
ar
X

iv
:2

21
0.

06
62

4v
2 

 [
m

at
h.

PR
] 

 1
8 

O
ct

 2
02

3

Approximate Discrete Entropy Monotonicity for Log-Concave Sums

Lampros Gavalakis ∗
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Abstract

It is proven that a conjecture of Tao (2010) holds true for log-concave random variables

on the integers: For every n ≥ 1, if X1, . . . , Xn are i.i.d. integer-valued, log-concave random

variables, then

H(X1 + · · ·+Xn+1) ≥ H(X1 + · · ·+Xn) +
1

2
log
(n+ 1

n

)

− o(1)

as H(X1) → ∞, where H denotes the (discrete) Shannon entropy. The problem is reduced to

the continuous setting by showing that if U1, . . . , Un are independent continuous uniforms on

(0, 1), then

h(X1 + · · ·+Xn + U1 + · · ·+ Un) = H(X1 + · · ·+Xn) + o(1)

as H(X1) → ∞, where h stands for the differential entropy. Explicit bounds for the o(1)-terms

are provided.

Keywords — entropy, monotonicity, log-concavity, entropy power inequality, central limit theorem, con-

centration, sumset inequalities

2020 Mathematics subject classification — 94A17; 60E15; 39B62

1 Introduction

1.1 Monotonic Increase of Differential Entropy

Let X,Y be two independent random variables with densities in R. The differential entropy of X,

having density f , is

h(X) = −
∫

R

f(x) log f(x)dx

and similarly for Y . Throughout ‘ log’ denotes the natural logarithm.

The Entropy Power Inequality (EPI) plays a central role in information theory. It goes back to

Shannon [15] and was first proven in full generality by Stam [16]. It asserts that

N(X + Y ) ≥ N(X) +N(Y ), (1)
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where N(X) is the entropy power of X:

N(X) =
1

2πe
e2h(X).

If X1,X2 are identically distributed, (1) can be rewritten as

h(X1 +X2) ≥ h(X1) +
1

2
log 2. (2)

The EPI is also connected with and has applications in probability theory. The following

generalisation is due to Artstein, Ball, Barthe and Naor [1]: If {Xi}n+1
i=1 are continuous, i.i.d.

random variables then

h
( 1√

n+ 1

n+1
∑

i=1

Xi

)

≥ h
( 1√

n

n
∑

i=1

Xi

)

. (3)

This is the monotonic increase of entropy along the central limit theorem [2]. The main result of

this paper may be seen as an approximate, discrete analogue of (3).

1.2 Sumset theory for Entropy

There has been interest in formulating discrete analogues of the EPI from various perspectives

[7, 8, 9, 20]. It is not hard to see that the exact statement (2) can not hold for all discrete random

variables by considering deterministic (or even close to deterministic) random variables.

Suppose G is an additive abelian group and X is a random variable supported on a discrete

(finite or countable) subset A of G with probability mass function (p.m.f.) p on G. The Shannon

entropy, or simply entropy of X is

H(X) = −
∑

x∈A
p(x) log p(x). (4)

Tao [17] proved that if G is torsion-free and X takes finitely many values then

H(X1 +X2) ≥ H(X1) +
1

2
log 2− o(1), (5)

where X1,X2 are independent copies of X and the o(1)-term vanishes as the entropy of X tends

to infinity. That work explores the connection between additive combinatorics and entropy, which

was identified by Tao and Vu in the unpublished notes [18] and by Ruzsa [14]. The main idea is

that random variables in G may be associated with subsets A of G: By the asymptotic equipartition

property [4], there is a set An (the typical set) such that if X1, . . . ,Xn are i.i.d. copies of X, then

(X1, . . . ,Xn) is approximately uniformly distributed on An and |An| = en(H(X)+o(1)). Hence, given

an inequality involving cardinalities of sumsets, it is natural to guess that a counterpart statement

holds true for random variables if the logarithm of the cardinality is replaced by the entropy.

Exploring this connection, Tao [17] proved an inverse theorem for entropy, which characterises

random variables for which the addition of an independent copy does not increase the entropy by

much. This is the entropic analogue of the inverse Freiman theorem [19] from additive combina-

torics, which characterises sets for which the sumset is not much bigger than the set itself. The

discrete EPI (5) is a consequence of the inverse theorem for entropy.

Furthermore, it was conjectured in [17] that for any n ≥ 2 and ǫ > 0

H(X1 + · · ·+Xn+1) ≥ H(X1 + · · ·+Xn) +
1

2
log
(n+ 1

n

)

− ǫ, (6)
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provided that H(X) is large enough depending on n and ǫ, where {Xi}n+1
i=1 are i.i.d. copies of X.

We will prove that the conjecture (6) holds true for log-concave random variables on the integers.

An important step in the proof of (5) is reduction to the continuous setting by approximation of

the continuous density with a discrete p.m.f.; we briefly outline these key points from that proof in

Section 1.3 below as we are going to take a similar approach.

