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POLYNOMIALS OVER STRUCTURED GRIDS

BOGDAN NICA

Abstract. We study multivariate polynomials over ‘structured’ grids. We begin

by proposing an interpretation as to what it means for a finite subset of a field

to be structured; we do so by means of a numerical parameter, the nullity. We

then extend several results–notably, the Combinatorial Nullstellensatz and the

Coefficient Theorem–to polynomials over structured grids. The main point is

that the structure of a grid allows the degree constraints on polynomials to be

relaxed.

1. Introduction

Given a polynomial f ∈ F [X1, . . . ,Xn] and a finite grid A1 × · · · ×An ⊆ Fn,

where F is a field, some natural questions arise:

• can f vanish at all the grid points, or maybe at all but one of the grid points?

• what can be said about the number of zeroes of f in the grid?

• can f be recovered from its values over the grid?

Besides their intrinsic algebraic interest, such questions can have striking applica-

tions in number theory, combinatorics, and graph theory. The polynomial method

is by now an established, though occasionally elusive, technique in these subjects

(cf. [25]).

A celebrated result concerning multivariate polynomials over finite grids is the

Combinatorial Nullstellensatz. It was crystallized by Noga Alon [1]; however, pre-

monitions of this result can be detected in earlier works by Alon and collaborators.

Incidentally, [1] also offers an excellent glimpse into the power of the polynomial

method.

Theorem 1.1 (Combinatorial Nullstellensatz). Let A1, . . . , An be finite subsets of

a field F . Assume that a polynomial f ∈ F [X1, . . . ,Xn] contains a monomial

Xk1
1 . . . Xkn

n with non-zero coefficient, such that k1 < |A1|, . . . , kn < |An| and

deg(f) = k1 + · · · + kn.

Then f(a) 6= 0 for some grid point a ∈ A1 × · · · ×An.

By the degree of a multivariate polynomial we always mean its total degree.

Algebraic aspects of the broader theme, polynomials over finite grids, have been

investigated in many recent papers [3, 5, 7, 12, 16, 22]. We may also refer to [15, 19]

for alternate approaches to the Combinatorial Nullstellensatz.
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2 BOGDAN NICA

In this paper we take a closer look at the tension between a polynomial and the

grid it is evaluated on. Typical results, such as the Combinatorial Nullstellensatz,

are formulated over an arbitrary grid; the degree restrictions on the polynomial

reflect this freedom. Our starting idea is that we expect more rigidity over a ‘struc-

tured’ grid, and this should translate into weaker degree restrictions placed upon the

polynomial. We give meaning to the informal idea of a ‘structured’ grid by means

of a certain parameter–the nullity. We interpret increased nullity as increased struc-

ture: an arbitrary grid has the lowest possible nullity, whereas grids with genuine

arithmetical structure have high nullity. We then find that, the higher the nullity of

a grid, the more relaxed is the degree constraint for the corresponding polynomial.

The following three results illustrate our perspective. They are the notable corol-

laries of a more general statement, the structured Combinatorial Nullstellensatz

(Theorem 3.1).

Theorem 1.2 (Zero-sum grids). Let A1, . . . , An be zero-sum subsets of a field F .

Assume that a polynomial f ∈ F [X1, . . . ,Xn] contains a monomial Xk1
1 . . . Xkn

n

with non-zero coefficient, such that k1 < |A1|, . . . , kn < |An| and

deg(f) ≤ k1 + · · ·+ kn + 1.

Then f(a) 6= 0 for some grid point a ∈ A1 × · · · ×An.

Theorem 1.3 (Multiplicative grids). Let A1, . . . , An be subsets of a field F , each

of which is a coset of a finite multiplicative subgroup. Assume that a polynomial

f ∈ F [X1, . . . ,Xn] contains a monomial Xk1
1 . . . Xkn

n with non-zero coefficient,

such that k1 < |A1|, . . . , kn < |An| and

deg(f) ≤ k1 + · · ·+ kn +min{|A1|, . . . , |An|} − 1.

Then f(a) 6= 0 for some grid point a ∈ A1 × · · · ×An.

Theorem 1.4 (Additive grids). Let F be a field of characteristic p. Let A1, . . . , An

be subsets of F , each of which is a coset of a finite additive subgroup. Assume that

a polynomial f ∈ F [X1, . . . ,Xn] contains a monomial Xk1
1 . . . Xkn

n with non-zero

coefficient, such that k1 < |A1|, . . . , kn < |An| and

deg(f) ≤ k1 + · · · + kn + (1− p−1)min{|A1|, . . . , |An|} − 1.

Then f(a) 6= 0 for some grid point a ∈ A1 × · · · ×An.

Let us clarify that, in the latter two theorems, the subsets A1, . . . , An need not

have the same underlying subgroup. A very minor additional hypothesis on the

subsets A1, . . . , An, left out for readability’s sake, is that neither one is allowed to

be a singleton.

So far, we have highlighted the Combinatorial Nullstellensatz and its structured

extensions. But our study of polynomials over structured grids goes well beyond

this result. Among other things, we prove and apply a structured extension of the

Coefficient Theorem [22, 16, 13], see Theorem 6.2 herein.
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2. Null subsets

We introduce a key notion for the purposes of this paper, namely the nullity of a

finite subset of a field. It will turn out that several equivalent definitions are avail-

able. We start with a particularly friendly one. Informally, this definition introduces

the nullity of a finite subset as the lacunarity of an associated polynomial. Let it be

agreed that, throughout the paper, subsets are always understood to be non-empty.

Let F be a field, and let A ⊆ F be a finite subset. The characteristic polynomial

of A is the polynomial ΠA ∈ F [X] given by

ΠA(X) =
∏

a∈A

(X − a).

Definition 1. Let λ ∈ {0, . . . , |A|}. We say that A is λ-null if, in the characteristic

polynomial ΠA(X), the coefficients of X |A|−1, . . . ,X |A|−λ vanish.

Being 0-null is a void condition, so any finite subset satisfies it. A 1-null set

is commonly known as a zero-sum set. Clearly, the condition of being λ-null gets

stronger as λ increases.

In the next result, we collect several observations on the calculus of null sets.

