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FLUCTUATIONS OF SUBGRAPH COUNTS IN GRAPHON BASED
RANDOM GRAPHS

BHASWAR B. BHATTACHARYA, ANIRBAN CHATTERJEE, AND SVANTE JANSON

ABSTRACT. Given a graphon W and a finite simple graph H, with vertex set V(H), denote
by X, (H,W) the number of copies of H in a W-random graph on n vertices. The asymptotic
distribution of X, (H, W) was recently obtained by Hladky, Pelekis, and Sileikis [16] in the case
where H is a clique. In this paper, we extend this result to any fixed graph H. Towards this
we introduce a notion of H-regularity of graphons and show that if the graphon W is not H-
regular, then X,,(H, W) has Gaussian fluctuations with scaling nlVUDI=2 On the other hand,
if W is H-regular, then the fluctuations are of order n!VEI=1 and the limiting distribution
of X, (H,W) can have both Gaussian and non-Gaussian components, where the non-Gaussian
component is a (possibly) infinite weighted sum of centered chi-squared random variables with
the weights determined by the spectral properties of a graphon derived from W. Our proofs
use the asymptotic theory of generalized U-statistics developed by Janson and Nowicki [20].
We also investigate the structure of H-regular graphons for which either the Gaussian or the
non-Gaussian component of the limiting distribution (but not both) is degenerate. Interest-
ingly, there are also H-regular graphons W for which both the Gaussian or the non-Gaussian
components are degenerate, that is, X, (H, W) has a degenerate limit even under the scaling
nlVEI=1 We give an example of this degeneracy with H = K13 (the 3-star) and also estab-
lish non-degeneracy in a few examples. This naturally leads to interesting open questions on
higher-order degeneracies.

1. INTRODUCTION

A graphon is a measurable function W : [0,1]? — [0, 1] which is symmetric, that is, W (z,y) =
W(y,x), for all z,y € [0,1]. Graphons arise as the limit objects of sequences of large graphs
and has received phenomenal attention over the last few years. They provide a bridge between
combinatorics and analysis, and have found applications in several disciplines including statistical
physics, probability, and statistics; see for example [2, 8-11]. For a detailed exposition of the
theory of graph limits, we refer to Lovész [23]. Graphons provide a natural sampling procedure
for generating inhomogeneous variants of the classical Erdés—Rényi random graph, a concept that
has been proposed independently by various authors (see [6, 7, 13, 24] among others). Formally,
given a graphon W : [0,1]? — [0, 1], a W-random graph on the set of vertices [n] := {1,2,...,n},
hereafter denoted by G(n,W), is obtained by connecting the vertices i and j with probability
W (U;,Uj) independently for all 1 < i < j < n, where {U; : 1 < i < n} is an i.i.d. sequence
of U[0,1] random variables. An alternative way to achieve this sampling is to generate i.i.d.
sequences {U; : 1 < ¢ < n} and {Vj; : 1 < i < j < n} of U[0,1] random variables and then
assigning the edge (i, 7) whenever {Y;; < W(U;,U;)}, for 1 <i < j < n. Observe that setting
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W =W, = p € [0, 1] gives the classical (homogeneous) Erdés-Rényi random graph model, where
every edge is present independently with constant probability p.

Counts of subgraphs encode important structural information about the geometry of a net-
work. In fact, the convergence of a sequence of finite graphs to a graphon is precisely determined
by the convergence of its subgraph densities. As a consequence, understanding the asymptotic
properties of subgraph counts in W-random graphs is a problem of central importance in graph
limit theory. To this end, given a finite graph H = (V(H), E(H)) denote by X, (H,W) the
number of copies of H in the W-random graph G(n, W). More formally,

Xn(H, W) = Z Z H 1 {)/'iaib < W(Ui,, Uib)} ) (1.1)

ISty <<ty (m)|sn H'€¥g ({1, iy (m)|}) (is,it)EE(H')

where, for any set S < [n], 9y (S) denotes the collection of all subgraphs of the complete graph
K|s| on the vertex set S which are isomorphic to H. (We count unlabelled copies of H. Several
other authors count labelled copies, which multiplies X,,(H, W) by |Aut(H)|, cf. (2.7).) The
asymptotic distribution of X,,(H, W,) in the Erdés—Rényi model, where W = W), = p, has been
classically studied (in general with p = p(n)) using various tools such as U-statistics [26, 27],
method of moments [28], Stein’s method [1], and martingales [17, 18], see also [21, Chapter 6],
and the precise conditions under which X,,(H, W),) is asymptotically normal are well-understood
[28]. In particular, when p € (0,1) is fixed, X,(H,W,) is asymptotically normal for any finite
graph H that is non-empty, i.e., has at least one edge.

In this paper we study the asymptotic distribution of X,,(H, W) for general graphons W. This
problem has received significant attention recently, beginning with the work of Féray, Méliot,
and Nikeghbali [15], where the asymptotic normality for homomorphism densities in general
W-random graphs was derived using the framework of mod-Gaussian convergence. Using this
machinery the authors also obtained moderate deviation principles and local limit theorems
for the homomorphism densities in this regime. Very recently, using Stein’s method, rates of
convergence to normality (Berry—Esseen type bounds) have been derived as well, see [22] (which
also contain further related results) and [29]. See also [12] and the references therein for further
results.

However, interestingly, the limiting normal distribution of the subgraph counts obtained in
[15] can be degenerate depending on the structure of the graphon W. This phenomenon was
observed in [15], and it was explored in detail in the recent paper of Hladky, Pelekis, and
Sileikis [16] for the case where H = K, is the r-clique, for some r > 2. They showed that
the usual Gaussian limit is degenerate when a certain regularity function, which encodes the
homomorphism density of K, incident on a given ‘vertex’ of W, is constant almost everywhere
(a.e.). In this case, the graphon W is said to be K,-regular and the asymptotic distribution
of X,,(K,,W) (with another normalization, differing by a factor n!/2) has both Gaussian and
non-Gaussian components. In the present paper we extend this result to any fixed graph H. To
this end, we introduce the analogous notion of H-regularity and show that the fluctuations of
X, (H,W) depends on whether or not W is H-regular. In particular, if W is not H-regular, then,
X, (H, W) is asymptotically Gaussian, using a normalization factor n!VUDI=1/2 However, if W is
H-regular, then the normalization factor becomes n!V(#)I=1 and yields a limiting distribution of
X, (H, W) that has, in general, a Gaussian component and another independent (non-Gaussian)
component which is a (possibly) infinite weighted sum of centered chi-squared random variables.
Here, the weights are determined by the spectrum of a graphon obtained from the 2-point
conditional densities of H in W, that is, the density of H in W when two vertices of H are
mapped to two ‘vertices’ of W, averaged over all pairs of vertices of H. The results are formally
stated in Theorem 2.9. Unlike in [16] which uses the method of moments, our proofs employ
the orthogonal decomposition for generalized U-statistics developed by Janson and Nowicki [20)]
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(see also [19, Chapter 11.3]). This avoids cumbersome moment calculations and provides a more
streamlined framework for dealing with the asymmetries of general subgraphs.

There are also exceptional cases, where W is H-regular and normalization of X, (H,W)
by nlVEI=1 also yields a degenerate limit; then a non-trivial limit can be found by another
normalization. (We ignore trivial cases when X,,(H, W) is deterministic.) This cannot happen
when H = K, as shown in [16], but we give an example of this degeneracy with H = K3
(the 3-star); see Example 4.6. We also show that this higher-order degeneracy cannot happen
for H = Cy (the 4-cycle) and H = Kj o (the 2-star); see Theorem 4.8 and Theorem 4.10,
respectively. It is an open problem to decide for which graphs H such higher-order degeneracies
may occur.

We also study the structure of W is when it is H-regular and one (but not both) of the two
components of the limit distribution in Theorem 2.9(2) vanishes, so that the limit distribution
either is normal, or lacks a normal component. In particular, we show that if H is bipartite
and W is H-regular, then the limit lacks a normal component if and only if W is {0, 1}-valued
almost everywhere (Theorem 4.3).

1.1. Organization. The rest of the paper is organized as follows. The limit theorems for the
subgraph counts are presented in Section 2. We compute the limits in some examples in Section
3. Degeneracies of the asymptotic distributions are discussed in Section 4. The main results are
proved in Sections 5-8.

2. ASsYMPTOTIC DISTRIBUTION OF SUBGRAPH COUNTS IN W-RANDOM GRAPHS

In this section we will state our main result on the asymptotic distribution X,,(H, W). The
section is organized as follows: In Section 2.1 we recall some basic definitions about graphons.
The notions of conditional homomorphism density and H-regularity are introduced in Section
2.2. Some spectral properties of the integral operator corresponding to a graphon are described
in Section 2.3. The result is formally stated in Section 2.4.

2.1. Preliminaries. A quantity that will play a central role in our analysis the homomorphism
density of a fixed multigraph F = (V(F), E(F)) (without loops) in a graphon W, which is
defined as:

V()

W(xq, dz,. 2.1
[V (F)I H (w wb) U v ( )
(s,t)eE(F) a=1

Note that this is the natural continuum analogue of the homomorphism density of a fixed graph
F = (V(F), E(F)) into finite (unweighted) graph G = (V(G), E(G)) which is defined as:
. | hom(F, G)|
O g
where |hom(F, G)| denotes the number of homomorphisms of F' into G. In fact, it is easy to

verify that t(F,G) = t(F, W), where W& is the empirical graphon associated with the graph
G which defined as:

HEF, W) — f

[0,1]

(2.2)

Wz, y) = H(IV(G)z], [[V(G)ly]) € B(G)}. (2.3)

(In other words, to obtain the empirical graphon W from the graph G, partition [0,1]? into
|V (G)|? squares of side length 1/|V(G)|, and let W% (x,y) = 1 in the (i, j)-th square if (i, ) €
E(G), and 0 otherwise.)

Let H = (V(H),E(H)) be a simple graph. For convenience, we will throughout the paper
assume that V(H) = {1,2,...,|V(H)|}. Then, the homomorphism density defined (2.1) can
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also interpreted as the probability that a W-random graph on |V (H)| vertices contains H, that
is,

HH, W) = P(G(|V(H)|, W) = H). (2.4)

To see this, recall the construction of a W-random graph and note from (2.1) that,

t(HW)=E| [] WU.W)|=E| [] 1Yu<WU.U)}

(a,b)eE(H) (a,b)eE(H)
=E[H{G(V(H)[,W) =2 H}]. (2.5)
Next, recalling (1.1) note that
EX,(H, W) = > > t(H, W)
1<’i1<“‘<i|v([{)‘<n H’EgH({il,...,”V(H”})
n
= G ({L,....[V(H)[})| - t(H,W) (2.6)
<|V(H )|>
where the last equality follows since the number of subgraphs of Ky ) on {i1,... 4y m)}
isomorphic to H is the same for any collection of distinct indices 1 < i1 < -+ < gy () < n.
Clearly,
[V(H)]!
Yy({1,...,|V(H = —— 2.7
(L. VU] = T (27)

where Aut(H) is the collection of all automorphisms of H, that is, the collection of permutations
o of the vertex set V(H ) such that (z,y) € E(H) if and only if (o(z),0(y)) € E(H). This implies,
from (2.6),

() v ()|
|Aut(H)|
where (n)y () :=n(n—1)---(n— [V(H)| + 1).