A discrete entropic central limit theorem was recently established in [6]. A discussion relating

the above conjecture to the convergence of Shannon entropy to its maximum in analogy with (3)

may be found there.

It has also been of interest to establish finite bounds for the o(1)-term [7, 20]. Our proofs yield

explicit rates for the o(1)-terms, which are exponential in H(X1).

The class of discrete log-concave distributions has been considered recently by Bobkov, Mar-

siglietti and Melbourne [3] in connection with the EPI. In particular, discrete analogues of (1) were

proved for this class. In addition, sharp upper and lower bounds on the maximum probability

of discrete log-concave random variables in terms of their variance were provided, which we are

going to use in the proofs (see Lemma 5 below). Although log-concavity is a strong assumption

in that it implies, for example, connected support set and moments of all orders, many important

distributions are log-concave, e.g. Bernoulli, Poisson, geometric, negative binomial and others.

1.3 Main results and proof ideas

The first step in the proof method of [17, Theorem 1.9] is to assume that H(X1 +X2) ≤ H(X1) +
1
2 log 2− ǫ. Then, because of [17, Theorem 1.8], proving the result for random variables X that can

be expressed as a sum Z +U , where Z is a random variable with entropy O(1) and U is a uniform

on a large arithmetic progression, say P , suffices to get a contradiction. Such random variables

satisfy, for every x,

P(X = x) ≤ C

|P | (7)

for some absolute constant C. Using tools from the theory of sum sets, it is shown that it suffices

to consider random variables that take values in a finite subset of the integers. For such random

variables that satisfy (7), the smoothness property

‖pX1+X2 − pX1+X2+1‖TV → 0 (8)

as H(X) → ∞ is established, where pX1+X2 , pX1+X2+1 are the p.m.f.s of X1 +X2 and X1 +X2 +1

respectively and ‖ · ‖TV is the total variation distance defined in (15) below. Using this, it is shown

that

h(X1 +X2 + U1 + U2) = H(X1 +X2) + o(1), (9)

as H(X) → ∞, where U1, U2 are independent continuous uniforms on (0, 1). The EPI for continuous

random variables is then invoked.

The tools that we use are rather probabilistic– our proofs lack any additive combinatorial

arguments as we already work with random variables on the integers, which have connected support

set. An important technical step in our case is to show that any log-concave random variable X

on the integers satisfies

‖pX − pX+1‖TV → 0

as H(X) → ∞. Using this we show a generalisation of (9), our main technical tool:

3



Theorem 1. Let n ≥ 1 and suppose X1, . . . ,Xn are i.i.d. log-concave random variables on the

integers with common variance σ2. Let U1, . . . , Un be continuous i.i.d. uniforms on (0, 1). Then

h(X1 + · · ·+Xn + U1 + · · ·+ Un) = H(X1 + · · ·+Xn) + o(1), (10)

where the o(1)-term vanishes as σ2 → ∞ depending on n. In fact, this term can be bounded

absolutely by

2n+6e−(
√
nσ)1/5(

√
nσ)3 +

2n+2

σ
√
n
log(2n+2σ

√
n) +

log (nσ2)

8nσ2
, (11)

provided that σ > max{2n+2/
√
n, 37/

√
n}.

Remark 2. Note that always, H(X) → ∞ implies σ2 → ∞, since by the maximum entropy

property of the Gaussian distribution [4]

H(X) = h(X + U) ≤ 1

2
log
(

2πeσ2(1 +
1

12
)
)

, (12)

where U is an independent continuous uniform on (0, 1). Conversely, for the class of log-concave

random variables σ → ∞ implies H(X) → ∞, e.g. by Proposition 7 and Lemma 5. Indeed these

give a quantitative comparison between H(X) and σ2 = Var(X) for log-concave random variables:

H(X) ≥ log σ for σ ≥ 1 .

Our main tools are first, to approximate the density of the log-concave sum convolved with

the sum of n continuous uniforms with the discrete p.m.f. (Lemma 8) and second, to show a

type of concentration for the “information density”, − log p(Sn), using Lemma 9. It is a standard

argument to show that log-concave p.m.f.s have exponential tails, since the sum of the probabilities

is convergent. Lemma 9 is a slight improvement in that it provides a bound for the ratio depending

on the variance.

By an application of the generalised EPI for continuous random variables, we show that the

conjecture (6) is true for log-concave random variables on the integers, with an explicit dependence

between H(X) and ǫ. Our main result is:

Theorem 3. Let n ≥ 1 and ǫ ∈ (0, 1). Suppose X1, . . . ,Xn are i.i.d. log-concave random variables

on the integers. Then if H(X1) is sufficiently large depending on n and ǫ,

H(X1 + · · ·+Xn+1) ≥ H(X1 + · · ·+Xn) +
1

2
log
(n+ 1

n

)

− ǫ. (13)

In fact, for (13) to hold it suffices to take H(X1) ≥ log 2
ǫ + log log 2

ǫ + n+ 27.

