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Abstract. Given a graphon W and a finite simple graph H, with vertex set V pHq, denote
by XnpH,W q the number of copies of H in a W -random graph on n vertices. The asymptotic
distribution of XnpH,W q was recently obtained by Hladký, Pelekis, and Šileikis [16] in the case
where H is a clique. In this paper, we extend this result to any fixed graph H. Towards this
we introduce a notion of H-regularity of graphons and show that if the graphon W is not H-

regular, then XnpH,W q has Gaussian fluctuations with scaling n|V pHq|´
1
2 . On the other hand,

if W is H-regular, then the fluctuations are of order n|V pHq|´1 and the limiting distribution
of XnpH,W q can have both Gaussian and non-Gaussian components, where the non-Gaussian
component is a (possibly) infinite weighted sum of centered chi-squared random variables with
the weights determined by the spectral properties of a graphon derived from W . Our proofs
use the asymptotic theory of generalized U -statistics developed by Janson and Nowicki [20].
We also investigate the structure of H-regular graphons for which either the Gaussian or the
non-Gaussian component of the limiting distribution (but not both) is degenerate. Interest-
ingly, there are also H-regular graphons W for which both the Gaussian or the non-Gaussian
components are degenerate, that is, XnpH,W q has a degenerate limit even under the scaling

n|V pHq|´1. We give an example of this degeneracy with H “ K1,3 (the 3-star) and also estab-
lish non-degeneracy in a few examples. This naturally leads to interesting open questions on
higher-order degeneracies.

1. Introduction

A graphon is a measurable function W : r0, 1s2 Ñ r0, 1s which is symmetric, that is, W px, yq “
W py, xq, for all x, y P r0, 1s. Graphons arise as the limit objects of sequences of large graphs
and has received phenomenal attention over the last few years. They provide a bridge between
combinatorics and analysis, and have found applications in several disciplines including statistical
physics, probability, and statistics; see for example [2, 8–11]. For a detailed exposition of the
theory of graph limits, we refer to Lovász [23]. Graphons provide a natural sampling procedure
for generating inhomogeneous variants of the classical Erdős–Rényi random graph, a concept that
has been proposed independently by various authors (see [6, 7, 13, 24] among others). Formally,
given a graphon W : r0, 1s2 Ñ r0, 1s, a W -random graph on the set of vertices rns :“ t1, 2, . . . , nu,
hereafter denoted by Gpn,W q, is obtained by connecting the vertices i and j with probability
W pUi, Ujq independently for all 1 ď i ă j ď n, where tUi : 1 ď i ď nu is an i.i.d. sequence
of U r0, 1s random variables. An alternative way to achieve this sampling is to generate i.i.d.
sequences tUi : 1 ď i ď nu and tYij : 1 ď i ă j ď nu of U r0, 1s random variables and then
assigning the edge pi, jq whenever tYij ď W pUi, Ujqu, for 1 ď i ă j ď n. Observe that setting
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2 BHATTACHARYA, CHATTERJEE, JANSON

W “Wp ” p P r0, 1s gives the classical (homogeneous) Erdős–Rényi random graph model, where
every edge is present independently with constant probability p.

Counts of subgraphs encode important structural information about the geometry of a net-
work. In fact, the convergence of a sequence of finite graphs to a graphon is precisely determined
by the convergence of its subgraph densities. As a consequence, understanding the asymptotic
properties of subgraph counts in W -random graphs is a problem of central importance in graph
limit theory. To this end, given a finite graph H “ pV pHq, EpHqq denote by XnpH,W q the
number of copies of H in the W -random graph Gpn,W q. More formally,

XnpH,W q “
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

ÿ

H 1PGHpti1,...,i|V pHq|uq

ź

pis,itqPEpH 1q

1 tYiaib ďW pUia , Uibqu , (1.1)

where, for any set S Ď rns, GHpSq denotes the collection of all subgraphs of the complete graph
K|S| on the vertex set S which are isomorphic to H. (We count unlabelled copies of H. Several
other authors count labelled copies, which multiplies XnpH,W q by |AutpHq|, cf. (2.7).) The
asymptotic distribution of XnpH,Wpq in the Erdős–Rényi model, where W “Wp ” p, has been
classically studied (in general with p “ ppnq) using various tools such as U -statistics [26, 27],
method of moments [28], Stein’s method [1], and martingales [17, 18], see also [21, Chapter 6],
and the precise conditions under which XnpH,Wpq is asymptotically normal are well-understood
[28]. In particular, when p P p0, 1q is fixed, XnpH,Wpq is asymptotically normal for any finite
graph H that is non-empty, i.e., has at least one edge.

In this paper we study the asymptotic distribution of XnpH,W q for general graphons W . This
problem has received significant attention recently, beginning with the work of Féray, Méliot,
and Nikeghbali [15], where the asymptotic normality for homomorphism densities in general
W -random graphs was derived using the framework of mod-Gaussian convergence. Using this
machinery the authors also obtained moderate deviation principles and local limit theorems
for the homomorphism densities in this regime. Very recently, using Stein’s method, rates of
convergence to normality (Berry–Esseen type bounds) have been derived as well, see [22] (which
also contain further related results) and [29]. See also [12] and the references therein for further
results.

However, interestingly, the limiting normal distribution of the subgraph counts obtained in
[15] can be degenerate depending on the structure of the graphon W . This phenomenon was
observed in [15], and it was explored in detail in the recent paper of Hladký, Pelekis, and
Šileikis [16] for the case where H “ Kr is the r-clique, for some r ě 2. They showed that
the usual Gaussian limit is degenerate when a certain regularity function, which encodes the
homomorphism density of Kr incident on a given ‘vertex’ of W , is constant almost everywhere
(a.e.). In this case, the graphon W is said to be Kr-regular and the asymptotic distribution

of XnpKr,W q (with another normalization, differing by a factor n1{2) has both Gaussian and
non-Gaussian components. In the present paper we extend this result to any fixed graph H. To
this end, we introduce the analogous notion of H-regularity and show that the fluctuations of
XnpH,W q depends on whether or not W is H-regular. In particular, if W is not H-regular, then,

XnpH,W q is asymptotically Gaussian, using a normalization factor n|V pHq|´1{2. However, if W is

H-regular, then the normalization factor becomes n|V pHq|´1 and yields a limiting distribution of
XnpH,W q that has, in general, a Gaussian component and another independent (non-Gaussian)
component which is a (possibly) infinite weighted sum of centered chi-squared random variables.
Here, the weights are determined by the spectrum of a graphon obtained from the 2-point
conditional densities of H in W , that is, the density of H in W when two vertices of H are
mapped to two ‘vertices’ of W , averaged over all pairs of vertices of H. The results are formally
stated in Theorem 2.9. Unlike in [16] which uses the method of moments, our proofs employ
the orthogonal decomposition for generalized U -statistics developed by Janson and Nowicki [20]
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(see also [19, Chapter 11.3]). This avoids cumbersome moment calculations and provides a more
streamlined framework for dealing with the asymmetries of general subgraphs.

There are also exceptional cases, where W is H-regular and normalization of XnpH,W q
by n|V pHq|´1 also yields a degenerate limit; then a non-trivial limit can be found by another
normalization. (We ignore trivial cases when XnpH,W q is deterministic.) This cannot happen
when H “ Kr as shown in [16], but we give an example of this degeneracy with H “ K1,3

(the 3-star); see Example 4.6. We also show that this higher-order degeneracy cannot happen
for H “ C4 (the 4-cycle) and H “ K1,2 (the 2-star); see Theorem 4.8 and Theorem 4.10,
respectively. It is an open problem to decide for which graphs H such higher-order degeneracies
may occur.

We also study the structure of W is when it is H-regular and one (but not both) of the two
components of the limit distribution in Theorem 2.9(2) vanishes, so that the limit distribution
either is normal, or lacks a normal component. In particular, we show that if H is bipartite
and W is H-regular, then the limit lacks a normal component if and only if W is t0, 1u-valued
almost everywhere (Theorem 4.3).

1.1. Organization. The rest of the paper is organized as follows. The limit theorems for the
subgraph counts are presented in Section 2. We compute the limits in some examples in Section
3. Degeneracies of the asymptotic distributions are discussed in Section 4. The main results are
proved in Sections 5–8.

2. Asymptotic Distribution of Subgraph Counts in W -Random Graphs

In this section we will state our main result on the asymptotic distribution XnpH,W q. The
section is organized as follows: In Section 2.1 we recall some basic definitions about graphons.
The notions of conditional homomorphism density and H-regularity are introduced in Section
2.2. Some spectral properties of the integral operator corresponding to a graphon are described
in Section 2.3. The result is formally stated in Section 2.4.

2.1. Preliminaries. A quantity that will play a central role in our analysis the homomorphism
density of a fixed multigraph F “ pV pF q, EpF qq (without loops) in a graphon W , which is
defined as:

tpF,W q “
ż

r0,1s|V pF q|

ź

ps,tqPEpF q

W pxa, xbq
|V pF q|ź

a“1

dxa. (2.1)

Note that this is the natural continuum analogue of the homomorphism density of a fixed graph
F “ pV pF q, EpF qq into finite (unweighted) graph G “ pV pGq, EpGqq which is defined as:

tpF,Gq :“ | hompF,Gq|
|V pGq||V pF q| , (2.2)

where |hompF,Gq| denotes the number of homomorphisms of F into G. In fact, it is easy to
verify that tpF,Gq “ tpF,WGq, where WG is the empirical graphon associated with the graph
G which defined as:

WGpx, yq “ 1tpr|V pGq|xs, r|V pGq|ysq P EpGqu. (2.3)

(In other words, to obtain the empirical graphon WG from the graph G, partition r0, 1s2 into
|V pGq|2 squares of side length 1{|V pGq|, and let WGpx, yq “ 1 in the pi, jq-th square if pi, jq P
EpGq, and 0 otherwise.)

Let H “ pV pHq, EpHqq be a simple graph. For convenience, we will throughout the paper
assume that V pHq “ t1, 2, . . . , |V pHq|u. Then, the homomorphism density defined (2.1) can
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also interpreted as the probability that a W -random graph on |V pHq| vertices contains H, that
is,

tpH,W q “ PpGp|V pHq|,W q Ě Hq. (2.4)

To see this, recall the construction of a W -random graph and note from (2.1) that,

tpH,W q “ E

»
– ź

pa,bqPEpHq

W pUa, Ubq
fi
fl “ E

»
– ź

pa,bqPEpHq

1tYab ďW pUa, Ubqu
fi
fl

“ E r1tGp|V pHq|,W q Ě Hus . (2.5)

Next, recalling (1.1) note that

EXnpH,W q “
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

ÿ

H 1PGHpti1,...,i|V pHq|uq

tpH,W q

“
ˆ

n

|V pHq|
˙
|GHpt1, . . . , |V pHq|uq| ¨ tpH,W q (2.6)

where the last equality follows since the number of subgraphs of K|V pHq| on ti1, . . . , i|V pHq|u
isomorphic to H is the same for any collection of distinct indices 1 ď i1 ă ¨ ¨ ¨ ă i|V pHq| ď n.
Clearly,

|GHpt1, . . . , |V pHq|uq| “ |V pHq|!
|AutpHq| , (2.7)

where AutpHq is the collection of all automorphisms of H, that is, the collection of permutations
σ of the vertex set V pHq such that px, yq P EpHq if and only if pσpxq, σpyqq P EpHq. This implies,
from (2.6),

EXnpH,W q “
pnq|V pHq|
|AutpHq| tpH,W q, (2.8)

where pnq|V pHq| :“ npn´ 1q ¨ ¨ ¨ pn´ |V pHq| ` 1q.
2.2. Conditional Homomorphism Densities and H-Regularity. In this section we will
formalize the notion of H-regularity of a graphon W . To this end, we need to introduce the
notion of conditional homomorphism densities. Throughout, we will assume H “ pV pHq, EpHqq
is a non-empty simple graph with vertices labeled V pHq “ t1, 2, . . . , |V pHq|u.
Definition 2.1. Fix 1 ď K ď |V pHq| and an ordered set a “ pa1, a2, . . . , aKq of distinct vertices
a1, a2, . . . , aK P V pHq. Then the K-point conditional homomorphism density function of H in
W given a is defined as:

tapx, H,W q :“ E

»
– ź

pa,bqPEpHq

W pUa, Ubq
ˇ̌
ˇ Uaj “ xj , for 1 ď j ď K

fi
fl

“ P
`
Gp|V pHq|,W q Ě H

ˇ̌
Uaj “ xj , for 1 ď j ď K

˘
, (2.9)

where x “ px1, x2, . . . , xKq. In other words, tapx, H,W q is the homomorphism density of H in
the graphon W when the vertex aj P V pHq is marked with the value xj P r0, 1s, for 1 ď j ď K.

