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Abstract

Interactive question answering (QA), where a dialogue interface enables follow-up and
clarification questions, is a recent although long-advocated field of research. We report
on the design and implementation of YourQA, our open-domain, interactive QA system.
YourQA relies on a Web search engine to obtain answers to both fact-based and complex
questions, such as descriptions and definitions.

We describe the dialogue moves and management model making YourQA interactive,
and discuss the architecture, implementation and evaluation of its chat-based dialogue
interface. Our Wizard-of-Oz study and final evaluation results show how the designed
architecture can effectively achieve open-domain, interactive QA.

1 Introduction

Question answering (QA) systems can be seen as information retrieval systems
that aim to respond to queries in natural language by returning concise answers
rather than informative documents. State-of-the-art QA systems often compete
in the annual TREC-QA evaluation campaigns, where participating systems must
find concise answers to a benchmark of test questions within a document collection
compiled by NIST (http://trec.nist.gov).

A commonly observed behaviour is that users of information retrieval systems
often issue queries not as standalone questions but in the context of a wider infor-
mation need, for instance when researching a specific topic (e.g. "William Shake-
speare"). In this case, efficient ways for entering successive related queries have been
advocated to avoid users having to enter contextually independent queries (Hobbs
2002). Efforts have been carried out in recent TREC-QA in order to approach
the issue of context management by the introduction of "targets" in the question
sets from TREC 2004. Here, questions are grouped according to a common topic,
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upon which different queries (that require factoid, list, or "other" answer types) are
formulated.

Since TREC-QA 2004, queries can contain references (such as pronominal
anaphora) to their targets without such targets being explicitly mentioned in the
query texts. However, the current TREC requirements only address one aspect of
the complex issue of context management: the problem of detecting that one query
is related to a topic introduced by a previous one is artificially solved by the presence
of an explicit target, which would not be specified in a real interaction context.

It has been argued that providing a Question Answering system with a dialogue
interface would encourage and accommodate the submission of multiple related
questions and handle the user’s requests for clarification: the 2006 Interactive QA
workshop aimed to set a roadmap for information-seeking dialogue applications of
Question Answering (Webb and Strzalkowski 2006). Indeed, Interactive QA systems
are often reported at an early stage, such as Wizard-of-Oz studies, or applied to
closed domains (Bertomeu et al. 2006; Jönsson and Merkel 2003; Kato et al. 2006).

In this paper, we report on the design, implementation and evaluation of the dia-
logue interface for our open-domain, personalized QA system, YourQA (Quarteroni
and Manandhar 2007). The core QA component in YourQA is organized according
to the three-tier partition underlying most state-of-the-art QA systems (Kwok et
al. 2001): question processing, document retrieval and answer extraction. An addi-
tional component in YourQA is the User Modelling (UM) component, introduced
to overcome the traditional inability of standard QA systems to accommodate the
users’ individual needs (Voorhees 2003).

This article is structured as follows: Sections 2 – 3 focus on the two main com-
ponents of the system, i.e. a User Modelling component to provide personalized
answers and the core QA module which is able to provide both factoid and com-
plex answers. Sections 4 – 7 discuss a dialogue model and dialogue manager suitable
for interactive QA and Section 8 describes an exploratory study conducted to con-
firm our design assumptions. The implementation and evaluation of the dialogue
model are reported in Sections 9 – 10. Section 11 briefly concludes on our experience
with open-domain QA dialogue.

2 User Modelling Component

A distinguishing feature of our model of QA is the presence of a User Modelling
component. User Modelling consists in creating a model of some of the target users’
characteristics (e.g. preferences or level of expertise in a subject), and is commonly
deployed in information retrieval applications to adapt the presentation of results
to the user characteristics (Teevan et al. 2005).

It seemed natural to adapt User Modelling within QA, with the purpose of fil-
tering the documents from which to search for answers and for reranking candidate
answers based on the degree of match with the user’s profile. Since the current
application scenario of YourQA is a system to help students find information on
the Web, we designed the following User Model (UM) parameters:
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• Age range, a ∈ {7-11, 11-16, adult}; this matches the partition between pri-
mary school, secondary school and higher education age in Britain;

• Reading level, r ∈ {basic, medium, good}; its values ideally (but not neces-
sarily) correspond to the three age ranges and may be further refined;

• Interests, i : a set of topic key-phrases extracted from webpages, bookmarks
and text documents of interest to the user.

A detailed account on how the UM parameters are applied during answer pre-
sentation has been reported in (Quarteroni and Manandhar 2006; Quarteroni and
Manandhar 2007). As the focus of this paper is on the dialogue management com-
ponent of YourQA, the contribution of the UM to the core QA component is only
briefly mentioned in this paper. Within this paper, we assume an adult user able
to read any document and an empty set of interests, hence no UM-based answer
filtering or re-ranking is performed in the experiments reported in this paper.

3 Core Question Answering Component

The core QA component, illustrated in Figure 1, carries on three Question Answer-
ing phases: question processing, document retrieval and answer extraction.

Question

Question 
Classification

Web 
Retrieval

Question Processing Document Retrieval Answer Extraction

Web 

Documents

Answers

Factoid
Answer Extraction

Non-Factoid
Answer Extraction

Factoid
Question?

Document
Processing

Fig. 1. Core QA architecture: question processing, retrieval, answer extraction

3.1 Question Processing and Document Retrieval

Question processing is centered on question classification (QC), the task that maps
a question into one of k expected answer classes in order to constrain the search
space of possible answers and contribute towards selecting specific answer extraction
strategies for each answer class.

Answer classes generally belong to two types: factoid ones – seeking short fact-
based answers (e.g. names, dates), and non-factoid, seeking descriptions or defi-
nitions. An ad hoc question taxonomy has been constructed for YourQA with a
particular attention to questions that require non-factoid answers, such as lists, de-
scriptions and explanations. To compile it, we studied the questions in the TREC-8
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to TREC-12 testsets1. Based on these, we designed a coarse-grained question tax-
onomy, which consists of the eleven question types described in Table 1. While the
six classes in Column 1 can be considered of the factoid type, the five in Column 2
are non-factoid; depending on such type, the answer extraction process is different,
as described in Section 3.2.