The proofs of Theorems 1 and 3 are given in Section 3. Before that, in Section 2 below, we

prove some preliminary facts about discrete, log-concave random variables.

For n = 1, the lower bound for H(X1) given by Theorem 3 for the case of log-concave random

variables on the integers is a significant improvement on the lower bound that can be obtained from

the proof given in [17] for discrete random variables in a torsion free group, which is Ω
(

1
ǫ

1
ǫ

1
ǫ
)

.

Finally, let us note that Theorem 1 is a strong result: Although we suspect that the assumption

of log-concavity may be relaxed, we do not expect it to hold in much greater generality; we believe

that some structural conditions on the random variables should be necessary.

4



2 Notation and Preliminaries

For a random variable X with p.m.f. p on the integers denote

q :=
∑

k∈Z
min{p(k), p(k + 1)}. (14)

The parameter q defined above plays an important role in a technique known as Bernoulli part

decomposition, which has been used in [5, 12, 13] to prove local limit theorems. It was also used

in [6] to prove the discrete entropic CLT mentioned in the Introduction.

In the present article, we use 1 − q as a measure of smoothness of a p.m.f. on the integers. In

what follows we will also write q(p) to emphasise the dependence on the p.m.f. p.

For two p.m.f.s on the integers p1 and p2, we use the notation

‖p1 − p2‖1 :=
∑

k∈Z
|p1(k)− p2(k)|

for the ℓ1-distance between p1 and p2 and

‖p1 − p2‖TV :=
1

2
‖p1 − p2‖1 (15)

for the total variation distance.

Proposition 4. Suppose X has p.m.f. pX on Z and let q =
∑

k∈Zmin {pX(k), pX(k + 1)}. Then

‖pX − pX+1‖TV = 1− q.

Proof. Since |a− b| = a+ b− 2min {a, b},

‖pX − pX+1‖1 =
∑

k∈Z
|pX(k)− pX(k + 1)| = 2− 2

∑

k∈Z
min {pX(k), pX(k + 1)} = 2(1 − q).

The result follows.

A p.m.f. p on Z is called log-concave, if for any k ∈ Z

p(k)2 ≥ p(k − 1)p(k + 1). (16)

If a random variable X is distributed according to a log-concave p.m.f. we say that X is log-concave.

Throughout we suppose that X1, . . . ,Xn are i.i.d. random variables having a log-concave p.m.f. on

the integers, p, common variance σ2 and denote their sum with Sn. Also, we denote

pmax = pmax(X) := sup
k

P(X = k)

and write

Nmax = Nmax(X) := max{k ∈ Z : p(k) = pmax}, (17)

i.e. Nmax is the last k ∈ Z for which the maximum probability is achieved. We will make use of

the following bound from [3]:

Lemma 5. Suppose X has discrete log-concave distribution with σ2 = Var(X) ≥ 1. Then

1

4σ
≤ pmax ≤ 1

σ
. (18)
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Proof. Follows immediately from [3, Theorem 1.1.].

Proposition 6. Let X be a log-concave random variable on the integers with mean µ ∈ R and

variance σ2, and let δ > 0. Then, if σ > 41/2δ ,

|Nmax − µ| < σ3/2+δ + 1. (19)

Proof. Suppose for contradiction that |Nmax − µ| ≥ σ3/2+δ + 1. Then, using (18),

P(|X − µ| > σ3/2+δ) ≥ p(Nmax) ≥
1

4σ
.

But Chebyshev’s inequality implies

P(|X − µ| > σ3/2+δ) ≤ 1

σ1+2δ
<

1

4σ
.

Below we show that for any integer-valued random variable X, q → 1 implies H(X) → ∞. It

is not hard to see that the converse is not always true, i.e. H(X) → ∞ does not necessarily imply

q → 1: Consider a random variable with a mass of 1
2 at zero and all other probabilities equal on an

increasingly large subset of Z. Nevertheless, using Lemma 5, we show that if X is log-concave this

implication is true. In fact, part (ii) of Proposition 7 holds for all unimodal distributions. Clearly

any log-concave distribution is unimodal, since (16) is equivalent to the sequence {pX(k+1)
pX(k) }k∈Z

being non-increasing.

Proposition 7. Suppose that the random variable X has p.m.f. pX on the integers and let q =

q(pX) as above. Then

(i) e−H(X) ≤ 1− q.

(ii) If pX is unimodal, then 1− q = pmax.

Proof. Let m be a mode of X, that is p(m) = pmax. Then

q =
∑

k≤m−1

min {pX(k), pX(k + 1)}+
∑

k≥m

min {pX(k), pX (k + 1)}

≤
∑

k≤m−1

pX(k) +
∑

k≥m

pX(k + 1)

= 1− pmax.