The conditional homomorphism densities will play a crucial role in the description of the
limiting distribution of XnpH,W q. In particular, the H-regularity of a graphon W is determined
by the 1-point conditional homomorphism densities, which we formalize below:
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Definition 2.2 (H-regularity of a graphon). A graphon W is said to be H-regular if

tpx,H,W q :“ 1

|V pHq|
|V pHq|ÿ

a“1

tapx,H,W q “ tpH,W q, (2.10)

for almost every x P r0, 1s.
Note that in (2.10) it is enough to assume that tpx,H,W q is a constant for almost every

x P r0, 1s. This is because
ż 1

0
tapx,H,W qdx “ tpH,W q, (2.11)

for all a P V pHq. Hence, if tpx,H,W q is a constant a.e., then the constant must be tpH,W q.
Therefore, in other words, a graphon W is H-regular if the homomorphism density of H in W
when one of the vertices of H is marked, is a constant independent of the value of the marking.

Remark 2.3. Note that when H “ Kr is the r-clique, for some r ě 2, then tapx,H,W q “
tbpx,H,W q, for all 1 ď a ‰ b ď r. Hence, (2.10) simplifies to

t1px,Kr,W q “ E

« ź

1ďaăbďr

W pUa, Ubq
ˇ̌
ˇ̌ U1 “ x

ff
“ tpH,W q, for almost every x P r0, 1s, (2.12)

which is precisely the notion of Kr-regularity defined in [16].

Remark 2.4. Recall that the degree function of a graphon W is defined as

dW pxq :“
ż

r0,1s
W px, yqdy. (2.13)

Note that for H “ K2, (2.9) yields

t1px,K2,W q “ E
“
W pU1, U2q

ˇ̌
U1 “ x

‰ “
ż

r0,1s
W px, yq dy “ dW pxq. (2.14)

Hence, the notion of K2-regularity coincides with the standard notion of degree regularity, where
the degree function dW pxq :“ ş

r0,1sW px, yqdy is constant a.e.

2.3. Spectrum of Graphons and 2-Point Conditional Densities. Hereafter, we denote
by W0 the space of all graphons, which is the collection of all symmetric, measurable functions
W : r0, 1s2 Ñ r0, 1s. We let also W1 be the space of all bounded, symmetric, measurable
functions W : r0, 1s2 Ñ r0,8q. Every graphon W P W0, or more generally W P W1, defines an
operator TW : L2r0, 1s Ñ L2r0, 1s as follows:

pTW fqpxq “
ż 1

0
W px, yqfpyqdy, (2.15)

for each f P L2r0, 1s. TW is a symmetric Hilbert–Schmidt operator; thus it is compact and has
a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we
denote by SpecpW q, with

ÿ

λPSpecpW q

λ2 “
ĳ

W px, yq2 dx dy ă 8. (2.16)

Moreover, a.e.,

pTW fqpxq “
ÿ

λPSpecpW q

λxf, φλyφλpxq (2.17)
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and

W px, yq “
ÿ

λPSpecpW q

λφλpxqφλpyq, (2.18)

where tφλuλPSpecpW q denotes an orthonormal system of eigenfunctions associated with SpecpW q.
For a more detailed discussion on the spectral properties of graphons and their role in graph
limit theory, see [23, Chapters 7, 11].

To describe the limiting distribution of XnpH,W q when W is H-regular, we will need to
understand the spectral properties of the following graphon obtained from the 2-point conditional
densities:

Definition 2.5. Given a graphon W P W0 and a simple connected graph H “ pV pHq, EpHqq,
the 2-point conditional graphon induced by H is defined as:

WHpx, yq “ 1

2|AutpHq|
ÿ

1ďa‰bď|V pHq|

ta,bppx, yq, H,W q, (2.19)

where ta,bppx, yq, H,W q is the 2-point conditional homomorphism density function of H in W

given the vertices pa, bq, as in Definition 2.1.1 (The normalization factor in (2.19) is chosen for
later convenience in e.g. (2.25).)

Intuitively, WHpx, yq can be interpreted as the homomorphism density of H in W containing
the ‘vertices’ x, y P r0, 1s.

Note that a graphon W is H-regular (see Definition 2.2) if and only if the 2-point conditional
graphon WH is degree regular (see Remark 2.4). This is because, for all x P r0, 1s,

ż 1

0
WHpx, yq dy “ |V pHq| ´ 1

2|AutpHq|
|V pHq|ÿ

a“1

tapx,H,W q, (2.20)

and the RHS of (2.20) is a constant if and only if W is H-regular. In fact, if W is H-regular,

then 1
|V pHq|

ř|V pHq|
a“1 tapx,H,W q “ tpH,W q a.e.; hence, the degree of WH becomes

ż 1

0
WHpx, yq dy “ |V pHq|p|V pHq| ´ 1q

2|AutpHq| ¨ tpH,W q :“ dWH
, (2.21)

for almost every x P r0, 1s. This implies that, if W is H-regular, then dWH
is an eigenvalue of

the operator TWH
(recall (2.15)) and φ ” 1 is a corresponding eigenvector. In this case, we will

use Spec´pWHq to denote the collection SpecpWHq with the multiplicity of the eigenvalue dWH

decreased by 1. (Note that dWH
ą 0 by (2.21) unless tpH,W q “ 0, or |V pHq| “ 1; these cases

are both trivial, see Remark 2.10.)

2.4. Statement of the Main Result. To state our results on the asymptotic distribution of
XnpH,W q, we need to define a few basic graph operations.

Definition 2.6. For a graph H “ pV pHq, EpHqq on vertex set t1, 2, ¨ ¨ ¨ , ru define,

E`pHq “ tpa, bq : 1 ď a ‰ b ď r, pa, bq or pb, aq P EpHqu (2.22)

Definition 2.7. Fix r ě 1 and consider two graphs H1 and H2 on the vertex set t1, 2, ¨ ¨ ¨ , ru
and edge sets EpH1q and EpH2q, respectively.

1Strictly speaking, WH is in general not a graphon in W0 because it can take values greater than 1. However,
WH PW1, and we still call it a graphon.
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H1

a

H1

⊕

a,b

H2
H2

b

⊕

a,b

Figure 1. The pa, bq-vertex join of the graphs H1 and H2.

‚ Vertex Join: For a, b P t1, 2, ¨ ¨ ¨ , ru, the pa, bq-vertex join of H1 and H2 is the graph
obtained by identifying the a-th vertex of H1 with the b-th vertex of H2 (see Figure 1
for an illustration). The resulting graph will be denoted by

H1

à
a,b

H2.

‚ Weak Edge Join: For pa, bq P E`pH1q and pc, dq P E`pH2q, with 1 ď a ‰ b ď r
and 1 ď c ‰ d ď r, the pa, bq, pc, dq-weak edge join of H1 and H2 is the graph obtained
identifying the vertices a and c and the vertices b and d and keeping a single edge between
the two identified vertices (see Figure 2 for an illustration). The resulting graph will be
denoted by

H1

á

pa,bq,pc,dq

H2.

‚ Strong Edge Join: For pa, bq P E`pH1q and pc, dq P E`pH2q, with 1 ď a ‰ b ď r
and 1 ď c ‰ d ď r, the pa, bq, pc, dq-strong edge join of H1 and H2 is the multi-graph
obtained identifying the vertices a and c and the vertices b and d and keeping both the
edges between the two identified vertices (see Figure 2 for an illustration). The resulting
graph will be denoted by

H1

à

pa,bq,pc,dq

H2.

Remark 2.8. We note that both the weak and strong edge join operations can be extened to
arbitrary pa, bq P V pH1q2 and pc, dq P V pH2q2 with a ‰ b and c ‰ d; in the strong join we keep
all edges, but in the weak join we keep the join simple by merging any resulting double edge.
(Thus, if either pa, bq R E`pH1q or pc, dq R E`pH2q, then the weak and strong edge joins are the
same graph.)

Having introduced the framework and the relevant definitions, we are now ready to state our
main result regarding the asymptotic distribution of XnpH,W q, the number of copies of H in
the W -random graph Gpn,W q.
Theorem 2.9. Fix a graphon W P W0 and a simple graph H “ pV pHq, EpHqq with vertices
labeled V pHq “ t1, 2, . . . , |V pHq|u. Then for XnpH,W q as defined in (1.1) the following hold,
as nÑ8:

p1q For any W ,

XnpH,W q ´ pnq|V pHq|
|AutpHq| tpH,W q

n|V pHq|´
1
2

DÝÑ Np0, τ2
H,W q, (2.23)
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H1

a

H2

c

b

d
à

pa,bq,pc,dq

á
pa,bq,pc,dq

H1

à
pa,bq,pc,dq

H2

H1

á
pa,bq,pc,dq

H2

Figure 2. The weak and strong edge joins of the graphs H1 and H2.

where

τ2
H,W :“ 1

|AutpHq|2

»
– ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
´ |V pHq|2tpH,W q2

fi
fl ě 0. (2.24)

Moreover, τ2
H,W ą 0 if and only if W is not H-regular. Thus, if W is not H-regular,

then XnpH,W q is asymptotically normal.
p2q If W is H-regular, then

XnpH,W q ´ pnq|V pHq|
|AutpHq| tpH,W q

n|V pHq|´1

DÝÑ σH,W ¨ Z `
ÿ

λPSpec´pWHq

λpZ2
λ ´ 1q, (2.25)

where Z and tZλuλPSpec´pWHq
all are independent standard Gaussians,

σ2
H,W :“ 1

2|AutpHq|2
ÿ

pa,bq,pc,dqPE`pHq

«
t

˜
H

á

pa,bq,pc,dq

H,W

¸
´ t

˜
H

à

pa,bq,pc,dq

H,W

¸ff
ě 0,

(2.26)

and Spec´pWHq is the multiset SpecpWHq with multiplicity of the eigenvalue dWH
precall

(2.21)q decreased by 1.

The sum in (2.25) may be infinite, but it converges in L2 and a.s. by (2.16). The proof
of Theorem 2.9 uses the projection method for generalized U -statistics developed in Janson
and Nowicki [20], which allows us to decompose XnpH,W q over sums of increasing complexity.
(See also [19, Chapter 11.3] and [22].) The terms in the expansion are indexed by the vertices
and edges subgraphs of the complete graph of increasing sizes, and the asymptotic behavior of
XnpH,W q is determined by the non-zero terms indexed by the smallest size graphs. Details of
the proof are given in Section 5. Various examples are discussed in Section 3.
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Remark 2.10. We note some trivial cases, where XnpH,W q is deterministic. First, tpH,W q “ 1
if and only if H is empty (has no edge), or W is complete, that is, W ” 1. In both cases,

almost surely XnpH,W q “ pnq|V pHq|
|AutpHq| . Similarly, if W is H-free, that is, tpH,W q “ 0, then

almost surely XnpH,W q “ 0. Note also that in these cases with tpH,W q P t0, 1u, we have
tpx,H,W q “ tpH,W q a.e., e.g. by (2.11), and thus W is H-regular. Theorem 2.9 is valid for
these cases too (with limits 0), but is not very interesting, and we may without loss of generality
exclude these cases and assume 0 ă tpH,W q ă 1.

Remark 2.11. As mentioned earlier, the result in Theorem 2.9(1) has been proved recently by
Féray, Méliot, and Nikeghbali [15, Theorem 21] using the machinery of mod-Gaussian conver-
gence. They noted that the limiting distribution in [15, Theorem 21] might be degenerate, that
is, τH,W “ 0, and called this case singular. (This is thus our H-regular case). Méliot [25] studied
the (globally) singular graphons, i.e., the graphons W for which τH,W “ 0, for all graphs H. For
such graphons [25] derived the order of fluctuations for the homomorphism densities, but did
not identify the limiting distribution.

The main emphasis of the present paper is Theorem 2.9(2), for H-regular graphons, where
the more interesting non-Gaussian fluctuation emerges. Moreover, it turns out that there are
non-trivial cases where also the limit in Theorem 2.9(2) is degenerate. We discuss this further
in Section 4, where we give both an example of such a higher-order degeneracy, and examples
of graphs H for which this cannot happen for any W . We will also study when one of the two
components of the limit (the normal and the non-normal component) vanishes. In particular, in
the classical Erdős–Rényi case W ” p, Theorem 2.9(2) applies to every H with the non-normal
component vanishing, so the limit is normal, which is a classical result; see further Example 3.3.

Remark 2.12. For the closely related problem of counting induced subgraphs isomorphic to
H, limit distributions of the type in Theorem 2.9(2) with a non-normal component occur (for

special H) even in the Erdős–Rényi case W ” p, but then with normalization by n|V pHq|´2, see
[1, 20]. It seems interesting to study induced subgraph counts in Gpn,W q for general graphons
W with our methods, but we have not pursued this.

Finally, it is worth mentioning that limiting distributions very similar to that in Theorem
2.9(2) also appears in the context of counting monochromatic subgraphs in uniform random
colorings of sequences of dense graphs [3, 4]. Although this is a fundamentally different problem,
the appearance of similar limiting objects in both situations is interesting.

