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On the size of maximal intersecting families

Dmitrii Zakharov
∗

Abstract

We show that an n-uniform maximal intersecting family has size at most e−n
0.5+o(1)

nn. This
improves a recent bound by Frankl [6]. The Spread Lemma of Alweiss, Lowett, Wu and Zhang [1]
plays an important role in the proof.

1 Introduction

A family F of finite sets is called intersecting if any two sets from F have a non-empty intersection. A

family F is called n-uniform if every member of F has cardinality n. Suppose that F is an n-uniform

intersecting family which is maximal, i.e. for any n-element set F 6∈ F the family F ∪ {F} is not

intersecting. Note that the ground set of F is not fixed here, so we allow F to have some elements

which do not belong to the support of F . In 1973, Erdős and Lovász [4] asked how large such a

family F can be. Another way to phrase this question is to ask for the largest size of an n-uniform

intersecting family F such that τ(F) = n. Here, τ(F) denotes the covering number of the family F ,

that is, the minimum size of a set T which intersects any member of F . It is easy to see that any

such family F is contained in a maximal intersecting family and any maximal intersecting family F
satisfies τ(F) = n. A related question about the minimal size of an n-uniform intersecting family F
with τ(F) = n was famously solved by Kahn [10].

In [4], Erdős and Lovász proved the first non-trivial upper bound nn on the size of a maximal n-uniform

intersecting family, and they also constructed such a family of size [(e− 1)n!] and conjectured this to

be best possible (see also Section 4 for the construction). However, 20 years later Frankl, Ota and

Tokushige [7] gave a new construction of size roughly (n/2)n. The upper bound nn was improved to

(1 − 1/e + o(1))nn in 1994 by Tuza [14]. In 2011, Cherkashin [3] obtained a bound |F| = O(nn−1/2)

and then in 2017 Arman and Retter [2] improved this further to (1 + o(1))nn−1. The best currently

known upper bound was obtained in 2019 by Frankl [6]:

|F| 6 e−cn1/4
nn. (1)

Frankl [6] also stated that it is possible to modify the argument and improve the exponent in (1) from

1/4 to 1/3. In this paper we provide an even stronger improvement of (1):

Theorem 1.1. Let F be an n-uniform maximal intersecting family. Then

|F| 6 e−n1/2+o(1)
nn. (2)
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Frankl, Ota and Tokushige conjecture in [7] that |F| 6 (αn)n should hold for any maximal intersecting

family and some absolute constant α < 1. The methods of the present paper do not seem to be sufficient

to prove this conjecture.

To prove Theorem 1.1, we consider a more general problem of estimating the number of minimal

coverings of an arbitrary intersecting family. Given a family F , a set T is called a minimal covering

of F if T ∩ F 6= ∅ holds for any F ∈ F (T covers F) but this condition does not hold for any proper

subset T ′ ⊂ T (T is minimal). The minimum size of a covering of F is called the covering number and

denoted τ(F). Let T (F) denote the family of all minimal coverings T of a family F . For technical

reasons it is convenient to restrict attention to the subfamily T6n(F) ⊂ T (F) of all minimal coverings

of F of size at most n (where n will be taken equal to the uniformity of F). For a not necessarily

uniform family G and λ > 0 we define its weight wλ(G) as follows:

wλ(G) =
∑

G∈G

λ−|G|.

If F is an n-uniform maximal intersecting family, then τ(F) = n and so any element F ∈ F is a

minimal covering of F . That is, F ⊂ T (F) and so

wλ(T (F)) > λ−n|F| (3)

holds for any λ > 0. On the other hand, the classical encoding procedure of Erdős and Lovász [4]

actually shows that any n-uniform family F satisfies

wn(T (F)) 6 1. (4)

By putting (3) and (4) together, we recover the upper bound |F| 6 nn. Note that the inequality (4)

is actually tight for arbitrary n-uniform families:

Example 1.1. Let F = {F1, . . . , Fk} be a collection of k pairwise disjoint n-element sets F1, . . . , Fk;

then clearly

T (F) = {T = {x1, . . . , xk} : xi ∈ Fi, i = 1, . . . , k}
and so wn(T (F)) = |T (F)|n−k = 1.

However, the family F in this example is very far from being intersecting. This suggests that perhaps

one can improve (4) provided that F is an intersecting family. Another obstruction comes from the

case when F has small covering number:

Example 1.2. Let K1, . . . ,Kk be pairwise disjoint (n − k + 1)-element sets and let F be the family

of sets of the form F = Ki ∪ T where |T ∩ Kj | = 1 for all j = 1, . . . , k. Then F is intersecting,

τ(F) = min{k, n − k + 1} and wn(T (F)) > (n−k+1)k

nk & e−
k2

n .

So the bound in (4) is essentially tight for n-uniform intersecting families F with covering number

τ(F) . n1/2. Our main result states that if F is intersecting and the covering number τ(F) is large

enough, then we indeed can win over (4) by a significant amount:

Theorem 1.2. For all ε > 0 and sufficiently large n > n0(ε) we have the following. Let A be an

intersecting n-uniform family. Then

cn(A) 6 e1−
τ(A)1.5−ε

n . (5)
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Note that this gives a substantial improvement over (4) provided that τ(A) > n2/3+ε. By applying

Theorem 1.2 to a maximal intersecting family F and using (3), Theorem 1.1 follows.

We now turn to explain the main ideas of the proof of Theorem 1.2. In what follows, we use the

notation cλ(A) = wλ(T6n(A)) for an n-uniform family A and λ > 0.

Fix ε > 0. Using induction, we are going to show that for any n > n0(ε) and any n-uniform intersecting

family A we have

cn(A) 6 λτ(A)−n/2, (6)

where λ = e−
1

n0.5+ε . This is much weaker than what is claimed in (5) for n2/3 6 τ(A) 6 n/2 but gives

the same result when τ(A) is close to n. By writing down the inductive statement (6) more carefully,

one can recover (5) in the full range of parameters, see Section 3 for details.

If τ(A) 6 n/2 then (6) follows from (4) (which we will prove later) so we may assume that τ(A) > n/2.

For the purpose of induction, we may assume that (6) holds for all n-uniform intersecting families of

size strictly smaller than A. The following proposition is at the core of our inductive approach:

Proposition 1.3. Let λ = e−
1

n0.5+ε . If there exists a subfamily G ⊂ A such that cλn(G) 6 1 then

cn(A) 6 λτ(A)−n/2.