The bound (i) follows since H(X) = E
(

log 1
pX(X)

)

≥ log 1
maxk pX(k) .

For (ii), note that since pX is unimodal, pX(k + 1) ≥ pX(k) for all k < m and pX(k + 1) ≤ pX(k)

for all k ≥ m. Therefore, the inequality in part (i) is equality and (ii) follows.
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3 Proofs of Theorems 1 and 3

Let U (n) :=
∑n

i=1 Ui, where Ui are i.i.d. continuous uniforms on (0, 1). Let fSn+U (n) denote the

density of Sn + U (n). We approximate fSn+U (n) with the p.m.f., say pSn , of Sn.

We recall that the class of discrete log-concave distributions is closed under convolution [10] and

hence the following lemma may be applied to Sn.

Lemma 8. Let S be a log-concave random variable on the integers with variance σ2 = Var(S) and,

for any n ≥ 1, denote by fS+U (n) the density of S + U (n) on the real line. Then for any n ≥ 1 and

x ∈ R,

fS+U (n)(x) = pS(⌊x⌋) + gn(⌊x⌋, x), (20)

for some gn : Z× R → R satisfying

∑

k∈Z
sup

u∈[k,k+1)
|gn(k, u)| ≤ (2n − 2)

1

σ
. (21)

Moreover, if ⌊x⌋ ≥ Nmax + n− 1,

fS+U (n)(x) ≤ 2npS(⌊x⌋ − n+ 1). (22)

Proof. First we recall that for a discrete random variable S and a continuous independent random

variable U with density fU , S + U is continuous with density

fS+U(x) =
∑

k∈Z
pS(k)fU (x− k).

For n = 1, the statement is true with gn = 0. We proceed by induction on n with n = 2 as base

case, which illustrates the idea better. The density of U1 + U2 is fU1+U2(u) = u, for u ∈ (0, 1) and

fU1+U2(u) = 2− u, for u ∈ [1, 2). Thus, we have

fS+U (2)(x) = pS(⌊x⌋) + (1− x+ ⌊x⌋)(pS(⌊x⌋ − 1)− pS(⌊x⌋)). (23)

Therefore,

fS+U (2)(x) = pS(⌊x⌋) + g2(⌊x⌋, x),
where g2(k, x) = (1− x+ k)(pS(k − 1)− pS(k)) and by Propositions 4, 7.(ii) and Lemma 5

∑

k∈Z
sup

u∈[k,k+1)
|g2(k, u)| ≤

∑

k∈Z
|pS(k)− pS(k − 1)| = ‖pS − pS+1‖1 ≤ 2

σ
.

Next, we have

fS+U (n+1)(x) =

∫

(0,1)
fS+U (n)(x− u)du

=

∫

(0,1)∩(x−⌊x⌋−1,x−⌊x⌋)
fS+U (n)(x− u)du+

∫

(0,1)∩(x−⌊x⌋,x−⌊x⌋+1)
fS+U (n)(x− u)du.

(24)

Using the inductive hypothesis, (24) is equal to

(x− ⌊x⌋)pS(⌊x⌋) + (1− x+ ⌊x⌋)pS(⌊x⌋ − 1)

+

∫

(0,1)∩(x−⌊x⌋−1,x−⌊x⌋)
gn(⌊x⌋, x − u)du+

∫

(0,1)∩(x−⌊x⌋,x−⌊x⌋+1)
gn(⌊x⌋ − 1, x− u)du (25)

7



with gn satisfying (21). Thus, we can write

fS+U (n+1)(x) = pS(⌊x⌋) + (1− x+ ⌊x⌋)(pS(⌊x⌋ − 1)− pS(⌊x⌋))

+

∫

(0,1)∩(x−⌊x⌋−1,x−⌊x⌋)
gn(⌊x⌋, x− u)du+

∫

(0,1)∩(x−⌊x⌋,x−⌊x⌋+1)
gn(⌊x⌋ − 1, x− u)du

(26)

= pS(⌊x⌋) + gn+1(⌊x⌋, x), (27)

where gn+1(k, x) = (1− x+ k)(pS(k − 1)− pS(k)) +
∫

(0,1)∩(x−k−1,x−k) gn(k, x− u)du

+
∫

(0,1)∩(x−k,x−k+1) gn(k − 1, x− u)du. Therefore, since gn satisfies (21),

∑

k∈Z
sup

u∈[k,k+1)
|gn+1(k, u)| ≤

2

σ
+ 2

∑

k∈Z
sup

u∈[k,k+1)
|gn(k, u)| ≤

2

σ
+ 2(2n − 2)

1

σ
= (2n+1 − 2)

1

σ
, (28)

completing the inductive step and thus the proof of (21).