The straightforward arguments are left to the reader.

Lemma 2.1. The following hold.

(i) Nullity is invariant under scaling: if A is λ-null and c ∈ F ∗, then cA is

λ-null.

(ii) Nullity is invariant under adjoining or removing the zero element: A is

λ-null if and only if A ∪ {0} is λ-null.

(iii) Nullity is preserved by disjoint unions: if A and B are disjoint and λ-null,

then A ∪B is λ-null.

We interpret nullity as structure. There is a two-way correlation supporting this

conceptual point. On the one hand, subsets with arithmetic structure exhibit high

nullity. On the other hand, subsets with very high nullity tend to be rather con-

strained.

Example 1. A subset A is λ-null for λ = |A| if and only if A = {0}.

Example 2. Let Fq be a finite field. Then A = Fq has characteristic polynomial

ΠA(X) = Xq−X, andA = F∗
q has characteristic polynomial ΠA(X) = Xq−1−1.

Thus both A = Fq and A = F∗
q are (q − 2)-null.

Example 3. Let A be a coset of a finite multiplicative subgroup. Then A is λ-null

for λ = |A| − 1.

Indeed, let us first assume that A ⊆ F ∗ is a finite multiplicative subgroup. As

each element of A is a root of the polynomial X |A| − 1, it follows that ΠA(X) =

X |A|− 1. Therefore A is λ-null for λ = |A| − 1. By scaling, this remains true if A

is a coset of a finite multiplicative subgroup of F ∗.

Conversely, assume a finite subset A to be λ-null for λ = |A| − 1. This means

that ΠA(X) = X |A| − c for some c ∈ F . The degenerate case c = 0 corresponds
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to A = {0}, which is in fact λ-null for λ = |A|. Consider now the case c 6= 0.

Since a|A| = c for each a ∈ A, we deduce that A ⊆ F ∗. Furthermore, picking

some a0 ∈ A, we see that a−1
0 A is contained in µ|A|, the multiplicative subgroup

of F ∗ which collects the roots of unity of order |A|. Note that µ|A| has at most |A|

elements. Hence, by counting, it must be that a−1
0 A = µ|A|, that is A = a0µ|A|.

Therefore A is a coset of a multiplicative subgroup.

Example 4. Let F be a field of positive characteristic p. Let A be a coset of a

finite additive subgroup; discard the degenerate case when A is a singleton, that is,

a coset of the additive subgroup {0}. Then A is λ-null for λ = (1− p−1)|A| − 1.

Indeed, note first that |A| = pe for some positive integer e; this is due to the fact

that A can be viewed as an affine space over the prime subfield of F . The key point

about the characteristic polynomial of A is that it takes the form

ΠA(X) = Xpe + ce−1X
pe−1

+ · · ·+ c1X
p + c0X + c−1.

This fact is due to Oystein Ore [20]; see also [2], as well as [17, Thm.3.57] for

the finite field case. We present another argument, which we believe to be new,

in Example 6. The form of ΠA(X) immediately implies that A is λ-null for λ =
pe − (pe−1 + 1) = (1− p−1)|A| − 1.

This nullity level cannot be increased, in general, as the following example shows.

Let Fq be a finite field with q = pe+1 elements. Consider the trace map Tr : Fq →
Fp, given by Tr(a) = a+ap+ · · ·+ap

e

. The subset A = {a ∈ Fq : Tr(a) = 0} is

an additive subgroup of size pe. It is readily seen that its characteristic polynomial

is ΠA(X) = Xpe +Xpe−1

+ · · · +Xp +X.

Example 5. Let Fq be a finite field, with q > 3. If a subset A ⊆ Fq is 1
2(q−1)-null,

then A = Fq, or A = F∗
q .

Indeed, consider the polynomial f = Xq−|A|ΠA(X). Then f is monic of degree

q, and it is fully reducible, i.e., it has q roots counted with multiplicity. By Rédei’s

theorem [21], one of the following holds: (a) f = Xq − X, or (b) f ′ = 0, or (c)

f −Xq has degree at least 1
2 (q + 1).

Case (c) is ruled out by the nullity hypothesis on A. Indeed, in the polynomial

Xq−|A|ΠA(X), the coefficients of Xq−1, . . . ,Xq−(q−1)/2 = X(q+1)/2 vanish. In

case (b), no root of f is simple. As every non-zero element of A is a simple root of

f = Xq−|A|ΠA(X), we deduce that A = {0}. In this case f = Xq, and f ′ = 0
does hold. However, A = {0} is merely 1-null, whereas 1

2(q − 1) > 1 by our

assumption on q. Therefore case (b) is ruled out as well. We are left with case (a).

From Xq −X = Xq−|A|ΠA(X), we easily deduce that either A = Fq, or A = F∗
q .

3. The structured Combinatorial Nullstellensatz

The following is our first main result.

Theorem 3.1. Let A1, . . . , An be λ-null finite subsets of a field F . Assume that a

polynomial f ∈ F [X1, . . . ,Xn] contains a monomial Xk1
1 . . . Xkn

n with non-zero

coefficient, such that k1 < |A1|, . . . , kn < |An| and

deg(f) ≤ k1 + · · · + kn + λ.
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Then f(a) 6= 0 for some grid point a ∈ A1 × · · · ×An.

The usual Combinatorial Nullstellensatz, Theorem 1.1, corresponds to the case

λ = 0 of the above theorem.

Theorems 1.2, 1.3, and 1.4 from the Introduction are immediate applications of

the above theorem. If each one of A1, . . . , An is a zero-sum subset, then they are

jointly 1-null. If each one of A1, . . . , An is a coset of a finite multiplicative sub-

group then, by Example 3, they are jointly λ-null for λ = min{|A1|, . . . , |An|}−1.

If each one of A1, . . . , An is a coset of a finite additive subgroup and the am-

bient field F has characteristic p, then, by Example 4, they are jointly λ-null for

λ = (1− p−1)min{|A1|, . . . , |An|} − 1.