Roughly speaking, Proposition 1.3 tells us that if we can find a subfamily G ⊂ A which is ‘difficult’

to cover then we can use it for the induction step and get a bound on cn(A) in terms of cn(A′) for

some proper subfamilies A′ ⊂ A. The idea of finding a special subfamilies in A to bound the number

of minimal covers also appears in a somewhat different form in [6].

Proposition 1.3 puts rather strict limitations on how a potential minimal family A contradicting (6)

might look like. The first key observation (also originating from [6]) is that all pairwise intersections

of sets in A are either very small or very large.

Indeed, let A1, A2 ∈ A be a pair of sets such that |A1 ∩A2| = k for some k. Observe that

cλn({A1, A2}) =
k

λn
+

(n− k)2

λ2n2
,

and so we have cλn({A1, A2}) 6 1 for any k ∈ [
√
n, n −√

n]. So by Proposition 1.3, unless A satisfies

(6), for any pair A1, A2 ∈ A we either have |A1 ∩A2| 6
√
n or |A1 ∩A2| > n−√

n.

Let k =
√
n. The above property allows us to write A as a union

A = K1 ∪ . . . ∪ KN , (7)

where for any i, j = 1, . . . , N and Ki ∈ Ki and Kj ∈ Kj we have |Ki ∩ Kj | > n − k if i = j and

|Ki ∩Kj| 6 k otherwise. This decomposition step is actually quite robust and works for any k < n/3;

so if one were to prove (6) with λ < 1− c for a small constant c, then one may still assume that, say,

|A1 ∩A2| 6∈ [0.1n, 0.9n] holds for all A1, A2 ∈ A, and so we have (7) with k = 0.1n.

The decomposition (7) has the following properties:

Each family Ki has a core of size n− 5k. That is, there exists a set Ki of size n− 5k such that

Ki ⊂ A for any A ∈ Ki. Note that we only know that |A1 ∩ A2| > n − k for any A1, A2 ∈ Ki and so

a priori the sets in Ki do not have to have a large common intersection. However, if |⋂Ki| 6 n− 5k

then we can take G = Ki in Proposition 1.3:
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Lemma 1.4. Let k 6 n/10. Let K be an n-uniform family. Suppose that there is an (n− k)-element

set K such that we have |F ∩ K| > n − 2k for every F ∈ K. Then we either have cn−k(K) 6 1 or

|⋂K| > n− 5k.

The idea is use the Lubell–Yamamoto–Meshalkin inequality to control possible intersections of a

minimal cover of K with the set K above. This step is also quite flexible and can be employed if one

were to prove (6) with λ = 1− c (and k ≈ cn).

Each family Ki is small. Namely, we have |Ki| 6
(τ(A)+2k

2k

)

for all i. We say that a family F is

τ -critical if removing any set from F reduces τ(F). The family A in question is τ -critical: if not, then

for some proper A′ ⊂ A we have τ(A′) = τ(A). But then by the induction assumption we get

cn(A) 6 cn(A′) 6 λτ(A′)−n/2 = λτ(A)−n/2.

Here we also use a simple monotonicity property cn(A) 6 cn(A′) which we prove in the next section.

So we can apply the following simple lemma:

Lemma 1.5. Let A be a τ -critical n-uniform family (that is, removing any element from A reduces

τ(A)) and let K ⊂ A be a subfamily such that |⋂K| > n− k for some k > 0. Then |K| 6
(τ(A)+k

k

)

.

Proof. Denote K =
⋂K. By τ -criticality of A, for any set A ∈ K there is a covering TA of A \ {A}

of size less than τ(A) which does not intersect A. Note that TA does not intersect K and so it is a

covering of the family (K \ {A}) \ K. Thus, the system of pairs of sets (A \K,TA)A∈K satisfies the

Bollobás’s Two Families theorem [9, Page 113, Theorem 8.8] and so |K| 6
(τ(A)+k

k

)

.

The number of families N is small. Namely, we may assume thatN 6 nC holds for some constant

C. This is the part of the proof where we rely on the Spread Lemma of Alweiss–Lovett–Wu–Zhang

[1]. Namely, we have the following:

Lemma 1.6. Let A be an n-uniform family where n is sufficiently large. Let B ⊂ A be a subfamily

such that |B1 ∩ B2| 6 k for all distinct B1, B2 ∈ B. If k 6 n
104 logn then one of the following 2

possibilities holds:

1. We have |B| 6 nC for some absolute constant C.

2. There is a proper subfamily A′ ⊂ A such that

2τ(A)cn(A) 6 2τ(A
′)cn(A′).

Note that this lemma has a mild restriction k . n
logn . This means that the best possible bound in

(6) using Lemma 1.6 has λ = 1 − c
logn (corresponding to a bound of the form |F| 6 e−

cn
log nnn for

maximal intersecting families). So even though this is not enough to prove an exponential bound in

the Erdős–Lovász problem, this is by far not the main bottleneck of the argument.

The proof of Lemma 1.6 is based on the following idea. Let p = C logn
n and consider a random set U

where each element of the ground set is included in U independently with probability p. If the family

T6n(A) is not n
2 -spread the one can check that the second option of the lemma holds. Otherwise,

by the Spread Lemma (see Lemma 2.8 below), with probability at least 0.9 there exists an element
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T ∈ T6n(A) such that T ⊂ U. On the other hand, a routine second moment computation shows that

if N is large enough and sets B1, . . . , BN have small pairwise intersections, then with probability at

least 0.9 there exists i ∈ [N ] so that Bi is disjoint from U. So with probability at least 0.8 there is

a covering T ⊂ U of A and a set Bi ∈ A disjoint from U. In particular, T ∩ Bi = ∅ with positive

probability which contradicts the definition of a covering.

Conclusion: A is small. We conclude from the above observations that the family A itself must

be small:

|A| 6 |K1|+ . . .+ |KN | 6 N

(

τ(A) + 5k

5k

)

6 n6k. (8)

Once we know that the family A is small, we can start exploiting the fact that τ(A) is large. In fact,

we show that A cannot be too ‘clustered’ around a few elements of the ground set since otherwise

we can find a covering of A of size less than τ(A) by sampling a random set according to the degree

distribution of A. A careful execution of this idea results in the following lemma:

Lemma 1.7. Let n > 1 and m, t > 1. Let A be an n-uniform family of size at most em and τ(A) > t.

Then, for every l > 1, there is a subfamily A′ ⊂ A such that τ(A\A′) 6 t/2 and for every i = 1, . . . , l

we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai| 6 Cl

(m

t

)i−1
n, (9)

where Cl ≪ 2l
2
depends only on l and the average is taken over all A1, . . . , Al ∈ A chosen uniformly

and independently.