3. Examples

In this section we compute the limiting distribution of XnpH,W q for various specific choices
of H and W using Theorem 2.9.

Example 3.1. (Cliques) Suppose H “ Kr, the complete graph on r vertices, for some r ě 2.
This is the case that was studied in [16]. To see that Theorem 2.9 indeed recovers the main
result in [16], first recall Remark 2.3, which shows that our notion of H-regularity matches with
the notion of Kr-regularity defined in [16]. Next, note that by the symmetry of the vertices of
a clique,

t

˜
H

à
a,b

H,W

¸
“ t

˜
H

à
1,1

H,W

¸
, (3.1)
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for 1 ď a, b ď |V pHq|, and |AutpKrq| “ r!. Therefore, Theorem 2.9(1) implies, when W is not
Kr-regular,

XnpKr,W q ´
`
n
r

˘
tpKr,W q

nr´
1
2

DÑ N

˜
0,

1

pr ´ 1q!2
«
t

˜
Kr

à
1,1

Kr,W

¸
´ tpKr,W q2

ff¸
, (3.2)

which is precisely the result in [16, Theorem 1.2(b)]. For the Kr-regular case, note that by
the symmetry of the edges of a clique, the 2-point conditional graphon induced by Kr (recall
Definition 2.5) simplifies to

WKrpx, yq “
1

2pr ´ 2q! t1,2ppx, yq,Kr,W q. (3.3)

Moreover, for all pa, bq, pc, dq P EpKrq,

t

˜
Kr

á

pa,bq,pc,dq

Kr,W

¸
“ t

˜
Kr

á

p1,2q,p1,2q

Kr,W

¸
, (3.4)

and similarly for the strong edge-join operation. Hence, Theorem 2.9(2) implies

XnpKr,W q ´
`
n
r

˘
tpKr,W q

nr´1

DÑ σKr,W ¨ Z `
ÿ

λPSpec´pWKr q

λpZ2
λ ´ 1q (3.5)

with

σ2
Kr,W “ 1

2pr ´ 2q!2
#
t

˜
H

á

p1,2q,p1,2q

H,W

¸
´ t

˜
H

à

p1,2q,p1,2q

H,W

¸+
, (3.6)

as shown in [16, Theorem 1.2(c)].

K1,4 = K1,2

⊕

(1,1)

K1,2 P4 = K1,2

⊕

(2,3)

K1,2 B4 = K1,2

⊕

(1,3)

K1,2

1

2 3
K1,2

Figure 3. The different non-isomorphic graphs that can be obtained by the
vertex join of two copies of K1,2 (with vertices labeled t1, 2, 3u as in the inset).

Example 3.2. (2-Star) Suppose H “ K1,2 with the vertices labelled t1, 2, 3u as shown in Figure
3. In this case, for any graphon W PW0,

t1px,K1,2,W q “
ż 1

0
W px, yqW px, zq dy dz “ dW pxq2, (3.7)
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where the degree function dW pxq is defined in (2.13), and

t2px,K1,2,W q “ t3px,K1,2,W q “
ż 1

0
W px, yqW py, zqdy dz “

ż 1

0
W px, yqdW pyq dy, (3.8)

Then by Definition 2.2, (3.7) and (3.8), W is K1,2-regular if and only if

dW pxq2 ` 2

ż 1

0
W px, yqdW pyqdy “ 3t

`
K1,2,W

˘
, for a.e. x P r0, 1s. (3.9)

In particular, if W is degree regular, then the left-hand side of (3.9) is constant, and thus W is
K1,2-regular. (We conjecture that the converse holds too, but we have not verified this.)

Therefore, from Theorem 2.9 we have the following:

‚ If (3.9) does not hold, then

XnpK1,2,W q ´ 3
`
n
3

˘
tpK1,2,W q

n
5
2

DÑ Np0, τ2
K1,2,W q (3.10)

with

τ2
K1,2,W :“ 1

4

!
tpK1,4,W q ` 4tpP4,W q ` 4tpB4,W q ´ 9tpK1,2,W q2

)
, (3.11)

where the graphs K1,4, P4, and B4 are as shown in Figure 3. Note that K1,4 is the
4-star (obtained by joining the two central vertices of the 2-stars), P4 is the path with 4
edges (obtained by joining a leaf vertex of one 2-star with a leaf vertex of another), and
B4 is the graph obtained by joining the central vertex of one 2-star with a leaf vertex
of another. For a concrete example of a graphon which is not K1,2-regular, consider
W0px, yq :“ xy. In this case, dW0pxq “ 1

2x, for all x P r0, 1s, and (3.9) does not hold;
hence, W0 is not K1,2-regular.

‚ For every H,

XnpK1,2,W q ´ 3
`
n
3

˘
tpK1,2,W q

n2

DÑ σK1,2,W ¨ Z `
ÿ

λPSpec´pWK1,2
q

λpZ2
λ ´ 1q, (3.12)

with

σ2
K1,2,W :“ 2ttpK1,3,W q ` tpP3,W q ´ tpK`

1,3,W q ´ tpP`3 ,W qu, (3.13)

where K1,3 is the 3-star and P3 is the path shown in Figure 4(a) (obtained by the weak
edge-join of two copies of K1,2 using the edges p1, 2q, p1, 2q and p1, 2q, p2, 1q respectively)
and the K`

1,3 and P`3 are the multigraphs shown in Figure 4(b) (obtained by the strong

edge-join of two copies of K1,2 using the edges p1, 2q, p1, 2q and p1, 2q, p2, 1q respectively).
Moreover, in this case the 2-point conditional graphon WK1,2 simplifies to:

WK1,2px, yq “
1

2

"
W px, yqpdW pxq ` dW pyqq `

ż
W px, zqW py, zq dz

*
, (3.14)

since t1,2px, y,K1,2,W q “ t1,3px, y,K1,2,W q “ W px, yqdW pxq and t2,3px, y,K1,2,W q “ş
r0,1sW px, zqW py, zqdz, and similarly for the others. For a concrete example of graphon

which is K1,2-regular consider

W̃ px, yq :“
#
p if px, yq P “0, 1

2

‰2 Ť“
1
2 , 1

‰2
,

0 otherwise.
(3.15)

Note that this is a 2-block graphon (with equal block sizes) taking value p in the diagonal
blocks and zero in the off-diagonal blocks. (One can think of this as the ‘disjoint union
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K1,3 “ K1,2

á

p1,2q,p1,2q

K1,2 K`
1,3 “ K1,2

à

p1,2q,p1,2q

K1,2

(b)

P3 “ K1,2

á

p1,2q,p2,1q

K1,2 P`3 “ K1,2

à

p1,2q,p2,1q

K1,2

(a)

Figure 4. (a) The weak edge join of two copies of K1,2 and (b) the strong edge
join of two copies of K1,2.

two Erdős–Rényi graphons’.) It is easy to check that this graphon is degree regular,
hence K1,2-regular. In fact, in this case

W̃K1,2px, yq “
#

3p2

4 if px, yq P “0, 1
2

‰2 Ť“
1
2 , 1

‰2
,

0 otherwise.
(3.16)

and σ2
K1,2,W̃

“ 1
2p

3p1´ pq. Moreover,

SpecpW̃K1,2q “ t3p2{8, 3p2{8u, (3.17)

with the eigenfunctions 1 and 1tr0, 1{2su´1tr1{2, 1su, respectively. In particular, dWK1,2
“

3p2{8 in agreement with (2.21). Consequently, Spec´pW̃K1,2q “ t3p2{8u.
Example 3.3. (Erdős–Rényi graphs) Suppose that W “ Wp ” p for some p P p0, 1q. By
symmetry, tpx,H,W q does not depend on x, and thus Wp is H-regular for every H. Further-
more, by (2.19), also the 2-point conditional graphon WH is constant, which implies (see also
Proposition 4.1) that Spec´pWHq “ H and thus the limit in Theorem 2.9(2) is normal for every
non-empty H. (We have σ2

H,W ą 0 by (2.26).) As said earlier, this is a classical result, see e.g.

[1, 17, 18, 21, 26–28].

4. Degeneracies of the Asymptotic Distribution

In this section we will discuss the degeneracies of asymptotic distribution when W in H-
regular; we will throughout the section tacitly ignoring the trivial cases in Remark 2.10, i.e., we



FLUCTUATIONS OF SUBGRAPH COUNTS IN GRAPHON BASED RANDOM GRAPHS 13

assume that 0 ă tpH,W q ă 1. Towards this denote

ZnpH,W q :“
XnpH,W q ´ pnq|V pHq|

|AutpHq| tpH,W q
n|V pHq|´1

. (4.1)

Theorem 2.9(2) shows that when W is H-regular,

ZnpH,W q DÑ σH,W ¨ Z `
ÿ

λPSpec´pWHq

λpZ2
λ ´ 1q, (4.2)

where Z, tZλuλPSpec´pWHq
are all independent standard Gaussians, and σ2

H,W is as defined in
Theorem 2.9. This raises the following natural questions:

‚ Is the limiting distribution of ZnpH,W q non-degenerate? Given the result in Theo-
rem 2.9 it is natural to wonder whether, when W is H-regular, the limiting distribution
of ZnpH,W q in (4.2) is always non-degenerate. This is indeed the case for cliques: if
H “ Kr for some r ě 2, then it was shown in [16, Remark 1.6] that the limit in (4.2)
is never degenerate. However, for general graphs H the situation is surprisingly more
complicated. It turns out that there are graphs H for which there exist a H-regular
graphon W , with 0 ă tpH,W q ă 1, such that the limit in (4.2) is degenerate (see
Example 4.6). Naturally this raises the question: For which graphs H is the limiting
distribution of ZnpH,W q always non-degenerate? In Section 4.3 we answer this question
in the affirmative when H “ C4 is the 4-cycle and H “ K1,2 is the 2-star.

In cases when the limit in (4.2) is non-degenerate, we can ask about the structure of W when
one of the components of the limit vanishes:

‚ When is the limiting distribution of ZnpH,W q normal? Note from (4.2) that ZnpH,W q
is asymptotically Gaussian if and only if the non-Gaussian component

ÿ

λPSpec´pWHq

λpZ2
λ ´ 1q

is degenerate. We show in Proposition 4.1 that this happens precisely when the 2-point
conditional graphon WH is constant a.e.

‚ When is the limiting distribution of ZnpH,W q normal-free? Clearly, the limit (4.2)
has no Gaussian component whenever σH,W “ 0. In Theorem 4.3 we characterize the
structure of such graphons when H is bipartite: we show that if H is bipartite, then the
limit in (4.2) is normal-free if and only if W px, yq P t0, 1u a.e. (that is, W is random-
free). We also show that there are non-bipartite graphs H and graphons W which are
not random-free for which σH,W “ 0 (Example 6.1).

4.1. Degeneracy of the Non-Gaussian Component. The following proposition character-
izes when the limit in (4.2) is Gaussian. It extends the special case H “ Kr which was shown
in [16, Theorem 1.3].

Proposition 4.1. Let H be a simple graph and let W be a H-regular graphon. Then the
following are equivalent:

p1q ZnpH,W q DÑ Np0, σ2
H,W q.

p2q řλPSpec´pWHq
λpZ2

λ ´ 1q is degenerate.

p3q Spec´pWC4q “ H.

p4q WHpx, yq “ dWH
a.e., where dWH

“ |V pHq|p|V pHq|´1q
2|AutpHq| ¨ tpH,W q is as defined in (2.21).
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Proof. From (4.2) it is clear that (1), (2) and (3) are equivalent. Next, recalling the discussion
following (2.21), Spec´pWHq “ H if and only if SpecpWHq “ tdWH

u; furthermore, since W is
H-regular, WH is degree regular and, hence, φ ” 1 is an eigenfunction corresponding to dWH

.
Therefore, by (2.18), if SpecpWHq “ tdWH

u, then

WHpx, yq “ dWH
φpxqφpyq “ dWH

a.e. (4.3)

Conversely, WHpx, yq “ dWH
a.e. implies that dWH

is the only non-zero eigenvalue of TWH
, and

thus Spec´pWHq “ H. This establishes that (3) and (4) are equivalent. �

4.2. Degeneracy of the Gaussian Component. The Gaussian component in the limit (4.2)
is degenerate when σ2

H,W “ 0. To study the structure of such graphons we need a few definitions.