Inequality (22) may be proved in a similar way by induction: For n = 2, by (23)

fS+U (2)(x) ≤ 2pS(⌊x⌋ − 1), (29)

since pS(⌊x⌋) ≤ pS(⌊x⌋ − 1) for ⌊x⌋ ≥ Nmax + 1.

By (24) and the inductive hypothesis

fS+U (n+1)(x) =

∫

(0,1)∩(x−⌊x⌋−1,x−⌊x⌋)
fS+U (n)(x− u)du+

∫

(0,1)∩(x−⌊x⌋,x−⌊x⌋+1)
fS+U (n)(x− u)du

(30)

≤ 2npS(⌊x⌋ − n) + 2npS(⌊x⌋ − n+ 1) (31)

≤ 2n+1pS(⌊x⌋ − n) (32)

completing the proof of (22) and thus the proof of the lemma.

Lemma 9. Let X be a log-concave random variable on the integers with p.m.f. p, mean zero

and variance σ2, and let 0 < ǫ < 1/2. If σ ≥ max {31/ǫ, (12e3)1/(1−2ǫ)}, there is an N0 ∈
{Nmax, . . . , Nmax + 2⌈σ2⌉} such that, for each k ≥ N0,

p(k + 1) ≤
(

1− 1

σ2−ǫ

)

p(k). (33)

Similarly, there is an N−
0 ∈ {Nmax − 2⌈σ2⌉, . . . , Nmax} such that, for each k ≤ N−

0 ,

p(k − 1) ≤
(

1− 1

σ2−ǫ

)

p(k).

Proof. Let θ = 1 − 1
σ2−ǫ . It suffices to show that there is an N0 ∈ {Nmax, . . . , Nmax + 2⌈σ2⌉} such

that p(N0 + 1) ≤ θp(N0), since then, for each k ≥ N0,
p(k+1)
p(k) ≤ p(N0+1)

p(N0)
≤ θ by log-concavity.

Suppose for contradiction that p(k+ 1) ≥ θp(k) for each k ∈ {Nmax, . . . , Nmax +2⌈σ2⌉}. Then,
we have, using (18)

σ2 =
∑

k∈Z
k2p(k) ≥

Nmax+2⌈σ2⌉
∑

k=Nmax

k2p(k) ≥
Nmax+2⌈σ2⌉
∑

k=Nmax

k2θk−Nmax
1

4σ
(34)

=

2⌈σ2⌉
∑

m=0

(Nmax +m)2θm
1

4σ
≥

2⌈σ2⌉
∑

m=max{0,−Nmax}
(Nmax +m)2θm

1

4σ
. (35)
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Now we use Proposition 6 with δ > 0 to be chosen later. Thus, the right-hand side of (35) is at

least

2⌈σ2⌉
∑

m=⌈σ3/2+δ+1⌉
(Nmax +m)2θm

1

4σ

≥
2⌈σ2⌉
∑

m=⌈σ3/2+δ⌉+1

(m− ⌈σ3/2+δ⌉ − 1)2θm
1

4σ
(36)

=

2⌈σ2⌉−⌈σ3/2+δ⌉−1
∑

k=0

k2θk+⌈σ3/2+δ⌉+1 1

4σ
(37)

≥ θ⌈σ
3/2+δ⌉+1 1

4σ

⌈σ2⌉−1
∑

k=1

kθk (38)

=
θ⌈σ

3/2+δ⌉+1

4σ

[

θ
1− θ⌈σ

2⌉

(1− θ)2
− ⌈σ2⌉ θ⌈σ

2⌉

(1 − θ)

]

. (39)

Using the elementary bound (1− x)y ≥ e−2xy, for 0 < x < log 2
2 , y > 0, we see that

θ⌈σ
3/2+δ⌉+1 = (1− 1

σ2−ǫ
)⌈σ

3/2+δ⌉+1 ≥ e−2σ3/2+δ+2
σ2−ǫ ≥ e−3,

where the last inequality holds as long as ǫ + δ < 1/2. Choosing δ = 1/4 − ǫ/2, we see that the

assumption of Proposition 6 is satisfied for σ > 161/(1−2ǫ) and thus for σ > (12e3)1/(1−2ǫ) as well.

Furthermore, using (1− x)y ≤ e−xy, 0 < x < 1, y > 0, we get θσ
2 ≤ e−σǫ

. Thus, the right-hand side

of (39) is at least

1

4e3σ

[(

1− 1

σ2−ǫ

)

(

1− e−σǫ)

σ4−2ǫ − σ4−ǫe−σǫ − σ2−ǫe−σǫ
]

≥ σ3−2ǫ

4e3

[

1− 2
σǫ

eσǫ − 1

σ2−ǫ

]

> σ2σ
1−2ǫ

12e3
(40)

≥ σ2, (41)

where (40) holds for σ > 3
1
ǫ , since then σǫ

eσǫ ≤ 1
4 and σ−2+ǫ < σ−1 < 1

9 . Finally, (41) holds for

σ > (12e3)
1

1−2ǫ , getting the desired contradiction.