EX,(H, W) = HH, W), (2.8)

2.2. Conditional Homomorphism Densities and H-Regularity. In this section we will
formalize the notion of H-regularity of a graphon W. To this end, we need to introduce the
notion of conditional homomorphism densities. Throughout, we will assume H = (V(H), E(H))
is a non-empty simple graph with vertices labeled V(H) = {1,2,...,|V(H)|}.

Definition 2.1. Fix 1 < K < |V(H)| and an ordered set @ = (a1, ag, . ..,ax) of distinct vertices
ai,az,...,ax € V(H). Then the K-point conditional homomorphism density function of H in
W given a is defined as:

tal@, HW)=E| [ WU U ‘ Uy, = 25, for 1 <j <K

(a,b)eE(H)
=P(G(V(H),W)2H |Uy, =j, for 1<j<K), (2.9)
where = (x1,x2,...,2x). In other words, tq(x, H,W) is the homomorphism density of H in

the graphon W when the vertex a; € V(H) is marked with the value z; € [0,1], for 1 < j < K.

The conditional homomorphism densities will play a crucial role in the description of the
limiting distribution of X,,(H,W). In particular, the H-regularity of a graphon W is determined
by the 1-point conditional homomorphism densities, which we formalize below:
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Definition 2.2 (H-regularity of a graphon). A graphon W is said to be H-regular if

[V (H)|

1 2 (z, H,W) = t(H,W), (2.10)

t(x, HW) :

for almost every z € [0, 1].

Note that in (2.10) it is enough to assume that t(z, H,W) is a constant for almost every
€ [0,1]. This is because

1
J tole, H, W) dz = t(H, W), (2.11)
0

for all a € V(H). Hence, if t(x, H,WW) is a constant a.e., then the constant must be t(H, W).
Therefore, in other words, a graphon W is H-regular if the homomorphism density of H in W
when one of the vertices of H is marked, is a constant independent of the value of the marking.

Remark 2.3. Note that when H = K, is the r-clique, for some r > 2, then t,(z, H, W) =
ty(z, H,W), for all 1 < a # b < r. Hence, (2.10) simplifies to
U ==z

t1(z, K, W) =E [ H W (Uyg, Up) = t(H,W), for almost every x € [0,1], (2.12)

1<a<b<sr

which is precisely the notion of K,-regularity defined in [16].
Remark 2.4. Recall that the degree function of a graphon W is defined as

dw(x) := W(z,y)dy. (2.13)
[0.1]

Note that for H = Ky, (2.9) yields

tl(w,Kg, W) =E [W(Ul, Ug) ‘ U1 = iL‘] = 0.1] W(x,y) dy = dw(x) (2.14)
0,1
Hence, the notion of Ko- regularity coincides with the standard notion of degree regularity, where
the degree function dy () := So 1 (x,y) dy is constant a.e.

2.3. Spectrum of Graphons and 2-Point Conditional Densities. Hereafter, we denote
by Wy the space of all graphons, which is the collection of all symmetric, measurable functions
W : [0,1]> — [0,1]. We let also W; be the space of all bounded, symmetric, measurable
functions W : [0,1]?> — [0, ). Every graphon W € W, or more generally W € Wi, defines an
operator Tyy : L2[0,1] — L?[0,1] as follows:

(Tw f)(x f Wz, y)f(y)dy, (2.15)

for each f e L?[0,1]. Ty is a symmetric Hilbert-Schmidt operator; thus it is compact and has
a discrete spectrum, that is, it has a countable multiset of non-zero real eigenvalues, which we

denote by Spec(W), with

Z M= f W(z,y)*dzdy < . (2.16)
AeSpec(W)
Moreover, a.e.,
(Tw @)= 3, Mf.onoa() (2.17)

AeSpec(W)
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and

W(z,y)= D, Aa(@)oa), (2.18)

AeSpec(W)

where {@x} respec() denotes an orthonormal system of eigenfunctions associated with Spec(W).
For a more detailed discussion on the spectral properties of graphons and their role in graph
limit theory, see [23, Chapters 7, 11].

To describe the limiting distribution of X,,(H, W) when W is H-regular, we will need to
understand the spectral properties of the following graphon obtained from the 2-point conditional
densities:

Definition 2.5. Given a graphon W € W), and a simple connected graph H = (V(H), E(H)),
the 2-point conditional graphon induced by H is defined as:

1
WH T,Y) = SThar o ta,b T,y 7H7W ) 2.19
(z,y) SAut(H)) 1$a;ﬁl§V(H) ((z,y) ) (2.19)

where tq4((z,y), H, W) is the 2-point conditional homomorphism density function of H in W
given the vertices (a,b), as in Definition 2.1.> (The normalization factor in (2.19) is chosen for
later convenience in e.g. (2.25).)

Intuitively, Wg (z,y) can be interpreted as the homomorphism density of H in W containing
the ‘vertices’ z,y € [0, 1].

Note that a graphon W is H-regular (see Definition 2.2) if and only if the 2-point conditional
graphon Wy is degree regular (see Remark 2.4). This is because, for all x € [0, 1],

1 4 V()
L Wy (x,y)dy = m az::l to(z, H W), (2.20)

and the RHS of (2.20) is a constant if and only if W is H-regular. In fact, if W is H-regular,
H)|

then ﬁ ZLV=(1 to(x, H W) = t(H,W) a.e.; hence, the degree of W becomes
VIV H) - 1)
2|Aut(H)|

for almost every z € [0,1]. This implies that, if W is H-regular, then dyy,, is an eigenvalue of
the operator Ty, (recall (2.15)) and ¢ = 1 is a corresponding eigenvector. In this case, we will
use Spec” (W) to denote the collection Spec(Wpy) with the multiplicity of the eigenvalue dyy,,
decreased by 1. (Note that dy,, > 0 by (2.21) unless t(H,W) = 0, or |V(H)| = 1; these cases
are both trivial, see Remark 2.10.)

Jol We(z,y)dy = t(H, W) = dwy,, (2.21)

2.4. Statement of the Main Result. To state our results on the asymptotic distribution of
X, (H,W), we need to define a few basic graph operations.

Definition 2.6. For a graph H = (V(H), E(H)) on vertex set {1,2,--- ,r} define,
EY(H)={(a,b):1<a#b<r(a,b)or (ba)e E(H)} (2.22)

Definition 2.7. Fix r > 1 and consider two graphs H; and Hy on the vertex set {1,2,---,r}
and edge sets E(H;) and E(H3), respectively.

1Stric‘cly speaking, Wy is in general not a graphon in Wy because it can take values greater than 1. However,
Wu € Wi, and we still call it a graphon.
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H\PH,

a,b

H, H,
FIGURE 1. The (a,b)-vertex join of the graphs H; and Ho.

e Vertex Join: For a,b € {1,2,---,r}, the (a,b)-vertex join of Hy and Hj is the graph
obtained by identifying the a-th vertex of H; with the b-th vertex of Hy (see Figure 1
for an illustration). The resulting graph will be denoted by

Hi P H,.
a,b

e Weak Edge Join: For (a,b) € E*(Hy) and (¢,d) € ET(Hs), with 1 < a # b < r
and 1 < ¢ # d < r, the (a,b), (¢, d)-weak edge join of Hy and Hs is the graph obtained
identifying the vertices a and c and the vertices b and d and keeping a single edge between
the two identified vertices (see Figure 2 for an illustration). The resulting graph will be

denoted by
H O H.
(a,b),(c,d)

e Strong FEdge Join: For (a,b) € ET(Hy) and (¢,d) € ET(Hs), with 1 < a # b < r
and 1 < ¢ # d < r, the (a,b), (¢, d)-strong edge join of Hy and Hs is the multi-graph
obtained identifying the vertices @ and ¢ and the vertices b and d and keeping both the
edges between the two identified vertices (see Figure 2 for an illustration). The resulting
graph will be denoted by

H, 6—) H,.

(a,b),(c,d)

Remark 2.8. We note that both the weak and strong edge join operations can be extened to
arbitrary (a,b) € V(H;)? and (c,d) € V(H3)? with a # b and ¢ # d; in the strong join we keep
all edges, but in the weak join we keep the join simple by merging any resulting double edge.
(Thus, if either (a,b) ¢ E*(Hy) or (¢,d) ¢ E*(Hs), then the weak and strong edge joins are the
same graph.)

Having introduced the framework and the relevant definitions, we are now ready to state our
main result regarding the asymptotic distribution of X,,(H, W), the number of copies of H in
the W-random graph G(n, W).

Theorem 2.9. Fiz a graphon W € Wy and a simple graph H = (V(H), E(H)) with vertices
labeled V(H) = {1,2,...,|V(H)|}. Then for X,,(H,W) as defined in (1.1) the following hold,

asn — o0:
(1) For any W,

(n) v ()|
Xo(H, W) — PG ()

2

nl
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IS
o

o, H,y

H @ H

(a,b),(c,d)
FI1GURE 2. The weak and strong edge joins of the graphs H; and Hs.

where

THw = M > t(H@H, W) — |V(H)*t(H,W)*| = 0. (2.24)
()|

1<a,b<|V a,b

Moreover, T%LW > 0 if and only if W is not H-reqular. Thus, if W is not H-regular,

then X, (H, W) is asymptotically normal.
(2) If W is H-regular, then
(M) v ()]
Xn(H’ W) T TAut(H t(H7 W) D
nIV(‘H)|£1)| —ogw- Z+ Z MNZ:-1), (2.25)
AeSpec™ (Wg)

where Z and {Z/\})\GSpec_(WH) all are independent standard Gaussians,

1
Ui,w:m > (H)[t(H © H,W)—t(H P H,W)]zo,

(a,b),(c,d)eE* (a,b),(c,d) (a‘vb)v(cvd)
(2.26)

and Spec™ (W) is the multiset Spec(Wy) with multiplicity of the eigenvalue dyy,, (recall
(2.21)) decreased by 1.

The sum in (2.25) may be infinite, but it converges in L? and a.s. by (2.16). The proof
of Theorem 2.9 uses the projection method for generalized U-statistics developed in Janson
and Nowicki [20], which allows us to decompose X,,(H, W) over sums of increasing complexity.
(See also [19, Chapter 11.3] and [22].) The terms in the expansion are indexed by the vertices
and edges subgraphs of the complete graph of increasing sizes, and the asymptotic behavior of
X, (H,W) is determined by the non-zero terms indexed by the smallest size graphs. Details of
the proof are given in Section 5. Various examples are discussed in Section 3.
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Remark 2.10. We note some trivial cases, where X,,(H, W) is deterministic. First, t(H,W) =1
if and only if H is empty (has no edge), or W is complete, that is, W = 1. In both cases,

almost surely X, (H,W) = Txﬂzl((g))" Similarly, if W is H-free, that is, t(H,W) = 0, then
almost surely X, (H,W) = 0. Note also that in these cases with t(H,W) € {0,1}, we have
t(x, HW) = t(H,W) a.e., e.g. by (2.11), and thus W is H-regular. Theorem 2.9 is valid for
these cases too (with limits 0), but is not very interesting, and we may without loss of generality
exclude these cases and assume 0 < t(H, W) < 1.