For a graph F “ pV pF q, EpF qq and S Ď V pF q, the neighborhood of S in F is NF pSq “ tv P
V pF q : D u P S such that pu, vq P EpF qu. Moreover, for u, v P V pF q, F ztu, vu is the graph
obtained by removing the vertices u, v and all the edges incident on them. For notational
convenience we introduce the following definition:

Definition 4.2. Let H be a labeled finite simple graph and W a graphon. Then, for 1 ď u ‰
v ď |V pHq|, the function t´u,vp¨, ¨, H,W q : r0, 1s2 Ñ r0, 1s is defined as:

t´u,vpx, y,H,W q
“

ż

r0,1s|V pHq|´2

ź

rPNHpuqztvu

W px, zrq
ź

sPNHpvqztuu

W py, zsq
ź

pr,sqPEpHztu,vuq

W pzr, zsq
ź

rRtu,vu

dzr. (4.4)

Thus, if pu, vq P EpHq, then

tu,vpx, y,H,W q “W px, yqt´u,vpx, y,H,W q. (4.5)

Note that

σ2
H,W “ cH

ÿ

pa,bq,pc,dqPE`pHq

ż
t´a,bpx, y,H,W qt´c,dpx, y,H,W qW px, yqp1´W px, yqqdx dy, (4.6)

where cH :“ 1
2|AutpHq|2

. It is clear from (4.6) that if W is random free, then σ2
H,W “ 0 and hence,

if W is H-regular, the asymptotic distribution does not have a normal component. Interestingly,
the converse is also true whenever H is bipartite. This is formulated in the following theorem:

Theorem 4.3. If H is a non-empty bipartite graph with tpH,W q ą 0, then σ2
H,W “ 0 if and

only if W is random-free.

The proof of Theorem 4.3 is given in Section 6. It entails showing, using the bipartite structure
of H, that for almost every px, yq such that W px, yq P p0, 1q, we have t´a,bpx, y,H,W q ą 0, for

a ‰ b P V pHq such that pa, bq P EpHq. Consequently, from (4.6), σ2
H,W ą 0 whenever the set

tpx, yq P r0, 1s2 : W px, yq P p0, 1qu has positive Lebesgue measure. An immediate consequence of
Theorem 4.3 is that for a bipartite graph H and an H-regular W , the asymptotic distribution
of ZnpH,W q is non-degenerate whenever W is not random free.

Remark 4.4. The bipartite assumption in Theorem 4.3 is necessary, in the sense that there
exist non-bipartite graphs H and graphons W with tpH,W q ą 0 such that σ2

H,W “ 0, but W is
not random-free. We discuss this in Example 6.1.

For non-bipartite H, we note only the following, which extends [16, Proposition 1.5].

Proposition 4.5. We have σ2
H,W “ 0 if and only if W px, yq “ 1 for a.e. px, yq such that

ta,bpx, y,H,W q ą 0 for some pa, bq P E`pHq.
Proof. An immediate consequence of (4.6) and (4.5). �
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4.3. Degeneracy of the Limit in (4.2). We begin with an example where the limit in (4.2)
is degenerate.

Example 4.6. Let H “ K1,3 be the 3-star on vertex set t1, 2, 3, 4u, where the root node is
labeled 1. Further, suppose that W is the complete bipartite graphon:

W px, yq :“
#

0 if px, yq P “0, 1
2

‰2 Ť`
1
2 , 1

‰2
,

1 otherwise.
(4.7)

To begin with note that dW pxq “
ş1
0 W px, yqdy “ 1

2 , for all x P r0, 1s. Therefore,

1

4

4ÿ

i“1

ti px,K1,3,W q “ 1

4

„
dW pxq3 ` 3

ż
W px, tqdW ptq2 dt


“ 1

8
. (4.8)

This establishes that W is K1,3-regular, and that tpK1,3,W q “ 1{8. Next, since W P t0, 1u,
by Theorem 4.3, σ2

K1,3,W2
“ 0. Hence, to show that the limit distribution of ZnpK1,3,W q is

degenerate it suffices to check that
ř
λPSpec´pWK1,3

q λ
2 “ 0. By Proposition 4.1, this is equivalent

to showing

WK1,3px, yq “
12

2 |AutpK1,3q| t pK1,3,W q “ 1

8
, (4.9)

for a.e. px, yq P r0, 1s2 (since |AutpK1,3q| “ 3! “ 6). Towards this recall (2.19), which yields

WK1,3px, yq “
1

2|AutpK1,3q|
ÿ

1ďa‰bď4

ta,b px, y,K1,3,W q

“ 1

12

„
3W px, yq

ż
W px, zqW px, tqdz dt` 3W px, yq

ż
W py, zqW py, tqdz dt

` 6

ż
W px, tqW py, tqW pz, tq dz dt



“ 1

12

„
3W px, yqdW pxq2 ` 3W px, yqdW pyq2 ` 6

ż
dW ptqW px, tqW py, tqdt



“ 1

12

„
3

2
W px, yq ` 3

ż
W px, tqW py, tqdt


. (4.10)

Now, observe that if W px, yq “ 0 then
ş
W px, tqW py, tqdt “ 1

2 , which implies, from (4.10),

WK1,3px, yq “ 1
8 . Further, when W px, yq “ 1, then

ş
W px, tqW py, tq dt “ 0, which implies

WK1,3px, yq “ 1
8 . Thus for all px, yq P r0, 1s2, WK1,3 “ 1{8, which establishes (4.9). This shows

that limiting distribution of ZnpK1,3,W q is degenerate for W as in (4.7).
In fact, in this example, we can easily find the asymptotic distribution of WK1,3 directly. Let

M :“ ˇ̌ti : Ui ď 1
2u
ˇ̌ „ Bin

`
n, 1

2

˘
, and M̂ :“M ´ n{2. Then

XnpK1,3,W q “M

ˆ
n´M

3

˙
` pn´Mq

ˆ
M

3

˙

“ 1

6

´
Mpn´Mq`pn´Mq2 ´ 3pn´Mq ` 2

˘` pn´MqM`
M2 ´ 3M ` 2

˘¯

“ 1

6
Mpn´Mq`pn´Mq2 `M2 ´ 3n` 4

˘

“ 1

6

´n
2
` M̂

¯´n
2
´ M̂

¯´´n
2
´ M̂

¯2 `
´n

2
` M̂

¯2 ´ 3n` 4
¯
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“ 1

6

´´n
2

¯2 ´ M̂2
¯´

2
´n

2

¯2 ` 2M̂2 ´ 3n` 4
¯

“ 1

3

´´n
2

¯4 ´ M̂4
¯
´ 3n´ 4

6

´´n
2

¯2 ´ M̂2
¯
. (4.11)

Hence, subtracting the mean and using (2.8),

XnpK1,3,W q ´ pnq4
48

n2
“ ´M̂

4 ´ EM̂4

3n2
` 3n´ 4

6n
¨ M̂

2 ´ EM̂2

n
. (4.12)

Since the central limit theorem yields M̂{n1{2 DÑ Z{2, with all moments, where Z „ Np0, 1q,
(4.12) yields

XnpK1,3,W q ´ pnq4
48

n2

DÝÑ ´Z
4 ´ 3

48
` Z2 ´ 1

8
“ ´ 1

48

`
Z4 ´ 6Z2 ` 3

˘ “ ´ 1

48
h4pZq, (4.13)

where h4 is the 4th Hermite polynomial (using the normalization in e.g. [19, Example 3.18]).

Consequently, in this example, the correct normalization is by n2 “ n|V pHq|´2, and the limit
distribution is given by a fourth-degree polynomial of a Gaussian variable.

The example above raises the question for which graphs H is the limiting distribution of
ZnpH,W q in Theorem 2.9(2) non-degenerate for all graphons W . In the following we will show
that the limit is always non-degenerate when H “ C4 or H “ K1,2 (the 4-cycle and the 2-star).
Our proofs use the specific structure of the 4-cycle and 2-star and it remains unclear for what
other graphs can one expect the non-degeneracy result to hold.

Non-Degeneracy of the Limit for the 4-Cycle: We begin by deriving explicit conditions for
degeneracy of the two components of the limiting distribution of ZpC4,W q. (For the normal
part, we can also use Theorem 4.3, but we find it interesting to first make a direct evaluation of
the condition σ2

H,W “ 0.) Towards this define:

U1px, yq :“
ż

r0,1s
W px, sqW py, sq ds and U2px, yq :“

ż

r0,1s2
W px, sqW ps, tqW py, tq dsdt.

(4.14)

Lemma 4.7. Suppose W is a C4-regular graphon with tpC4,W q ą 0. Then the following hold:

(a) Spec´pWC4q “ H if and only if

U1px, yq2 ` 2W px, yqU2px, yq “ 3tpC4,W q, a.e. px, yq P r0, 1s2. (4.15)

(b) σ2
C4,W

“ 0 if and only if
ż

r0,1s2
U2

2 px, yq
`
W px, yq ´W 2px, yq˘ dx dy “ 0. (4.16)

As a consequence, the limit of ZnpC4,W q in (4.2) is degenerate if and only if (4.15) and (4.16)
hold.

Proof. Since all the vertices of the 4-cycle are symmetric, from Definition 2.2 we have the
following: The graphon W is C4-regular ifż

r0,1s3
W px, yqW py, zqW pz, tqW pt, xqdy dz dt “ tpC4,W q a.e. x P r0, 1s. (4.17)

Moreover, since |AutpC4q| “ 8, by Definition 2.5, the 2-point conditional graphon induced by
C4 is given by

WC4px, yq “
4U1px, yq2 ` 8W px, yqU2px, yq

2|AutpC4q| “ U1px, yq2 ` 2W px, yqU2px, yq
4

, (4.18)
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where U1, U2 are as defined in (4.14). Hence, Proposition 4.1 shows that Spec´pWC4q “ H if
and only if (4.15) holds.

Next, since all the edges of C4 are symmetric, the weak edge join of 2 copies of C4 is always
isomorphic to graph F1 in Figure 5(a). Similarly, the strong edge join of 2 copies of C4 is always
isomorphic to graph F2 in Figure 5(b). Therefore, using |E`pC4q| “ 8 and |AutpC4q| “ 8 in

(a) (b)

F1 F2

Figure 5. (a) The weak and (b) the strong edge join of two copies of C4.

(2.26), we find that σ2
C4,W

simplifies to

σ2
C4,W “ 1

2
ptpF1,W q ´ tpF2,W qq

“ 1

2

˜ż

r0,1s2
W px, yqU2

2 px, yqdx dy ´
ż

r0,1s2
W 2px, yqU2

2 px, yq dx dy

¸
. (4.19)

Hence,

σ2
C4,W “ 0 ðñ

ż

r0,1s2
U2

2 px, yq
`
W px, yq ´W 2px, yq˘ dx dy, (4.20)

which completes the proof. �

The following theorem shows that (if we ignore the trivial cases in Remark 2.10), whenever
W is C4-regular, the limiting distribution of ZnpC4,W q is always non-degenerate. Hence, for
H “ C4, Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem
4.8 is equivalent to the claim that whenever W is C4-regular, (4.15) and (4.16) cannot occur
simultaneously. The proof of Theorem 4.8 is given in Section 7.

Theorem 4.8. Suppose W is a C4-regular graphon with tpC4,W q ą 0 and W is not identically
1 a.e. Then, the limit of ZnpC4,W q in (4.2) is non-degenerate.

Non-Degeneracy of the Limit for the 2-Star: As in Lemma 4.7, we first derive conditions which
are equivalent to degeneracy of the two components of the limiting distribution of ZnpK1,2,W q.
Lemma 4.9. Suppose W is a K1,2-regular graphon with tpK1,2,W q ą 0 Then the following hold:

(a) Spec´pWK1,2q “ H if and only if

W px, yq pdW pxq ` dW pyqq ` U1px, yq “ 3

ż
d2
W pzqdz, a.e. px, yq P r0, 1s2, (4.21)

where U1px, yq is as defined in (4.14).
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(b) σ2
K1,2,W

“ 0 if and only if

ż  
dW pxqdW pyq ` dW pxq2

(
W px, yqp1´W px, yqqdx dy “ 0. (4.22)

As a consequence, the limit of ZnpK1,2,W q in (4.2) is degenerate if and only if (4.21) and (4.22)
hold.

Proof. From (3.14) the 2-point conditional graphon induced by K1,2 is given by

WK1,2px, yq “
1

2
tW px, yq pdW pxq ` dW pyqq ` U1px, yqu . (4.23)

Furthermore, (2.21) yields dWK1,2
“ 6

4 tpK1,2,W q “ 3
2

ş1
0 dW pxq2 dx. Hence, Proposition 4.1 shows

that Spec´pWK1,2q “ H if and only if (4.21) holds.
Furthermore, recalling (3.13) we have,

σ2
K1,2,W “ 2

”
t pK1,3,W q ` tpP3,W q ´ t

`
K`

1,3,W
˘´ t `P`3 ,W

˘ı
(4.24)

where the graphs K1,3,K
`
1,3, P3 and P`3 are as shown in Figure 4. By evaluating the densities

in (4.24), we obtain

σ2
K1,2,W “ 2

ż  
dW pxqdW pyq ` dW pxq2

(
W px, yqp1´W px, yqqdx dy. (4.25)

This shows that, σ2
K1,2,W

“ 0 equivalent to (4.22). �

The following theorem is the counterpart of Theorem 4.8 for K1,2, and shows that for H “
K1,2, Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.10
is equivalent to the claim that whenever W is K1,2-regular, (4.21) and (4.22) cannot occur
simultaneously. The proof of Theorem 4.10 is given in Section 8.