Table 1. YourQA’s eleven class expected answer taxonomy

Question class Expected answer Question class Expected answer

PERS human LIST list of items
LOC geographical expression DEF definition, description
ORG collective, group HOW procedure, manner
QTY numerical expression WHY cause
TIME temporal expression WHY-F salient facts
OBJ generic entity (e.g. “famous for . . . ”)

Most QC systems apply supervised machine learning, e.g. Support Vector Ma-
chines (SVMs) (Zhang and Lee 2003) or the SNoW model (Li and Roth 2005),
where questions are represented using lexical, syntactic and semantic features.

(Moschitti et al. 2007) extensively studied a QC model based on SVMs: the
learning algorithm combined tree kernel functions to compute the number of com-
mon subtrees between two syntactic parse trees. As benchmark data, the question
training and test set available at: l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/, were
used, where the test set are the TREC 2001 test questions.

Based on such experiments, which reached a state of the art accuracy (i.e. 86.1%
in 10-fold cross-validation) using the the question’s bag-of-words and parse tree, we
applied the same features to learn multiclassifiers for the 11-class YourQA taxon-
omy. The overall SVM accuracy using the dataset of 3204 TREC 8 – TREC 12 test
questions and obtained using five-fold cross-validation was 82.9%.

We also tested the SNoW algorithm for YourQA, following (Li and Roth 2005).
We found the most effective question features to be: 1) bag-of-words, bigrams and
trigrams; 2) bag-of-Named Entities2; 3) Part-Of-Speech unigrams, bigrams and
trigrams. In the YourQA task, we achieved an accuracy of 79.3%3.

The second phase carried out by the core QA module is document retrieval, where
relevant documents to the query are obtained via an information retrieval engine,

1 publicly available at http://trec.nist.gov
2 extracted using Lingpipe, http://www.alias-i.com/lingpipe/
3 The lower result when compared to SVMs is confirmed by the experiment with the
same features and the previous task, where the accuracy reached 84.1%.
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then downloaded and analyzed. YourQA uses Google (http://www.google.com)
to retrieve the top 20 Web documents for the query.

3.2 Answer Extraction

Answer extraction takes as input the expected answer type, estimated during ques-
tion classification, and the set of documents retrieved for the question during doc-
ument retrieval. In this process, the similarity between the question and the docu-
ment passages is computed in order to return the best passages in a ranked list. Each
remaining retrieved document D is then split into sentences, which are compared
one by one to the question; the most similar sentence to the question is selected as
the most likely sentence from document D to answer the question.

For factoid answers – i.e. PERS, ORG, LOC, QTY, TIME, MONEY – the re-
quired factoid can be pinpointed down to the phrase/word level in each candidate
answer sentence. For non-factoids, other criteria are adopted to compute the simi-
larity between the original question and each candidate answer, as explained below.

In both cases, the bag-of-word similarity bw(q,a) is computed between the ques-
tion q and a candidate answer a. This is the number of matches between the key-
words in q and a divided by |q|, the number of keywords in q:

bw(q, a) =
∑|q|

i<|q|,j<|a|
match(qi,aj)

|q| , where match(qi, aj) = 1 if qi = aj , 0 otherwise.

3.2.1 Factoid answers

Our primary focus is on non-factoid QA and the criteria we apply for factoids are
simple. We distinguish between two cases: a) the expected type is a person (PERS),
organization (ORG) or location (LOC), which correspond to the types of Named
Entities (NEs) recognized by the NE recognizer (Lingpipe in our case); b) the ex-
pected answer type is QTY, TIME, MONEY.
PERS, ORG, LOC – In this case, NE recognition is performed on each can-
didate answer a. If a phrase p labelled with the required NE class is found, wp

k,
i.e. the minimal distance d (in terms of number of words) between p and each of
the question keywords k found in a, is computed: wp

k = mink∈ad(p, k). In turn,
ne(a) = minp∈aw

p
k, i.e. the minimal wp

k among all the NE phrases of the required
class found in a, is used as a secondary ranking criterion for a (after the bag-of-
words criterion).
QTY, TIME, MONEY – In this case, class-specific rules are applied to find fac-
toids of the required class in each candidate answer a. These are manually written
based on regular expressions and the candidate answer’s POS tags (e.g. the ordinal
number tag). The presence of a substring of a matching such rules is the second
similarity criterion between the question q and a after the bag-of-words criterion.

3.2.2 Non-factoid answers

We assign to the non-factoid group the WHY, HOW, WHY-F, DEF and LIST
types, as well as the OBJ type which is too generic to be seized using a factoid
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answer approach. In these cases, we aim at more sophisticated sentence similarity
metrics than the ones applied for factoids. We compute a number of normalized
similarity measures each measuring the degree of match between sentences and the
question. The final similarity is a weighted sum of all such measures. Beyond the
bag-of-word similarity, we compute the metrics below.
Bigram similarity – N-gram similarity is a function of the number of common
keyword n-grams between q and a: ng(q, a) = commonN(q,a)

|ngrams(q)| , where commonN is
the number of shared n-grams between q and a and ngrams(q) is the set of question
n-grams. We adopt bigrams (n = 2) as Web data is very noisy and allows for differ-
ent formulations using the same words, making it unlikely that matches of longer
keyword sequences be found.
Chunk similarity – Sentence chunks can be defined as groups of consecutive, se-
mantically connected words in one sentence, which can be obtained using a shallow
parser (in our case, the OpenNLP chunker). Compared to bigrams, chunks encode
a more semantic type of information. Chunk similarity, ck(q,a), is defined as the
number of common chunks between q and a divided by the total number of chunks
in q : ck(q, a) = commonC(q,a)