Remark 2.11. As mentioned earlier, the result in Theorem 2.9(1) has been proved recently by
Féray, Méliot, and Nikeghbali [15, Theorem 21] using the machinery of mod-Gaussian conver-
gence. They noted that the limiting distribution in [15, Theorem 21] might be degenerate, that
is, 7w = 0, and called this case singular. (This is thus our H-regular case). Méliot [25] studied
the (globally) singular graphons, i.e., the graphons W for which 7w = 0, for all graphs H. For
such graphons [25] derived the order of fluctuations for the homomorphism densities, but did
not identify the limiting distribution.

The main emphasis of the present paper is Theorem 2.9(2), for H-regular graphons, where
the more interesting non-Gaussian fluctuation emerges. Moreover, it turns out that there are
non-trivial cases where also the limit in Theorem 2.9(2) is degenerate. We discuss this further
in Section 4, where we give both an example of such a higher-order degeneracy, and examples
of graphs H for which this cannot happen for any W. We will also study when one of the two
components of the limit (the normal and the non-normal component) vanishes. In particular, in
the classical Erd6s—Rényi case W = p, Theorem 2.9(2) applies to every H with the non-normal
component vanishing, so the limit is normal, which is a classical result; see further Example 3.3.

Remark 2.12. For the closely related problem of counting induced subgraphs isomorphic to
H, limit distributions of the type in Theorem 2.9(2) with a non-normal component occur (for
special H) even in the Erdés—Rényi case W = p, but then with normalization by nlVIEI=2 gee
[1, 20]. It seems interesting to study induced subgraph counts in G(n, W) for general graphons
W with our methods, but we have not pursued this.

Finally, it is worth mentioning that limiting distributions very similar to that in Theorem
2.9(2) also appears in the context of counting monochromatic subgraphs in uniform random
colorings of sequences of dense graphs [3, 4]. Although this is a fundamentally different problem,
the appearance of similar limiting objects in both situations is interesting.

3. EXAMPLES

In this section we compute the limiting distribution of X,,(H, W) for various specific choices
of H and W using Theorem 2.9.

Example 3.1. (Cliques) Suppose H = K,, the complete graph on r vertices, for some r > 2.
This is the case that was studied in [16]. To see that Theorem 2.9 indeed recovers the main
result in [16], first recall Remark 2.3, which shows that our notion of H-regularity matches with
the notion of K,-regularity defined in [16]. Next, note that by the symmetry of the vertices of
a clique,

a,b 1,1

t(H@H,W) :t<H@H,W>, (3.1)
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for 1 < a,b < |V(H)|, and |Aut(K,)| = r!. Therefore, Theorem 2.9(1) implies, when W is not
K, -regular,

n(Kr, W) — (l ) (K, W) ZN (0, (7“—11)'2 [t (KT@KT7W> _t(Ker>2]> ) (3-2)

n'" 11

which is precisely the result in [16, Theorem 1.2(b)]. For the K,-regular case, note that by
the symmetry of the edges of a clique, the 2-point conditional graphon induced by K, (recall
Definition 2.5) simplifies to

WKr(xay) = t1,2((xay)7KT>W)' (3'3)

o
2(r —2)!
Moreover, for all (a,b), (¢,d) € E(K,),

t(Kr ) KT,W>=t<KT e KW) (3.4)
) )

(a,b),(c.d (1,2),(1,2
and similarly for the strong edge-join operation. Hence, Theorem 2.9(2) implies

Xu(Kr, W) = ()UK W) 1
nr—1

Boxw - Z+ > NZ-1) (3.5)
XeSpec™ (Wk,.)

1
Ok w = 5— 13 {t <H O H W) .y <H @ =, W) } (3.6)
2(r = 2)! (1,2),(1,2) (1,2),(1,2)

as shown in [16, Theorem 1.2(c)].

with

2 3
Le Ko
Kiy=K DK =K 2P Ko =KD K

(1,1) (2:3) (1,3)

FiGure 3. The different non-isomorphic graphs that can be obtained by the
vertex join of two copies of Ko (with vertices labeled {1, 2,3} as in the inset).

Example 3.2. (2-Star) Suppose H = K 2 with the vertices labelled {1, 2,3} as shown in Figure
3. In this case, for any graphon W e W,

1
ti(z, K12, W) = L Wz, y)W(z,z)dydz = dy (z)?, (3.7)
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where the degree function dyy () is defined in (2.13), and

1 1
b, Ky, W) = taar, K19, W) = f W ()W (y, 2) dy dz = f W(e,y)dw(y)dy,  (38)
0 0

Then by Definition 2.2, (3.7) and (3.8), W is K >-regular if and only if

1
dw (z)? + ZL W (z,y)dw (y)dy = 3t(K12,W), forae. z€[0,1]. (3.9)

In particular, if W is degree regular, then the left-hand side of (3.9) is constant, and thus W is
K o-regular. (We conjecture that the converse holds too, but we have not verified this.)
Therefore, from Theorem 2.9 we have the following:

e If (3.9) does not hold, then

Xn (K12, W) =3(5)t(K12,W) p
- (s) = N0, 7%, , ) (3.10)

n2
with
1
Ty paw = 7 {HE L W) + 4L P W) + 4By, W) = 91K o, W), (3.11)
where the graphs K4, P4, and B4 are as shown in Figure 3. Note that K4 is the
4-star (obtained by joining the two central vertices of the 2-stars), P; is the path with 4
edges (obtained by joining a leaf vertex of one 2-star with a leaf vertex of another), and
By is the graph obtained by joining the central vertex of one 2-star with a leaf vertex
of another. For a concrete example of a graphon which is not Kjs-regular, consider
Wo(z,y) == xy. In this case, dw,(z) = 3z, for all z € [0,1], and (3.9) does not hold;
hence, Wy is not K1 2-regular.
e For every H,
Xn(K19, W) =3(3)t(Ky2, W
n (K12, W) (5)t(K12, W) —D>UK1,2,W’Z+ Z ANZ2 - 1), (3.12)
AeSpec™ (WKI,Z)

n2

with

U%ﬁg,W = Q{t(K1,37 W) + t(P?n W) - t(Kf:Sa W) - t(Pi;rv W)}7 (313)
where K 3 is the 3-star and P3 is the path shown in Figure 4(a) (obtained by the weak
edge-join of two copies of K o using the edges (1,2), (1,2) and (1, 2), (2, 1) respectively)
and the K 1+ 5 and P; are the multigraphs shown in Figure 4(b) (obtained by the strong
edge-join of two copies of K7 2 using the edges (1,2), (1,2) and (1, 2), (2, 1) respectively).
Moreover, in this case the 2-point conditional graphon Wk, , simplifies to:

Wi ao) = 3 { W)l (o) + ) + [WaoW ) dzh. 19

since t1,2(x,y, K12, W) = t13(z,y, K12, W) = W(z,y)dw(z) and tr3(z,y, K12, W) =
S[o 1] W (x,z)W (y, z) dz, and similarly for the others. For a concrete example of graphon
which is K7 o-regular consider

. 2 1 412
W i- (b e e PATUBAT 029

Note that this is a 2-block graphon (with equal block sizes) taking value p in the diagonal
blocks and zero in the off-diagonal blocks. (One can think of this as the ‘disjoint union
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FIGURE 4. (a) The weak edge join of two copies of K12 and (b) the strong edge
join of two copies of Kj ».

two Erdés—Rényi graphons’.) It is easy to check that this graphon is degree regular,
hence K -regular. In fact, in this case

~ 32 11211 17?
Wie o) =1 @0 € 0FULA (3.16)
0 otherwise.
and U?ﬁ,sz = %p‘g(l — p). Moreover,
Spec(Wi, ,) = {3p*/8,3p%/8}, (3.17)

with the eigenfunctions 1 and 1{[0, 1/2]}—1{[1/2, 1]}, respectively. In particular, dw, =
3p?/8 in agreement with (2.21). Consequently, Spec_(WKLQ) = {3p?/8}.

Example 3.3. (Erdés-Rényi graphs) Suppose that W = W, = p for some p € (0,1). By
symmetry, t(z, H, W) does not depend on z, and thus W), is H-regular for every H. Further-
more, by (2.19), also the 2-point conditional graphon Wy is constant, which implies (see also
Proposition 4.1) that Spec™ (Wg) = & and thus the limit in Theorem 2.9(2) is normal for every
non-empty H. (We have O'%LW > 0 by (2.26).) As said earlier, this is a classical result, see e.g.
(1, 17, 18, 21, 26-28].

4. DEGENERACIES OF THE ASYMPTOTIC DISTRIBUTION

In this section we will discuss the degeneracies of asymptotic distribution when W in H-
regular; we will throughout the section tacitly ignoring the trivial cases in Remark 2.10, i.e., we
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assume that 0 < ¢(H,W) < 1. Towards this denote
() v ()|
Xn(Ha W)  TAut(H)| t(H7 W)
Zn(H,W) := V-1 . (4.1)
Theorem 2.9(2) shows that when W is H-regular,
ZoHW) Bogw-Z+ Y ANZE-1), (4.2)

AeSpec™ (Wg)

where Z,{Z} cspec—(w,) are all independent standard Gaussians, and 0% is as defined in

Theorem 2.9. This raises the following natural questions:

e Is the limiting distribution of Z,(H,W) non-degenerate? Given the result in Theo-
rem 2.9 it is natural to wonder whether, when W is H-regular, the limiting distribution
of Z,(H,W) in (4.2) is always non-degenerate. This is indeed the case for cliques: if
H = K, for some r > 2, then it was shown in [16, Remark 1.6] that the limit in (4.2)
is never degenerate. However, for general graphs H the situation is surprisingly more
complicated. It turns out that there are graphs H for which there exist a H-regular
graphon W, with 0 < ¢(H,W) < 1, such that the limit in (4.2) is degenerate (see
Example 4.6). Naturally this raises the question: For which graphs H is the limiting
distribution of Z,(H, W) always non-degenerate? In Section 4.3 we answer this question
in the affirmative when H = Cjy is the 4-cycle and H = K2 is the 2-star.

In cases when the limit in (4.2) is non-degenerate, we can ask about the structure of W when
one of the components of the limit vanishes:

o When is the limiting distribution of Z,(H, W) normal? Note from (4.2) that Z,(H, W)
is asymptotically Gaussian if and only if the non-Gaussian component

> MZE-D

AeSpec” (Wx)

is degenerate. We show in Proposition 4.1 that this happens precisely when the 2-point
conditional graphon Wy is constant a.e.

o When is the limiting distribution of Z,(H,W) normal-free? Clearly, the limit (4.2)
has no Gaussian component whenever g = 0. In Theorem 4.3 we characterize the
structure of such graphons when H is bipartite: we show that if H is bipartite, then the
limit in (4.2) is normal-free if and only if W (z,y) € {0,1} a.e. (that is, W is random-
free). We also show that there are non-bipartite graphs H and graphons W which are
not random-free for which oy w = 0 (Example 6.1).