That is, we can remove a few sets from A and obtain the property that the l-wise intersections of sets

in A are very small on average. Note that in our case m ∼ k log n ∼ √
n log n and t = τ(A) > n/2, so

that

Cl

(m

t

)l−1
n . n2−l/2,

that is, almost all l-wise intersections of sets from A are empty for constant l. Let r = n0.5−ε/2 and

l = 10ε−1 and sample a uniformly random subfamily B = {B1, . . . , Br} ⊂ A′, where A′ is given by

Lemma 1.7. Then by (9) and the union bound, with positive probability all l-wise intersections of sets

in B are empty. We remark that the family B is a natural generalization of ‘brooms’ used by Frankl

in [6]; the advantage of our approach is that we can find (generalized) brooms of size ∼ n1/2 whereas

Frankl could only construct brooms of size ∼ n1/4.

The final step of the proof is to show that one can take G = B in Proposition 1.3:

Lemma 1.8. Let n > 1 and r > 2l be such that r2 6 l3n. Let B be an n-uniform intersecting family

of size r such that every l distinct sets from B have an empty intersection. Then for k 6 r
20l3

we have

cn−k(B) 6 1.

The proof of this lemma crucially uses the intersecting property of the family B. In fact, this is the

only place in the argument where we really use the fact that the initial family is intersecting. The

construction of a large bounded degree family B and Lemma 1.8 appear to be the main bottlenecks

of the argument and are the reason for the resulting bound of e−n0.5+ε
nn for maximal intersecting

families.
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The proof of Lemma 1.8 is based on a more careful analysis of the classical Erdős–Lovász encoding

procedure: the intersecting property and bounded degree of B ensure that there is enough ‘overlap’

between sets Bi which makes the encoding more efficient. This completes the proof of Theorem 1.2.

The next section contains all the proofs of the lemmas which appeared in this outline and in Section

3 we formally deduce Theorem 1.2. Section 4 contains some final remarks and questions.

2 Proving auxiliary results

2.1 Minimal covers

Fix n ∈ N and let A be a finite family of sets of size at most n. For λ > 0, we define the weight wλ(A)

of A by the following expression:

wλ(A) =
∑

A∈A

λ−|A|.

The parameter λ will be usually taken to be λ = n or λ = n− k for a relatively small number k. The

following characteristic of a family will be crucial for our arguments. Recall that a covering of A is a

set T intersecting all members of A and a covering T is minimal if any proper subset T ′ ⊂ T does not

cover A. We denote τ(A) the minimum size of a covering of A. We denote T6n(A) the family of all

minimal covers of A of size at most n. For λ > 0, put

cλ(A) = wλ(T6n(A)) =
∑

T∈T6n(A)

λ−|T |.

We remark that the family T6n(F) was also introduced in [14] to prove the bound |F| 6 (1 − e−1 +

o(1))nn. We have the following basic monotonicity result:

Observation 2.1. For any family F and all λ 6 µ we have

cµ(F) 6

(

λ

µ

)τ(F)

cλ(F).

Proof. Indeed, since every minimal covering T of F has size at least τ(F) we have

µ−|T | 6

(

λ

µ

)τ(F)

λ−|T |.

Summing over all T ∈ T6n(F) gives the desired inequality.

Let X be the ground set of A. For S ⊂ X we denote by A(S̄) the set of elements of A which do not

intersect S. The following lemma lies at the foundation of our arguments.

Lemma 2.2. For any subfamily A′ ⊂ A of any family A and for any λ > 1 we have

cλ(A) 6
∑

T ′∈T6n(A′)

λ−|T ′|cλ(A(T̄ ′)), (10)

In particular, we have

cλ(A) 6 cλ(A′) max
T ′∈T6n(A′)

cλ(A(T̄ ′)).
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Proof. Each minimal covering T ∈ T6n(A) contains a minimal covering T ′ ⊂ T of A′. Moreover, by

the minimality of T , the set T \ T ′ is a minimal covering of the family A(T̄ ′). So each term λ−|T | on

the left hand side of (10) corresponds to at least one term λ−|T ′|λ−|T\T ′| on the right hand side of (10)

(there could be more than one way to choose T ′). This proves (10).

In particular, we have:

Corollary 2.3 (Tuza, [14]). For any n-uniform family F we have cn(F) 6 1.

This bound was also proved in [14], similar ideas appear in [8].

Proof. Note that if |F| 6 1 then the proposition holds. If |F| > 2 then choose a proper non-empty

subfamily F ′ ⊂ F and apply the second part of Lemma 2.2. The statement now follows by induction.

The basic idea behind the proof of Theorem 1.1 is to use apply Lemma 2.2 to various subfamilies F ′

with small cn(F ′) and use induction to estimate the terms cn(F(T̄ ′)). More precisely, we will use the

following consequence of Lemma 2.2.

Lemma 2.4. Let f : R → R be a differentiable convex function. Let F be an n-uniform family such

that for any proper subfamily A ⊂ F we have cn(A) 6 e−f(τ(A)). Let λ = e−f ′(τ(F)) and suppose that

there exists a non-empty family F ′ ⊂ F such that cλn(F ′) 6 1. Then cn(F) 6 e−f(τ(F)).

Proof. By Lemma 2.2 applied to F ′ ⊂ F we have

cn(F) 6
∑

T∈T6n(F ′)

n−|T |c(F(T̄ )) 6
∑

T∈T6n(F ′)

n−|T |e−f(τ(F(T̄ ))).

We have τ(F(T̄ )) > τ(F)−|T | and so by convexity f(τ(F(T̄ ))) > f(τ(F))−|T |f ′(τ(F)), which leads

to

cn(F) 6
∑

T∈T6n(F ′)

n−|T |ef
′(τ(F))|T |−f(τ(F)) = cλn(F ′)e−f(τ(F)) 6 e−f(τ(F)),

completing the proof.

Note that Proposition 1.3 from the proof outline above follows from this lemma with f(t) = −(t −
n/2) log λ.

2.2 Large intersections

In this section we study families K in which every pair of sets has “large” intersection.

Lemma 2.5. Let k 6 n/10. Let K be an n-uniform family. Suppose that there is an (n− k)-element

set K such that we have |F ∩ K| > n − 2k for every F ∈ K. Then we either have cn−k(K) 6 1 or

|⋂K| > n− 5k.