|chunks(q)| , where commonC is the number of shared chunks
between q and a and chunks(q) is the set of question chunks.
Head NP-VP-PP similarity – The idea behind this metric is to find matching
groups consisting of a noun phrase (NP), verb phrase (VP) and prepositional phrase
(PP) chunk in q and a. Head NP-VP-PP similarity is defined as:
hd(q, a) = µ×HNPmatch(q, a) + ν × V Pmatch(q, a) + ξ × PPmatch(q, a).
For generalization, VPs are lemmatized and the semantically most important word
in the NP (called “head NP”) is used instead of the NP. In case q contains several
VPs, we choose the VP for which hd(q,a) is maximal. Based on empirical observa-
tion of YourQA’s results, we are currently using µ = ν = .4, ξ = .2.
WordNet similarity – This semantic metric is based on the WordNet lex-
ical database (http://wordnet.princeton.edu) and the Jiang-Conrath word-
level distance (Jiang and Conrath 1997). WordNet similarity is: wn(q, a) = 1 −∑

i<|q|,j<|a|
jc(qi,aj)

|q| , jc(qi, aj) being the J.-C. distance between qi and aj .
Combined similarity –The similarity formula combining the above metrics is:

sim(q, a) = α× bw(q, a) + β × ng(q, a) + γ × ck(q, a) + δ × hd(q, a) + ε× wn(q, a).

For efficiency reasons, we do not compute wn(q,a) at the moment. We have esti-
mated α = .6, β = .2, γ = δ = .1 as suitable coefficients. The bag-of-word criterion
has a higher impact than metrics which rely on word structures (i.e. bigrams or
chunks) because of the noisy Web data we are processing.

(Moschitti et al. 2007) took the above criteria for non-factoid QA as a baseline
and applied various combinations of features to learn SVM answer re-rankers. The
experiments on 1309 YourQA answers to the TREC 2001 non-factoid questions,
showed that the baseline MRR of 56.21±3.18 was greatly improved by adding
a combination of lexical, deep syntactic and shallow semantic features, reaching
81.12±2.12.
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3.3 Answer presentation

From the preceding steps, YourQA obtains a list of answer sentences ranked by
decreasing distance to the query. Windows of up to 5 sentences centered around
these sentences are then produced to be returned as answer passages. To present
answers, we fix a threshold th for the maximal number of passages to be returned
(currently th=5 ); these are ordered following the ranking exposed above. In case of a
tie between two candidate answers, the Google ranks of their respective documents
are compared and the answer with the highest Google rank index obtains a higher
position in the list.

The answer passages are listed in an HTML page where each list item consists of a
document title and result passage obtained as described above. In the passages, the
sentence which best answers the query according to the similarity metric described
above is highlighted. In case the expected answer is a factoid, the recognized factoids
are highlighted in different colors based on their type. A link to the URL of the
original document is also available if the user wants to read more (see Figure 2).

Fig. 2. YourQA: sample result (from http://www.cs.york.ac.uk/aig/aqua/).

Section 4 discusses the issues and design of a dialogue interface for YourQA to
achieve interactive QA.

4 Modelling Interactive Question Answering

Interactive QA dialogue can be considered as a form of information-seeking dialogue
where two roles are modelled: inquirer (the user), looking for information on a given
topic, and expert (the system), interpreting the inquirer’s needs and providing the
required information.

We agree with (Dahlbaeck et al. 1993) that attempting to perfectly emulate hu-
man dialogue using a machine is an unrealistic and perhaps unimportant goal. On
the other hand, we believe that an understanding of human dialogues can greatly fa-
cilitate building human-machine information-seeking dialogue systems. Hence, the
design of task-oriented dialogue systems cannot happen without an accurate anal-
ysis of the conversational phenomena observed in human-human dialogue.

4.1 Salient Features of Human Information-seeking Dialogue

For the purpose of describing information-seeking dialogue, we focussed on the
following aspects:
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• Overall structure: as observed by (Sinclair and Coulthard 1975), human di-
alogues usually have an opening, a body and a closing. Based on actual hu-
man conversations, the authors elaborate a hierarchical discourse grammar
representing dialogue as a set of transactions, composed by exchanges, in
turn made of moves, whose elementary components are speech acts. In this
framework, which has dominated computational approaches to dialogue to
the present day, utterances are therefore considered as dialogue acts as they
aim at achieving an effect (obtaining information, planning a trip, etc.).

• Mixed initiative: initiative refers to who is taking control of the interaction.
When one of the interlocutors is a computer system, the literature typically
distinguishes between mixed-, user-, and system-initiative (Kitano and Ess-
Dykema 1991). In mixed-initiative dialogue, the system must be able to take
control in order to confirm given information, clarify the situation, or con-
strain user responses. The user may take the initiative for most of the dia-
logue, for instance by introducing information that has not been specifically
asked or by changing the subject and therefore the focus of the conversation,
as it often happens in human interaction (Hearst et al. 1999).

• Over-informativeness: dialogue participants often contribute more informa-
tion than required by their interlocutors (Churcher et al. 1997). This usually
enables dialogue to be more pleasant and time-efficient as the latter do not
need to explicitly ask for all the desired information.

• Contextual interpretation: human interaction relies on the conversation partic-
ipants sharing common notion of context and topic (Grosz and Sidner 1986).
Such common context is used by participants to issue and correctly interpret
rhetorical phenomena such as ellipsis, anaphora and more complex phenom-
ena such as reprise and sluice (see Section 4.2).

• Grounding : it has been observed that to prevent or recover from possible
misunderstandings, speakers engage in a collaborative, coordinated series of
exchanges, instantiating new mutual beliefs and making contributions to the
common ground of a conversation. This process is known as grounding (Cahn
and Brennan 1999).

Section 4.2 underlines the fundamental issues implied by accounting for such
phenomena when modelling information-seeking human-computer dialogue.

4.2 Issues in Modelling Information-Seeking Dialogue

Based on the observed features of human information-seeking dialogue, we summa-
rize the main issues in modelling task-oriented human-computer dialogue, with an
eye on the relevance of such issues to Interactive Question Answering.