Theorem 4.10. Suppose W is a K1,2-regular graphon with tpK1,2,W q ą 0 and W is not iden-
tically 1 a.e. Then, the limit of ZnpC4,W q in (4.2) is non-degenerate.

5. Proof of Theorem 2.9

Fix a graphon W P W0 and a non-empty simple graph H “ pV pHq, EpHqq with vertices
labeled V pHq “ t1, 2, . . . , |V pHq|u, and recall the definition of XnpH,W q from (1.1). To express
XnpH,W q as a generalized U -statistic note that

XnpH,W q “
ÿ

1ďi1ă¨¨¨ăi|V pHq|ďn

fpUi1 , ¨ ¨ ¨ , Ui|V pHq| , Yi1i2 , ¨ ¨ ¨ , Yi|V pHq|´1i|V pHq|q (5.1)

where GH :“ GHpt1, 2, . . . , |V pHq|uq and

fpU1, ¨ ¨ ¨ , U|V pHq|, Y12, ¨ ¨ ¨ , Y|V pHq|´1 |V pHq|q “
ÿ

H 1PGH

ź

pa,bqPEpH 1q

1 tYab ďW pUa, Ubqu . (5.2)

This is exactly in the framework of generalized U -statistics considered in [20]. Therefore, we
can now orthogonally expand the function f as a sum over subgraphs of the complete graph as
explained in the section below.
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5.1. Orthogonal Decomposition of Generalized U-Statistics. We recall some notations
and definitions from [20]. Suppose tUi : 1 ď i ď nu and tYij : 1 ď i ă j ď nu are i.i.d.
sequences of U r0, 1s random variables. Denote by Kn the complete graph on the set of vertices
t1, 2, . . . , nu and let G “ pV pGq, EpGqq be a subgraph of Kn. Let FG be the σ-algebra generated
by the collections tUiuiPV pGq and tYijuijPEpGq, and let L2pGq “ L2pFGq be the space of all square
integrable random variables that are functions of tUi : 1 ď i ď nu and tYij : 1 ď i ă j ď nu.
Now, consider the following subspace of L2pGq:

MG :“ tZ P L2pGq : ErZV s “ 0 for every V P L2pHq such that H Ă Gu. (5.3)

(For the empty graph, MH is the space of all constants.) Equivalently, Z P MG if and only if
Z P L2pGq and

E rZ | Xi, Yij : i P V pHq, pi, jq P EpHqs “ 0, for all H Ă G. (5.4)

Then, we have the orthogonal decomposition [20, Lemma 1]

L2pGq “ à
HĎG

MH , (5.5)

that is, L2pGq is the orthogonal direct sum of MH for all subgraphs H Ď G. This allows us
to decompose any function in L2pGq as the sum of its projections onto MH for H Ď G. For
any closed subspace M of L2pKnq, denote the orthogonal projection onto M by PM . Then, in
particular, for f as in (5.2), we have the decomposition

f “
ÿ

HĎG

fH , (5.6)

where fH “ PMH
f is the orthogonal projection of f onto MH . Further, for 1 ď s ď |V pHq|,

define

fpsq :“
ÿ

HĎG:|V pHq|“s

fH . (5.7)

The smallest positive d such that fpdq ‰ 0 is called the principal degree of f . The asymptotic
distribution of XnpH,W q depends on the principal degree of f and the geometry of the subgraphs
which appear in its decomposition.

For any graph G Ď Kn, the orthogonal projection onto L2pGq “ L2pFGq equals the conditional
expectation Ep¨ | FGq, i.e.,

PL2pGq “ Er¨ | FGs. (5.8)

Moreover, by (5.5), we have

PL2pGq “
ÿ

HĎG

PMH
. (5.9)

The equations (5.8)–(5.9) enable us to express any PMH
as a linear combination of conditional

expectations. We will do this explicitly for the simplest cases in lemmas below.

5.2. Proof of Theorem 2.9(1). Recall the definition of the function f from (5.2) and consider
its decomposition as in (5.6). Then (5.7) for s “ 1 gives,

fp1q “
|V pHq|ÿ

a“1

fKtau , (5.10)

where Ktau is the graph with the single vertex a and fKtau is the projection of f onto the space

MKtau , for 1 ď a ď |V pHq|. We will calculate fKtau using the following lemma, which we state
for general functions F .
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Lemma 5.1. For 1 ď a ď |V pHq|, and any F P L2, the projection of F onto the space MKtau

is given by

FKtau “ E rF | Uas ´ ErF s. (5.11)

Proof. By (5.9) and (5.8),

FKtau :“ PMKtau
F “ PL2pKtauq

F ´ PMHF “ ErF | Uas ´ ErF s. (5.12)

�

Applying Lemma 5.1 to f defined in (5.2), we obtain

fKtau “
ÿ

H 1PGH

E

»
– ź

pb,cqPEpH 1q

1 tYbc ďW pUb, Ucqu
ˇ̌
ˇ̌
ˇ̌Ua

fi
fl´ Erf s

“
ÿ

H 1PGH

E

»
– ź

pb,cqPEpH 1q

W pUb, Ucq
ˇ̌
ˇ̌
ˇ̌Ua

fi
fl´ Erf s

“
ÿ

H 1PGH

tapUa, H 1,W q ´ Erf s, (5.13)

where the last step follows from the definition of the 1-point conditional homomorphism density
function (recall Definition 2.1). Then from (5.10),

fp1q “
|V pHq|ÿ

a“1

˜ ÿ

H 1PGH

tapUa, H 1,W q ´ Erf s
¸
. (5.14)

We now proceed to compute Var fp1q.
For this, we need the following combinatorial identity.

Lemma 5.2. For the vertex join operation
À

a,b as in Definition 2.7 the following holds:

|GH |2
ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
“ |V pHq|2

ÿ

H1,H2PGH

t

˜
H1

à
1,1

H2,W

¸
. (5.15)

Proof. For any permutation φ : V pHq Ñ V pHq, we define the permuted graph φpHq :“
pφpV pHqq, φpEpHqqq, where φpV pHqq “ tφpaq : 1 ď a ď |V pHq|u and φpEpHqq “ tpφpaq, φpbqq :
pa, bq P EpHqu.

First, fix pa, bq P V pHq2 and consider two permutations, φa : V pHq Ñ V pHq and φb : V pHq Ñ
V pHq such that φapaq “ φbpbq “ 1. Then

ÿ

1ďa,bď|V pHq|

ÿ

H1,H2PGH

t

˜
H1

à
a,b

H2,W

¸
“

ÿ

1ďa,bď|V pHq|

ÿ

H1,H2PGH

t

˜
φapH1q

à
1,1

φbpH2q,W
¸

“
ÿ

1ďa,bď|V pHq|

ÿ

H1,H2PGH

t

˜
H1

à
1,1

H2,W

¸

“ |V pHq|2
ÿ

H1,H2PGH

t

˜
H1

à
1,1

H2,W

¸
, (5.16)

where the second equality follows, since the map pH1, H2q Ñ pφapH1q, φbpH2qq is a bijection
from G 2

H to G 2
H , for all 1 ď a, b ď |V pHq|.
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Next, fix H1, H2 P GH . Then consider isomorphisms φ1, φ2 : V pHq Ñ V pHq such that
φ1pH1q “ H and φ2pH2q “ H. Thus,

ÿ

H1,H2PGH

ÿ

1ďa,bď|V pHq|

t

˜
H1

à
a,b

H2,W

¸
“

ÿ

H1,H2PGH

ÿ

1ďa,bď|V pHq|

t

˜
H

à

φ1paq,φ2pbq

H,W

¸

“
ÿ

H1,H2PGH

ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸

“ |GH |2
ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
. (5.17)

Here, the second equality follows since pa, bq Ñ pφ1paq, φ2pbqq is a bijection from V pHq2 to
V pHq2.

Combining (5.16) and (5.17) the identity in (5.15) follows. �

Lemma 5.3.

Varrfp1qs “ |V pHq||GH |2
$
&
%

1

|V pHq|2
ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
´ tpH,W q2

,
.
-

“ |V pHq|! p|V pHq| ´ 1q!
|AutpHq|2

$
&
%

ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
´ |V pHq|2tpH,W q2

,
.
- . (5.18)

Proof. Recalling (5.14) gives, since the terms in the outer sum there are independent,

Varrfp1qs “
|V pHq|ÿ

a“1

Var

« ÿ

H 1PGH

tapUa, H 1,W q
ff
. (5.19)

Consider the term corresponding to a “ 1 in the sum above. For any H1, H2 P GH ,

E rt1pU1, H1,W qt1pU1, H2,W qs “ t

˜
H1

à
1,1

H2,W

¸
. (5.20)

Hence,

Var

« ÿ

H 1PGH

t1pU1, H
1,W q

ff
“

ÿ

H1,H2PGH

Cov rt1pU1, H1,W q, t1pU1, H2,W qs

“
ÿ

H1,H2PGH

˜
t

˜
H1

à
1,1

H2,W

¸
´ tpH,W q2

¸
. (5.21)

Now, an argument similar to Lemma 5.2 shows that
ÿ

H 1PGH

tapx,H 1,W q “
ÿ

H 1PGH

tbpx,H 1,W q, (5.22)

for all x P r0, 1s and 1 ď a, b ď |V pHq|. Hence, (5.19) and (5.21) imply

Varrfp1qs “ |V pHq|
ÿ

H1,H2PGH

˜
t

˜
H1

à
1,1

H2,W

¸
´ tpH,W q2

¸
, (5.23)

and the result follows by Lemma 5.2, using (2.7) for the second equality. �
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Note that Efp1q “ 0 by (5.7). Hence Var fp1q “ 0 if and only if fp1q “ 0 a.s.

Lemma 5.4. Var fp1q “ 0 if and only if W is H-regular.

Proof. Lemma 5.3 shows that Varrfp1qs is zero if and only if

1

|V pHq|2
ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

,W

¸
“ tpH,W q2. (5.24)

Now observe,

ÿ

1ďa,bď|V pHq|

t

˜
H

à
a,b

H,W

¸
“

ÿ

1ďa,bď|V pHq|

ż
tapx,H,W qtbpx,H,W qdx

“
ż ¨
˝ ÿ

1ďaď|V pHq|

tapx,H,W q
˛
‚

2

dx. (5.25)

Thus (5.24) becomes, using also (2.11),

ż ¨
˝ ÿ

1ďaď|V pHq|

tapx,H,W q
˛
‚

2

dx´
¨
˝
ż ÿ

1ďaď|V pHq|

tapx,H,W q
˛
‚

2

dx “ 0, (5.26)

which is equivalent to Var r∆pUqs “ 0, where we define

∆pxq :“
ÿ

1ďaď|V pHq|

tapx,H,W q (5.27)

and let U „ Uniformr0, 1s. Hence, Varrfp1qs “ 0 if and only if ∆pUq is constant a.s. Therefore,
since E∆pUq “ |V pHq|tpH,W q, we see that Varrfp1qs “ 0 if and only if

1

|V pHq|
ÿ

1ďaď|V pHq|

tapx,H,W q “ tpH,W q for almost every x P r0, 1s. (5.28)

By Definition 2.2, (5.28) says that W is H-regular. �

Proof of Theorem 2.9(1). Lemma 5.4 shows that if W is not H-regular, then the principal degree
of f is 1. Thus, [20, Theorem 1] yields

XnpH,W q ´ pnq|V pHq|
|AutpHq| tpH,W q

n|V pHq|´
1
2

DÑ Np0, τ2q, (5.29)

where, using also (5.18) and (2.24),

τ2 “ 1

|V pHq|! p|V pHq| ´ 1q!Varrfp1qs “ τ2
H,W . (5.30)

This completes the proof of Theorem 2.9(1) when W is not H-regular.
In fact, (5.29)–(5.30) hold also when W is H-regular, with fp1q “ 0 and τ2 “ 0. Although this

case is not included in the statement of [20, Theorem 1], it follows by its proof, as a consequence
of [20, Lemma 2]; see also [19, Corollary 11.36]. Consequently, Theorem 2.9(1) holds for any
W PW0. �
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5.3. Proof of Theorem 2.9(2). In this case, W is H-regular, hence fp1q ” 0 by Lemma 5.4.
Therefore, we consider fp2q (recall (5.7)) which can be written as

fp2q “
ÿ

1ďaăbď|V pHq|

´
fEta,bu ` fKta,bu

¯
, (5.31)

where Eta,bu “ pta, bu,Hq is the graph with two vertices a and b and no edges, and Kta,bu “
pta, bu, tpa, bquq is the complete graph with vertices a and b. As for fp1q, we have Efp2q “ 0, and
thus Var fp2q “ 0 ðñ fp2q “ 0 a.s.