We give a proof of Theorem 3.1 by exploiting an algebraic result of Alon [1,

Thm.1.1] which is closely related to the Combinatorial Nullstellensatz. In fact, this

algebraic result also goes under the name of Combinatorial Nullstellensatz, though

it is much less used. In a subsequent section, we will also see Theorem 3.1 as a

consequence of Theorem 6.2.

Proof. Arguing by contradiction, let us assume that f(a) = 0 for all grid points

a ∈ A1×· · ·×An. Then by [1, Thm.1.1], the following holds: there are polynomials

h1, . . . , hn ∈ F [X1, . . . ,Xn] so that

f = h1 ·ΠA1
(X1) + · · ·+ hn · ΠAn

(Xn),(1)

and, furthermore, the total degree of each polynomial hi satisfies

deg(hi) ≤ deg(f)− deg(ΠAi
) = deg(f)− |Ai|.(2)

From (1), we deduce that the monomial Xk1
1 . . . Xkn

n appears with a non-zero coef-

ficient in some product hi ·ΠAi
(Xi). Now we use the hypothesis that Ai is λ-null:

ΠAi
(Xi) has the lacunary form

ΠAi
(Xi) = X

|Ai|
i +

|Ai|−λ−1
∑

r=0

crX
r
i .

In the product hi · ΠAi
(Xi), the monomial Xk1

1 . . . Xkn
n cannot arise from X

|Ai|
i ,

the leading term of ΠAi
(Xi), since ki < |Ai|. Therefore a term of much lower

order, Xr
i for some r < |Ai| − λ, is involved. This means that the monomial

Xk1
1 . . . Xki−r

i . . . Xkn
n appears with a non-zero coefficient in hi. But then

deg(hi) ≥ k1 + · · · + (ki − r) + · · · + kn

> k1 + · · · + kn + λ− |Ai| ≥ deg(f)− |Ai|

in contradiction with (2). �

As an illustration, we prove a structured version of the well-known Cauchy -

Davenport inequality. Let us introduce a natural notation: given a subset A ⊆ F ,

we put

λ(A) = max{λ : A is λ-null}.
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Theorem 3.2. Let Fp be a finite field with p elements, where p is a prime. Let

A,B ⊆ Fp, and consider the sumset A+B ⊆ Fp. Then either

λ(A+B) ≥ min{λ(A), λ(B)},

or

|A+B| ≥ |A|+ |B|+ λ(A+B).

Informally, this says that a sumset of structured sets is either fairly structured, or

else not too small.

Proof. We adapt the argument of [1, Thm.3.2]. Put C := A+B, and consider the

polynomial

f =
∏

c∈C

(X + Y − c) ∈ Fp[X,Y ].

Then f vanishes over the grid A×B.

Arguing by contradiction, let us assume that λ(C) < min{λ(A), λ(B)} and

|C| < |A| + |B| + λ(C). Set µ := λ(C) + 1. Then µ ≤ min{λ(A), λ(B)} and

|C| ≤ |A| + |B|+ λ(C)− 1 = (|A| − 1) + (|B| − 1) + µ. Choose non-negative

integers k and ℓ satisfying k ≤ |A| − 1, ℓ ≤ |B| − 1, and |C| = k + ℓ+ µ.

We may apply Theorem 3.1 since A and B are µ-null, and deg(f) = k+ ℓ+ µ,

where k < |A| and ℓ < |B|. As f vanishes over the grid A × B, it follows that

the coefficient of XkY ℓ in f is zero. Now let us find, explicitly, the coefficient

of XkY ℓ. Suppose that the characteristic polynomial of C expands as ΠC(Z) =
∑|C|

r=0 erZ
|C|−r. Then

f = ΠC(X + Y ) =

|C|
∑

r=0

er(X + Y )|C|−r.

The monomial XkY ℓ appears in the expansion of (X +Y )k+ℓ, which corresponds

to r = µ. Hence, the coefficient of XkY ℓ equals
(

k + ℓ

k

)

eµ.

Recall that µ = λ(C)+1, which implies that eµ 6= 0. Also k+ℓ < |C| ≤ p, which

implies that the above binomial coefficient is non-zero in Fp. We have therefore

obtained a contradiction, as desired. �

In principle, the key instance of Theorem 3.1 is when k1 = |A1| − 1, . . . , kn =
|An| − 1. If one knows this particular case, then one can generalize to arbitrary

k1 < |A1|, . . . , kn < |An|. The simplest way would be to trim the grid, as in

[1], which would be legitimate if we worked over arbitrary grids. Over structured

grids, the germane idea is to adapt the polynomial by a degree-raising trick–namely,

consider the polynomial

X
|A1|−k1−1
1 . . . X |An|−kn−1

n f(X1, . . . ,Xn).

The general form of Theorem 3.1 is more flexible in applications, and the proof

of Theorem 3.2 above is a case in point. Moving forward, in Section 6, it will be
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convenient to adopt the case k1 = |A1| − 1, . . . , kn = |An| − 1 as the main case

of interest; this will simplify the formulas appearing therein. However, one should

keep in mind the degree-raising trick.

4. Nullity and symmetric moments

We now turn to a different viewpoint on nullity. Again, let F be a field and let

A ⊆ F be a finite subset. If A has m elements, and g(X1, . . . ,Xm) is a symmetric

polynomial in m variables, then we may evaluate g on A by setting

g(A) = g(a1, . . . , am)

where a1, . . . , am is an enumeration of A. This is unambiguous: the evaluation

g(A) depends only on the set A, and not on the actual enumeration of A, since the

polynomial g is symmetric.

The elementary symmetric polynomials and the complete symmetric polynomi-

als of degree r in m variables are given by

er(X1, . . . ,Xm) =
∑

1≤i1<···<ir≤m

Xi1 . . . Xir ,

hr(X1, . . . ,Xm) =
∑

k1+···+km=r

Xk1
1 . . . Xkm

m .

By convention, e0(X1, . . . ,Xm) = 1 and h0(X1, . . . ,Xm) = 1. Note, in addition,

that er(X1, . . . ,Xm) = 0 when r > m.

By evaluating the elementary symmetric polynomials and the complete symmet-

ric polynomials on A, one obtains the elementary moments er(A), respectively the

complete moments hr(A). We may give an alternate description of the nullity of A,

in terms of these symmetric moments.