4.1. Degeneracy of the Non-Gaussian Component. The following proposition character-
izes when the limit in (4.2) is Gaussian. It extends the special case H = K, which was shown

in [16, Theorem 1.3].

Proposition 4.1. Let H be a simple graph and let W be a H-reqular graphon.
following are equivalent:

(1) Zu(H,W) 5 N(0,0% 1)

(2) 2respec— (W) MNZ3} — 1) is degenerate.
(3) Spec™ (We,) = .
(4)

Then the

4) Wy (z,y) = dw,, a.e., where dy,, = VIDIV(H)|=1) t(H, W) is as defined in (2.21).

2|Aut(H)|
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Proof. From (4.2) it is clear that (1), (2) and (3) are equivalent. Next, recalling the discussion
following (2.21), Spec™ (Wgx) = ¢ if and only if Spec(Wg) = {dw,, }; furthermore, since W is
H-regular, Wy is degree regular and, hence, ¢ = 1 is an eigenfunction corresponding to dyy,,.
Therefore, by (2.18), if Spec(Wx) = {dw,, }, then

WH($,y) = dWH¢($)¢(y) = dWH a.e. (43)
Conversely, Wg(z,y) = dw,, a.e. implies that dyy,, is the only non-zero eigenvalue of Tyy,,, and
thus Spec™ (Wp) = . This establishes that (3) and (4) are equivalent. O

4.2. Degeneracy of the Gaussian Component. The Gaussian component in the limit (4.2)
is degenerate when J%M, = 0. To study the structure of such graphons we need a few definitions.
For a graph F' = (V(F),E(F)) and S < V(F), the neighborhood of S in F is Np(S) = {v €
V(F) : 3 u € S such that (u,v) € E(F)}. Moreover, for u,v € V(F), F\{u,v} is the graph
obtained by removing the vertices u,v and all the edges incident on them. For notational
convenience we introduce the following definition:

Definition 4.2. Let H be a labeled finite simple graph and W a graphon. Then, for 1 < u #
v < |V(H)|, the function ¢, ,(-,-, H,W) : [0,1]* — [0,1] is defined as:

tuo (@, y, H,W)
— J o H Wz, z) H Wy, zs) H Wz, 2s) H dz,. (4.4)
[0,1]1VEEDI= eNH(u \{v} seNg (v)\{u} (r,s)eE(H\{u,v}) ré¢{u,v}
Thus, if (u,v) € E(H), then
tup(z,y, HW) = W(z,y)t, (v, y, H,W). (4.5)
Note that
STETTIDY j (o, H W)t (o, H W)W (2, ) (1~ W(2,y) dedy, - (46)
(a, ) (e,d)eE+(H
where cy = W' It is clear from (4.6) that if W is random free, then UH7W = 0 and hence,

if W is H-regular, the asymptotic distribution does not have a normal component. Interestingly,
the converse is also true whenever H is bipartite. This is formulated in the following theorem:
Theorem 4.3. If H is a non-empty bipartite graph with t(H,W) > 0, then O'%{’W =0 if and
only if W is random-free.

The proof of Theorem 4.3 is given in Section 6. It entails showing, using the bipartite structure
of H, that for almost every (z,y) such that W(z,y) € (0,1), we have ¢_,(z,y, H, W) > 0, for
a # b e V(H) such that (a,b) € E(H). Consequently, from (4.6), O‘HW > (0 whenever the set

{(x,y) € [0,1]? : W (=, y) € (0,1)} has positive Lebesgue measure. An immediate consequence of
Theorem 4.3 is that for a bipartite graph H and an H-regular W, the asymptotic distribution
of Z,(H,W) is non-degenerate whenever W is not random free.

Remark 4.4. The bipartite assumption in Theorem 4.3 is necessary, in the sense that there
exist non-bipartite graphs H and graphons W with ¢(H, W) > 0 such that 0%, = 0, but W is
not random-free. We discuss this in Example 6.1.

For non-bipartite H, we note only the following, which extends [16, Proposition 1.5].

Proposition 4.5. We have U%LW = 0 if and only if W(x,y) = 1 for a.e. (z,y) such that
tap(z,y, H,W) >0 for some (a,b) € E*(H).

Proof. An immediate consequence of (4.6) and (4.5). O
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4.3. Degeneracy of the Limit in (4.2). We begin with an example where the limit in (4.2)
is degenerate.

Example 4.6. Let H = K3 be the 3-star on vertex set {1,2,3,4}, where the root node is
labeled 1. Further, suppose that W is the complete bipartite graphon:

Wiey) m {0 if (z,y) € [0,3]7U (3,1], n

1 otherwise.
To begin with note that dy (z) = Sé W (z,y)dy = %, for all « € [0,1]. Therefore,

! 1 1
Dti(x, K1, W) = 1 [dw(x)3 + 3JW(x,t)dW(t)2dt =3 (4.8)
=1

This establishes that W is K s-regular, and that t(K;3, W) = 1/8. Next, since W € {0, 1},
by Theorem 4.3, O'%(l .w, = 0. Hence, to show that the limit distribution of Z, (K13, W) is

degenerate it suffices to check that )| AeSpec— (Wi ) A? = 0. By Proposition 4.1, this is equivalent
1,3

to showing
Wi, (2, 9) 12 Kigw) = 2 (4.9)
T,Y) = == )
Ki3 Y 2|Aut(K1’3)] 1,35 87
for a.e. (z,y) € [0,1]? (since |Aut(K;3)| = 3! = 6). Towards this recall (2.19), which yields
1
WKl,S(xvy) = Z ta,b (xayaKl,?)aW)

2|Aut(Ky3)| 1<a#b<4

% |:3W($, Y) JW(m, 2)W(x,t)dzdt + 3W (x,y) JW(y, 2)W(y,t)dzdt

+6 J Wz, t)W (y,t)W(z,t)dz dt]

le [3W(x, W) dw (2)2 + 3W (2, y)dw (1)? + GJdW(t)W(:c, DW (. 1) dt]

- % [‘;W(g;,y) + 3JW(x,t)W(y,t) dt]. (4.10)

Now, observe that if W(z,y) = 0 then {W(z,t)W(y,t)dt = 3, which implies, from (4.10),
Wk, ,(z,y) = 1. Further, when W(z,y) = 1, then {W(z,¢)W(y,t)dt = 0, which implies
Wk, ,(z,y) = 3. Thus for all (z,y) € [0,1]?, Wk, , = 1/8, which establishes (4.9). This shows
that limiting distribution of Z, (K7 3, W) is degenerate for W as in (4.7).

In fact, in this example, we can easily find the asymptotic distribution of Wk, , directly. Let

M := ’{z (U < %}‘ ~ Bin(n, %), and M := M — n/2. Then

Xo(K13, W) = M(";M) + (n— M) <A34>
1

- 8(M(n— M) ((n — M)? = 3(n — M) +2) + (n — M)M(M> - 3M + 2))

= éM(n—M)((n—M)Q—i—MQ—ZSn—I—ZL)

A GG (o) e
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() (s) <

() ) - ). wam

Hence, subtracting the mean and using (2.8),

Xp(Kys, W) — 8 N* —EN* L34 M? — EM?

(4.12)

n2 3n? 61 n

Since the central limit theorem yields M /n'/? A Z/2, with all moments, where Z ~ N(0,1),
(4.12) yields

X (K13, W) — (s b, Z'-3 -1 1

n? 48 8 48

where hy is the 4th Hermite polynomial (using the normalization in e.g. [19, Example 3.18]).

Consequently, in this example, the correct normalization is by n? = nlVE)I=2 and the limit
distribution is given by a fourth-degree polynomial of a Gaussian variable.

(2*-62*+3) = —4—18h4(Z), (4.13)

The example above raises the question for which graphs H is the limiting distribution of
Zn(H,W) in Theorem 2.9(2) non-degenerate for all graphons . In the following we will show
that the limit is always non-degenerate when H = Cy or H = K 2 (the 4-cycle and the 2-star).
Our proofs use the specific structure of the 4-cycle and 2-star and it remains unclear for what
other graphs can one expect the non-degeneracy result to hold.

Non-Degeneracy of the Limit for the 4-Cycle: We begin by deriving explicit conditions for
degeneracy of the two components of the limiting distribution of Z(Cy, W). (For the normal
part, we can also use Theorem 4.3, but we find it interesting to first make a direct evaluation of
the condition U%LW = 0.) Towards this define:

Ui(z,y) = W(z,s)W(y,s)ds and Us(z,y):= Wz, s)W(s,t)W(y,t)dsdt.
[0,1] [0,1]2
(4.14)

Lemma 4.7. Suppose W is a Cy-regular graphon with t(Cy, W) > 0. Then the following hold:
(a) Spec™ (We,) = & if and only if

Uiz, y)? + 2W (z,y)Us(z, ) = 3t(Cy, W), a.e. (x,y) € [0,1]> (4.15)
(b) U%ﬁ,W = 0 if and only if
j[o VB (W ) = W2Ga,) dedy =0 (4.16)

As a consequence, the limit of Z,(Cy, W) in (4.2) is degenerate if and only if (4.15) and (4.16)
hold.

Proof. Since all the vertices of the 4-cycle are symmetric, from Definition 2.2 we have the
following: The graphon W is Cy-regular if

W (x,y)W(y, 2)W(z, ) W (t,x) dy dzdt = t(Cy, W) a.e. x € [0,1]. (4.17)
[0,1]?
Moreover, since |Aut(Cy4)| = 8, by Definition 2.5, the 2-point conditional graphon induced by
Cy is given by
AU (2, y)* + 8W (2,y)Uz(2,y) _ Ui(z,y)* + 2W (2,y)Usz(2,y)
2|Aut(Cy)| 4 ’

We,(z,y) = (4.18)
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where Uy, Us are as defined in (4.14). Hence, Proposition 4.1 shows that Spec™ (W¢,) = & if
and only if (4.15) holds.

Next, since all the edges of Cy are symmetric, the weak edge join of 2 copies of Cy is always
isomorphic to graph F; in Figure 5(a). Similarly, the strong edge join of 2 copies of Cy is always
isomorphic to graph F, in Figure 5(b). Therefore, using |E*(Cy)| = 8 and |Aut(Cy4)| = 8 in

I Fy

(a) (b)

FIGURE 5. (a) The weak and (b) the strong edge join of two copies of Cy.

(2.26), we find that U?L;,W simplifies to

1
U%‘4,W = 5 (t(Flﬂ W) - t(F27 W))
1
[0,1] [0,1]
Hence,
=0 = [ ) (W) - W) dedy, (4.20)
which completes the proof. (|

The following theorem shows that (if we ignore the trivial cases in Remark 2.10), whenever
W is Cy-regular, the limiting distribution of Z,(Cy, W) is always non-degenerate. Hence, for
H = Cy, Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem
4.8 is equivalent to the claim that whenever W is Cy-regular, (4.15) and (4.16) cannot occur
simultaneously. The proof of Theorem 4.8 is given in Section 7.

Theorem 4.8. Suppose W is a Cy-reqular graphon with t(Cy, W) > 0 and W is not identically
1 a.e. Then, the limit of Z,(Cy, W) in (4.2) is non-degenerate.

Non-Degeneracy of the Limit for the 2-Star: As in Lemma 4.7, we first derive conditions which
are equivalent to degeneracy of the two components of the limiting distribution of Z,, (K5 2, W).