Ellipsis Ellipsis is an omission of part of the sentence, resulting in a sentence with
no verbal phrase. Consider the exchange: User : “When was Shakespeare born?” ,
System: “In 1564.”, User : “Where?”. The interpretation and resolution of ellipsis
requires an efficient modelling of the conversational context to complete the infor-
mation missing from the text.
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Anaphoric references An anaphora is a linguistic form whose full meaning can only
be recovered by reference to the context; the entity to which anaphora refers is
called the antecedent. The following exchange contains an example of anaphoric
reference: User : “When was Shakespeare born?”, System: “In 1564.”, User : “Whom
did he marry?”, where "he" is the anaphora and "Shakespeare" is the antecedent. A
common form of anaphora is third person pronoun/adjective anaphora, where pro-
nouns such as “he/she/it/they” or possessive adjectives such as “his/her/its/their”
are used in place of the entities they refer to: the latter can be single or com-
pound nouns (such as William Shakespeare), or even phrases ("The Taming of the
Shrew"). Solving an anaphora, i.e. finding its most likely referent, is a critical prob-
lem in QA as it directly affects the creation of a meaningful query. However, in
information-seeking dialogue, resolution is simpler than in tasks such as document
summarization (Steinberger et al. 2005) as the exchanged utterances are generally
brief and contain fewer cases of anaphora.

Grounding and Clarification While in formal theories of dialogue complete and
flawless understanding between speakers is assumed, there exists a practical need
for grounding (Cahn and Brennan 1999). A typical Question Answering scenario
where requests for confirmation should be modelled is upon resolution of anaphora:
User : “When did Bill Clinton meet Yasser Arafat in Camp David?”, “ System: In
2000.”, “User : How old was he?”. The user’s question contains two named enti-
ties of type “person”: hence, he can yield two candidate referents, i.e. Bill Clinton
and Yasser Arafat. Having resolved the anaphoric reference, the system should de-
cide whether to continue the interaction by tacitly assuming that the user agrees
with the replacement it has opted for (possibly “he = Bill Clinton”) or to issue a
grounding utterance (“Do you mean how old was Bill Clinton?”) as a confirmation.

Turn-taking According to conversation analysis, the nature by which a conversation
is done in and through turns or pairs of utterances, often called adjacency pairs
(Schegloff and Sacks 1973). Our dialogue management system encodes adjacency
pairs, where participants speak in turns so that dialogue can be modelled as a
sequence of 〈request, response〉 pairs.

In natural dialogue, there is very little overlap between when one participant
speaks and when the other does, resulting in a fluid discourse. To ensure such
fluidity, the computer’s turn and the human’s turn must be clearly determined
in a dialogue system. While this is an important issue in spoken dialogue, where
a synthesizer must output a reply to the user’s utterance, it does not appear to
be very relevant to textual dialogue, where system replies are instantaneous and
system/user overlap is virtually impossible.

4.3 Summary of Desiderata for Interactive Question Answering

Based on the phenomena and issues observed in Section 4.2, we summarize the
desiderata for Interactive Question Answering in the following list:

• context maintenance: maintaining the conversation context and topic to allow
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the correct interpretation of the user’s utterances (in particular of follow-up
questions requests for clarification);

• utterance understanding in the context of the previous dialogue; this includes
follow-up/clarification detection and the solution of issues like ellipsis and
anaphoric expressions;

• mixed initiative: users should be able to take the initiative during the conver-
sation, for example to issue clarification requests and to quit the conversation
when they desire to do so;

• follow-up proposal : an IQA system should be able to encourage the user to
provide feedback about satisfaction with the answers received and also to
keep the conversation with the user active until he/she has fulfilled their
information needs;

• natural interaction: wide coverage of the user utterances to enable smooth
conversation; generation of a wide range of utterances to encourage users to
keep the conversation active.

5 A Dialogue Model for Interactive Question Answering

Several theories of discourse structure exist in the literature and have led to dif-
ferent models of dialogue. Among these, a widely used representation of dialogue
consists in the speech act theory, introduced by (Austin 1962), which focuses on
the communicative actions (or speech acts) performed when a participant speaks.
Based on speech act theory, several annotation schemes of speech acts – also called
dialogue moves have been developed for task-oriented dialogues.

While the level of granularity of such schemes as well as the range of moves of
most of the schemes were determined by the application of the dialogue system,
as pointed out in (Larsson 1998) there are a number of generic common dialogue
moves, which include:

• Core speech acts (e.g. TRAINS (Traum 1996)) such as “inform”/“request”;
• Conventional (e.g. DAMSL (Core and Allen 1997)) or discourse management

(e.g. LINLIN (Dahlbaeck and Jonsson 1998)) moves: opening, continuation,
closing, apologizing;

• Feedback (e.g. VERBMOBIL (Alexandersson et al. 1997)) or grounding (e.g.
TRAINS) moves: to elicit and provide feedback;

• Turn-taking moves (e.g. TRAINS), relating to sub-utterance level (e.g. “take-
turn”, “release-turn”).

Taking into account such general observations, we developed the set of user and
system dialogue moves given in Table 2. In our annotation, the core speech acts
are represented by the ask and answer moves. Amongst discourse management
moves, we find greet, quit in both the user and system moves, and followup poposal
from the system. The user feedback move is usrReqClarif, mirrored by the system’s
sysReqClarif move. A common feedback move to both user and system is ack, while
the ground and clarify moves are only in the system’s range. We do not annotate
the scenario above with turn-taking moves as these are at a sub-utterance level.

The above moves are used in the following dialogue management algorithm:
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Table 2. User and System dialogue moves

User move Description System move Description

greet conversation opening greet conversation opening
ack acknowledge system ack acknowledge user
ask(q) ask (q=question) answer(a) answer (a=answer)
usrReqClarif clarification request sysReqClarif clarification request
quit conversation closing quit conversation closing

followup proposal to continue
clarify(q) clarify (q=question)
ground(q) ground (q=question)

1. An initial greeting (greet move), or a direct question q from the user (ask(q)
move);

2. q is analyzed to detect whether it is related to previous questions (clarify(q)
move) or not;

3. (a) If q is unrelated to the preceding questions, it is submitted to the QA
component;

(b) If q is related to the preceding questions (i.e. follow-up question), and is
elliptic (e.g. “Why?”), the system uses the previous questions to complete
q with the missing keywords and submits a revised question q’ to the QA
component (notice that no dialogue move occurs here as the system does
not produce any utterance);