Lemma 4.1. Let λ ∈ {0, . . . , |A|}. Then the following are equivalent:

(i) A is λ-null;

(ii) the elementary moments of A vanish up to degree λ, that is, er(A) = 0 for

all 1 ≤ r ≤ λ;

(iii) the complete moments of A vanish up to degree λ, that is, hr(A) = 0 for

all 1 ≤ r ≤ λ.

The zeroth moments cannot partake in vanishing, as e0(A) = h0(A) = 1.

Proof. The equivalence of (i) and (ii) is immediate from Viète’s formula:

ΠA(X) =
∏

a∈A

(X − a) =

|A|
∑

i=0

(−1)iei(A)X
|A|−i.(3)

The elementary and the complete symmetric polynomials are entwined by the

identity

r
∑

i=0

(−1)ier−i(X1, . . . ,Xm) hi(X1, . . . ,Xm) = 0.
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Evaluating on a finite subset A gives

r
∑

i=0

(−1)ier−i(A) hi(A) = 0.(4)

This relation bridging the two types of moments implies, in particular, the equiva-

lence of (ii) and (iii). The argument uses an obvious induction. �

As the proof shows, it is evident that the nullity of A is reflected in the vanishing

of elementary moments of A. The purpose of the above lemma is to uncover the

less evident link between the nullity of A and the vanishing of complete moments

of A. This link will be of key importance for an up-coming result, Theorem 6.2.

Example 6. LetF be a field of characteristic p, where p is a prime, and letA ⊆ F be

a coset of a finite additive subgroup. We show that er(A) = 0 for 1 ≤ r ≤ |A|− 1,

except possibly when |A|−r is a power of p. In view of (3), this precisely translates

into the statement, made in Example 4, that the characteristic polynomial ΠA(X)
is a linear combination of monomials whose degree is a power of p, or 0.

Let k ≤ |A| − 1. Consider the polynomial

∆k(X) = ek(X +A)− ek(A)

where X+A is the translate of the subset A by the indeterminate X. Then ∆k(X)
has degree at most k, and it admits |A| roots–namely, the elements of the finite

additive subgroup underlying A. Therefore ∆k(X) is the zero polynomial. Let us

put ∆k(X) in standard form, so that we can equate its coefficients to 0. We have

ek(X +A) =
∑

B⊆A, |B|=k

∏

b∈B

(X + b) =
∑

B⊆A, |B|=k

k
∑

r=0

er(B)Xk−r.

As
∑

B⊆A, |B|=k

er(B) =

(

|A| − r

k − r

)

er(A),

we deduce that

∆k(X) = ek(X +A)− ek(A) =

k−1
∑

r=0

(

|A| − r

k − r

)

er(A)X
k−r.

Thus, in F ,
(

|A| − r

k − r

)

er(A) = 0, 0 ≤ r ≤ k − 1.(5)

Let now r ∈ {1, . . . , |A| − 1}, such that |A| − r is not a power of p, be given.

By a well-known property of binomial coefficients, see Fine [10], there exists j ∈
{1, . . . , |A| − r − 1} such that

(

|A| − r

j

)

6≡ 0 mod p.
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Set k = j + r. Note that r < k ≤ |A| − 1, so we are in position to invoke (5). We

infer that er(A) = 0, as desired.

Furthermore, we claim that er(A) 6= 0 when r = |A| − 1. We have er(A) =
er(c+ A) for all c ∈ F since ∆r(X) is the zero polynomial. By definition, A is a

translate of a finite additive subgroup A′. Thus er(A) = er(A
′). The advantage in

replacing the coset A by its underlying subgroup A′, is that we can easily compute

er(A
′) =

∑

B⊆A′, |B|=r

∏

b∈B

b =
∏

b∈A′\{0}

b

since all but one of the indexing subsets B contain 0. The latter product is evidently

non-zero.

This computation reveals the coefficient of X in the characteristic polynomial

ΠA(X). Indeed, by (3), the coefficient equals (−1)|A|−1 e|A|−1(A). Observe that

(−1)|A|−1 = 1 in F ; this is clearly true if p = 2, whereas for p > 2 we recall that

|A| is odd, being a power of p. In summary, the coefficient of X in ΠA(X) is

e|A|−1(A) =
∏

b∈A′\{0}

b

where, once again, A′ is the additive subgroup underlying the coset A.

5. Vandermonde subsets

There is yet another fundamental family of symmetric polynomials, the power-

sum polynomials

pr(X1, . . . ,Xm) = Xr
1 + · · ·+Xr

m.

By evaluating them on a finite subset A ⊆ F , we obtain the power-sum moments

pr(A). These moments are actually classical, whereas the consideration of their

elementary and complete counterparts appears to be new.

Definition 2. Let λ ∈ {0, . . . , |A|}. A finite subset A ⊆ F is λ-Vandermonde if the

power-sum moments of A vanish up to degree λ, that is, pr(A) = 0 for 1 ≤ r ≤ λ.

This terminology resonates with the notion of Vandermonde subset of a finite

field, as studied by Peter Sziklai and Marcella Takáts [24]. The Vandermonde con-

dition shares some general features with nullity: any finite subset is 0-Vandermonde;

being λ-Vandermonde gets stronger as λ increases; being λ-Vandermonde is stable

under the operations indicated in Lemma 2.1.

Linking the power-sum polynomials to the elementary symmetric polynomials

is Newton’s formula:

rer(X1, . . . ,Xm) +
r
∑

i=1

(−1)ier−i(X1, . . . ,Xm) pi(X1, . . . ,Xm) = 0

for 1 ≤ r ≤ m. Evaluating on a finite subset A gives

rer(A) +
r
∑

i=1

(−1)ier−i(A) pi(A) = 0, 1 ≤ r ≤ |A|.(6)
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While being λ-null and being λ-Vandermonde are not equivalent, the two notions

can be related by using (6).

Lemma 5.1. IfA isλ-null, thenA isλ-Vandermonde. The converse is true provided

that char F = 0, or that char F = p and λ < p.

Example 7. Let F be a field of characteristic p, and let A ⊆ F be a coset of a

finite additive subgroup. Then A is λ-Vandermonde for λ = |A| − 2, though not

for λ = |A| − 1.