Lemma 4.9. Suppose W is a K1 2-regular graphon with t(Kq 2, W) > 0 Then the following hold:
(a) Spec™ (Wk,,) = & if and only if

W(z,y) (dw(z) + dw (y)) + Ur(z,y) = 3Jd%v(z) dz, a.e (x,y)€e[0,1]% (4.21)

where Uy(x,y) is as defined in (4.14).
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b) o2 = 0 if and only if
Ky 2,W

| taw @) () + dw @2} W) (1= Wz ) ddy =0, (1.22)

As a consequence, the limit of Z,,(K12, W) in (4.2) is degenerate if and only if (4.21) and (4.22)
hold.

Proof. From (3.14) the 2-point conditional graphon induced by K7 s is given by
1
Wi 2(2,y) = 5 {W(2,y) (dw(2) + dw(y)) + Uiz, )} (4.23)

Furthermore, (2.21) yields dw, , = St(Kip, W) =3 Sé dw (z)? dz. Hence, Proposition 4.1 shows

that Spec™ (W, ,) = J if and only if (4.21) holds.
Furthermore, recalling (3.13) we have,

oy = 2 [ (K, W) + 1Py, W) — (K, W) — ¢ (P, W) (4.24)

where the graphs K 3, K 1+ 3, P3 and P; are as shown in Figure 4. By evaluating the densities
n (4.24), we obtain

O'%(LQ’W = QJ{dW(a: w(y) + dw(z }W z,y)(1 = W(zx,y))dx dy. (4.25)
This shows that, o2 Kiow = 0 equivalent to (4.22). O

The following theorem is the counterpart of Theorem 4.8 for K7 o, and shows that for H =
K12, Theorem 2.9(1) or (2) will give a non-degenerate limit. By Lemma 4.7, Theorem 4.10
is equivalent to the claim that whenever W is Kj o-regular, (4.21) and (4.22) cannot occur
simultaneously. The proof of Theorem 4.10 is given in Section 8.

Theorem 4.10. Suppose W is a K 2-reqular graphon with t(K; 2, W) > 0 and W is not iden-
tically 1 a.e. Then, the limit of Z,(Cy, W) in (4.2) is non-degenerate.

5. PROOF OF THEOREM 2.9

Fix a graphon W € W, and a non-empty simple graph H = (V(H), E(H)) with vertices
labeled V(H) = {1,2,...,|V(H)|}, and recall the definition of X, (H, W) from (1.1). To express
Xn(H,W) as a generalized U-statistic note that

Xn(H,W) = Z FWiss Uiy Yiizs s Yy g vy (5.1)

1§i1<"'<i‘v(H)‘§7’l
where 9 := 9y ({1,2,...,|V(H)|}) and
fUOL - Uy Yz Yivanc van) = 20 [ 1{¥a <WULT)}.  (5.2)
H'e¥y (a,b)eE(H')

This is exactly in the framework of generalized U-statistics considered in [20]. Therefore, we
can now orthogonally expand the function f as a sum over subgraphs of the complete graph as
explained in the section below.
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5.1. Orthogonal Decomposition of Generalized U-Statistics. We recall some notations
and definitions from [20]. Suppose {U; : 1 < i < n} and {Yj; : 1 < i < j < n} are iid.
sequences of U[0, 1] random variables. Denote by K, the complete graph on the set of vertices
{1,2,...,n} and let G = (V(G), E(G)) be a subgraph of K,,. Let F¢ be the o-algebra generated
by the collections {Ui}icv () and {Yij}ijer(q), and let L?*(G) = L*(F¢g) be the space of all square
integrable random variables that are functions of {U; : 1 < ¢ < n} and {Yj; : 1 < i < j < n}.
Now, consider the following subspace of L?(G):

={Z e L*(G) : E[ZV] = 0 for every V € L?(H) such that H c G}. (5.3)
(For the empty graph, Mg is the space of all constants.) Equivalently, Z € Mg if and only if
Z € L*(Q) and
E[Z | X;,Yj:ie V(H),(i,j) e E(H)] =0, forall HcG. (5.4)
Then, we have the orthogonal decomposition [20, Lemma 1]
= P My, (5.5)
HcG

that is, L?(G) is the orthogonal direct sum of My for all subgraphs H < G. This allows us
to decompose any function in L?(G) as the sum of its projections onto My for H < G. For
any closed subspace M of L?(K,), denote the orthogonal projection onto M by Pj;. Then, in
particular, for f as in (5.2), we have the decomposition

f=> fu, (5.6)
Hc@
where fig = Py, f is the orthogonal projection of f onto Mp. Further, for 1 < s < |V(H)],
define

fio) = > f. (5.7)
HCEG:|V (H)|=s
The smallest positive d such that fg) # 0 is called the principal degree of f. The asymptotic
distribution of X,,(H, W) depends on the principal degree of f and the geometry of the subgraphs
which appear in its decomposition.
For any graph G € K,,, the orthogonal projection onto L?(G) = L?(Fg) equals the conditional
expectation E(- | Fg), i.e

Pr2qy = E[- | Fgl. (5.8)
Moreover, by (5.5), we have
Pray = > Puy. (5.9)
HcG

The equations (5.8)—(5.9) enable us to express any Py, as a linear combination of conditional
expectations. We will do this explicitly for the simplest cases in lemmas below.

5.2. Proof of Theorem 2.9(1). Recall the definition of the function f from (5.2) and consider
its decomposition as in (5.6). Then (5.7) for s = 1 gives,
|V (H)]

Z Fiiay (5.10)

where K, is the graph with the single vertex a and fK{a} is the projection of f onto the space
Mkg,,,, for 1 <a < |V(H)|. We will calculate [k, using the following lemma, which we state
for general functions F'.
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Lemma 5.1. For 1 < a < |V(H)|, and any F € L?, the projection of F onto the space Mk,

s given by
Fk.,, =E[F| U] —E[F]. (5.11)
Proof. By (5.9) and (5.8),
Fg,, = PMK{G}F = Prag ) F — PuyF = E[F | U,] — E[F]. (5.12)
O

Applying Lemma 5.1 to f defined in (5.2), we obtain

fiw= 2 Bl ]I 1{Yee < W(Us,Uo)}|Ua | —ELf]
H'edy | (be)eB(H)

Z E H W(UbaUc) Ua _E[f]
H'e9y | (be)eE(H')

= > ta(Ua, H, W) —E[f], (5.13)

H’E%H

where the last step follows from the definition of the 1-point conditional homomorphism density
function (recall Definition 2.1). Then from (5.10),

|V (H)]
f(l) = Z ( Z ta(UaaH,aW) - E[f]) : (5'14)
a=1 H'e9y

We now proceed to compute Var fq).
For this, we need the following combinatorial identity.

Lemma 5.2. For the vertex join operation (—D%b as in Definition 2.7 the following holds:

Gul? >t <H@H, W) = VHE)P > ¢ (Hl@Hg,W> : (5.15)
1<a,b<|V(H)| a,b Hy Hye9y L1
Proof. For any permutation ¢ : V(H) — V(H), we define the permuted graph ¢(H) :=
(0(V(H)), p(E(H))), where ¢(V(H)) = {¢(a) : 1 < a < [V(H)[} and ¢(E(H)) = {(¢(a), ¢(b)) :
(a,b) € E(H)}.
First, fix (a,b) € V(H)? and consider two permutations, ¢, : V(H) — V(H) and ¢y, : V(H) —
V(H) such that ¢4(a) = ¢p(b) = 1. Then

> > t(ngJ%HQ,W>

1<a,b<|V (H)| H1,H2€9n

>, >t <¢Q<H1> @m(&xw)

1<a,b<|V(H)| H1,H269H 1,1

> > t(Hl@Hg,W>

1<a,b<|V (H)| Hi,H26%y L1

V(H)] ), t<H1 @H2,W>, (5.16)

Hl,HQGgH 1,1

where the second equality follows, since the map (Hiy, Hz2) — (¢a(H1), os(H2)) is a bijection
from 4% to 4%, for all 1 < a,b < |V(H)|.
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Next, fix Hy, Hy € 9. Then consider isomorphisms ¢1,¢2 : V(H) — V(H) such that
¢1(H1) = H and ¢2(HQ> =H. Thus,
H, W)
> > H, W)
Hi,Hoe%y 1<a,b<|V a,

> Z()t(ng—l%Hg,W>— > >
Gul” ) t(H@HW) (5.17)

t (H P
Hy,Hae%s 1<a,b<|V (H Hi,H2e¥4y 1<a,b<|V (H)| #1(a),p2(b)
(H )I b
1<a,b<|V (H)|

Here, the second equality follows since (a,b) — (¢1(a), $2(b)) is a bijection from V(H)? to
V(H)%.
Combining (5.16) and (5.17) the identity in (5.15) follows. O

Lemma 5.3.

Var[fo] = |V (H)|[%5? V(11LI)|2 D t(H(—BH,W)—t(H,W)2
()

1<a,b<|V(H a,b
VH))!' ([V(H)| —1)!
_ VDRV )2‘ ) Y t|HEHEW | - |V(H)PHHW) b . (5.18)
|Aut(H)] 1<a,b<|V (H)| ab
Proof. Recalling (5.14) gives, since the terms in the outer sum there are independent,
Var[f(1)] = Z Var [ > ta(Ua,H’,W)] . (5.19)
H’EgH
Consider the term corresponding to @ = 1 in the sum above. For any H;, Hs € 9y,
E[t1(Ur, Hy, W)ty (U1, Hy,W)] =t (Hl @HQ,W) . (5.20)
1,1

Hence,

Var

Z tl(Ul,H/,W)] = Z COV[tl(UlaHbW)vtl(UlaHQaW)]
H'e4dy Hi,H2e9y

. lagur)m) e

Hl,HQE%H

Now, an argument similar to Lemma 5.2 shows that

D talw, H W) = 0 ty(a, H, W), (5.22)
H’EgH H’EgH
for all z € [0,1] and 1 < a,b < |V(H)|. Hence, (5.19) and (5.21) imply
Var[fq)] = [V(H)] Z (t (Hl @Hg,W) —t(H, W)2> , (5.23)
Hl,HQEgH 171

and the result follows by Lemma 5.2, using (2.7) for the second equality. O
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Note that Ef(;) = 0 by (5.7). Hence Var f(;) = 0 if and only if f;) =0 a.s.
Lemma 5.4. Var f) = 0 if and only if W is H-regular.
Proof. Lemma 5.3 shows that Var[f(;)] is zero if and only if

\V(}J)Q > t(H@,W):t(H,W)? (5.24)
)

1<a,b<|V(H ab

Now observe,

> t(H@H,W): > fta(x,H,W)tb(x,H,W)dw
1<a,

ab b<|V (H)|
2

_ f S to(a, HW) | da (5.25)

1<a<|V(H)|

Thus (5.24) becomes, using also (2.11

)
2
J > (z, H,W ) J 2 ta(z, H,W) | dz =0, (5.26)

1<a<|V(H)| 1<a<|V(H
which is equivalent to Var [A = 0, where we define
Alx):= > tole,HW) (5.27)

1<a<|V(H)|

and let U ~ Uniform[0, 1]. Hence, Var[f(;)] = 0 if and only if A(U) is constant a.s. Therefore,
since EA(U) = |V (H)[t(H, W), we see that Var[f(;)] = 0 if and only if
1
—_— Z to(x, HHW) = t(H,W) for almost every z € [0, 1]. (5.28)
VH) 5

I<a<|V(H)|
By Definition 2.2, (5.28) says that W is H-regular. O

Proof of Theorem 2.9(1). Lemma 5.4 shows that if W is not H-regular, then the principal degree
of fis 1. Thus, [20, Theorem 1] yields

X (H, W) — v aniyr yyy

[Aut(H)] D 2
BoN(0, 72), 5.29
plVU)|=3 (0,7%) (5:29)
where, using also (5.18) and (2.24),
1
2 = Var[fy] = 7w (5.30)

V) (V(H)] = 1)!