(c) If q is a follow-up question and is anaphoric, i.e. contains references to enti-
ties in the previous questions, the system tries to create a revised question
q” where such references are replaced by their corresponding entities, then
checks whether the user actually means q” (move ground(q”));
If the user agrees, query q” is issued to the QA component. Otherwise, the
system asks the user to reformulate his/her utterance (move sysReqClarif )
until finding a question which can be submitted to the QA component;

4. Once the QA component results are available, an answer a is provided (an-
swer(a) move);

5. The system enquires whether the user is interested in a follow-up session; if
this is the case, the user can enter a query (ask move) again. Else, the system
acknowledges (ack);

6. Whenever the user wants to terminate the interaction, a final greeting is
exchanged (quit move).

At any time the user can issue a request for clarification (usrReqClarif ) in case
the system’s utterance is not understood. We now discuss the choice of a dialogue
management model to implement such moves.
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6 Previous Work on Dialogue Management

Broadly speaking, dialogue management models fall into two categories: pattern-
based approaches or plan-based approaches (Cohen1996; Xu et al. 2002). The fol-
lowing sections provide a brief critical overview of these, underlining their issues
and advantages when addressing interactive QA.

6.1 Pattern Based Approaches: Grammars and Finite-State

When designing information-seeking dialogue managers, Finite-State (FS) ap-
proaches provide the simplest methods for implementing dialogue management.
Here, the dialogue manager is represented as a Finite-State machine, where each
state models a separate phase of the conversation, and each dialogue move encodes
a transition to a subsequent state (Sutton 1998); hence, from the perspective of a
state machine, speech acts become state transition labels.

When state machines are used, the system first recognizes the user’s speech act
from the utterance, makes the appropriate transition, and then chooses one of the
outgoing arcs to determine the appropriate response to supply.

The advantage of state-transition graphs is mainly that users respond in a pre-
dictable way, as the system has the initiative for most of the time. However, an
issue with FS models is that they allow very limited freedom in the range of user
utterances. Since each dialogue move must be pre-encoded in the models, there is
a scalability issue when addressing open domain dialogue.

Moreover, the model typically assumes that only one state results from a tran-
sition; however, in some cases utterances are multifunctional, e.g. both a rejection
and an assertion, and a speaker may expect the response to address more than one
interpretation.

6.2 Information State and Plan Based Approaches

Plan-based theories of communicative action and dialogue (Traum 1996) assume
that the speaker’s speech acts are part of a plan, and the listener’s job is to uncover
and respond appropriately to the underlying plan, rather than just to the utterance.

Within plan-based approaches, one approach to dialogue management is the In-
formation State (IS) approach (Larsson and Traum 2000). Here the conversation is
centered on the notion of information state (IS), which comprises the topics under
discussion and common ground in the conversation and is continually queried and
updated by rules triggered by participants’ dialogue moves. The IS theory has been
applied to a range of closed-domain dialogue systems, such as travel information
and route planning (Bos et al. 2003).

6.3 Discussion

Although it provides a powerful formalism, the IS infrastructure was too complex
for our Interactive QA application. We believe that the IS approach is primarily
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suited to applications requiring a planning component such as in closed-domain
dialogue systems and to a lesser extent in an open-domain QA dialogue system.

Also, as pointed out in (Allen et al. 2000), there are a number of problems in
using plan-based approaches in actual systems, including knowledge representation
and engineering, computational complexity and noisy input. Moreoever, the In-
teractive QA task is an information-seeking one where transactions are generally
well-structured and not too complex to detect (see also (Jönsson 1993)). Hence, this
shortcoming of pattern-based dialogue models does not appear to greatly impact
on the type of dialogue we are addressing.

The ideal dialogue management module for Interactive QA seems to lie some-
where in between the FS and IS models. This is what we propose below.

7 Chatbot-based Interactive Question Answering

As an alternative to the FS and IS models, we studied conversational agents based
on AIML (Artificial Intelligence Markup Language). AIML was designed for the
creation of conversational robots (“chatbots”) such as ALICE4. It is based on pattern
matching, which consists in matching the last user utterance against a range of
dialogue patterns known to the system and producing a coherent answer following
a range of “template” responses associated to such patterns. Pattern/template pairs
form “categories”, an example of which is the following greeting category:
<pattern>WHO ARE YOU</pattern>
<template>I am ALICE, nice to meet you!</template>
Designed for chatting, chatbot dialogue appears more natural than in FS and IS
systems. Moreover, since chatbots support a limited notion of context, they offer
the means to handle follow-up recognition and other dialogue phenomena not easily
covered using standard FS models.

Chatbot dialogue seems particularly well suited to handle the the dialogue phe-
nomena introduced in Section 4.1; in particular, the way in which such phenomena
can be handled by a chatbot dialogue management model is discussed in detail
below:

• mixed initiative: as mentioned earlier, the system must be able to take control
in order to confirm given information, clarify the situation, or constrain user
responses. In the designed dialogue move set, the ground move is used to con-
firm that the system has correctly interpreted elliptic or anaphoric requests,
while the sysReqClarif move is used to verify that the current user’s utterance
is an information request in ambiguous cases (see Section 9).
The patterns used by the system are oriented towards QA conversation so
that the user is encouraged to formulate information requests rather than
engage in smalltalk. For instance, the pattern: <pattern>HELLO *</pattern>
triggers: <template>Hello, what is your question?</template>.
On the other hand, the user may take the initiative for most of the dialogue,

4 http://www.alicebot.org/
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for instance by ignoring the system’s requests for feedback and directly for-
mulating a follow-up question (e.g. User : “What is a thermometer?”, System:
“The answers are . . . Are you happy with these answers?”, User : “How does
it measure the temperature?”), triggering a new ask/answer adjacency pair
with a new conversation focus. Moreover, the user can formulate a request for
clarification at any time during the interaction.

• over-informativeness: Providing more information than required is useful both
from the system’s viewpoint and from the user’s viewpoint: this usually en-
ables dialogue to be more pleasant as there is no need to ask for all desired
pieces of information.
In the current approach, the user can respond to the system by providing
more than a simple acknowledgement. For instance, the following exchange
is possible: User : “How does it measure the temperature?”, System: “Do
you mean how does a thermometer measure the temperature?”, User : “No,
how does a candy thermometer measure the temperature?”.