If Var fp2q ‰ 0, then f has principal degree 2, and we can apply [20, Theorem 2], which shows
that

XnpH,W q ´ pnq|V pHq|
|AutpHq| tpH,W q

n|V pHq|´1

DÑ σZ `
ÿ

λPΛ

λpZ2
λ ´ 1q, (5.32)

where Z and tZλuλPΛ are independent standard Gaussians,

σ2 “ 1

2p|V pHq ´ 2q!2E
“
f2
Kt1,2u

‰
(5.33)

and Λ is the multiset of (non-zero) eigenvalues of a certain integral operator T .
Moreover, if Var fp2q “ 0, so fp2q “ 0 a.s., then the conclusion of [20, Theorem 2] still holds

(with a trivial limit 0), again as a consequence of [20, Lemma 2]. (See also the more general [19,
Theorem 11.35].) Hence, (5.32) holds in any case.

It remains to show that σ2 “ σ2
H,W in (2.26), and that Λ equals Spec´pWHq; then (5.32)

yields (2.25). We begin by finding fEta,bu and fKta,bu .

Lemma 5.5. For 1 ď a ă b ď |V pHq| and any F P L2, the projection of f onto the space
MEta,bu is given by

FEta,bu “ E rF | Ua, Ubs ´ ErF | Uas ´ ErF | Ubs ` ErF s. (5.34)

Proof. By (5.9),

FEta,bu :“ PMEta,bu
F “ PL2pEta,buq

F ´ PMKtau
F ´ PMKtbu

F ´ PMHF
“ PL2pEta,buq

F ´ PL2pKtauq
F ´ PL2pKtbuq

F ` PMHF (5.35)

and the result follows by (5.8). �

Lemma 5.6. For 1 ď a ă b ď |V pHq| and any F P L2, the projection of f onto the space
MKta,bu is given by

FKta,bu “ E rF | Ua, Ub, Yabs ´ E rF | Ua, Ubs . (5.36)

Proof. The subgraphs of Kta,bu are Eta,bu, Ktau, Ktbu and H, and thus (5.9) yields

FKta,bu :“ PMKta,bu
F “ PL2pKta,buq

F ´ PMEta,bu
F ´ PMKtau

F ´ PMKtbu
F ´ PMHF

“ PL2pKta,buq
F ´ PL2pEta,buq

F, (5.37)

and the result follows by (5.8). �

Specializing to f defined in (5.2), we found fKtau “ Erf | Uas ´ Ef in (5.13). Furthermore,

the same argument yields, recalling (2.9) and (4.4),

Erf | Ua, Ubs “
ÿ

H 1PGH

ta,bpUa, Ub, H 1,W q (5.38)
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and

Erf | Ua, Ub, Yabs “
ÿ

H 1PGH

t´a,bpUa, Ub, H 1,W qZH 1,ta,bupYab, Ua, Ubq, (5.39)

where

ZH 1,ta,bupYab, Ua, Ubq :“
#

1tYab ďW pUa, Ubqu if pa, bq P EpH 1q,
1 otherwise.

(5.40)

Let also

WH 1,ta,bupx, yq :“
#
W px, yq if pa, bq P EpH 1q,
1 otherwise,

(5.41)

and GH,ta,bu :“ tH 1 P GH : pa, bq P EpH 1qu. Then, (5.36), (5.38) and (5.39) yield, using also
(4.5),

fKta,bu “
ÿ

H 1PGH

t´a,bpUa, Ub, H 1,W q
´
ZH 1,ta,bupYab, Ua, Ubq ´WH 1,ta,bupUa, Ubq

¯

“
ÿ

H 1PGH,ta,bu

t´a,bpUa, Ub, H 1,W q
´
1tYab ďW pUa, Ubqu ´W pUa, Ubq

¯
. (5.42)

To compute the variance of fKt1,2u , we recall the notions of weak and strong edge joins from

Definition 2.7, and introduce a few definitions. Let V 2
H “ tpa, bq P V pHq2 : a ‰ bu. For

pa, bq, pc, dq P V 2
H define

t

˜
H1

á

pa,bq,pc,dq

H2,W

¸
“ t

˜
H1

á

pa,bq,pc,dq

H2,W

¸
1tpa, bq P E`pH1q and pc, dq P E`pH2qu

(5.43)

and similarly,

t

˜
H1

à

pa,bq,pc,dq

H2,W

¸
“ t

˜
H1

à

pa,bq,pc,dq

H2,W

¸
1tpa, bq P E`pH1q and pc, dq P E`pH2qu.

(5.44)

Then we have the following identities, similar to Lemma 5.2:

Lemma 5.7. Let V 2
H be as defined above, and let KH :“ |V 2

H |2 “ |V pHq|2p|V pHq| ´ 1q2. Then

KH

ÿ

H1,H2PGH

t

˜
H1

á

p1,2q,p1,2q

H2,W

¸
“ |GH |2

ÿ

pa,bq,pc,dqPV 2
H

t

˜
H

á

pa,bq,pc,dq

H,W

¸
. (5.45)

and, similarly,

KH

ÿ

H1,H2PGH

t

˜
H1

à

p1,2q,p1,2q

H2,W

¸
“ |GH |2

ÿ

pa,bq,pc,dqPV 2
H

t

˜
H

à

pa,bq,pc,dq

H,W

¸
. (5.46)

Proof. We will first show that

ÿ

pa,bq,pc,dqPV 2
H

ÿ

H1,H2PGH

t

˜
H1

á

pa,bq,pc,dq

H2,W

¸
“ KH

ÿ

H1,H2PGH

t

˜
H1

á

p1,2q,p1,2q

H2,W

¸
. (5.47)
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For this consider permutations φpa,bq, φpc,dq : V pHq Ñ V pHq such that φpa,bqpaq “ 1 and
φpa,bqpbq “ 2, and φpc,dqpcq “ 1 and φpc,dqpdq “ 2. Then

ÿ

pa,bq,pc,dqPV 2
H

ÿ

H1,H2PGH

t

˜
H1

á

pa,bq,pc,dq

H2,W

¸
“

ÿ

V 2
HˆV

2
H

ÿ

G 2
H

t

˜
φpa,bqpH1q

á

p1,2q,p1,2q

φpc,dqpH2q,W
¸

“ KH

ÿ

G 2
H

t

˜
H1

á

p1,2q,p1,2q

H2,W

¸
, (5.48)

where the last equality follows from the observation that pH1, H2q Ñ pφpa,bqpH1q, φpc,dqpH2qq is

an bijection from G 2
H to G 2

H , for all pa, bq, pc, dq P V 2
H .

Now by considering isomorphisms φ1 and φ2 such that φ1pH1q “ H and φ2pH2q “ H, a
similar argument as above shows that

ÿ

pa,bq,pc,dqPV 2
H

ÿ

H1,H2PGH

t

˜
H1

á

pa,bq,pc,dq

H2,W

¸
“ |GH |2

ÿ

pa,bq,pc,dqPV 2
H

t

˜
H

á

pa,bq,pc,dq

H,W

¸
. (5.49)

Combining (5.47) and (5.49) yields the identity (5.45). The identity (5.46) follows by the
same proof with only notational differences. �

With the above definitions and identities we now proceed to compute the variance of fKt1,2u .

Lemma 5.8. We have

VarrfKt1,2us “
p|V pHq| ´ 2q!2
|AutpHq|2

ÿ

pa,bq,pc,dqPE`pHq

˜
t

˜
H

á

pa,bq,pc,dq

H,W

¸
´ t

˜
H

à

pa,bq,pc,dq

H,W

¸¸
.

(5.50)

Proof. We specialize (5.42) to pa, bq “ p1, 2q, and write for convenience

hpU1, U2, H1, H2,W q :“ t´1,2pU1, U2, H1,W q t´1,2pU1, U2, H2,W q. (5.51)

This yields,

Erf2
Kt1,2u

s “
ÿ

H1,H2PGH,t1,2u

E
”
hpU1, U2, H1, H2,W q

`
1tY12 ďW pU1, U2qu ´W pU1, U2q

˘2
ı

“
ÿ

H1,H2PGH,t1,2u

E
“
hpU1, U2, H1, H2,W qW pU1, U2qp1´W pU1, U2qq

‰

“
ÿ

H1,H2PGH,t1,2u

˜
t

˜
H1

á

p1,2q,p1,2q

H2,W

¸
´ t

˜
H1

à

p1,2q,p1,2q

H2,W

¸¸
. (5.52)

Now, using the notations introduced in (5.43) and (5.44), the identity (5.52) can be written as

Erf2
Kt1,2u

s “
ÿ

H1,H2PGH

˜
t

˜
H1

á

p1,2q,p1,2q

H2,W

¸
´ t

˜
H1

à

p1,2q,p1,2q

H2,W

¸¸

“ p|V pHq| ´ 2q!2
|AutpHq|2

ÿ

pa,bq,pc,dqPV 2
H

˜
t

˜
H

á

pa,bq,pc,dq

H,W

¸
´ t

˜
H

à

pa,bq,pc,dq

H,W

¸¸

“ p|V pHq| ´ 2q!2
|AutpHq|2

ÿ

pa,bq,pc,dqPE`pHq

˜
t

˜
H

á

pa,bq,pc,dq

H,W

¸
´ t

˜
H

à

pa,bq,pc,dq

H,W

¸¸
,

(5.53)
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where the second equality uses the identities from Lemma 5.7 and (2.7), and the third equality
follows from the definitions in (5.43) and (5.44). This yields the result (5.50), since EfKta,bu “
0. �

Lemma 5.8 and (5.33) show that

σ2 “ σ2
H,W , (5.54)

as defined in (2.26).
Next, we compute the Hilbert–Schmidt operator T as defined in [20, Theorem 2]. Note first

that in our case this operator is defined on the space MKt1u . Recall that MKt1u Ă L2pKt1uq,
where L2pKt1uq is the space of all square integrable random variables of the form gpU1q. We

may identify L2pKt1uq and L2r0, 1s, and then (5.5) yields the orthogonal decomposition

L2r0, 1s “MKt1u

à
MH, (5.55)

where MH is the one-dimensional space of all constants. Hence, MKt1u is identified with the

subspace of L2r0, 1s orthogonal to constants, i.e., MKt1u “
 
g P L2r0, 1s :

ş1
0 g “ 0

(
.

Then, taking g, h PMKt1u Ă L2r0, 1s, the definitions given in [20, Theorem 2] yield

xTg, hy “ 1

2p|V pHq| ´ 2q!E rfgpU1qhpU2qs . (5.56)

Recall the operator TWH
defined on L2r0, 1s by (2.15) and (2.19).

Lemma 5.9. If W is H-regular, then the operator T on MKt1u defined in (5.56) equals the
operator TWH

restricted to the space MKt1u. Moreover, then the multiset of non-zero eigenvalues

of T is equal to Spec´pWHq.
Proof. We may replace f by Erf | U1, U2s in (5.56), which by (5.38) yields

xTg, hy “ 1

2p|V pHq| ´ 2q!E
“
Erf | U1, U2sgpU1qhpU2q

‰

“ 1

2p|V pHq| ´ 2q!E
« ÿ

H 1PGH

t1,2pU1, U2, H
1,W qgpU1qhpU2q

ff

“
C

1

2p|V pHq| ´ 2q!
ż ÿ

H 1PGH

t1,2px, ¨, H 1,W qgpxqdx, hp¨q
G
. (5.57)

Denote by S|V pHq| the set of all |V pHq|! permutations of V pHq. Then it is easy to observe
that

ÿ

φPS|V pHq|

t1,2px, y, φpHq,W q “ |AutpHq|
ÿ

H 1PGH

t1,2px, y,H 1,W q. (5.58)

Also,
ÿ

φPS|V pHq|

t1,2px, y, φpHq,W q “
ÿ

1ďa‰bď|V pHq|

ÿ

φPS|V pHq|
φpaq“1,φpbq“2

t1,2px, y, φpHq,W q

“
ÿ

1ďa‰bď|V pHq|

ÿ

φPS|V pHq|
φpaq“1,φpbq“2

tφ´1p1qφ´1p2qpx, y,H,W q
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“
ÿ

1ďa‰bď|V pHq|

ÿ

φPS|V pHq|
φpaq“1,φpbq“2

ta,bpx, y,H,W q

“ p|V pHq| ´ 2q!
ÿ

1ďa‰bď|V pHq|

ta,bpx, y,H,W q (5.59)

Combining (5.58) and (5.59), we have, recalling (2.19),

1

2p|V pHq| ´ 2q!
ÿ

H 1PGH

t1,2px, y,H 1,W q “ 1

2|AutpHq|
ÿ

1ďa‰bď|V pHq|

ta,bpx, y,H,W q “WHpx, yq.