Indeed, we know from Example 6 that er(A) = 0whenever r ∈ {1, . . . , |A|−2}
is not a multiple of p. An inductive use of (6) yields pr(A) = 0 for 1 ≤ r ≤ |A|−2.

Thus A is λ-Vandermonde for λ = |A| − 2.

For r = |A|−1, (6) gives rer(A)+(−1)rpr(A) = 0. This amounts to pr(A) =
(−1)rer(A) since r = −1 in F . We also know from Example 6 that er(A) 6= 0,

whence pr(A) 6= 0. Thus A is not λ-Vandermonde for λ = |A| − 1.

Here is an alternate argument, which explains the ‘Vandermonde’ terminology.

We know that pr(A) = 0 for 1 ≤ r ≤ |A| − 2, but also for r = 0 since the size

of A is a multiple of p. If we had pr(A) = 0 for r = |A| − 1 as well, that would

contradict the invertibility of a Vandermonde matrix associated to A.

Vandermonde subsets are not the main focus of this paper, but they are worth

mentioning on two accounts. Firstly, we believe that the power-sum moments are

useful for a more systematic study of nullity–a study that we do not attempt herein.

For instance, the power-sum viewpoint makes it obvious that, in formally real fields,

one can only speak of 1-nullity. This observation is not immediate from Defini-

tion 1. Secondly, Vandermonde subsets fit our main theme–the interplay between

polynomials and structured grids. To wit, we have the following pair of results.

Theorem 5.2. Let A1, . . . , An be λ-Vandermonde finite subsets of a field F . Let

f ∈ F [X1, . . . ,Xn] be a polynomial with the property that the degree of each

variable is at most λ. Then
∑

a∈A1×···×An

f(a) = f(0)|A1| . . . |An|.

Theorem 5.3. LetF be a field of characteristic p. LetA1, . . . , An beλ-Vandermonde

finite subsets of F , such that p divides |A1|, . . . , |An|. Let f ∈ F [X1, . . . ,Xn] be

a polynomial whose degree satisfies deg(f) < n(λ+ 1). Then
∑

a∈A1×···×An

f(a) = 0.

Theorems 5.2 and 5.3 are closely related, and we give a joint proof below. But

they work somewhat differently: in Theorem 5.3, the underlying grid is a bit more

structured, allowing for the degree requirement on f to be relaxed.

Proof of Theorems 5.2 and 5.3. Let fd1,...,dn denote the coefficient of Xd1
1 . . . Xdn

n

in f . So

f =
∑

d1,...,dn

fd1,...,dn Xd1
1 . . . Xdn

n



POLYNOMIALS OVER STRUCTURED GRIDS 11

where each of d1, . . . , dn runs over the non-negative integers. Then
∑

a∈A1×···×An

f(a) =
∑

d1,...,dn

fd1,...,dn

(

∑

a1∈A1

ad11

)

. . .
(

∑

an∈An

adnn

)

.(7)

As A1, . . . , An are λ-Vandermonde, we may restrict the summation on the right-

hand side of (7) to those tuples satisfying di = 0 or di > λ, for each i.

The degree assumption of Theorem 5.2 is that fd1,...,dn = 0, except possibly

when di ≤ λ for each i. Thus, on the right-hand side of (7), only the term corre-

sponding to d1 = · · · = dn = 0 remains. We obtain
∑

a∈A1×···×An

f(a) = f(0)|A1| . . . |An|.

Consider now the setup of Theorem 5.3. The cardinality assumption on the sets

|A1|, . . . , |An| means that the indexing on the right-hand side of (7) can be further

restricted to those tuples satisfying di > λ, for each i. On the other hand the degree

assumption on f is that fd1,...,dn = 0 when d1 + · · ·+ dn ≥ n(λ+ 1). Therefore
∑

a∈A1×···×An

f(a) = 0

in this case. �

By Example 7 above, Theorem 5.3 applies when A1, . . . , An are finite additive

subgroups and, more generally, cosets thereof. We deduce the following conse-

quence.

Corollary 5.4. Let F be a field of characteristic p, and let A1, . . . , An be finite

additive subgroups of F . Let f ∈ F [X1, . . . ,Xn] be a polynomial whose degree

satisfies

deg(f) < n
(

min{|A1|, . . . , |An|} − 1
)

.

Then
∑

a∈A1×···×An

f(a) = 0.

We strengthen the above corollary in the next section.

Remark (Pete Clark, personal communication). Anurag Bishnoi and Pete Clark

have independently obtained closely related results on polynomials over Vander-

monde grids. Their unpublished work is reported in [8].

6. The complete coefficient theorem

For the purposes of this section, it will be convenient to introduce a notation. Let

F be a field. For each point a = (a1, . . . , an) in a finite grid A1 × · · · ×An ⊆ Fn,

put

wa =
1

Π′
A1

(a1) . . .Π′
An

(an)
.

In this formula, Π′
A1

, . . . ,Π′
An

are the formal derivatives of the characteristic poly-

nomials of A1, . . . , An. Given a finite subset A ⊆ F , we have Π′
A(a) 6= 0 for each
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a ∈ A since ΠA is, by definition, a separable polynomial. We can actually write

down an explicit formula:

Π′
A(a) =

∏

b∈A,b6=a

(a− b).

The following Coefficient Theorem–due, independently, to Uwe Schauz [22],

Michał Lasoń [16], Roman Karasev and Fedor Petrov [13]–is surprisingly recent.

Theorem 6.1 ([22, 16, 13]). Let A1, . . . , An be finite subsets of a field F . Assume

that f ∈ F [X1, . . . ,Xn] is a polynomial whose degree satisfies

deg(f) ≤ (|A1| − 1) + · · · + (|An| − 1).

Then the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f equals

∑

a∈A1×···×An

wa f(a).

Our second main result is a generalization of Theorem 6.1, that we term the

Complete Coefficient Theorem.

Theorem 6.2. Let A1, . . . , An be λ-null finite subsets of a field F . Assume that

f ∈ F [X1, . . . ,Xn] is a polynomial whose degree satisfies

deg(f) ≤ (|A1| − 1) + · · · + (|An| − 1) + λ.