For the second part, apply the first part to the log-concave random variable −X.

Remark 10. The bound (33) may be improved due to the suboptimal step (38), e.g. by means of

the identity

M
∑

k=1

k2θk = θ
d

dθ

( M
∑

k=1

kθk
)

= θ
d

dθ

(

θ
d

dθ

( M
∑

k=1

θk
)

)

= θ
d

dθ

(

θ
d

dθ

(

θ − θM+1

1− θ

)

)

.

It is, however, sufficient for our purpose as it will only affect a higher-order term in the proof of

Theorem 1.

9



We are now ready to give the proof of Theorem 1 and of our main result, Theorem 3.

Proof of Theorem 1. Assume without loss of generality that X1 has zero mean. Let F (x) =

x log 1
x , x > 0 and note that F (x) is non-decreasing for x ≤ 1/e. As before denote Sn =

∑n
i=1 Xi,

U (n) =
∑n

i=1 Ui and let fSn+U (n) be the density of Sn + U (n) on the reals. We have

h(X1 + · · ·+Xn + U1 + · · ·+ Un)

=
∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x))dx+

∑

|k|≥5nσ2

∫

[k,k+1)
F (fSn+U (n)(x))dx. (42)

First we will show that the “entropy tails”, i.e. the second term in (42), vanish as σ2 grows

large. To this end, note that for k ≥ 5nσ2, we have pSn(k + 1) ≤ pSn(k), since by Proposition 6

applied to the log-concave random variable Sn, Nmax ≤ nσ2 + 1 as long as
√
nσ > 4. Thus, by

(22), for k ≥ 5nσ2 and x ∈ [k, k + 1), fSn+U (n)(x) ≤ 2npSn(k − n+ 1). Hence, for

σ >
2n√
n
e, (43)

we have, using the monotonicity of F for x ≤ 1
e ,

0 ≤
∑

k≥5nσ2

∫

[k,k+1)
F (fSn+U (n)(x))dx ≤

∑

k≥5nσ2

F
(

2npSn(k − n+ 1)
)

(44)

=
∑

k≥5nσ2

2npSn(k − n+ 1) log
1

2npSn(k − n+ 1)
(45)

≤ 2n
1√
nσ

∑

k≥5nσ2

θk−4⌈nσ2⌉ log

√
nσ

2nθk−4⌈nσ2⌉ (46)

= 2n
log 1

θ√
nσ

∑

m≥nσ2

mθm + 2n
log

√
nσ
2n√
nσ

∑

m≥nσ2

θm (47)

≤ 2n+1 log
√
nσ√

nσ

[θ⌈nσ
2⌉+1

(1 − θ)2
+ ⌈nσ2⌉θ

⌈nσ2⌉

1− θ
+

θ⌈nσ
2⌉

1− θ

]

(48)

≤ 2n+1 log
√
nσ√

nσ
e−(

√
nσ)ǫ

[

(
√
nσ)4−2ǫ + (nσ2 + 1)(

√
nσ)2−ǫ + (

√
nσ)2−ǫ

]

(49)

≤ 2n+3 log
√
nσ√

nσ
e−(

√
nσ)ǫ(

√
nσ)4−ǫ (50)

≤ 2n+4e−(
√
nσ)1/5(

√
nσ)3. (51)

Here (46) holds for √
nσ > 37 (52)

with θ = 1− 1
(
√
nσ)2−ǫ = 1− 1

(
√
nσ)9/5

, where we have used Lemma 9 with ǫ = 1/5 (which makes the

assumption approximately minimal). In particular, repeated application of (33) yields

pSn(k − n+ 1) ≤ θk−4⌈nσ2⌉pSn

(

4⌈nσ2⌉ − n+ 1
)

≤ θk−4⌈nσ2⌉√
nσ

.

We bound the left tail in the exact the same way, using the second part of Lemma 9:

0 ≤
∑

k≤−5nσ2

∫

[k,k+1)
F (fSn+U (n)(x))dx ≤ 2n+4e−(

√
nσ)1/5(

√
nσ)3. (53)

10



Next we will show that the first term in (42) is approximately H(Sn) to complete the proof.