(5.60)

Consequently, combining (5.57), (5.60) and (2.15), we obtain

xTg, hy “ xTWH
g, hy, g, h PMKt1u . (5.61)

Furthermore, since W is H-regular, WH is degree regular and (2.21) shows that

TWH
1 “ dWH

“ dWH
¨ 1. (5.62)

Hence, TWH
maps the space MH of constant functions into itself. By (5.55), MKt1u is the

orthogonal complement of MH, and thus, since TWH
is a symmetric operator, TWH

also maps
MKt1u into itself. Hence both T and TWH

map MKt1u into itself, and thus (5.61) shows that
T “ TWH

on MKt1u .

Finally, recall that Λ in (5.32) is the multiset of non-zero eigenvalues of T , which we just have
shown equals the multiset of eigenvalues of TWH

on MKt1u . Moreover, on MH, TWH
has the

single eigenvalue dWH
by (5.62). Hence, SpecpWHq “ Λ Y tdHu, and thus Spec´pWHq “ Λ by

the definition after (2.21). �

Proof of Theorem 2.9(2). The result now follows by (5.32), (5.54), and Lemma 5.9. �

5.4. Higher Order Limits. In the case where the limit in Theorem 2.9(2) is degenerate (as
in Example 4.6), the function f in (5.2) has principal degree d ą 2. In this case, [20, Theorem

3] shows that pXnpH,W q ´ EXnpH,W qq{n|V pHq|´d{2 has a (non-degenerate) limit distribution,
which can be expressed as a polynomial of degree d in (possibly infinitely many) independent
standard Gaussian variables. The expression in [20, Theorem 3] uses Wick products of Gaussian
variables; these can be expressed using Hermite polynomials, see [19, Theorems 3.19 and 3.21].
One simple illustration (with d “ 4) is given in Example 4.6. This leads to the following natural
open questions:

Problem 5.10. For which graphs H can such higher order limits (i.e., with d ě 3) occur?

Problem 5.11. Is it possible to have arbitrarily high order principal degree d?

6. Proof of Theorem 4.3

It is obvious from (4.6) that if W is random free, then σ2
H,W “ 0. For the converse, suppose

that W is not random free. Then the set P :“  px, yq P r0, 1s2 : 0 ă W px, yq ă 1
(

has |P | ą 0,
where | ¨ | denotes the Lebesgue measure. Let px0, y0q be a Lebesgue point of P . Then we can
find intervals I and J containing x0 and y0 respectively such that |P ŞpI ˆ Jq| ą p1´ εq|I ˆ J |
(ε ą 0 to be chosen later). Define,

Px :“ ty P J : px, yq P P u and I 1 :“ tx P I : |Px| ą p1´ δq|J |u , (6.1)
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where δ ą 0 will be chosen later. Then,

δ|J | ˇ̌IzI 1 ˇ̌ ď
ż

IzI 1
|JzPx| dx ď

ż

I
|JzPx| dx “

ż

I
|J | dx´

ż

I
|Px| dx

“ |I||J | ´
ż

I

ż

Px

dz dx

“ |I||J | ´ |P
č
pI ˆ Jq |

ă ε |I ˆ J | “ ε|I||J |. (6.2)

This implies,
ˇ̌
IzI 1 ˇ̌ ď ε

δ
|I|. (6.3)

Similarly, defining P y :“ tx P I : px, yq P P u and J 1 :“ ty P J : |P y| ą p1´ δq|I|u we have,
ˇ̌
JzJ 1 ˇ̌ ď ε

δ
|J |. (6.4)

Next, fix a ă b P V pHq such that pa, bq P EpHq. Suppose H has bipartition pA,Bq and
without loss of generality consider a P A and b P B. Then from (4.6) it follows that,

σ2
H,W ě cH

ż

r0,1s2
t´a,bpx, y,H,W q2W px, yqp1´W px, yqqdx dy. (6.5)

Define,

S :“
"
z´pa,bq :“ pz1, ¨ ¨ ¨ , za´1, za`1, ¨ ¨ ¨ , zb´1, zb`1, ¨ ¨ ¨ , z|V pHq|q

: zv P I if v P Aztau and zv P J if v P Bztbu
*
. (6.6)

and

t´a,bpz´pa,bq, x, y,H,W q “
ź

rPNHpaqztbu

W px, zrq
ź

sPNHpbqztau

W py, zsq
ź

pr,sqPEpHzta,buq

W pzr, zsq. (6.7)

Note that ż

r0,1s|V pHq|´2

t´a,bpz´pa,bq, x, y,H,W q
ź

rRta,bu

dzr “ t´a,bpx, y,H,W q. (6.8)

It is easy to see that |S| “ |I||A|´1|J ||B|´1. Now, fix px, yq P I 1 ˆ J 1. Then

Q0 :“
ˇ̌
ˇ
!
z´pa,bq P S : t´a,bpz´pa,bq, x, y,H,W q “ 0

)ˇ̌
ˇ ď T1 ` T2 ` T3, (6.9)

where

T1 :“
ÿ

rPNHpaqztbu

ˇ̌ 
z´pa,bq P S : W px, zrq “ 0

(ˇ̌
, (6.10)

T2 :“
ÿ

sPNHpbqztau

ˇ̌ 
z´pa,bq P S : W py, zsq “ 0

(ˇ̌
, (6.11)

T3 :“
ÿ

pr,sqPEpHzta,buq

ˇ̌ 
z´pa,bq P S : W pzr, zsq “ 0

(ˇ̌
. (6.12)

Let us now look at each term separately. We begin with T1. Note that for r P NHpaqztbu,
ˇ̌ 
z´pa,bq P S : W px, zrq “ 0

(ˇ̌ “ |tzr P J : W px, zrq “ 0u| |I||A|´1|J ||B|´2
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ď |JzPx| |I||A|´1|J ||B|´2

ă δ|I||A|´1|J ||B|´1 (6.13)

where the last inequality follows from our assumption x P I 1 and (6.1). This implies,

T1 ă pda ´ 1qδ|I||A|´1|J ||B|´1, (6.14)

where da is the degree of the vertex a in H. Similarly,

T2 ă pdb ´ 1qδ|I||A|´1|J ||B|´1. (6.15)

Finally, consider T3. Suppose pr, sq P EpHzta, buq and assume without loss of generality r P A
and s P B. Then,

ˇ̌ 
z´pa,bq P S : W pzr, zsq “ 0

(ˇ̌ “ |tzr P I, zs P J : W pzr, zsq “ 0u| |I||A|´2|J ||B|´2

ď
ˇ̌
ˇpI ˆ Jq z

´
P
č
pI ˆ Jq

¯ˇ̌
ˇ |I||A|´2|J ||B|´2

ă ε|I ˆ J ||I||A|´2|J ||B|´2

“ ε|I||A|´1|J ||B|´1. (6.16)

This implies,

T3 ď p|EpHq| ´ da ´ db ` 1qε|I||A|´1|J ||B|´1. (6.17)

Combining (6.14), (6.15), and (6.17) with (6.9) gives,

Q0 ď rpda ` db ´ 2q δ ` pEpHq ´ da ´ db ` 1q εs |I||A|´1|J ||B|´1

ă 2 |EpHq| pδ ` εq|I||A|´1|J ||B|´1. (6.18)

Choosing δ “ 10ε and ε ă 1
100|EpHq| gives |EpHq| pδ ` εq|I||A|´1|J ||B|´1 ă |I||A|´1|J ||B|´1. Thus,

Q0 ă |I||A|´1|J ||B|´1, (6.19)

and hence, |SzQ0| ą 0. This implies, recalling (6.8),

t´a,bpx, y,H,W q “
ż

r0,1s|V pHq|´2

t´a,bpz´pa,bq, x, y,H,W q
ź

rRta,bu

dzr

ě
ż

SzQ0

t´a,bpz´pa,bq, x, y,H,W q
ź

rRta,bu

dzr ą 0, (6.20)

since t´a,bpz´pa,bq, x, y,H,W q ą 0 on SzQ0. Recall that px, yq P I 1 ˆ J 1 was chosen arbitrarily;

hence (6.20) is true for all px, yq P I 1 ˆ J 1. Further observe that

I 1 ˆ J 1 Ď
!
P
č`

I 1 ˆ J 1˘
)ď!

pI ˆ Jq z
´
P
č
pI ˆ Jq

¯)
, (6.21)

implying
ˇ̌
ˇP

č`
I 1 ˆ J 1˘

ˇ̌
ˇ ě |I 1||J 1| ´

ˇ̌
ˇpI ˆ Jq z

´
P
č
pI ˆ Jq

¯ˇ̌
ˇ

ě |I 1||J 1| ´ ε|I||J | (by (6.3) and (6.4))

ě
ˆ´

1´ ε

δ

¯2 ´ ε
˙
|I||J |

“ p0.81´ εq |I||J | ą 0.
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Therefore, recalling (6.5)

σ2
H,W ě cH

ż

P
Ş
pI 1ˆJ 1q

t´a,bpx, y,H,W q2W px, yqp1´W px, yqqdx dy

ą 0, (6.22)

since by (6.20) and the definition of the set P , t´a,bpx, y,H,W q2W px, yqp1´W px, yqq ą 0 for all

px, yq P P Ş pI 1 ˆ J 1q. This shows that if σ2
H,W “ 0 then W is random-free. �

We conclude this section with an example (which generalizes the construction in [16, Figure
1] for triangles to general cliques) illustrating that Theorem 4.3 does not hold if the bipartite
assumption is dropped (as mentioned in Remark 4.4).

Example 6.1. Suppose H “ Kr is the r-clique, for r ě 3. Partition r0, 1s into 2r intervals of
measure 1

2r each. Denote the first r sets by I1, I2, . . . , Ir and the next r sets by J1, J2, . . . , Jr.
Consider the following graphon:

W px, yq “

$
’’&
’’%

1 for px, yq P pIa ˆ Ibq such that 1 ď a ‰ b ď r,
1 for px, yq P pJa ˆ Jbq such that 1 ď a ‰ b ď r,
1
2 for px, yq P pI1 ˆ J1q Y pJ1 ˆ I1q,
0 otherwise.

(6.23)

In other words, W is obtained by taking 2 disjoint graphon representations of Kr (which corre-
sponds to the complete r-partite graphon) inside r0, 1

2 s2 and r12 , 1s2, respectively, and connecting

the edges between the sets I1 and J1 with probability 1
2 . Note that tpKr,W q ą 0. Denote

R :“ pI1 ˆ J1q Y pJ1 ˆ I1q. By (4.6),

σ2
H,W “ cKr

4

ÿ

1ďa‰bďr
1ďa‰bďr

ż

R
t´a,bpx, y,Kr,W qt´c,dpx, y,Kr,W qdx dy. (6.24)

Next, fix 1 ď a ‰ b ď r. If px, yq P R, then, using the notation (6.7),

t´a,bpz´pa,bq, x, y,Kr,W q “ 0, (6.25)

for all z´pa,bq P r0, 1sr´2. Hence, for every px, yq P R, we have t´a,bpx, y,H,W q “ 0 by (6.8).

Consequently, it follows from (6.24) that σ2
H,W “ 0. (In fact, i1, . . . , ir can form an r-clique in

Gpn,W q only if Ui1 , . . . , Uir all belong to either
Ť
a Ia or

Ť
a Ja; hence the value of W on I1ˆJ1

does not matter for XnpKr,W q.) Moreover, (6.25) also implies that tpx,Kr,W q is constant a.e.,
that is, W is Kr-regular.

7. Proof of Theorem 4.8

In the proof we will consider many equations or other relations that hold a.e. in r0, 1s or r0, 1s2.
For this we use the notation that, for example, S(4.15) denotes the set of all px, yq P r0, 1s2 such

that the equation in (4.15) holds, and S(4.15) denotes tx P r0, 1s : px, yq P S(4.15) for a.e. y P
r0, 1su. We use this notation only for sets Sp¨q with full measure in r0, 1s2; note that then, by a

standard application of Fubini’s theorem, Sp¨q has full measure in r0, 1s, that is, x P Sp¨q for a.e.

x P r0, 1s. Similarly, for relations with a single variable, we let, for example, S(7.3) be the set of
x P r0, 1s such that the inequality in (7.3) holds.

We tacitly assume x, y, z P r0, 1s throughout the proof. However, for notational convenience,

we may write integrals with limits that might be outside r0, 1s; şba should always be interpreted
as

ş
ra,bsXr0,1s.
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For all x P r0, 1s, define Wx : r0, 1s Ñ r0, 1s as

Wxpyq :“W px, yq. (7.1)

We regard Wx as an element of L2r0, 1s. Note that this means, in particular, that Wx “ Wy

means W px, zq “W py, zq for a.e. z. Since W px, yq is measurable and bounded, it is well known
that the mapping x ÞÑWx is a measurable, and (Bochner) integrable, map r0, 1s Ñ L2r0, 1s, see
[14, Lemma III.11.16(b)]. The Lebesgue differentiation theorem holds for Bochner integrable
Banach space value functions, see [5, §5.V]; hence, a.e. x P r0, 1s is a Lebesgue point of x ÞÑWx.
We will use } ¨ }2 and x¨, ¨y for the norm and inner product in L2r0, 1s.