Proof. Let K ′ =
⋂K and R = K \K ′ and let u = |K ′ \ K|. Note that u ∈ [0, k] since |F \K| 6 k

for all F ∈ K. Denote by A the family of all sets F \K ′ for F ∈ K. By the definition of A we have

7



τ(A) > 2. Note also that for any A ∈ A we have |A \ R| 6 k − u (since A has size at most k and

contains the u-element set K ′ \K).

Note that a minimal covering T of the family K is either contained in K ′ and |T | = 1 or T ∩K ′ = ∅.
In the latter case T is obviously a minimal covering of A. Thus, we have

cλ(K) =
|K ′|
λ

+ cλ(A). (11)

Let T1 ⊂ T6n(A) be the family of minimal coverings T of A which are subsets of R. Let T2 =

T6n(A) \ T1. We will estimate weights of T1 and T2 separately.

Note that T1 ⊂ 2R and observe that T ′ 6⊂ T for any distinct T, T ′ ∈ T1 (i.e. T1 is an antichain in 2R).

Proposition 2.6. Suppose that T ⊂ 2R is an antichain such that every element of T has size at least

t. If λ > |R| then
∑

T∈T

λ−|T | 6 λ−t

(|R|
t

)

.

This statement also appears in [5].

Proof. Note that for any s > t we have
(

|R|
s

)

6
(

|R|
t

)

λs−t and so by the Lubell–Yamamoto–Meshalkin

inequality [9, Page 112, Theorem 8.6]:

∑

T∈T

λ−|T | 6
∑

T∈T

λ−t

(|R|
t

)

/

(|R|
|T |

)

= λ−t

(|R|
t

)

∑

T∈T

1
(|R|
|T |

)

6 λ−t

(|R|
t

)

.

By Lemma 2.6 for every λ > |R| the λ-weight of T1 is at most

wλ(T1) 6 λ−τ(A)

( |R|
τ(A)

)

6
(|R|/λ)τ(A)

τ(A)!
. (12)

Now we estimate the weight of T2. Let S ⊂ 2R be the family of all sets S ⊂ R such that S does not

cover A. Then the weight of T2 is bounded by the following expression:

wλ(T2) 6
∑

S∈S

λ−|S|cλ(A(S̄) \R). (13)

Indeed, the contribution of an element T ∈ T2 on the left hand side is accounted by the term corre-

sponding to S = T ∩ R ∈ S on the right hand side (since T \ R is a minimal covering of the family

A(S̄) \ R). Here the family A(S̄) \ R consists of all sets of the form A \ R where A ∈ A does not

intersect S. Every element in A(S̄) \ R has cardinality at most k − u and so by Observation 2.1 and

Corollary 2.3 applied to A(S̄) \R for every λ > k − u we have

cλ(A(S̄) \R) 6

(

k − u

λ

)τ(A(S̄)\R)

ck−u(A(S̄) \R) 6

(

k − u

λ

)τ(A(S̄)\R)

. (14)

Let S ∈ S. Note that we have the following lower bound on τ(A(S̄) \R):

τ(A(S̄) \R) > max{1, τ(A) − |S|}.

8



Using this lower bound, (13) and (14) we obtain an upper bound on the weight of T2 for λ > k:

wλ(T2) 6
τ(A)−1
∑

s=0

λ−s

(|R|
s

)(

k − u

λ

)τ(A)−s

+

|R|
∑

s=τ(A)

λ−s

(|R|
s

)(

k − u

λ

)

. (15)

Now we combine all obtained inequalities to prove Lemma 1.4. Suppose that |K ′| = |⋂K| < n− 5k,

we need to show that cn−k(K) 6 1 holds. We have

|K ∪K ′| = |K ′|+ |K \K ′| = |K|+ |K ′ \K|,

so that |K ′| = n − k + u− r holds. In particular, by the assumption |K ′| < n − 5k we have n− k >

r > u+ 4k.

Denote t = τ(A) > 2, r = |R|, ρ = r
n−k and δ = k−u

n−k . We can use (12) and (15) with λ = n − k and

get:

wn−k(T1) 6
ρt

t!
,

wn−k(T2) 6
t−1
∑

s=0

ρsδt−s

s!
+

r
∑

s=t

ρsδ

s!
.

By (11), formula |K ′| = n− k + u− r and decomposition T6n(K) = T1 ∪ T2:

cn−k(K) 6
n− k + u− r

n− k
+ wn−k(T1) + wn−k(T2) 6

6
n− k + u− r

n− k
+

ρt

t!
+

t−1
∑

s=0

ρsδt−s

s!
+

r
∑

s=t

ρsδ

s!
.

Both ρ and δ are between 0 and 1 so it is easy to see that the second line is the largest when t = 2,

i.e.

cn−k(K) 6
n− k + u− r

n− k
+

ρ2

2
+ δ2 +

δρ

2
+

r
∑

s=2

ρsδ

s!
6

n− k + u− r

n− k
+

ρ

2
+ 2δ,

where in the last transition we used 0 6 δ, ρ 6 1 to group the last 3 terms together and replace ρ2 by

ρ. Recalling ρ = r
n−k and δ = k−u

n−k we get

cn−k(K) 6
n+ k − u− r/2

n− k
6

n+ k − r/2

n− k
6 1,

since r > 4k and u > 0.

2.3 Small intersections

In this section we show that in some cases it is possible to estimate the size of a subfamily B ⊂ A
provided that elements of B have very small pairwise intersections.

Lemma 2.7. Let A be an n-uniform family where n is sufficiently large. Let B ⊂ A be a subfamily

such that |B1∩B2| 6 k for all distinct B1, B2 ∈ B. If k 6 n
104 lnn

then one of the following 2 possibilities

holds:

9



1. We have |B| 6 nC for some absolute constant C.

2. There is a proper subfamily A′ ⊂ A such that

2τ(A)cn(A) 6 2τ(A
′)cn(A′).

To prove this lemma we will need a result on R-spread families which was recently used to substantially

improve the upper bound in the Erdős-Rado Sunflower problem [1], [12]. We will use a variant of this

result proved in [13, Corollary 7]. Let C be a random set, that is a probability distribution on 2X for

some finite ground set X. For R > 1 we say that C is an R-spread random set if for every set S ⊂ X

the probability that C contains S is at most R−|S|.

Lemma 2.8 ([13]). Let R > 1, δ ∈ (0, 1) and m > 1. Let C be an R-spread random subset of a finite

set X. Let W ⊂ X be a random set independent from C and such that each x ∈ X belongs to W with

independent probability 1− (1− δ)m. Then there exists a random set C′ with the same distribution as

C and such that

E|C′ ∩W| 6
(

5

log2 Rδ

)m

E|C|.