Then the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f equals

∑

a∈A1×···×An

wa f(a).

A key role in the proof of the theorem is played by the following fact.

Lemma 6.3 (Sylvester’s identity). Let A be a finite subset of a field F , and let d be

a non-negative integer. Then

∑

a∈A

ad

Π′
A(a)

=

{

0 if 0 ≤ d < |A| − 1,

hd−|A|+1(A) if d ≥ |A| − 1.

We recall that hd−|A|+1(A) denotes the complete moment of degree d−|A|+1.

We refer to the Appendix for a leisurely, self-contained discussion of the lemma.

Proof. Let fd1,...,dn denote the coefficient of the monomial Xd1
1 . . . Xdn

n in f . So

f =
∑

d1,...,dn

fd1,...,dn Xd1
1 . . . Xdn

n

where each of d1, . . . , dn runs over the non-negative integers. Using this monomial

expansion of f , we can write

∑

a∈A1×···×An

wa f(a) =
∑

d1,...,dn

fd1,...,dn

(

∑

a1∈A1

ad11
Π′

A1
(a1)

)

. . .

(

∑

an∈An

adnn
Π′

An
(an)

)

.
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By Sylvester’s identity, the right-hand sum equals
∑

d1≥|A1|−1,...,dn≥|An|−1

fd1,...,dn · hd1−|A1|+1(A1) . . . hdn−|An|+1(An)

=
∑

r1≥0,...,rn≥0

fr1+|A1|−1,...,rn+|An|−1 · hr1(A1) . . . hrn(An).

We need to show that the latter sum equals f|A1|−1,...,|An|−1. This is precisely

the contribution of the multiindex (r1, . . . , rn) = (0, . . . , 0), as h0(A) = 1 for any

finite subset A. Next, we check that the contribution of a multiindex (r1, . . . , rn) 6=
(0, . . . , 0) vanishes. If r1 + · · ·+ rn > λ, then fr1+|A1|−1,...,rn+|An|−1 = 0 by the

degree hypothesis on f . If r1 + · · · + rn ≤ λ, then we argue that some hri(Ai)
vanishes. Indeed, let i be an index for which ri 6= 0. Then 1 ≤ ri ≤ λ. It follows

from the λ-nullity of Ai, as interpreted through Lemma 4.1, that hri(Ai) = 0. �

Theorem 6.2 might seem daunting, due to the complicated formula of the weight

function w. On the one hand, here are two applications in which the weights’ for-

mula is actually irrelevant. Firstly, keep the hypotheses of Theorem 6.2 and assume

further that the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f is non-zero;

then f cannot vanish at each point of the grid A1 × · · · × An. This is the key

case, k1 = |A1| − 1, . . . , kn = |An| − 1, of Theorem 3.1. Secondly, if we now

assume the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n to be zero, we obtain

the following consequence.

Corollary 6.4. Let A1, . . . , An be λ-null finite subsets of a field F . Assume that

f ∈ F [X1, . . . ,Xn] is a polynomial whose degree satisfies

deg(f) ≤ (|A1| − 1) + · · · + (|An| − 1) + λ.

If the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f is zero, then f cannot

vanish at all but one point of the grid A1 × · · · ×An.

Over finite fields, the previous corollary yields results in the spirit of Chevalley’s

theorem. We illustrate the idea on the following geometric example.

Example 8. Let A1, . . . , An be subsets of a finite field Fq. The feature of the grid

A1 × · · · ×An ⊆ Fn
q that we are interested in is

(PP) a plane in Fn
q cannot intersect the grid in a single point.

A plane π ⊆ Fn
q has an associated polynomial fπ ∈ Fq[X1, . . . ,Xn] of degree q−1

whose support is π. Namely, if π is given by the equation c1x1 + · · · + cnxn = 0,

then fπ = 1 − (c1X1 + · · · + cnXn)
q−1 satisfies fπ(x) 6= 0 if and only if x ∈ π.

The intersection of π and the grid A1×· · ·×An consists of those points in the grid

where fπ does not vanish. We aim to apply Corollary 6.4 to polynomials of the form

fπ. As fπ is homogeneous, we can ensure that the monomial X
|A1|−1
1 . . . X

|An|−1
n

does not appear in fπ by requiring (|A1| − 1) + · · ·+ (|An| − 1) 6= q − 1.

The unstructured outcome is the following: if the grid is large, in the sense that

(|A1| − 1) + · · ·+ (|An| − 1) > q − 1,
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then (PP) holds. The structured upshot of Corollary 6.4 deals with smaller null

grids: if A1, . . . , An are λ-null and

q − 1− λ ≤ (|A1| − 1) + · · ·+ (|An| − 1) < q − 1,

then (PP) holds.

On the other hand, we can use Theorem 6.2 over structured grids whose weight

function w ends up having a much simpler form. Here are two key examples.

(i) Let A ⊆ F ∗ be a finite multiplicative subgroup. Then the characteristic poly-

nomial of A is of the form ΠA = X |A| − c, hence

Π′
A(a) = |A| a|A|−1 = |A| a−1

for each a ∈ A. It follows that, for a grid A1 × · · · × An defined by finite multi-

plicative subgroups A1, . . . , An ⊆ F ∗, we have

wa =
1

Π′
A1

(a1) . . .Π
′
An

(an)
=

a1 . . . an

|A1 × · · · ×An|

for each grid point a = (a1, . . . , an).

(ii) Let A ⊆ F be a finite additive subgroup. Then

Π′
A(a) =

∏

b∈A,b6=a

(a− b) =
∏

b∈A\{0}

b

for each a ∈ A. Thus, for a grid A1×· · ·×An defined by finite additive subgroups

A1, . . . , An ⊆ F , we have

wa =
1

Π′
A1

(a1) . . .Π′
An

(an)
=

(

∏

b1∈A1\{0}

b−1
1

)

. . .

(

∏

bn∈An\{0}

b−1
n

)

for each grid point a = (a1, . . . , an). The notable feature in this case is that the

weights are constant over the grid.

We deduce the following high nullity instances of Theorem 6.2.