We will denote t :“ tpC4,W q. Suppose (to obtain a contradiction) that t ą 0, W ı 1, but
that the limit in (4.2) is degenerate, that is, Spec´pWC4q “ H and σ2

C4.W
“ 0. Then (4.15) and

(4.16) both hold by Lemma 4.7, and W is random-free by Theorem 4.3, that is,

W px, yq P t0, 1u, a.e. x, y. (7.2)

We now separate the proof of the theorem into a sequence of claims.

Claim 7.1. For a.e. x P r0, 1s and Wx as defined in (7.1),

}Wx}2 ď p3tq1{4. (7.3)

Proof. By (4.14) and (4.15), for a.e. px, yq,
xWx,Wyy “ U1px, yq ď p3tq1{2. (7.4)

In particular, if x P S(7.4), then for every δ ą 0,
B
Wx,

1

2δ

ż x`δ

x´δ
Wy dy

F
“ 1

2δ

ż x`δ

x´δ
xWx,Wyydy ď p3tq1{2. (7.5)

If, furthermore, x is a Lebesgue point of x ÞÑ Wx, then it follows by letting δ Ñ 0 that
}Wx}22 ď p3tq1{2. �

Claim 7.2. For a.e. px, yq P r0, 1s2,

W px, yq “ 0 ùñ Wx “Wy in L2r0, 1s and }Wx}2 “ }Wy}2 “ p3tq1{4. (7.6)

Proof. By (4.14) and (4.15), if px, yq P S(4.15) and W px, yq “ 0, then

xWx,Wyy “ U1px, yq “ p3tq1{2. (7.7)

If, furthermore, x, y P S(7.3), then the Cauchy–Schwarz inequality yields

p3tq1{2 “ xWx,Wyy ď }Wx}2}Wy}2 ď p3tq1{2. (7.8)

Hence, we must have equalities, and thus }Wx}2 “ }Wy}2 “ p3tq1{4; moreover, equality in the
Cauchy–Schwarz inequality implies Wx “Wy. �

Claim 7.3. We have p3tq1{2 ă 1.

Proof. Let Z :“ tpx, yq : W px, yq “ 0u and Z 1 :“ Z X S(7.6). By (7.2) and the assumption that
W is not a.e. 1, we have |Z 1| “ |Z| ą 0. For x P r0, 1s, let Z 1x :“ ty : px, yq P Z 1u. By Fubini’s

theorem,
ş1
0 |Z 1x| dx “ |Z 1| ą 0, and thus there exists x such that |Z 1x| ą 0. Fix one such x. Then

there exists y P Z 1x, and thus px, yq P Z 1 “ Z X S(7.6). Consequently, (7.6) applies and yields

}Wx}2 “ p3tq1{4. Furthermore, W px, yq “ 0 for all y P Z 1x, and thus

p3tq1{2 “ }Wx}22 “
ż 1

0
W px, yq2 dy ď 1´ |Z 1x| ă 1. (7.9)

�
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Claim 7.4. For a.e. x P r0, 1s,
}Wx}2 “ p3tq1{4 ă 1. (7.10)

Proof. Suppose x P S(7.2) X S(7.3). Then, using Claim 7.3,

|ty : W px, yq ą 0u| “ |ty : W px, yq “ 1u| “
ż 1

0
W px, yq2 dy “ }Wx}22 ď p3tq1{2 ă 1. (7.11)

If, furthermore, x P S(7.6), this implies that there exists y such that W px, yq “ 0 and px, yq P
S(7.6), and thus, in particular, }Wx}2 “ p3tq1{4. The result (7.10) follows by Claim 7.3. �

Claim 7.5. For a.e. px, yq,
W px, yq ą 0 ùñ U2px, yq ą 0. (7.12)

Proof. Let

L1 :“ tpx, yq P r0, 1s2 : y is a Lebegue point of y ÞÑW px, yqu. (7.13)

Then L1 is measurable, and since for any given x, we have px, yq P L1 for a.e. y, it follows by
Fubini’s theorem that |L1| “ 1, that is, a.e. px, yq P L1.

Now, assume that px, yq P L1, py, xq P L1 and that px, yq is a Lebesgue point of the set
tps, tq : W ps, tq ą 0u. (In particular, W px, yq ą 0.) Let δ ą 0 and let I :“ px ´ δ, x ` δq and
J :“ py ´ δ, y ` δq. Then, if δ is small enough,

|ts P J : W px, sq “ 0u| ă 0.1|J |, (7.14)

|tt P I : W pt, yq “ 0u| ă 0.1|I|, (7.15)

|tps, tq P J ˆ I : W ps, tq “ 0u| ă 0.1|I| ˆ |J |, (7.16)

Then W px, sqW ps, tqW pt, yq ą 0 on a subset of I ˆ J of positive measure, and thus U2px, yq ą
0. �

Claim 7.6. For a.e. px, yq,
W px, yq “ 1´ 1tWx “Wyu. (7.17)

Proof. Suppose px, yq P S(7.12)XS(4.15), and that W px, yq “ 1. Then U2px, yq ą 0 by (7.12), and
thus (4.15) yields

xWx,Wyy “ U1px, yq ă p3tq1{2. (7.18)

If, furthermore, x P S(7.10), it follows that Wx ‰Wy.
On the other hand, if px, yq P S(7.6) and W px, yq “ 0, then Wx “Wy by (7.6).
In both cases, (7.17) holds, and thus, using (7.2), (7.17) holds a.e. �

Since Wx “Wy is an equivalence relation, there exists a partition (possibly infinite) of r0, 1s “Ů
αBα such that if we define αpxq for x P r0, 1s by x P Bαpxq, then Wx “Wy ðñ αpxq “ αpyq,

for all x, y P r0, 1s. Note that each Bα is measurable, since x ÞÑWx is. We can write (7.17) as

W px, yq “ 1tαpxq ‰ αpyqu, for a.e. px, yq. (7.19)

Claim 7.7. For a.e. x P r0, 1s,
|Bαpxq| “ 1´ p3tq1{2. (7.20)
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Proof. Suppose that x P S(7.17) X S(7.2) X S(7.10). Then,

|Bαpxq| “
ż 1

0
1ty P Bαpxqu dy “

ż 1

0
1tWy “Wxu dy “

ż 1

0

`
1´W px, yq˘ dy

“ 1´
ż 1

0
W px, yqdy “ 1´

ż 1

0
W px, yq2 dy “ 1´ p3tq1{2. (7.21)

�

Since 1´ p3tq1{2 ą 0 by Claim 7.4, there can only be a finite number of parts Bα of measure

1´p3tq1{2, and by Claim 7.7, they fill up r0, 1s except for a null set. Hence, Claim 7.7 and (7.19)
imply that W is a.e. equal to a complete multipartite graphon with equal part sizes (and thus
finitely many parts). In other words, after a measure preserving transformation, W equals a.e.
the graphon WK defined as follows, see Figure 6. Given an integer K ě 1, partition the interval
r0, 1s into K intervals I1, I2, . . . , IK of equal length 1{K, and define

WKpx, yq :“
#

0 if px, yq P ŤK
s“1 Is ˆ Is,

1 otherwise.
(7.22)

(0, 0)

(1, 1)(0, 1)

(1, 0)

Figure 6. The graphon WK with K “ 4.

Claim 7.8. Let W be the complete multipartite graphon WK with K ě 2 parts of equal sizes
1{K. Then (4.15) cannot hold.

Proof. Suppose WK satisfies (4.15) a.e. Then by Claim 7.7, each part must have size 1´p3tq1{2,

that is, 1´ p3tq1{2 “ 1{K, which yields

tpC4,WKq “ pK ´ 1q2
3K2

. (7.23)

On the other hand, a direct calculation shows that

tpC4,WKq “ pK ´ 1q4 ` pK ´ 1q
K4

. (7.24)

We thus must have pK´1q2

3K2 “ pK´1q4`pK´1q
K4 , which simplifies to

KpK ´ 1qp2K2 ´ 8K ` 9q “ 0, (7.25)

which is impossible. (The only real roots to (7.25) are K “ 0 and K “ 1.) �

Claim 7.8 gives the desired contradiction and completes the proof of Theorem 4.8.



34 BHATTACHARYA, CHATTERJEE, JANSON

8. Proof of Theorem 4.10

The proof is similar to that of Theorem 4.8. Here we will denote t :“ tpK1,2,W q “
ş
dW pxq2 dx.

Suppose that t ą 0, W ı 1, but that Spec´pWK1,2q “ H and σ2
K1,2.W

“ 0. Then (4.21) and

(4.22) both hold by Lemma 4.9, and W is random-free by Theorem 4.3, that is, W px, yq P t0, 1u
for a.e. x, y P r0, 1s2. Now, recalling the definition of Wx from (7.1) we have the following claim,
which can be proved by arguments similar to Claims 7.1, 7.2, 7.3, and 7.4.

Claim 8.1. For a.e. px, yq P r0, 1s2,

W px, yq “ 0 ùñ Wx “Wy in L2r0, 1s and }Wx}2 “ }W }y “ p3tq1{2. (8.1)

Moreover, for a.e. x P r0, 1s, }Wx}2 “ p3tq1{2 ă 1.

Next, we have the analogue of Claim 7.5 for the 2-star.

Claim 8.2. For a.e. px, yq P r0, 1s2,

W px, yq ą 0 ùñ dW pxq ` dW pyq ą 0. (8.2)

Proof. Similarly to the proof of Claim 7.5, for a.e. px, yq P r0, 1s2 such that W px, yq ą 0, we can
choose δ ą 0 small enough such that for J “ py ´ δ, y ` δq,

|ts P J : W px, sq “ 0u| ă 0.1|J |. (8.3)

This implies that the set ts P r0, 1s : W px, sq ą 0u has positive measure, and thus dW pxq ą 0. �

Now, as in Claim 7.6, it follows that for a.e. px, yq P r0, 1s2,

W px, yq “ 1´ 1 tWx “Wyu . (8.4)

As in the proof of Theorem 4.8, the equivalence relation Wx “ Wy defines a possibly infinite
partition of r0, 1s “ Ů

αBα. For x P r0, 1s define αpxq to be the index such that x P Bαpxq. Then,
by definition, Wx “Wy ðñ αpxq “ αpyq, which by (8.4) yields, for a.e. x P r0, 1s,

W px, yq “ 1 tαpxq ‰ αpyqu . (8.5)

Again, similarly to Claim 7.7 we have for a.e. x P r0, 1s,
ˇ̌
Bαpxq

ˇ̌ “ 1´ 3t. (8.6)

Note that by Claim 8.1, 1´ 3t ą 0. Hence, by (8.6), there can only be a finite number of parts
Bα of positive measure and the remaining parts have together measure 0. Therefore, by (8.5)
and (8.6) we conclude that after a measure preserving transformation, W must be of the form
WK as defined in (7.22) for some K ě 1. We have excluded W ” 1, so K ą 1.

Claim 8.3. Let W “WK for some K ě 2. Then (4.21) cannot hold.

Proof. Suppose WK satisfies (4.15) a.e. Then by (8.6), each part must have size 1´ 3t, that is,
1´ 3t “ 1{K. In other words,

tpK1,2,WKq “ K ´ 1

3K
. (8.7)

On the other hand, since dWK
pxq “ K´1

K a.e.,

tpK1,2,WKq “
ż 1

0
dWK

pxq2 dx “ pK ´ 1q2
K2

. (8.8)

Thus we must have K´1
3K “ pK´1q2

K2 , that is, K “ 3
2 , which is impossible. �

Claim 8.3 gives a contradiction and completes the proof of Theorem 4.10.
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[1] A. D. Barbour, M. Karoński, and A. Ruciński. A central limit theorem for decomposable random
variables with applications to random graphs. Journal of Combinatorial Theory, Series B, 47(2):
125–145, 1989.

[2] A. Basak and S. Mukherjee. Universality of the mean-field for the Potts model. Probability Theory
and Related Fields, 168(3):557–600, 2017.

[3] B. B. Bhattacharya and S. Mukherjee. Monochromatic subgraphs in randomly colored graphons.
European Journal of Combinatorics, 81:328–353, 2019.

[4] B. B. Bhattacharya, P. Diaconis, and S. Mukherjee. Universal limit theorems in graph coloring
problems with connections to extremal combinatorics. Annals of Applied Probability, 27(1):337–394,
2017.

[5] S. Bochner. Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fun-
damenta Mathematicae, 20(1):262–176, 1933.
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