We will in fact only need the following corollary of this result.

Corollary 2.9. In the notations of Lemma 2.8, let C ⊂ 2X be the support of the random set C. Then

the probability that a random set W of density 1− (1− δ)m contains an element of C is at least

P(∃C ∈ C : C ⊂ W) > 1−
(

5

log2 Rδ

)m

E|C|.

Proof of Lemma 1.6. Denote by X the ground set of A. Put C = 2048, R = n
2 and m = ⌈log2 n+10⌉.

Let δ = C
n and let U ⊂ X be a subset of X of density (1 − δ)m. Let T ∈ T6n(A) be a random set

with distribution

P(T = T ) =
n−|T |

cn(A)
, (16)

where T ∈ T6n(A) and such that T is independent from U.

Let us suppose that the random set T is not R-spread. By definition, this means that there is a

non-empty set S ⊂ X such that

P(S ⊂ T) > R−|S| =

(

2

n

)|S|

.

Let A′ = A(S̄) be the family of A ∈ A such that A∩ S = ∅. Note that τ(A′) > τ(A)− |S|. Note that

if a covering T ∈ T6n(A) satisfies S ⊂ T then T \ S is a minimal covering of the family A′. Thus,

∑

T∈T6n(A): S⊂T

n−|T | = n−|S|
∑

T∈T6n(A): S⊂T

n−|T\S| 6 n−|S|cn(A′).

By (16), the left hand side of this inequality equals to cn(A)P(S ⊂ T). We conclude

cn(A′)n−|S| > cn(A)P(S ⊂ T) > cn(A)2|S|n−|S|,

cn(A′) > cn(A)2|S| > cn(A)2τ(A)−τ(A′).

10



This implies the second alternative of Lemma 2.7. So we may assume that T is R-spread.

By Corollary 2.9 (applied to W = X \ U), we have the following estimate on the probability that

there is a covering T ∈ T6n(A) which does not intersect U:

P(∃T ∈ T6n(A) : T ∩U = ∅) > 1−
(

5

logRδ

)m

E|T| > 1− 2−mn > 0.9,

here we used the fact that Rδ = 1024, m > log2 n + 9 and that every element of T6n(A) has size at

most n.1 We conclude that if we take a random set U of density (1 − δ)m then with probability at

least 0.9 there is a T ∈ T6n(A) which does not intersect U. Let us now show that with probability at

least 0.5 the set U contains an element of B, provided that B is large enough. Since by definition of

T6n(A) every T ∈ T6n(A) intersects every set from B, this will lead to a contradiction if |B| is large

enough.

Note that an element A of B is contained in U with probability

(1− δ)mn = en log2 n(−
C
n
+O(n−2)) = n−C/ ln 2+o(1), (17)

provided that n is sufficiently large. Denote ρ = (1 − δ)nm. For A ∈ B denote by ξA the indicator of

the event that A ⊂ U and by ξ the sum of ξA over B. Hence, we have EξA = ρ for every A ∈ B and

Eξ = |B|ρ.

By Chebyshev’s inequality (see, for instance, [9, Page 303, (21.2)]), it is enough to show that Var ξ <

(Eξ)2/2, where Var ξ denotes the variance of the random variable ξ. Let us estimate the correlations

(EξAξA′ − ρ2) for A 6= A′. It is clear that

EξAξA′ = (1− δ)m|A∪A′| 6 (1− δ)2mn−m n
104 lnn = ρ2−

1
104 lnn .

By (17), we have

ρ−
1

104 lnn =
(

n
C+o(1)

ln 2

)− 1
104 lnn

= 2
C
104

+o(1) < 1.4

provided that n is large enough. We conclude that the variance of ξ is at most

0.4ρ2|B|2 + ρ|B|

which is less than (Eξ)2/2 if |B| > 10/ρ. Therefore, provided, that |B| > n3000 > 10/ρ, with probability

at least 0.5 the random set U contains an element of B and with probability at least 0.9 it does not

intersect an element of T6n(A). But these two events cannot happen simultaneously. This is a

contradiction and Lemma 2.7 is proved.

2.4 Moments of the degree function

In this section we show that if we have an n-uniform family A such that τ(A) is “large” but |A| is
“small” then the l-wise intersections of sets from A are very small on average. More precisely, we will

prove the following:

1In fact, this is the only place in the argument where we need this restriction on the sizes of the coverings.
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Lemma 2.10. Let n > 1 and m, t > 1. Let A be an n-uniform family of size at most em and τ(A) > t.

Then, for every l > 1, there is a subfamily A′ ⊂ A such that τ(A\A′) 6 t/2 and for every i = 1, . . . , l

we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai| 6 Cl

(m

t

)i−1
n,

where Cl ≪ 2l
2
depends only on l and the average is taken over all A1, . . . , Al ∈ A chosen uniformly

and independently.

Let X denote the ground set of an n-uniform family F . For a function f : X → R+ and S ⊂ X we

denote by f(S) the sum
∑

x∈S f(x).

Observation 2.11. For any non-zero function f : X → R+ and any family F on X we have

∑

F∈F

(

1− f(F )

f(X)

)τ(F)−1

> 1. (18)

In particular, for any f : X → R+ there always exists F ∈ F such that

f(F ) 6 f(X)(1− |F|−1/(τ(F)−1)).

Proof. Put t = τ(F) − 1 and let x1, . . . , xt ∈ X be a sequence of random independent elements of X

sampled according to distribution f . Then the left hand side of (18) is the expectation of the number

of sets F ∈ F which are not covered by the set {x1, . . . , xt}. Since τ(F) > t, this number is always

positive and (18) follows.

The following variant of this observation will be slightly more convenient to use.

Corollary 2.12. Let f1, . . . , fl : X → R+ be arbitrary non-zero functions and F be an arbitrary family

on X. Then there exists F ∈ F such that fi(F ) 6 fi(X)l(1 − |F|−1/(τ(F)−1)) for any i = 1, . . . , l.

Proof. Apply Observation 2.11 to f(x) =
∑l

i=1
fi(x)
fi(X) .

For a family F on the ground set X let dF : X → R+ be the degree function of the family F , that is,

if x ∈ X then dF (x) equals to the number of sets F ∈ F which contain x. Let dlF : X → R+ denote

the l-th power of dF , i.e. dlF (x) = (dF (x))
l. By abusing notation, we also denote by dlF the number

dlF (X).