This completes the proof of Theorem 2.9(1) when W is not H-regular.

In fact, (5.29)-(5.30) hold also when W is H-regular, with f(;) = 0 and 72 = 0. Although this
case is not included in the statement of [20, Theorem 1], it follows by its proof, as a consequence
of [20, Lemma 2]; see also [19, Corollary 11.36]. Consequently, Theorem 2.9(1) holds for any
W e Wo. O
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5.3. Proof of Theorem 2.9(2). In this case, W is H-regular, hence fa) =0 by Lemma 5.4.
Therefore, we consider f(o) (recall (5.7)) which can be written as

fo= (fE{a,,,} + fK{a)b}> , (5.31)

1<a<b<|V(H)|

where Ey, v = ({a,b}, ) is the graph with two vertices a and b and no edges, and Ky, ;3 =
({a,b},{(a,b)}) is the complete graph with vertices a and b. As for f(;), we have Ef(4) = 0, and
thus Var fo) =0 < fo) =0 as.

If Var f(9) # 0, then f has principal degree 2, and we can apply [20, Theorem 2], which shows
that

Xo(H, W) — (1, W)

nlV(H)[-1

BoZ+ 2 MZ3 - 1), (5.32)

AEA

where Z and {Z)},ca are independent standard Gaussians,
1
2

~2([V(H) - 2)!2E[f?<<1,2>] (5.33)

g

and A is the multiset of (non-zero) eigenvalues of a certain integral operator 7.

Moreover, if Var fo) = 0, so fio) = 0 a.s., then the conclusion of [20, Theorem 2] still holds
(with a trivial limit 0), again as a consequence of [20, Lemma 2|. (See also the more general [19,
Theorem 11.35].) Hence, (5.32) holds in any case.

It remains to show that o2 = aﬂw in (2.26), and that A equals Spec™ (Wpg); then (5.32)
yields (2.25). We begin by finding fBayy and fi, -

Lemma 5.5. For 1 < a < b < |V(H)| and any F € L?, the projection of f onto the space
Mg, ,, is gwen by

FE{a,b} =E[F | Uy, Uy] —E[F | Uy] — E[F | Up] + E[F]. (5.34)
Proof. By (5.9),
Fp,,, = PME{a,;,}F = PL2(E{a,b})F — PMK{a}F — PMK{b}F — Py F
= Prapg ) F — Pragc F — Prageg) F + PugF (5.35)
and the result follows by (5.8). O

Lemma 5.6. For 1 < a < b < |V(H)| and any F € L?, the projection of f onto the space
MK{a,b} s given by

Fry,, = E[F | Us, Uy, Yu) — E[F | Ua, Uy). (5.36)
Proof. The subgraphs of K, are E,py, K(qy, Ky and , and thus (5.9) yields
K{a,b})F — PME{a,b}F — PMK{G}F — PMK{b}F — Py F
= PLQ(K{a,b})F - PLQ(E{a’b})F7 (537)
and the result follows by (5.8). O

Specializing to f defined in (5.2), we found [y = E[f | Us] = Ef in (5.13). Furthermore,
the same argument yields, recalling (2.9) and (4.4),

E[f | Us,Up] = Z tap(Uq, Uy, H', W) (5.38)
H'e9Yy

Fiposy = Patre,,, F = Pra
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and
E[f ’ Uq, Up, Yab] = Z t;’b(Uaa U, Hla W)ZH’,{a,b} (Yab7 Uas Ub)7 (539)
H’E%H
where
Y < W(U,,Up)}  if (a,b) € E(H'),
Zw by Yap, Ua, Up) 1= {1 otherwise. (5.40)
Let also
= Wiz,y if (a,b) € E(H"),
W tapy(T,y) = (@9) ( ). () (5.41)
1 otherwise,

and Yy qapy = {H' € Yy : (a,b) € E(H')}. Then, (5.36), (5.38) and (5.39) yield, using also
(4.5),

Tty = 0 tapUas Un H' W) (Zat g0 (Yats Uas Un) = Wit 0. (Ua, Uy) )
H'GgH

D) tapUa Un, B W) (1Yo < W (U U} = WU, Uy). (5.42)
H’G%Hy{a’b}

To compute the variance of fK{1 2s W recall the notions of weak and strong edge joins from

Definition 2.7, and introduce a few definitions. Let V2 = {(a,b) € V(H)? : a # b}. For
(a,b), (c,d) € Vi define

t <H1 @ HQ, W) =1 (Hl @ HQ,W) 1{(&, b) € E+(H1) and (C, d) € E+(H2)}
(a,b),(c,d) (a,b),(c,d)
(5.43)
and similarly,
t (Hl EI—) HQ,W> =t (Hl @ HQ, W) 1{(0,, b) € E+(H1) and (C, d) € E+(H2)}
(a,b),(c,d) (a,b),(c,d)
(5.44)

Then we have the following identities, similar to Lemma 5.2:
Lemma 5.7. Let V2 be as defined above, and let Ky = |VA|> = |V (H)|*(|V(H)| — 1)2. Then
Kg >, t <H1 S HQ,W> =gl >t (H O H, W) : (5.45)
Hy,H269H (1,2),(1,2) (a,b),(c,d)eVE (a,
and, similarly,
Kg >, t <H1 D HQ,W> =gl >t (H @ H, W) : (5.46)
Hy,H2e9n (1,2),(1,2) (a,b),(c,d)eVE
Proof. We will first show that

) )3 t<Hl(@ H2aW>=KH > t<H1<1,@ HQ,W>. (5.47)

(a,b),(c,d)eVE Hi,Hye¥y a,b),(c,d) Hy,H2e9y
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For this consider permutations ¢y, ¢(eq) @ V(H) — V(H) such that ¢z (a) = 1 and
¢(a,b)(b) = 2, and (ﬁ(qd)(c) =1 and ¢(c,d) (d) = 2. Then

Z Z t<H1 o H27W>= Z Zt(é(a,b)(ﬂl) © ¢(c,d)(H2)7W>
(

(a,b),(c,d)e\/é H17H26%H a7b)7(cvd) Vé XVI?I gI?I (172)7(172)
=Kyyt (Hl O H, W> , (5.48)
@2 (1,2),(1,2)

where the last equality follows from the observation that (Hiy, H2) — (¢(a,p)(H1), ¢(c,a)(H2)) is
an bijection from ¥4 to ¢7, for all (a,b), (c,d) € VA.

Now by considering isomorphisms ¢; and ¢2 such that ¢1(H1) = H and ¢2(Hz) = H, a
similar argument as above shows that

> > t(Hl &) Hg,W>=|%H12 > t(H S H,W). (5.49)
(a,b),(c,d)eVE Hi,H2e¥s (a,b),(c,d) (ab),(c,d)eV2 (a,b),(c,d)

Combining (5.47) and (5.49) yields the identity (5.45). The identity (5.46) follows by the
same proof with only notational differences. O

With the above definitions and identities we now proceed to compute the variance of fK{l 2

Lemma 5.8. We have

_ 2
Var[fK{l,Q}]=W Z (t (H O H,W)—t(H ) HW))
(H)

(a,b),(c,d)eE+ (a,b),(c,d) (a,b),(c,d)
(5.50)
Proof. We specialize (5.42) to (a,b) = (1,2), and write for convenience
h(Ul, U2, Hl, HQ, W) = tiQ(Ul’ UQ, Hl, W) tiz(Ul, U2, HQ, W) (551)

This yields,
E[f?({lﬂz}] = Z E [h(Ul, Ua, Hi, Hy, W) (1{Y12 < W(U1,Uz)} — W (Un, U2))2]

Hl,HQEgH,{LQ}

= > E[mU, Uy, Hy, Hy, W)W (U, Up)(1 — W(Uy, U))]
HI:HQGgH,{lﬂ}

> <t <H1 o H2,W> —t <H1 ) H2,W>> . (5.52)
H17H2€gH,{1,2} (172)7(172) (172)7(172)
Now, using the notations introduced in (5.43) and (5.44), the identity (5.52) can be written as

E[ff )= . <t<H1 © Hz,W)—t<H1 ) m,w))
) )

HlvHQE%H (172)7(172 (172)7(172

St s (i, ) (r @, n)

(a,b),(c,d)GVI_QI (a,b),(c,d) (a,b),(c,d)

:W D (t(H ) H,W)—t(H D HW))
(1)

(a,b),(c,d)GEJr (avb)a(cvd) (avb)’(c1d)
(5.53)
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where the second equality uses the identities from Lemma 5.7 and (2.7), and the third equality
follows from the definitions in (5.43) and (5.44). This yields the result (5.50), since Eff, , =
0.

Lemma 5.8 and (5.33) show that
0% = U%i,Wa (5.54)

as defined in (2.26).
Next, we compute the Hilbert—-Schmidt operator T as defined in [20, Theorem 2]. Note first
that in our case this operator is defined on the space MK{l}' Recall that MK“} c L2(K{1}),

where L?(K(yy) is the space of all square integrable random variables of the form g(U;). We
may identify L?(K (1) and L?[0,1], and then (5.5) yields the orthogonal decomposition

L?[0,1] = Mg, @ Mg, (5.55)
where My is the one-dimensional space of all constants. Hence, M Ky is identified with the

subspace of L?[0, 1] orthogonal to constants, i.e. s Mic,, = {g € L*0,1] So g =0}
Then, taking g,h € Mk,,, < L?[0,1], the definitions given in [20, Theorem 2] yield

1
2(|V(H)[ - 2)!
Recall the operator Tyy,, defined on L?[0,1] by (2.15) and (2.19).

(Tg, h) = E[fg(U1)h(U2)] . (5.56)

Lemma 5.9. If W is H-regular, then the operator T on MK{l} defined in (5.56) equals the
operator Tyy,, restricted to the space MK{I}. Moreover, then the multiset of non-zero eigenvalues
of T is equal to Spec™ (Wp).