Corollary 6.5 (Multiplicative grids). Let A1, . . . , An be finite multiplicative sub-

groups of F . Assume that f ∈ F [X1, . . . ,Xn] is a polynomial whose degree satis-

fies

deg(f) ≤ (|A1| − 1) + · · ·+ (|An| − 1) + min{|A1|, . . . , |An|} − 1.

Then the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f equals the averaged

sum

1

|A1 × · · · ×An|

∑

(a1,...,an)∈A1×···×An

a1 . . . anf(a1, . . . , an).

Corollary 6.6 (Additive grids). Let F have characteristic p, and let A1, . . . , An be

finite additive subgroups of F . Assume that f ∈ F [X1, . . . ,Xn] is a polynomial

whose degree satisfies

deg(f) ≤ (|A1| − 1) + · · · + (|An| − 1) + (1− p−1)min{|A1|, . . . , |An|} − 1.
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If the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f is zero, then

∑

a∈A1×···×An

f(a) = 0.

We note that Corollary 6.6 strengthens Corollary 5.4. We also point out that the

above corollaries can be easily modified to allow for cosets. The resulting weighted

sums would be slightly more involved; for the sake of simplicity, we just allude to

such a generalized version instead of spelling it out.

Over finite fields, Corollary 6.6 yields results in the spirit of Warning’s theorem.

As a simple illustration, we discuss a variation on Example 8.

Example 9. Let A1, . . . , An be additive subgroups of a finite field Fq of character-

istic p. The feature of the grid A1 × · · · × An ⊆ Fn
q that we are now interested in

is

(PPp) a plane in Fn
q intersects the grid in a number of points, which is a multiple

of p.

Clearly, property (PPp) is stronger than property (PP), considered in Example 8; but

the grid is also assumed to be more structured.

Consider again the polynomial fπ ∈ Fq[X1, . . . ,Xn] of degree q − 1 associ-

ated to a plane π ⊆ Fn
q . We wish to apply Corollary 6.6 to fπ. To ensure that

the monomial X
|A1|−1
1 . . . X

|An|−1
n does not appear in fπ, we simply require that

(|A1| − 1) + · · ·+ (|An| − 1) 6= q − 1. As fπ takes the value 1 on π, respectively

the value 0 off π, we obtain
∑

a∈A1×···×An

fπ(a) = Nπ · 1

where Nπ denotes the size of the intersection of π with the grid. We deduce that

Nπ ≡ 0 mod p for each plane π, meaning that (PPp) holds, provided that

(|A1| − 1) + · · ·+ (|An| − 1) 6= q − 1,

and

q − 1 < (|A1| − 1) + · · · + (|An| − 1) + (1− p−1)min{|A1|, . . . , |An|}.

The coefficient theorem 6.1 is designed to determine the coefficient of a top-

degree monomial. The complete coefficient theorem 6.2 reaches into the lower-

degree monomials of a polynomial. In fact, all coefficients could be uncovered by

an evaluation over a suitable structured grid. The ‘complete’ designation of Theo-

rem 6.2 owes largely to this fact, but also to the crucial use of complete symmetric

polynomials in its proof.

We illustrate this ‘complete’ viewpoint by the following multivariable interpola-

tion theorem.

Theorem 6.7. Let A1, . . . , An be λ-null finite subsets of a field F , where |Ai| > 1
for each i. If f ∈ F [X1, . . . ,Xn] is a polynomial of degree at most λ, then

f =
∑

k1+···+kn≤λ

(

∑

a∈A1×···×An

a
|A1|−k1−1
1 . . . a|An|−kn−1

n wa f(a)

)

Xk1
1 . . . Xkn

n .
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Proof. Let (k1, . . . , kn) be a tuple of non-negative integers satisfying k1 + · · · +
kn ≤ λ; in particular, ki ≤ λ ≤ |Ai| − 1 for each i. Let C denote the coefficient of

the monomial Xk1
1 . . . Xkn

n in f . We have to show that

C =
∑

a∈A1×···×An

a
|A1|−k1−1
1 . . . a|An|−kn−1

n wa f(a).

We employ the degree-raising trick. Put

f̃ = X
|A1|−k1−1
1 . . . X |An|−kn−1

n f.

Then C is the coefficient of the monomial X
|A1|−1
1 . . . X

|An|−1
n in f̃ , and

deg(f̃) = (|A1| − k1 − 1) + · · · + (|An| − kn − 1) + deg(f)

≤ (|A1| − 1) + · · ·+ (|An| − 1) + λ.

Hence, by Theorem 6.1, we have that

C =
∑

a∈A1×···×An

wa f̃(a).

Upon reverting to the original polynomial f , we obtain the desired formula for C .

�

Corollary 6.8. Let A1, . . . , An be λ-null finite subsets of a field F , where |Ai| > 1
for each i. Let F ⊆ E be a field extension. Assume that f ∈ E[X1, . . . ,Xn] is a

polynomial of degree at most λ, with the property that the values of f over the grid

A1 × · · · ×An lie in F . Then f has coefficients in F .

Appendix: Sylvester’s identity

This author vaguely recalls having had to check, at some point in middle school,

the following identities:

1

(a− b)(a− c)
+

1

(b− a)(b− c)
+

1

(c− a)(c− b)
= 0,

a

(a− b)(a− c)
+

b

(b− a)(b− c)
+

c

(c− a)(c− b)
= 0,

a2

(a− b)(a− c)
+

b2

(b− a)(b− c)
+

c2

(c− a)(c− b)
= 1,

valid for any three distinct numbers a, b, c. Checking similar identities for four dis-

tinct numbers a, b, c, d may have happened, but if it did, then it must be a repressed

memory. The general result reads as follows.

Theorem 6.9 (Euler’s identities). Let a1, . . . , am be distinct elements of a field F .

Then

m
∑

k=1

adk
∏

j: j 6=k (ak − aj)
=

{

0 if d = 0, . . . ,m− 2,

1 if d = m− 1.
(8)
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These identities first appeared in a letter of Leonhard Euler to Christian Gold-

bach, dated September 25th 1762 [9, p.1123-1124]. Euler goes on to say that these

identities appear “to be more than a little curious; however, it seems to me that you

may have been so kind as to communicate something similar to me a long time

ago.” In a subsequent letter, dated November 9th 1762, Euler proves his identities

by using a partial fraction decomposition.