Observation 2.13. For any family F and any l > 1 we have the following identity

dlF |F|−l = EF1,...,Fl∈F |F1 ∩ . . . ∩ Fl|,

where F1, . . . , Fl are taken from F uniformly and independently.

Applying Corollary 2.12 to functions d1F , . . . , d
l
F we obtain the following result.

Lemma 2.14. Let l, t > 1, let F ⊂ A be a subfamily of a family A such that τ(A \ F) > t+ 1. Then

there exists A ∈ A \ F such that the following holds. Denote F ′ = F ∪ {A}, then for any i = 1, . . . , l

we have:

diF ′ 6 diF +

(

l log |A|
t

)

2idi−1
F + n. (19)
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Proof. For i = 1, . . . , l let

fi(x) =

i−1
∑

j=1

(

i

j

)

djF (x). (20)

Apply Corollary 2.12 to functions f1, . . . , fl and the family A \ F . Then there exists A ∈ A \ F such

that for every i = 1, . . . , l we have

fi(A) 6 fi(X)l(1 − |A \ F|−1/τ(A\F)−1) 6 fi(X)l(1 − |A|−1/t) 6 fi(X)
l log |A|

t
, (21)

by the standard inequality 1− e−x 6 x. But note that for F ′ = F ∪ {A} by (20) we have

diF ′ − diF =
∑

x∈X

diF ′(x)− diF (x) =
∑

x∈A

(dF (x) + 1)i − diF (x) = fi(A) + n. (22)

Note that diF is monotone increasing in i and so

fi(X) =
i−1
∑

j=1

(

i

j

)

djF 6 2idi−1
F .

The bound (19) now follows from (21) and (22).

Now we are ready to prove Lemma 2.10.

Proof of Lemma 2.10. Let X denote the ground set of A and put γ = 2lm/t.

Let F ⊂ A be a maximal subfamily in A such that for every i = 1, . . . , l we have

diF 6 2i
2
γi−1n|F|i + 2i

2
n|F|. (23)

Note that if |F| = 1 then (23) clearly holds and so F is well-defined. To prove Lemma 1.7 it is clearly

enough to show that any such F satisfies τ(A \ F) 6 t/2. Indeed, in this case we have τ(F) > t/2

and, in particular, |F| > t/2. Then γ|F| > m > 1 and, therefore, the first term in (23) dominates the

second one.

Now we show that it is impossible to have τ(A \ F) > t/2 + 1. Indeed, in this case we can apply

Lemma 2.14 to the pair F ⊂ A and obtain a family F ′ = F ∪{A} such that (19) holds for i = 1, . . . , l

and with t/2 instead of t. Note that l log |A|/(t/2) 6 γ. On the other hand, the maximality of F
implies that there is some i ∈ {2, . . . , l} (i 6= 1 because otherwise (23) holds automatically) such that

diF ′ > 2i
2
γi−1n(|F|+ 1)i + 2i

2
n(|F|+ 1) > 2i

2
γi−1n|F|i + 2i

2
γi−1n|F|i−1 + 2i

2
n|F|+ 2i

2
n.

On the other hand, from (19) we get

diF ′ 6 diF + γ2idi−1
F + n 6 (2i

2
γi−1n|F|i + 2i

2
n|F|) + γ2i(2(i−1)2γi−2n|F|i−1 + 2(i−1)2n|F|) + n.

Combining these two inequalities and cancelling same terms we get

(2i
2 − 2i

2−i+1)γi−1n|F|i−1 − γ2i
2−i+1n|F|+ (2i

2 − 1)n < 0.

So if we let x = γ|F| then, after dividing by 2i
2
n, we obtain

2−i+1x > (1− 2−i+1)xi−1 +
1

2
. (24)

Recall that i > 2. So if x > 1 then the first term on the right hand side (24) is greater than 2−i+1x. If

x < 1 then the second term is greater than 2−i+1x. In both cases we arrive at a contradiction. Lemma

1.7 is proved.
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2.5 Bounded degree families

In this section we consider intersecting families of bounded degree. In fact, this is essentially the only

place in the paper where we use the fact that the family is intersecting. The idea to consider low

degree families in the Erdős–Lovász problem also appears in [6, Section 2].

Lemma 2.15. Let n > 1 and r > 2l be such that r2 6 l3n. Let B be an n-uniform intersecting family

of size r such that every l distinct sets from B have an empty intersection. Then

cn(B) 6 e−
r2

10l3n . (25)

Proof of Lemma 2.15. In order to prove this lemma, we need to recall the classical Erős–Lovász en-

coding procedure which they used to obtain the bound |F| 6 nn for the size of an n-uniform maximal

intersecting family. Denote B = {F1, . . . , Fr}.

Procedure. Let T ∈ T6n(B) and S ⊂ T be a proper subset. From the pair (T, S) we construct a

new pair (T, S′) as follows. Let i ∈ [r] be the minimum number so that Fi ∩ S = ∅. Pick arbitrary

x ∈ Fi ∩ T and let S′ = S ∪ {x}.
So if we apply this procedure to any T ∈ T6n(B) and S = ∅ then we will obtain a sequence of sets of

the form:

∅ = S0 ⊂ S1 ⊂ . . . ⊂ S|T | = T. (26)

Note that the sequence (S0, . . . , S|T |) is not determined uniquely by T since there may be an ambiguity

in the choice of x ∈ Fi ∩ T during the procedure. Let T1 ⊂ T6n(B) the the family of sets T such that

the sequence (S0, . . . , S|T |) is determined uniquely by T . In other words, at each step we have an

equality |Fi ∩ T | = 1. Let T2 = T6n(B) \ T1.
Now we denote by J the set of all sequences (S0, S1, . . . , Sk) which may occur during the procedure

starting from some T ∈ T6n(B) and S = ∅. Let J = J1 ∪ J2 be the decomposition arising from

the decomposition T6n(B) = T1 ∪ T2. The weight w(S̄) of a sequence S̄ = (S0, . . . , Sk) is defined to

be n−|Sk|. The standard Erdős–Lovász [4] argument shows that the weight w(J ) of the family J is

always at most 1. We omit the proof since it is very similar in spirit to the proof of Lemma 2.2 and

Corollary 2.3.