• contextual interpretation: Contextual interpretation of the user’s utterances
is handled by a clarification resolution module designed to take care of ellipsis
and anaphoric references, as described in Section 5.

• error recovery : The management of misunderstandings is possible due to
the usrReqClarif and sysReqClarif moves. The sysReqClarif move is fired
when the current user utterance is not recognized as a question according to
the set of question patterns known to the system. For example, the pattern:
<pattern>I NEED *</pattern>
(e.g. “I need information about Shakespeare”) would trigger the template:
<template>Is that a question you want me to look up? </template>.
If the user confirms that his/her utterance is a question, the system will pro-
ceed to clarify it and answer it; otherwise, it will acknowledge the utterance.
Symmetrically, the user can enter a request for clarification of the system’s
latest utterance at any time should he/she find the latter unclear.

It must be pointed out that chatbots have rarely been used for task-oriented
dialogue in the literature. An example is Ritel (Galibert et al. 2005), a spoken
chat-based dialogue system integrated with an open-domain QA system. However,
the project seems at an early stage and no thorough description is available about
its dialogue management model.

8 A Wizard-of-Oz Experiment for the Dialogue Component

To assess the feasibility of chatbot-based QA dialogue, we conducted an exploratory
Wizard of Oz experiment Wizard-of-Oz (WOz) experiment, a procedure usually
deployed for natural language systems to obtain initial data when a full-fledged
prototype is not yet available (Dahlbaeck et al. 1993; Bertomeu et al. 2006). A
human operator (or “Wizard”) emulates the behavior of the computer system by
carrying on a conversation with the user; the latter believes to be interacting with
a fully automated prototype.
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Design– We designed six tasks, to be issued in pairs to six or more subjects so that
each would be performed by at least two different users. The tasks reflected the
intended typical usage of the system, e.g. : “Find out who painted Guernica and ask
the system for more information about the artist”, “Find out when Jane Austen was
born”, “Ask about the price of the iPod Shuffle and then about the PowerBook G4”.

Users were invited to test the supposedly completed prototype by interacting with
an instant messaging platform, which they were told to be the system interface.

Since our hypothesis was that a conversational agent is sufficient to handle ques-
tion answering, a set of AIML categories was created to represent the range of
utterances and conversational situations handled by a chatbot. The role of the
Wizard was to choose the appropriate category and utterance within the available
set, and type it into the chat interface; if none of these appeared appropriate to
handle the situation at hand, he would create one to keep the conversation alive.
The Wizard would ask if the user had any follow-up questions after each answer
(e.g. “Can I help you further?”).

To collect user feedback, we used two sources: chat logs and a post-hoc ques-
tionnaire. Chat logs provide objective information such as the average duration of
the dialogues, the situations that fell above the assumed requirements of the chat
bot interface, how frequent were the requests for repetition, etc. The questionnaire,
submitted to the user immediately after the WOz experiment, enquires about the
user’s experience. Inspired by the WOz experiment in (Munteanu and Boldea 2000),
it consists of the questions numbered Q1 to Q6 in Table 3. Questions Q1 and Q2

assess the performance of the system and were ranked on a scale from 1= “Not at
all” to 5=“Yes, Absolutely”. Questions Q3 and Q4 focus on interaction difficulties,
especially relating to the system’s requests to reformulate the user’s question. Ques-
tions Q5 and Q6 relate to the overall satisfaction of the user. The questionnaire also
contained a text area for optional comments.

8.1 Results

The WOz experiment was run over one week and involved one Wizard and seven
users. These were three women and four men of different ages who came from
different backgrounds and occupations and were regular users of search engines.

The users interacted with the Wizard via a popular, free chat interface which all
of them had used before. All but one believed that the actual system’s output was
plugged into the interface. The average dialogue duration was 11 minutes, with a
maximum of 15 (2 cases) and a minimum of 5 (1 case).

From the chat logs, we observed that users preferred not to “play” with the sys-
tem’s chat abilities but rather to issue information-seeking questions. Users often
asked two things at the same time (e.g. “Who was Jane Austen and when was she
born?”): to account for this in the final prototype, we decided to handle double
questions, as described in Section 9.
The sysReqClarif dialogue move proved very useful, with “system” clarification re-
quests such as “Can you please reformulate your question?”. Users seemed to enjoy
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“testing” the system and accepted the invitation to produce a followup question
(“Can I help you further?”) around 50% of the time.

The values obtained for the user satisfaction questionnaire show that users were
generally satisfied with the system’s performances (see Table 3, columnWOz). None
of them had difficulties in reformulating their questions when this was requested and
for the remaining questions, satisfaction levels were high. Users seemed to receive
system grounding and clarification requests well, e.g. “ . . . on references to “him/it”,
pretty natural clarifying questions were asked.”

Question WOz Init. Stand. Inter.

Q1 Did you get all the information you
wanted using the system?

4.3±.5 3.8±.8 4.1±1 4.3±.7

Q2 Do you think the system understood
what you asked?

4 3.8±.4 3.4±1.3 3.8±1.1

Q3 How easy was it to obtain the infor-
mation you wanted?

4±.8 3.7±.8 3.9±1.1 3.7±1

Q4 Was it easy to reformulate your
questions when you were invited to?

3.8±.5 3.8±.8 N/A 3.9±.6

Q5 Overall, are you satisfied with the
system?

4.5±.5 4.3±.5 3.7±1.2 3.8±1.2

Q6 Do you think you would use this sys-
tem again?

4.1±.6 4±.9 3.3±1.6 3.1±1.4

Q7 Was the pace of interaction with the
system appropriate?

N/A 3.5±.5 3.2±1.2 3.3±1.2

Q8 How often was the system slow in re-
plying? (1= “always” to 5= “never”)

N/A 2.3±1.2 2.7±1.1 2.5±1.2

Table 3. Questionnaire results for the Wizard-of-Oz experiment (WOz), the ini-
tial experiment (Init.) and the final experiment (standard and interactive version).
Result format: average ± standard deviation

9 Resulting Dialogue Component Architecture

The dialogue manager and interface were implemented based on the scenario in
Section 4 and the outcome of the Wizard-of-Oz experiment.