We have

∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x))dx = log nσ2

∫

(−⌊5nσ2⌋,⌊5nσ2⌋+1)
fSn+U (n)(x)dx

+
∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x)) − fSn+U (n)(x) log nσ2dx (54)

= log nσ2
P
(

Sn + U (n) ∈ (−⌊5nσ2⌋, ⌊5nσ2⌋+ 1)
)

+
∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x)) − fSn+U (n)(x) log nσ2dx. (55)

Now we will apply the estimate of Lemma 12, which is stated and proved in the Appendix, to the

integrand of the second term in (55) with G(x) = F (x)−x log (nσ2), µ = 1
11σ

√
n
,D = 2n

√
nσ,M =

nσ2, a = fSn+U (n)(x) and b = pSn(k). We obtain, using Lemma 8,

∑

k∈(−5nσ2,5nσ2)

∣

∣

∣

∫

[k,k+1)
G(fSn+U (n)(x))dx−G(pSn(k))

∣

∣

∣

≤ 11nσ2 2 log (11σ
√
n)

11σ3n
√
n

+
∑

k∈Z

∫

[k,k+1)
|fSn+U (n)(x)− pSn(k)|dx

(

log (11σ
√
n) + log(e2nσ

√
n)
)

(56)

≤ 2 log (11σ
√
n)

σ
√
n

+
∑

k∈Z
sup

x∈[k,k+1)
|gn(k, x)|

(

log (11σ
√
n) + log(e2nσ

√
n)
)

(57)

≤ 2 log (11σ
√
n)

σ
√
n

+
2n+1

σ
√
n
log(11e2nσ

√
n) (58)

≤ 3

4

2n+2

σ
√
n
log(11e2nσ

√
n) (59)

≤ 2n+2

σ
√
n
log((11e)3/42nσ3/4√n) ≤ 2n+2

σ
√
n
log(2n+2σ

√
n), (60)

where gn(k, x) is given by Lemma 8 applied to the log-concave random variable Sn and therefore
∑

k supx∈[k,k+1) gn(k, x) ≤ 2n

σ
√
n
. In the last inequality in (60) we have used that (11e)3/4

σ1/4 ≤ 4, for

σ > 37. Therefore, by (55) and (60),

∣

∣

∣
H(Sn)−

∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x))dx

∣

∣

∣

≤
∣

∣

∣
H(Sn)−

∑

k∈(−5nσ2,5nσ2)

G(pSn(k))− log nσ2
P
(

Sn + U (n) ∈ (−⌊5nσ2⌋, ⌊5nσ2⌋+ 1)
)

∣

∣

∣

+
2n+2

σ
√
n
log(2n+2σ

√
n) (61)

11



≤
∣

∣

∣
H(Sn)−

∑

k∈(−5nσ2,5nσ2)

F (pSn(k))
∣

∣

∣
+

2n+2

σ
√
n
log(2n+2σ

√
n)

+ log nσ2
∣

∣

∣
P
(

Sn + U (n) ∈ (−⌊5nσ2⌋, ⌊5nσ2⌋+ 1)
)

− P
(

Sn ∈ (−5nσ2, 5nσ2 + 1)
)

∣

∣

∣
(62)

≤
∑

|k|≥5nσ2

F (pSn(k)) +
2n+2

σ
√
n
log(2n+2σ

√
n)

+ log nσ2
∣

∣

∣
P
(

Sn + U (n) ∈ (−⌊5nσ2⌋, ⌊5nσ2⌋+ 1)
)

− P
(

Sn ∈ (−5nσ2, 5nσ2 + 1)
)

∣

∣

∣
. (63)

But, in view of (45), we can bound the discrete tails in the same way:

∑

|k|≥5nσ2

F (pSn(k)) ≤ 2n+5e−(
√
nσ)1/5(

√
nσ)3. (64)

Finally, note that by Chebyshev’s inequality

0 ≤ P
(

Sn + U (n) /∈ (−⌊5nσ2⌋, ⌊5nσ2⌋+ 1)
)

≤ P
(

|Sn + U (n) − n

2
| > 4nσ2

)

≤ 1

8nσ2
(65)

and the same upper bound applies to P
(

Sn /∈ (−5nσ2, 5nσ2 + 1)
)

. Since both probabilities inside

the absolute value in (63) are also upper bounded by 1, replacing the bounds (64) and (65) into

(63), we get

∣

∣

∣
H(Sn)−

∑

k∈(−5nσ2,5nσ2)

∫

[k,k+1)
F (fSn+U (n)(x))dx

∣

∣

∣

≤ 2n+5e−(
√
nσ)1/5(

√
nσ)3 +

2n+2

σ
√
n
log(2n+2σ

√
n) +

log nσ2

8nσ2
. (66)

In view of (42) and the bounds on the continuous tails (51),(53) we conclude

∣

∣h(Sn + U (n))−H(Sn)
∣

∣ ≤ 2n+6e−(
√
nσ)1/5(

√
nσ)3 +

2n+2

σ
√
n
log(2n+2σ

√
n) +

log nσ2

8nσ2
(67)

as long as (43) and (52) are satisfied, that is as long as σ > max{2n+2/
√
n, 37/

√
n}.

Remark 11. The exponent in (51) can be improved due to the suboptimal step (38) in Lemma 9.

However, this is only a third-order term and therefore the rate in Theorem 1 would still be of the

same order.