On the other hand, we can bound weights of families T1 and T2 in terms of weights of J1 and J2 as

follows:

cn(B) = wn(T6n(B)) = wn(T1) + wn(T2) 6 w(J1) +
1

2
w(J2) 6

w(J1) + 1

2
. (27)

So it is enough to obtain a good upper bound on w(J1). For T ∈ T1 we denote by Si(T ) the i-

th element of the sequence of T in the process (which is defined uniquely for elements of T1). We

denote by Ai(T ) ∈ B the element of B which was picked at step i − 1 of the process. In particular,

Si−1(T )∩Ai(T ) = ∅ and |Si(T )∩Ai(T )| = 1. We denote by xi(T ) the unique element in the intersection

Si(T ) ∩Ai(T ).

The uniqueness of the sequence S̄(T ) implies that for any j < i we have

xi(T ) 6∈ Aj(T ).
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Indeed, otherwise at step j we may have picked the element xi(T ) instead of xj(T ) and thus form a

different sequence (S′
0, . . . , S

′
|T |) which corresponds to the covering T . We conclude that

xi(T ) ∈ Ai(T ) \
⋃

j<i

Aj(T ) =: Yi(T ).

Since the family B is intersecting and does not contain l-wise intersections we have the following upper

bound on the size of Yi(T ):

|Yi(T )| 6 n− i− 1

l
.

For q > 0 and a given sequence S̄ = (S0 ⊂ S1 ⊂ . . . ⊂ Sq) we denote by J1(S̄) the family of sequences

from J1 which start from S̄.

Observation 2.16. For any sequence S̄ = (S0, S1, . . . , Si−1) which is a part of the sequence of some

T ∈ T1 such that |T | > i we have

w(J1(S̄)) 6
1

n

∑

x∈Yi(T )

w(J1(S̄, Si−1 ∪ {x})).

Proof. Indeed, the observation says that a sequence S̄ can be extended only by the elements of the set

Yi(T ) and, therefore, its weight is bounded by the sum of the weights of all possible extensions.

For q > 0 let

f(q) = max
S̄=(S0,S1,...,Sq)

w(J1(S̄)). (28)

The following proposition will finish the proof. Note that τ(B) > r/l because any element x ∈ X

covers at most l sets from B.
Proposition 2.17. For any q ∈ [0, r/l] we have

f(q) 6

[r/l]−1
∏

i=q

(

1− i− 1

nl

)

.

Proof. The proof is by induction. The base case q = [r/l] states that f([r/l]) 6 1 which we already

know by the Erdős–Lovász argument.

For the induction step, let T ∈ T1 be a covering on which the maximum in (28) is attained. Now apply

Observation 2.16 and the induction hypothesis to conclude that

f(q) 6
1

n
|Yi(T )|f(q + 1) 6

(

1− i− 1

nl

)

f(q + 1),

where T corresponds to a maximizer of the supremum on the left hand side.

Substituting q = 0 in Proposition 2.17 we get

w(J1) = f(0) 6

[r/l]−1
∏

i=1

(1− i− 1

nl
) 6

(

1− r

2nl2

)r/2l
6 e−

r2

4l3n .

Let y = r2

l3n
. By assumption we have y 6 1 and so we have the following elementary inequality:

e−y/4 + 1 6 2e−y/10. By (27), the desired inequality (25) follows.
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The following simple corollary will be more convenient to combine with Lemma 2.4 in the proof of

Theorem 1.1.

Corollary 2.18. Let n > 1 and r > 2l be such that r2 6 l3n. Let B be an n-uniform intersecting

family of size r such that every l distinct sets from B have an empty intersection. Then for k 6 r
20l3

we have

cn−k(B) 6 1.

Proof. Note that any minimal covering of B has size at most |B| = r. So for any λ 6 1 we have

cλn(B) 6 λ−rcn(B).

By Lemma 2.15, if we let λ = e−
r

10l3n then cλn(B) 6 1. Now if k 6 r
20l3

then

n− k

n
> 1− r

20l3n
> e−

r
10l3n ,

which implies that cn−k(B) 6 1.

3 Proof of Theorem 1.2

In this section we put all developed machinery together to prove Theorem 1.2. We restate the theorem

below for convenience.

Theorem 3.1. For all ε > 0 and sufficiently large n > n0(ε) we have the following. Let A be an

intersecting n-uniform family. Then

cn(A) 6 e1−
τ(A)1.5−ε

n . (29)

Now we begin the proof of Theorem 1.2. Fix n > n0(ε) and suppose that there exists an intersecting

family A which violates (5). Let A be any such family of minimal possible size. In particular, A is a

τ -critical family and τ(A) > n2/3 because otherwise the right hand side of (29) is greater than 1 and

so we done by Corollary 2.3.

By the minimality of A, for any proper subfamily A′ ⊂ A we have

cn(A′) 6 e1−
τ(A′)1.5−ε

n . (30)

We are going to apply Lemma 2.4 to various subfamilies of A and f(t) = t1.5−ε−1. Let λ = e−f ′(τ(A)) =

e−(1.5−ε)
τ(A)0.5−ε

n and k =
√

τ(A).

Proposition 3.2. For any A1, A2 ∈ A we have

|A1 ∩A2| 6∈ [k, n − k]. (31)

Proof. Suppose that there are some A1, A2 ∈ A such that |A1 ∩ A2| = x ∈ [k, n − k]. Denote

A′ = {A1, A2} and note that

cn−k/3(A′) =
x

n− k/3
+

(n − x)2

(n− k/3)2
6 1, (32)
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where the latter inequality holds for every x ∈ [k, n − k] and any k 6 0.1n.

Since n−k/3
n 6 λ for sufficiently large n, by Lemma 2.4 applied to A′ we deduce that (30) holds for A

as well. This is however a contradiction to our initial assumption that A does not satisfy (29).

Now we define a relation ∼ on A as follows: two sets A1, A2 ∈ A are equivalent if |A1 ∩ A2| > n/2.

Then Proposition 3.2 implies that ∼ is an equivalence relation on A. Let

A = K1 ∪ . . . ∪KN (33)

be the equivalence class decomposition on A corresponding to ∼. This means that for every i =

1, . . . , N and any F1, F2 ∈ Ki we have |F1 ∩ F2| > n − k and for any i 6= j and F1 ∈ Ki and F2 ∈ Kj

we have |F1 ∩ F2| 6 k.

Proposition 3.3. For every i = 1, . . . , N we have |⋂Ki| > n− 5k.

Proof. Suppose that |⋂Ki| < n − 5k for some i. Let F ∈ Ki be an arbitrary set from Ki and let

K ⊂ F be any subset of size (n− k). Lemma 2.5 applied to the family Ki and the set K implies that

cn−k(Ki) 6 1. So Lemma 2.4 applied to Ki implies that A satisfies (30), a contradiction.

