base case h = 1 is
trivial.

For the induction step, suppose that G := C(h, k) is fractionally t-colourable with defect
d. Thus there exist Y1,Ya,...,Y; CV(G) and ay, ..., a5 € [0,1] such that:

e every component of G[Y;] has maximum degree at most d,
e >’ <t and
® > ey, @i = 1for every v € V(G).

Let » be the vertex of G corresponding to the root of the complete k-ary tree and let
Hy, ..., Hy be the components of G —r. Then each H; is isomorphic to C(h—1, k). Let
Jo={j:re€Y;} andlet J; := {j: Y;NV(H;) # 0} for i € [1,k]. Denote 3_, ;. a; by
a(J;) for brevity. Thus a(Jy) > 1. For i € [1, k], the subgraph H; is «(.J;)-colourable
with defect d, and thus a(J;) > h — 1 — (h — 2)d/k by the induction hypothesis. Thus

k
(k= d)a(Jo) + Y (i) = (k—d) + k(h — 1) — (h — 2)d = kh — (h — 1)d.
i=1
If j € Jo then Yj intersects at most d of Hy,..., Hj, (since G[Y;] has maximum degree

at most d). Thus every a; appears with coefficient at most £ in the left side of the above
inequality, implying

k s
(k—d)a(Jo)+ Y a(f) <k o < kt.
i=1 i=1
Combining the above inequalities yields the claimed bound on t. O

2 Dvotak and Sereni [9] expressed their result in the terms of “treedepth fragility”. The sentence “proper
minor-closed classes are fractionally treedepth-fragile” after Theorem 31 in [9] is equivalent to Theo-
rem 11. Informally speaking, Theorem 11 shows that the fractional “treedepth” chromatic number of every
minor-closed class equals 1.

12



Proof of Theorem 6. By Lemma 12,
XL(4) = XA (4) > ten(9) — 1.

It remains to show that Xf(‘g) < ten(9) — 1. Equivalently, we need to show that for
all h,k e Nand e > 0, if C(h,k) & %4 then there exists ¢ such that every graph in 4 is
fractionally (h — 1+ ¢)-colourable with clustering c. This is trivial for h = 1, and so we
assume h > 2.

Let d € N satisfy the conclusion of Theorem 11 for the class 4 and § = 1 — m

Choose ¢ = ¢(d, k + 1, h) to satisfy the conclusion of Lemma 8. We show that ¢ is as
desired.

Consider G € 4. By the choice of d there exists s € N and X1, Xo,..., X, C V(G)
such that:

e td(G[X;]) < d, and
e every v € V(G) belongs to at least (1 — d)s of these sets.

Since C(h, k) ¢4, we have W (h,k + 1) ¢ 4, and by the choice of ¢, for each i € [1, 5]
there exists a partition (Y;!,Y;2,...,Y}"™1) of X; such that every component of G[Y/]
has at most ¢ vertices. Every vertex of G belongs to at least (1 — §)s sets Y;j where
i €[l,s] and j € [1,h — 1]. Considering these sets with equal coefficients ag = (1—16)3'

we conclude that G is fractionally }f:;—colourable with clustering ¢, as desired (since
bl —h—1+e). O
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