Proof of Theorem 3. Let U1, . . . , Un be continuous i.i.d. uniforms on (0, 1). Then by the generalised

entropy power inequality for continuous random variables [1, 11]

h
(X1 + · · ·+Xn+1 + U1 + · · ·+ Un+1√

n+ 1

)

≥ h
(X1 + · · · +Xn + U1 + · · ·+ Un√

n

)

. (68)

But by the scaling property of differential entropy [4] this is equivalent to

h(X1 + · · ·+Xn+1 + U1 + · · ·+Un+1) ≥ h(X1 + · · ·+Xn + U1 + · · ·+ Un) +
1

2
log
(n+ 1

n

)

. (69)
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Now we claim that for every n ≥ 1, if H(X1) ≥ log 2
ǫ + log log 2

ǫ + n+ 26 then

|h(X1 + · · · +Xn + U1 + · · · + Un)−H(X1 + · · · +Xn)| ≤
ǫ

2
. (70)

Then the result follows from (70), applied to both sides of (69) (for n and n+ 1 respectively).

To prove the claim (70) we invoke Theorem 1. To this end let n ≥ 1 and assume that H(X1) ≥
log 2

ǫ + log log 2
ǫ + n+ 26 . First we note, that since [4]

H(X1) = h(X1 + U1) ≤
1

2
log (2πe(σ2 + 1/12)), (71)

we have eH(X1) ≤ 6σ provided that σ > 0.275. Thus, H(X1) ≥ 26 implies σ > 506 > 905. Therefore

the assumptions of the theorem are satisfied and we get

|h(X1 + · · ·+Xn + U1 + · · ·+ Un)−H(X1 + · · ·+Xn)|

≤ 2n+6e−(
√
nσ)1/5(

√
nσ)3 +

2n+2

σ
√
n
log(2n+2σ

√
n) +

log nσ2

8nσ2
(72)

≤
(

26 + 23 + 1
)

2n
log

√
nσ√

nσ
= 73 · 2n log

√
nσ√

nσ
. (73)

In (73) we used the elementary fact that for x ≥ 905, x3

ex
1/5 ≤ 1

x ≤ logx
x to bound the first term

and the assumption σ
√
n ≥ 2n+2 to bound the second term. Thus, by assumption σ ≥ eH(X1)

6 ≥
2
ǫ log

2
ǫ e

n+24 and since log x
x is non-increasing for x > e, we obtain by (73)

|h(X1 + · · ·+Xn + U1 + · · · + Un)−H(X1 + · · ·+Xn)| (74)

≤ 73 · 2n log
2
ǫ + log log 2

ǫ + n+ 24
2
ǫ log

2
ǫ e

ne24
(75)

≤ ǫ

2

[ 146

( e2)
ne24

+
n73

log 2
ǫ (

e
2)

ne24
+

1752

log 2
ǫ (

e
2 )

ne24

]

(76)

<
ǫ

2
(77)

proving the claim (70) and thus the theorem.

Appendices

A An elementary Lemma

Here we prove the following Taylor-type estimate that we used in the proof of Theorem 1. A similar

estimate was used in [17].

Lemma 12. Let D,M ≥ 1 and, for x > 0, consider G(x) = F (x)−x logM , where F (x) = −x log x.

Then, for 0 ≤ a, b ≤ D
M and any 0 < µ < 1

e , we have the estimate

|G(b) −G(a)| ≤ 2µ

M
log

1

µ
+ |b− a|

[

log
1

µ
+ log (eD)

]

. (78)
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Proof. Note that G′(x) = − log x− 1− logM , which is non-negative for x < 1
eM .

We will consider two cases separately.

The first case is when either a < µ
M or b < µ

M . Assume without loss of generality that a < µ
M .

Then if b < µ
M as well, we have |G(b)−G(a)| ≤ G(a) +G(b) ≤ 2µ

M log 1
µ , since then G′ ≥ 0. On the

other hand, if b ≥ µ
M > a then G(a) ≥ a log 1

µ and G(b) ≤ b log 1
µ .

But then, either G(b) > G(a), whence |G(b) − G(a)| ≤ |b − a| log 1
µ or G(b) < G(a), whence

|G(b)−G(a)| ≤ |b−a| log (eD), since we must have G(a)−G(b) = (a−b)G′(ξ), for some ξ ∈ ( 1
eM , D

M ].

Thus, in the first case, |G(b) −G(a)| ≤ 2µ
M log 1

µ + |b− a|
[

log 1
µ + log(eD)

]

.

The second case, is when both a, b ≥ µ
M . Then G(b) −G(a) = (b− a)G′(ξ), for some D

M ≥ ξ ≥
µ 1
M .

Since then |G′(ξ)| ≤ log 1
µ + logD + 1, we have |G(b)−G(a)| ≤ |b− a|(log 1

µ + log (eD)).

In any case, |G(b) −G(a)| ≤ 2µ
M log 1

µ + |b− a|
[

log 1
µ + log (eD)

]

.
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