Proposition 3.4. We have |A| 6 n6k.

Proof. Indeed, by Lemma 1.5, Proposition 3.3 and τ -criticality of A we have |Ki| 6
(τ(A)+5k

5k

)

for any

i = 1, . . . , N .

Now let Ai ∈ Ki be arbitrary representatives. Note that |Ai ∩ Aj| 6 k for any i 6= j. Obviously

k ≪ n
logn , so by Lemma 2.7 we either have N 6 nC′

or there is a proper subfamily A′ ⊂ A such that

2τ(A)cn(A) 6 2τ(A
′)cn(A′) 6 2τ(A

′)Cλτ(A′),

which immediately implies (5). This implies that we in fact have N 6 nC′

and so

|A| 6 nC′

(

τ(A) + 5k

5k

)

6 n6k,

provided that n is large enough.

Denote m = log n6k = 6k log n and let l = 10ε−1. By Lemma 2.10, there is a subfamily A′ ⊂ A such

that τ(A \ A′) 6 τ(A)/2 such that for every i = 2, . . . , l we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai| 6 Cl

(

m

τ(A)

)i−1

n, (34)

for some new constant Cl ≪ 2l
2
. Let r = n−ε τ(A)

m (note that r ≫ 1 since τ(A) > n2/3 by assumption).

Sample uniformly and independently sets B1, . . . , Br ∈ A′ and form a random family B = {B1, . . . , Br}.
Applying (34) to all l-element intersections in B we get

E

∑

S∈([r]l )

∣

∣

∣

∣

∣

⋂

i∈S

Bi

∣

∣

∣

∣

∣

6 Cl

(

r

l

)(

m

τ(A)

)l−1

n 6 Cln
1−εl τ(A)

m
6 n2−εl < 1
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for sufficiently large n.

So there exists an r-element family B ⊂ A′ such that all l-wise intersections of sets from B are empty.

By Corollary 2.18, for h = r
20l3

we have cn−h(B) 6 1. But

n− h

n
6 1− τ(A)

20l3mn1+ε
6 1− τ(A)

kn
6 λ,

by the choice of k =
√

τ(A) and λ = e−(1.5−ε) τ(A)0.5−ε

n and sufficiently large n. So by Lemma 2.4

applied to F ′ = B we have (29). Theorem 1.2 is proved.

4 Remarks

Let us describe a construction of a maximal intersecting family which generalizes examples from [4]

and [7]. Let G be a tournament on the vertex set {1, . . . ,m} and let K1, . . . ,Km be a sequence of

disjoint non-empty sets. Let Ki be the family of all sets F such that Ki ⊂ F and for i 6= j:

|F ∩Kj| =
{

1, if (i, j) ∈ G,

0, if (i, j) 6∈ G.

It is clear from this definition that the family F = K1 ∪ . . . ∪ Km is intersecting. Let di be the

outdegree of the vertex i and let n > max di. If we let |Ki| = n − di then the family F is n-uniform

and intersecting.

It is not difficult to characterize all minimal coverings of F . First, observe that if T is a minimal

covering of F then |T ∩Ki| ∈ {0, 1, |Ki|}. Then for every minimal covering T we can define two sets

A,B ⊂ [m], namely, A is the set of all i such that |C ∩ Ki| = 1 and B is the set of all i such that

Ki ⊂ T . Now the fact that T is a covering is equivalent to the assertion that A ∪B ∪Nin(B) = [m],

where Nin(B) denotes the set of all vertices of G from which there is an edge to B.

Example 1. If we let G to be the linearly ordered complete directed graph then F coincides with

the family constructed by Erdős–Lovász [4]. In this case τ(F) = n and |F| is approximately n!.

Example 2. Let G be graph on the vertex set Z2t−1 ∪ {v}, where the vertices i, j ∈ Z2t−1 from the

cyclic group are connected if j − i ∈ [1, t − 1] and the vertex v has outdegree 2t − 1. In this case we

have n = 2t, τ(F) = n and |F| is approximately
(

n
2

)n
. Note that the main contribution to the size of

F comes from the family Kv corresponding to the vertex v.2

It is not hard to see that the construction in the second example gives the maximum size of F among

all constructions of this type.

The construction above and the decomposition (33) which we used in the proof of Theorem 1.1 suggest

to consider the following special class of families. LetK1, . . . ,Kn be disjoint sets such that |Ki| = n−ai.

Let Ki be an n-uniform family of sets containing Ki. Let F = K1∪ . . .∪Kn and suppose that τ(F) = n

and F is intersecting.

Conjecture 1 ([11]). In the situation described above we have
∑n

i=1 ai >
(

n
2

)

. Moreover, the condition

that |Ki| = n− ai can be replaced by the condition that Ki is (|Ki|+ ai)-uniform.

2The construction of a maximal intersecting family of size (n/2)n for odd n is a bit more delicate, see [7].
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Note that, if true, Conjecture 1 is best possible: we can take G to be a graph whose outdegrees are

precisely a1, . . . , an and then use the construction of an n-uniform family F described above. One can

easily produce sequences of degrees a1, . . . , an such that the corresponding graph exists and τ(F) = n.

Note that if there is a counterexample to Conjecture 1 such that, say, ai ∼ n1−ε for some ε > 0 and

every i = 1, . . . , n, then one can construct a very large maximal intersecting family as follows.

Let F0 = K1 ∪ . . . ∪ Kn be an n-uniform family such that τ(F0) = n. Then any set F such that

|F ∩Ki| = 1, for every i, is a minimal covering of F0. Denote the family of all such sets by F ′
1. We

have

cn(F0) > n−n|F ′
1| = n−n

n
∏

i=1

(n− ai) ∼ (1− n−ε)n ∼ e−n1−ε
.

Moreover, if we let F1 be an (n+1)-uniform family of sets F ∪ {x0}, where F ∈ F ′
1 and x0 is a “new”

element of the ground set, then F = F0 ∪ F1 is an intersecting family of n and n + 1 element sets

such that τ(F) = n and each member of F is a minimal covering of F . The family F has size at least

e−n1−ε
nn and so it essentially contradicts the conjecture of Frankl–Ota–Tokushige [7].

In the setting of Conjecture 1 we were only able to prove the lower bound
∑n

i=1 ai ≫ n3/2 but any

improvement seems to require new ideas.
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[6] Frankl, Péter. A near-exponential improvement of a bound of Erdős and Lovász on maximal
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