Proof. We may replace f by E[f | U1,Us] in (5.56), which by (5.38) yields

To.h) = STz EIEY | U Uala b))
_ WE[ D tm(Ul,UQ,H’,W)g(Ul)h(UQ)]
) H'e¥y
- tro(z, - H' ,W)g(z)dz, h(-) ). 5.57
<2 T jH% L )o(z) <>> (5.57)

Denote by Sy gy the set of all |[V/(H)|! permutations of V(H). Then it is easy to observe
that

2 tl,Q(xa:% ¢(H)7W) = ‘AU't(H)| Z t1’2($,y, Hlvw)' (558)
PES|v ()| H'eYy
Also,
Z t1,2(95,y7 d)(H)aW) = Z Z t1,2(x7y7¢(H)aW>
PES|V (H)| 1<ab<|V(H)| ¢Sy (m))
#(a)=1,¢(b)=2
= Z Z to-11)-1(2) (T, y, H, W)

1<ab<|V(H)| ¢Sy (m)
#(a)=1,9(b)=2
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= Z Z top(x,y, HW)

1<a#b<|V(H)|  ¢€Sjv(m))
¢(a)=1,6(b)=2

= (‘V(H)‘ _2)' Z ta,b(-xavaa W) (559)
1<a##b<|V(H)|

Combining (5.58) and (5.59), we have, recalling (2.19),

1 1
W H;%I t12(, v, H' W) = 2|AT(H)\ Kaﬂév(l{)' tap(z,y, H,W) = Wh(z,y).
(5.60)
Consequently, combining (5.57), (5.60) and (2.15), we obtain
(Tg,hy ={Twyg,h), g-h € Mg, (5.61)
Furthermore, since W is H-regular, Wy is degree regular and (2.21) shows that
Twy 1 =dw, =dw, - 1. (5.62)

Hence, Ty, maps the space Mg of constant functions into itself. By (5.55), M Ky, 1 the
orthogonal complement of My, and thus, since Ty, is a symmetric operator, Tjy,, also maps
My, into itself. Hence both T" and Ty, map M, into itself, and thus (5.61) shows that
T = TWH on MK“}.

Finally, recall that A in (5.32) is the multiset of non-zero eigenvalues of 7', which we just have
shown equals the multiset of eigenvalues of Ty, on M K- Moreover, on Mg, Ty, has the
single eigenvalue dy,, by (5.62). Hence, Spec(Wg) = A U {dg}, and thus Spec™ (Wg) = A by
the definition after (2.21). O

Proof of Theorem 2.9(2). The result now follows by (5.32), (5.54), and Lemma 5.9. O

5.4. Higher Order Limits. In the case where the limit in Theorem 2.9(2) is degenerate (as
in Example 4.6), the function f in (5.2) has principal degree d > 2. In this case, [20, Theorem
3] shows that (X, (H,W) — EX,,(H, W))/nlVI=4/2 has a (non-degenerate) limit distribution,
which can be expressed as a polynomial of degree d in (possibly infinitely many) independent
standard Gaussian variables. The expression in [20, Theorem 3] uses Wick products of Gaussian
variables; these can be expressed using Hermite polynomials, see [19, Theorems 3.19 and 3.21].
One simple illustration (with d = 4) is given in Example 4.6. This leads to the following natural
open questions:

Problem 5.10. For which graphs H can such higher order limits (i.e., with d = 3) occur?
Problem 5.11. Is it possible to have arbitrarily high order principal degree d ¥

6. PROOF OF THEOREM 4.3

It is obvious from (4.6) that if W is random free, then U%I,W = 0. For the converse, suppose
that W is not random free. Then the set P := {(z,y) € [0,1]*: 0 < W(x,y) < 1} has |P| > 0,
where | - | denotes the Lebesgue measure. Let (xg,y0) be a Lebesgue point of P. Then we can
find intervals I and J containing x¢ and yo respectively such that [P (I x J)| > (1 —¢)|I x J|
(e > 0 to be chosen later). Define,

Poi={yeJ:(z,y)e P} and [I':={xel:|P|>(1-10)J]}, (6.1)



28 BHATTACHARYA, CHATTERJEE, JANSON

where > 0 will be chosen later. Then,

5171 |1\T| <J \Py| dng \P,| dxzf 1] d:c—f Py da
JAVL I I I

= |I||J] —JJ dzdx
1Jp,

= [ =P =)
<e|l x J| =¢|I||J]. (6.2)
This implies,
| < %m. (6.3)
Similarly, defining PY := {x € [ : (z,y) € P} and J' :={ye J: |PY| > (1 —§)|I|} we have,
BAVARS §|J|. (6.4)

Next, fix a < b € V(H) such that (a,b) € E(H). Suppose H has bipartition (A, B) and
without loss of generality consider a € A and b € B. Then from (4.6) it follows that,

o = en [ | taslo HWPW (- Wir, ) dedy. (65)
Define,
S = {Z_(a,b) = (21, s Za—1s Zat1s "0 5 Zb—1, 215" 2V (H)|)
izyelifve A\{a} and z, € Jifve B\{b}} (6.6)
and
t;b(z—(a,b)axayaHv W) = H W(:Eva) H W(y> Zs) 1_[ W(ZT7ZS)' (67)
reNg(a)\{b} seNg (b)\{a} (r,s)eE(H\{a,b})
Note that
t  (z_(ap), T, Yy, HLW dz, =t (z,y, HLW). 6.8
vy ot ) TT s =t (63)
It is easy to see that |S| = |I|A1=1J|IBI=1, Now, fix (z,y) € I’ x J'. Then
Qp = HZ_(&J,) eS: t;b(z_(a,b),x,y, H W)= 0}‘ < Ty + T+ T, (6.9)
where
T := Z {z_(ap) €S : W(z,2) =0}, (6.10)
reNp (a)\{b}
T, := Z |{z_(a7b) €S: Wiy, z) =0}, (6.11)
seNp (b)\{a}
Ty := > {z_(ap) €S : W (2, 25) = 0}]. (6.12)

(r,s)eE(H\{a,b})
Let us now look at each term separately. We begin with 77. Note that for r € Ny (a)\{b},
{2_(ap) €S : W(w,2) = 0}| = [{zr € T : W(z,2,) = 0} [I]4I71]7|1I=2
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< [J\Py| [T]AI71 7P
< o|1|I A=t g Bt (6.13)
where the last inequality follows from our assumption x € I’ and (6.1). This implies,
Ty < (dy — 1)8|I|A=1g) BI=L (6.14)
where d, is the degree of the vertex a in H. Similarly,
Ty < (dyp — 1)8| 1A= g |1BI-1, (6.15)

Finally, consider T5. Suppose (r,s) € E(H\{a,b}) and assume without loss of generality r € A
and s € B. Then,

{2 (ap) €S : Wz, 25) = 0} = [{zr € I, 25 € J : W (2, 25) = O} |1[14172].7|1BI=2

< | )\ (POY x| iA=2gy 1212

< |l x J||1)\A1=2|.7|1BI=2

= e|I|lAI=L g |IBI=L, (6.16)
This implies,

Ty < (|E(H)| — dg — dy + 1)e|I|AI71 1B (6.17)
Combining (6.14), (6.15), and (6.17) with (6.9) gives,
Qo < [(dg +dp —2) 6 + (E(H) — do — dy + 1) ] [I|AI71|J|1BI71

< 2|E(H)| (8 + &) |1|/AI=1].g|1BI1, (6.18)
Choosing § = 10¢ and & < yggrargyy gives [E(H)| (6 + &) I[P < 1A= g]IB=L Thus,
Qo < [T, (6.19)
and hence, |S\Qp| > 0. This implies, recalling (6.8),
ol H) = | (oo 0oy HW) [ de
[0,1]IV(H)|-2 ré{a,b}
>J t;b(z_(a7b),:n,y,H, W) H dz. > 0, (6.20)
S\Qo r¢{a,b}

since t;’b(z,(a’b),a?,y,H, W) > 0 on 8§\Qp. Recall that (x,y) € I’ x J' was chosen arbitrarily;
hence (6.20) is true for all (x,y) € I’ x J'. Further observe that

I’xJ’g{Pﬂ([’xJ’)}U{(I><J)\<Pﬂ(1xj))}, (6.21)

implying

PO x )

> |17 - ‘(I x )\ (Pﬂ (I x J))‘
> ||| | —elI||J| (by (6.3) and (6.4))

> ((1 _ %)2 —5) 111

— (0.81 —¢) |I]|J] > 0.
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Therefore, recalling (6.5)

G = en [ by HWPW () (L - W(ay) dedy
PO(I'xJ")
>0, (6.22)
since by (6.20) and the definition of the set P, t, (z,y, H, W)W (z,y)(1 — W(x,y)) > 0 for all
(x,y) € P((I' x J'). This shows that if U%LW = 0 then W is random-free. O

We conclude this section with an example (which generalizes the construction in [16, Figure
1] for triangles to general cliques) illustrating that Theorem 4.3 does not hold if the bipartite
assumption is dropped (as mentioned in Remark 4.4).

Example 6.1. Suppose H = K, is the r-clique, for r > 3. Partition [0, 1] into 2r intervals of

measure % each. Denote the first r sets by I, I, ..., I, and the next r sets by Ji,Jo, ..., J,.

Consider the following graphon:
1 for (z,y) € (I x I) such that 1 <a #b <,
1 for (z,y) € (Jo x Jp) such that 1 <a #b<r,
1774 = 6.23
(a:,y) % for (J;,y) € (Il X Jl) U (Jl X Il), ( )
0 otherwise.

In other words, W is obtained by taking 2 disjoint graphon representations of K, (which corre-
sponds to the complete r-partite graphon) inside [0, %]2 and [%, 1]2, respectively, and connecting
the edges between the sets Iy and Ji with probability % Note that t(K,, W) > 0. Denote

R:= (I x J1) u (J; x I). By (4.6),

CK, . _
U?q,w =1 Z f tap(@y, Ko, W)t (2, y, K, W) dz dy. (6.24)
1<azb<r VR
1<a#b<r
Next, fix 1 < a # b <r. If (z,y) € R, then, using the notation (6.7),
t;’b(z—(a,b)a‘r’?ﬁ KT)W) =0, (625)

for all z_¢, 4 € [0, 1]"72. Hence, for every (z,y) € R, we have top(@,y, HW) = 0 by (6.8).
Consequently, it follows from (6.24) that a%{,w = 0. (In fact, i1,...,4, can form an r-clique in
G(n,W) only if U;,, ..., U;, all belong to either | J, I, or |, Ja; hence the value of W on Iy x J;
does not matter for X,,(K,,W).) Moreover, (6.25) also implies that ¢(z, K., W) is constant a.e.,
that is, W is K,-regular.

7. PROOF OF THEOREM 4.8

In the proof we will consider many equations or other relations that hold a.e. in [0, 1] or [0, 1]%.
For this we use the notation that, for example, S(4.15) denotes the set of all (z,y) € [0, 1] such

that the equation in (4.15) holds, and 3(4.15) denotes {z € [0,1] : (z,y) € Su.15) for ae. y €
[0,1]}. We use this notation only for sets (. with full measure in [0, 1]%; note that then, by a
standard application of Fubini’s theorem, 3(,) has full measure in [0, 1], that is, x € 3(.) for a.e.

x € [0,1]. Similarly, for relations with a single variable, we let, for example, 3(7.3) be the set of
x € [0,1] such that the inequality in (7.3) holds.
We tacitly assume z,y, z € [0, 1] throughout the proof. However, for notational convenience,

we may write integrals with limits that might be outside [0, 1]; SZ should always be interpreted

as S[a,b]m[0,1]'
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For all z € [0, 1], define W, : [0,1] — [0, 1] as
We(y) = W(z,y). (7.1)

We regard W, as an element of L2[0,1]. Note that this means, in particular, that W, = wy
means W (z,z) = W(y, z) for a.e. z. Since W (z,y) is measurable and bounded, it is well known
that the mapping = — W, is a measurable, and (Bochner) integrable, map [0, 1] — L?[0, 1], see
[14, Lemma III1.11.16(b)]. The Lebesgue differentiation theorem holds for Bochner integrable
Banach space value functions, see [5, §5.V]; hence, a.e. x € [0, 1] is a Lebesgue point of x — W,,.
We will use | - |2 and (-, -) for the norm and inner product in L2[0, 1].