But the much more general result is the following.

Theorem 6.10 (Sylvester’s identity). Let a1, . . . , am be distinct elements of a field

F . Then, for any non-negative integer d, we have

m
∑

k=1

adk
∏

j: j 6=k (ak − aj)
=

∑

i1+···+im=d−m+1
i1,...,im≥0

ai11 . . . aimm .(9)

One reason why the identity (9) is a beautiful and unexpected formula, is that

the left-hand side is a rational function in a1, . . . , am while the right-hand side is a

polynomial function in a1, . . . , am.

Note how Euler’s identities (8) are accounted for by Sylvester’s identity in low

degrees: when d < m − 1, the right-hand side of (9) is an empty sum; when

d = m− 1, the right-hand side of (9) has a single term, equal to 1. Consider now

high degrees. When d ≥ m, the right-hand side of (9) can be expressed concisely,

by means of the complete symmetric polynomials, as hd−m+1(a1, . . . , am). Setting

A = {a1, . . . , am} and ΠA(X) = (X − a1) . . . (X − am), we see that we can

rewrite Sylvester’s identity in the concise form of Lemma 6.3. We also note that

Lemma 6.3 has a minor technical advantage: it is valid for m = 1 as well, whereas

Theorem 6.10 implicitly assumes that m ≥ 2.

The attribution of the identity (9) to James Joseph Sylvester is explained by Gau-

rav Bhatnagar in [4]. It seems that the identity (9), and the Sylvester attribution,

are not quite absorbed in the mathematical canon. On the one hand, see Knuth [14,

p.472-473, Notes to Exer.33]. On the other hand, Sylvester’s identity was rediscov-

ered by James Louck, cf. [18, Appendix A] and [6, Thm.2.2], and, more recently,

by Volker Stehl and Herbert Wilf [23, Sec.4]. As a further illustration of this point,

that Sylvester’s identity is relatively unknown, consider the following result from a

very recent and very interesting work of Stephan Ramon Garcia, Mohamed Omar,

Christopher O’Neill, and Samuel Yih [11, Thm.3]: for distinct a1 . . . , am ∈ C, and

z ∈ C, it holds that

∞
∑

p=0

hp(a1 . . . , am)

(p +m− 1)!
zp+m−1 =

m
∑

k=1

eakz
∏

j: j 6=k (ak − aj)
.

This is a key identity for the purposes of [11]. The proof given therein is quite

lengthy, occupying well over three pages. The following three-line argument shows
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that the above identity is, in fact, a restatement of (9) as a power series identity:

m
∑

k=1

eakz
∏

j: j 6=k (ak − aj)
=

m
∑

k=1

1
∏

j: j 6=k (ak − aj)

( ∞
∑

d=0

(akz)
d

d!

)

=
∞
∑

d=0

( m
∑

k=1

adk
∏

j: j 6=k (ak − aj)

)

zd

d!

=
∞
∑

d=m−1

hd−m+1(a1 . . . , am)
zd

d!
.

Both Stehl - Wilf [23] and Chen - Louck [6] prove Theorem 6.10 by means of

generating functions. Another proof can be found in [4, Sec.2]. Here, we include

a seemingly new proof of Theorem 6.10. This is an argument that Euler himself

could have given.

Proof. We start, very much like Euler did for his proof of Theorem 6.9, with a

partial fraction decomposition:

1

(X − a1) . . . (X − am−1)
=

m−1
∑

k=1

(

m−1
∏

j=1
j 6=k

1

ak − aj

)

1

X − ak
.(10)

Evaluating at the remaining node, X = am, and multiplying through by adm yields

(

m
∏

j=1
j 6=m

1

am − aj

)

adm = −
m−1
∑

k=1

(

m
∏

j=1
j 6=k

1

ak − aj

)

adm

and so, adding terms on both sides,

m
∑

k=1

(

m
∏

j=1
j 6=k

1

ak − aj

)

adk =

m−1
∑

k=1

(

m
∏

j=1
j 6=k

1

ak − aj

)

(adk − adm).

The left-hand side of the above identity is the left-hand side of (9), which we denote

by Sd(a1, . . . , am) in what follows. The right-hand side of the above formula can

be rewritten, after dividing adk − adm by ak − am, as

m−1
∑

k=1

(

m−1
∏

j=1
j 6=k

1

ak − aj

)

d−1
∑

e=0

aeka
d−e−1
m =

d−1
∑

e=0

ad−e−1
m

m−1
∑

k=1

(

m−1
∏

j=1
j 6=k

1

ak − aj

)

aek.

We recognize the inner sum as Se(a1, . . . , am−1). All in all, we get the recurrence

Sd(a1, . . . , am) =

d−1
∑

e=0

Se(a1, . . . , am−1) a
d−e−1
m .
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Now let us turn to the right-hand side of (9). We denote by Hd(a1, . . . , am), and

we observe that it satisfies the same recurrence relation. Indeed:

Hd(a1, . . . , am) =
∑

i1+···+im=d−m+1

ai11 . . . aimm

=
d−1
∑

e=m−2

(

∑

i1+···+im−1=e−m+2

ai11 . . . a
im−1

m−1

)

ad−e−1
m

=

d−1
∑

e=0

He(a1, . . . , am−1) a
d−e−1
m .

Throughout, the exponents i1, . . . , im are non-negative. In the last step, we have

extended the range of e, but note that each one of the corresponding terms vanishes.

The desired identity Sd(a1, . . . , am) = Hd(a1, . . . , am) will follow as soon the

boundary cases d = 0, respectively m = 2, are checked. Let us do that. When d =
0, we actually need to check that S0(a1, . . . , am) = 0; this fact already appeared

on the way, for it is the evaluation of (10) at X = am. When m = 2, we need to

check that
ad1

a1 − a2
+

ad2
a2 − a1

=
∑

i1+i2=d−1
i1,i2≥0

ai11 a
i2
2 .

This is obvious. �
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