9.1 Dialogue Manager

Chatbot dialogue follows a pattern-matching approach, and is therefore not con-
strained by a notion of “state”. When a user utterance is issued, the chatbot’s
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strategy is to look for a pattern matching it and fire the corresponding template
response. Our main focus of attention in terms of dialogue manager design was
therefore directed to the dialogue tasks invoking external resources, such as han-
dling double and follow-up questions, and tasks involving the QA component.

Handling double questions As soon as the dialogue manager identifies a user utter-
ance as a question (using the question recognition categories), it tests whether it is
a double question. Since the core QA component in YourQA is not able to handle
multiple questions, these need to be broken into simple questions.

For this, the system uses the OpenNLP chunker5 to look for the presence of “and”
which does not occur within a noun phrase. For instance, while in the sentence:
“When was Barnes and Noble founded?” the full noun phrase Barnes and Noble is
recognized as a chunk, in: “When and where was Jane Austen born?” the conjunction
“and” forms a standalone chunk. If a standalone “and” is found, the system splits the
double question in order to obtain the single questions composing it, then proposes
to the user to begin answering the on containing more words (as this is more likely
to be fully specified).

Handling follow-up questions In handling QA dialogue, it is vital to apply an effec-
tive algorithm for the recognition of follow-up requests (De Boni and Manandhar
2005; Yang et al. 2006). Hence, the following task accomplished by the DM is the
detection of follow-up questions.

The types of follow-up questions which the system is able to handle are el-
liptic questions, questions containing third person pronoun/possessive adjective
anaphora, or questions containing noun phrase (NP) anaphora (e.g. “the river”
instead of “the word’s longest river”).

For the detection of follow-up questions, the algorithm in (De Boni and Manand-
har 2005) is used, which achieved an 81% accuracy on TREC-10 data. The algo-
rithm is based on the following features: presence of pronouns, absence of verbs,
word repetitions and similarity between the current and the 8 preceding questions6.

If no follow-up is detected in the question q, it is submitted to the QA component;
otherwise the following reference resolution strategy is applied:

1. If q is elliptic, its keywords are completed with the keywords extracted by the
QA component from the previous question for which there exists an answer.
The completed query is submitted to the QA component.

2. If q contains pronoun/adjective anaphora, the chunker is used to find the first
compatible antecedent in the previous questions in order of recency. The latter
must be a NP compatible in number with the referent.

3. If q contains NP anaphora, the first NP in the stack of preceding questions
which contains all of the words in the referent is used in place of the latter.

5 http://opennlp.sourceforge.net/
6 At the moment the condition on semantic distance is not included for the sake of speed.
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In cases 2 and 3, when no antecedent can be found, a clarification request is issued
by the system until a resolved query can be submitted to the QA component.

Finally, when the QA process is terminated, a message directing the user to the
HTML answer page is returned and the follow-up proposal is issued (see Figure 3).

9.2 Implementation

Following the typical design of an AIML-based conversational agent, we created
a set of categories to fit the dialogue scenarios elaborated during dialogue design
(Section 5) and enriched with the WOz experience (Section 8).

We used the Java-based AIML interpreter Chatterbean7 and extended its original
set of AIML tags (e.g. <pattern>, <template>) with two new ones:

1. <query>, which invokes the core Question Answering module;
2. <clarify>, which invokes the follow-up detection and resolution module (this

follows the strategy in Section 5).

The conversation context is represented as a stack of recent user questions, which
is used to perform follow-up resolution as explained in Section 9.1. Moreover, the
Chatterbean framework allows to instantiate and update a set of variables, visible
during the whole dialogue session. We defined several variables, including:

• the conversation topic, i.e. the keywords of the last question in the session
which received an answer. These keywords are added to the set of keywords
extracted from elliptic questions to clarify them.

• the current user’s name, used as a key to access the corresponding user model
in case the personalization module is activated. This allows the integration of
personalized and interactive QA.

To illustrate the dynamics of AIML and the use of tags and variables we take
the category used by the system to clarify the nature of requests introduced by the
cue words “Do you know”:
<pattern>DO YOU KNOW *</pattern>
<template><srai>CLARIFY *</srai></template>
The pattern: CLARIFY * below triggers a template calling the AIML tag <clarify>,
which invokes the follow-up detection and resolution module on the text matching
the “*” expression. The module returns a judgment (e.g. “ELLIPTIC”) which is
assigned to the context variable clarif (using the <set> tag). Finally, a conditional
branch invoked by the <condition> tag on the clarif variable determines the
appropriate QA routine based on the value of clarif.
<pattern>CLARIFY *</pattern>
<template> <set name=“clarif”><clarify></star><clarify></set>
<condition name=“clarif” value=“ELLIPTIC”>...</condition>
<condition name=“clarif” value=“DOUBLE”> ...</condition> </template>

7 http://chatterbean.bitoflife.cjb.net/
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Fig. 3. YourQA’s chat interface

Dialogue Interface – The layout of the YourQA interactive interface consists of a
left panel where the chat takes place and a right panel where results are visualized
(see Figure 3). As in a normal chat application, users write in a text field and the
current session history and the interlocutor replies are visualized in an adjacent
text area.

10 Evaluation

While the accuracy of standard QA systems can be evaluated and compared using
quantitative information retrieval metrics (Voorhees 2003), dialogue interfaces pose
complex evaluation challenges as they differ in appearance, intended application
and target users. Indeed, these are often evaluated using qualitative metrics such
as user satisfaction and perceived time of usage (Walker et al. 2000). Similarly,
user satisfaction questionnaires and interaction logs appear to be effective tools to
evaluate interactive QA systems (Kelly et al. 2006).

10.1 Initial Evaluation

To conduct a preliminary evaluation of our prototype, we designed three scenarios
where users had to look for two different items of infomation relating to the same
topic (e.g. Shakespeare’s date of birth and when he wrote Hamlet). Users had to
choose one or more topics and use first the non-interactive Web interface of the QA
prototype (handling questions in a similar way to a search engine) and then the
interactive version depicted in Figure 3 to find answers.