We will denote t := ¢(Cy, W). Suppose (to obtain a contradiction) that ¢ > 0, W # 1, but
that the limit in (4.2) is degenerate, that is, Spec™ (W¢,) = & and 02, 1y, = 0. Then (4.15) and
(4.16) both hold by Lemma 4.7, and W is random-free by Theorem 4.3, that is,

W(z,y) € {0,1}, a.e. T,y. (7.2)
We now separate the proof of the theorem into a sequence of claims.

Claim 7.1. For a.e. x € [0,1] and W, as defined in (7.1),

Walz < (314, (7.3)
Proof. By (4.14) and (4.15), for a.e. (z,y),
(Wa, Wy) = Un(z,y) < (3t)"/2. (7.4)
In particular, if x € 3(7.4), then for every § > 0,
<Wm, 1 JM W, dy> [ awwydy < 012 (7.5)
20 Jos 20 Jis
If, furthermore, x is a Lebesgue point of x — W,, then it follows by letting 6 — 0 that
W23 < (36)2. 0
Claim 7.2. For a.e. (z,y) € [0,1]?,
W(z,y) =0 = W, =W, in L*[0,1] and |[W,|2 = |[W,]2 = (3t)"*. (7.6)
Proof. By (4.14) and (4.15), if (z,y) € S(1.15) and W (z,y) = 0, then
(Wa, Wy = Ur(a,y) = (302, (7.7)
If, furthermore, z,y € 3(7.3), then the Cauchy—Schwarz inequality yields
(30)'2 = (Wi, W) < [Wal2[ Wy [l2 < (30)"/2. (7.8)
Hence, we must have equalities, and thus |[W,|2 = W, ]2 = (3t)"/4; moreover, equality in the
Cauchy-Schwarz inequality implies W, = W,,. O

Claim 7.3. We have (3t)'/? < 1.

Proof. Let Z := {(z,y) : W(z,y) = 0} and Z' := Z n S(76). By (7.2) and the assumption that
W is not a.e. 1, we have |Z'| = |Z| > 0. For z € [0,1], let Z. := {y : (z,y) € Z'}. By Fubini’s
theorem, Sé |Z!|dx = |Z'| > 0, and thus there exists x such that |Z]| > 0. Fix one such x. Then
there exists y € Z, and thus (z,y) € Z' = Z n S(7.6)- Consequently, (7.6) applies and yields
W2 = (3t)"/%. Furthermore, W (z,y) = 0 for all y € Z., and thus

1
@Wﬂ=vm@=LJWam%w<1—mu<L (7.9)
]
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Claim 7.4. For a.e. x € [0,1],

[Wall2 = (36)* < 1. (7.10)
Proof. Suppose x € 3(7.2) N 3(7.3). Then, using Claim 7.3,

1
{y: Wia,y) > 0} = |{y: W(ey) = 1}] = fo Wz, y)dy = [Wol3 < 302 < 1. (7.11)

If, furthermore, = € 3(7.6), this implies that there exists y such that W(z,y) = 0 and (z,y) €

S(7.6), and thus, in particular, [Wy |2 = (3t)"/4. The result (7.10) follows by Claim 7.3. O
Claim 7.5. For a.e. (z,y),
W(z,y) >0 = Us(x,y) > 0. (7.12)
Proof. Let
Ly := {(x,y) € [0,1]? : y is a Lebegue point of y — W (x,y)}. (7.13)

Then L; is measurable, and since for any given x, we have (z,y) € L1 for a.e. y, it follows by
Fubini’s theorem that |L,| = 1, that is, a.e. (z,y) € L.

Now, assume that (z,y) € L1, (y,z) € L; and that (x,y) is a Lebesgue point of the set
{(s,t) : W(s,t) > 0}. (In particular, W(z,y) > 0.) Let § > 0 and let I := (z — §,z + ) and
J:=(y—0,y+9). Then, if § is small enough,

{seJ:W(x,s) =0} <0.1]J], (7.14)
{tel:W(ty) =0} <011, (7.15)
{(s,t)e J xI:W(s,t) =0} <0.1/I] x |J|, (7.16)

Then W(x,s)W (s, t)W (t,y) > 0 on a subset of I x J of positive measure, and thus Us(z,y) >
0. U

Claim 7.6. For a.e. (z,y),
W(z,y) = 1 — 1{W, = W,}. (7.17)

Proof. Suppose (z,y) € S(7.12) " S(1.15), and that W (z,y) = 1. Then Uz(wz,y) > 0 by (7.12), and
thus (4.15) yields

(W, W,y = Ui (z,y) < (3t)12. (7.18)

If, furthermore, x € 3(7.10), it follows that W, # W,.
On the other hand, if (7,y) € S(74) and W(x,y) = 0, then W, = W), by (7.6).
In both cases, (7.17) holds, and thus, using (7.2), (7.17) holds a.e. O

Since W, = W, is an equivalence relation, there exists a partition (possibly infinite) of [0, 1] =
||, Ba such that if we define a(z) for z € [0, 1] by 2 € By(y), then W, = W, <= a(z) = a(y),
for all =,y € [0, 1]. Note that each B, is measurable, since = — W, is. We can write (7.17) as

W(z,y) = Ha(z) # aly)},  forae. (z,y). (7.19)
Claim 7.7. For a.e. z € [0, 1],
|Bo(my| = 1 — (3t)"/2. (7.20)
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Proof. Suppose that x € 3(7,17) N 3(7,2) N 3(7,10). Then,
1

1 1
Bugw| = fo 1{y € Bugw)} dy = jo LW, = Wy} dy = fo (1 W(zy))dy

1 1
=1- j W(x,y)dy =1-— f W(z,y)?dy =1 — (3t)"/2. (7.21)
0 0
([l

Since 1 — (3t)%/2 > 0 by Claim 7.4, there can only be a finite number of parts B, of measure
1—(3t)"/2, and by Claim 7.7, they fill up [0, 1] except for a null set. Hence, Claim 7.7 and (7.19)
imply that W is a.e. equal to a complete multipartite graphon with equal part sizes (and thus
finitely many parts). In other words, after a measure preserving transformation, W equals a.e.
the graphon Wy defined as follows, see Figure 6. Given an integer K > 1, partition the interval
[0,1] into K intervals Iy, Io, ..., I of equal length 1/K, and define

0 if(z,y)e€ U3K=1 I x I,

) (7.22)
1 otherwise.

Wk (z,y) = {

(0,1) (1,1)

(0,0) (1,0)

FIGURE 6. The graphon Wx with K = 4.
Claim 7.8. Let W be the complete multipartite graphon Wy with K = 2 parts of equal sizes
1/K. Then (4.15) cannot hold.

Proof. Suppose W satisfies (4.15) a.e. Then by Claim 7.7, each part must have size 1 — (3t)'/2,
that is, 1 — (3t)"/2 = 1/K, which yields

(K —1)?
t(Cy, Wg) = 3KT (7.23)
On the other hand, a direct calculation shows that

K-1)'+(K-1
t(Cy, Wg) = ( )K4( ) (7.24)

We thus must have (122(12)2 = (K_l);;Z(K_l), which simplifies to
K(K —1)(2K? — 8K + 9) = 0, (7.25)
which is impossible. (The only real roots to (7.25) are K = 0 and K = 1.) O

Claim 7.8 gives the desired contradiction and completes the proof of Theorem 4.8.
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8. PROOF OF THEOREM 4.10

The proof is similar to that of Theorem 4.8. Here we will denote ¢ := (K12, W) = {dw (x)* dz.
Suppose that ¢ > 0, W # 1, but that Spec™ (Wg,,) = & and O’%(I ,w = 0. Then (4.21) and
(4.22) both hold by Lemma 4.9, and W is random-free by Theorem 4.3, that is, W(z,y) €{0,1}
for a.e. z,y € [0, 1]?. Now, recalling the definition of W, from (7.1) we have the following claim,
which can be proved by arguments similar to Claims 7.1, 7.2, 7.3, and 7.4.

Claim 8.1. For a.e. (z,y) € [0,1]?,
W(z,y) =0 = W, =W, in L*[0,1] and |[W,|s = |W|, = (3t)"/2. (8.1)
Moreover, for a.e. x € [0,1], [|[Wa|2 = (3t)1/% < 1.
Next, we have the analogue of Claim 7.5 for the 2-star.
Claim 8.2. For a.e. (v,y) € [0,1]?,
W(z,y) >0 = dw(x)+dw(y) > 0. (8.2)

Proof. Similarly to the proof of Claim 7.5, for a.e. (x,y) € [0,1]? such that W (z,y) > 0, we can
choose § > 0 small enough such that for J = (y — d,y + 9),

{se J: W(x,s) =0} <0.1|J]|. (8.3)

This implies that the set {s € [0, 1] : W (x, s) > 0} has positive measure, and thus dy () > 0. O
Now, as in Claim 7.6, it follows that for a.e. (z,y) € [0, 1],

Wiz,y) =1—-1{W, = Wy}. (8.4)

As in the proof of Theorem 4.8, the equivalence relation W, = W), defines a possibly infinite
partition of [0,1] = | |, Ba. For z € [0, 1] define a(z) to be the index such that = € B,(,). Then,
by definition, W, = W, <= «a(z) = a(y), which by (8.4) yields, for a.e. z € [0, 1],

W(z,y) = L{a(z) # a(y)} . (85)
Again, similarly to Claim 7.7 we have for a.e. x € [0, 1],
|Bo(z)| = 1 — 3t. (8.6)

Note that by Claim 8.1, 1 — 3¢t > 0. Hence, by (8.6), there can only be a finite number of parts
B, of positive measure and the remaining parts have together measure 0. Therefore, by (8.5)

and (8.6) we conclude that after a measure preserving transformation, W must be of the form
Wk as defined in (7.22) for some K > 1. We have excluded W =1, so K > 1.

Claim 8.3. Let W = Wg for some K > 2. Then (4.21) cannot hold.

Proof. Suppose Wi satisfies (4.15) a.e. Then by (8.6), each part must have size 1 — 3t, that is,
1 -3t =1/K. In other words,

K-1
t(Ki12, Wk) = a (8.7)
On the other hand, since dy, (z) = £ a.e.,
1 K -1 2
(K2, Wk) = fo dwy (z)?dx = (K2) (8.8)
Thus we must have % = (KI;QI )2, that is, K = %, which is impossible. ]

Claim 8.3 gives a contradiction and completes the proof of Theorem 4.10.
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