After using both versions of the prototype, users filled in a questionnaire about
their experience with the chat version which comprised the same questions as the
WOz questionnaire and the following additional questions:

Q7 Was the pace of interaction with the system appropriate?
Q8 How often was the system slow in replying to you?
Q9 Which version of the system did you prefer and why?
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Questions Q7 and Q8 could be answered using a scale from 1 to 5 and were taken
from the PARADISE evaluation questions (Walker et al. 2000). Q9 was chosen to
assess if and in what terms users perceived a difference between the two prototypes.

Results – From the initial evaluation, which involved eight volunteers, we gathered
the following salient results. In the chat logs, we observed that the system was able
to correctly resolve pronominal anaphora in 9 out of the 11 cases when it occurred.
No elliptic queries were issued, although in two cases verbs were not spotted by the
system causing queries to be erroneously completed with previous query keywords.
Users tended not to reply explicitly to the chatbot offers to carry on the interaction,
directly entering a follow-up question instead. Due to the limited amount of AIML
categories, the system’s requests for reformulation occurred more frequently than
expected: we successively added new categories to account for this shortcoming.

From the questionnaire (Table 3, column Init.), user satisfaction levels (Q1 to Q6)
are sightly lower than in the WOz experiment (col. WOz). Users felt the system slow
in replying to the questions, mainly because the system performs document retrieval
in real time, hence heavily depends on the network download speed. However, all
but one user (87.5%) said they preferred the chat interface of the system (Q9),
because of its liveliness and ability to understand when questions were related.

10.2 Final Evaluation

Building on the results of the initial evaluation and after drawing additional AIML
patterns from the analysis of over 100 chat logs collected since then, we designed a
further experiment. For this purpose, we chose 9 question series from the TREC-QA
2007 campaign (i.e. series 224, 239, 242, 244, 264, 266, 270, 272 and 278) so that
the first question in each series could be understood by a QA system without the
need of explicitly mentioning the series target. Moreover, questions should contain
anaphoric and/or elliptic references and three questions were retained per series to
make each evaluation balanced. For instance, the following questions from series
266 were used to form one task:
266.1: “When was Rafik Hariri born?”
266.2: “To what religion did he belong (including sect)?”
266.4: “At what time in the day was he assassinated?”

Twelve users were invited to find answers to the questions in two different series
from the nine collected, so that the first series was to be addressed using the stan-
dard version of YourQA, the second one using the interactive version. Each series
was evaluated at least once using both versions of the system. At the end of the
experiment, the users had to fill the same user satisfaction questionnaire as in the
first evaluation, but this time they had to give feedback about both versions.

Results – The second evaluation was more accurate and challenging than the first
one in two respects: first, comparative feedback was collected from the standard and
interactive versions of the system; second, question series contained more questions
and came from TREC-QA, making them hard to answer using the Web.
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The results obtained from the questionnaire for the standard and interactive
versions are reported in columns “Stand.” and “Inter.” of Table 3, respectively.
Although the paired t-test conducted on such results did not register statistical
significance, we believe that the evidence we collected is quite interesting. This
shows a good overall satisfaction with both versions of the system (Q8), with a
slight difference in favor of the interactive version.

The standard and interactive versions of the system seem to offer different advan-
tages: while the ease of use of the standard version was rated higher (Q5), users felt
that they obtained more information using the interactive version (Q1). Concerning
interaction comfort, users felt that the interactive version understood better their
requests than the standard one (Q2); they also found it easy to reformulate ques-
tions when the former asked to (Q6). These findings show that even a simple chat
interface like ours is very useful in terms of user satisfaction.

However, while the pace of interaction was judged slightly more appropriate in the
interactive case (Q3), interaction was considered faster with the standard version
(Q4); unfortunately, in both cases the interaction speed rarely appears adequate,
as also registered from user comments. This probably motivated the fact that users
seemed more ready to use again the standard version of the system (Q7).

An interesting difference with respect to the first evaluation was the preference
question Q9: 7 out of 12 users (58.3%) said that they preferred the interactive
version, hence a smaller ratio of the users than in the first evaluation. The reasons
given by users in their comments were mixed: while some of them were enthusiastic
about the chatbot’s smalltalk features and felt that the interface interacted very
naturally, others clearly said that they felt more comfortable with a search engine-
like interface and that the design of the interactive prototype was inadequate.

10.3 Discussion

From these results, we gather the following remarks: first, the major weakness of
our system remains speed, which must be greatly optimized. As supporting the
interactive features of YourQA requires more processing time, we believe that this
is one of the main reasons for which in our second evaluation, where tasks required
an intensive use of followup detection and resolution, the interactive model was
penalized with respect to the standard version.

Moreover, although the interactive version of the system was well received, some
users seem to prefer more traditional information retrieval paradigms and fail to
appreciate the advantages of interactivity. We believe that this is due partly to
cultural reasons (the search engine-like non-interactive model of IR biasing users),
partly to the fact that the follow-up resolution mechanism of the interactive version
is not always accurate, generating errors and delaying the delivery of results. Finally,
the chat interface raises expectations concerning what the system can understand;
when these are not met (i.e. the system misunderstands or asks for reformulation),
this lowers user satisfaction.

However, most of the critical aspects emerging from our overall satisfactory eval-
uation depend on the specific system we have tested rather than on the nature of
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interactive QA, to which none of such results appear to be detrimental. We believe
that the search-engine-style use and interpretation of QA systems are due to the
fact that QA is still a very little known technology the potential of which must still
be fully grasped by the larger public.

11 Conclusions

We describe YourQA, an open domain, interactive Question Answering system
with a chatbot-based dialogue interface. First, we identify the dialogue model and
dialogue manager required to implement open-domain, interactive QA. We verify
our model via a Wizard-of-Oz study and discuss the practical implementation of
such model using a chatbot interface. Our user-centered evaluation shows that users
tend to be generally more satisfied with the interactive version of YourQA than with
the baseline version. In the future, we will focus on exploring data-driven answer
clarification strategies suitable for the open domain such as answer clustering.
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