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Abstract

Authorship attribution methods aim to determine the author of a document, by using

information gathered from a set of documents with known authors. One method of performing

this task is to create profiles containing distinctive features known to be used by each author.

In this paper, a new method of creating an author or document profile is presented that detects

features considered distinctive, compared to normal language usage. This recentreing approach

creates more accurate profiles than previous methods, as demonstrated empirically using a

known corpus of authorship problems. This method, named recentred local profiles, determines

authorship accurately using a simple ‘best matching author’ approach to classification,

compared to other methods in the literature. The proposed method is shown to be more

stable than related methods as parameter values change. Using a weighted voting scheme,

recentred local profiles is shown to outperform other methods in authorship attribution,

with an overall accuracy of 69.9% on the ad-hoc authorship attribution competition corpus,

representing a significant improvement over related methods.

1 Introduction

Authorship analysis (AA) is a useful tool for a variety of attribution purposes,

including criminal investigations, plagiarism detection and resolving authorship

disputes. One method of performing AA is to develop writing profiles, where an

attempt is made to determine characteristics that identify writings by an author, with

a view to identifying if any other documents in a sample were written by the same

author. The methods of developing and using profiles differ widely in the literature.

In this paper, a new method for developing profiles is created using the concept of a

language default, i.e. the expected value of a feature in the language the document

was written in.

Profiles are then calculated using the distance between documents and a given

author. Ideally, this distance should be low when there is a high likelihood that

the document was written by the author, and the distance should be high when

authorship is unlikely. These distances are then used to select the most likely author

from a set of candidate authors.
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1.1 Research questions

In this paper, the motivation for developing the recentred local profiles (RLP)

method is derived from the literature, using the concept of a language default value

for features. This method uses global knowledge about an authorship problem to

improve classification accuracy over related methods. Two versions of the algorithm

are tested to compare the classification performance against related algorithms,

leading us to ask two key research questions:

(1) Does the RLP algorithm proposed in Section 3, using local n-gram models,

improve classification performance over other local n-gram techniques in the

literature?

(2) Does the RLP algorithm proposed in Section 3, using a feature-based model,

improve classification performance over existing methods outlined in the

literature?

These research questions are answered empirically using a standardised multilingual

corpus.

The paper is structured as follows. Section 2 contains a review of the related

literature in AA. The concept of RLP is derived from the literature in Section 3. The

research questions are then addressed using a methodology presented in Section 4,

and the results are given in Section 5. These results are discussed in Section 6 and

are then further enhanced using an ensemble method in Section 7. Conclusions from

the results are given in Section 8, followed by some future avenues for further work

in this area.

2 Authorship analysis

Authorship analysis has its roots in stylometry and has progressed to more complex

methods, as available computational resources have expanded. Manually counting

properties of text, such as mean sentence length, were one of the first scientific

endeavours in AA (Yule 1939), before the ‘arrival of modern statistics made it

possible to investigate questions of authorship in a more sophisticated fashion’

(Juola 2008). The rise of machine learning has led to an increased use of these

techniques in recent AA, accounting for a large proportion of work in the field

(Stamatatos 2009). Machine learning techniques have increased the complexity, and

also the quality of AA methods, compared to earlier methods.

2.1 Authorship attribution

Authorship attribution is the most common example of AA in the literature. This

subfield is focused on the supervised learning of a model that can determine the

authorship of a document, where the authorship of a set of training documents

is available, and the author of the document is from the set of known authors.

The original dataset used for training must be labelled by authorship first, and

the analysis phase of the algorithm then uses these labels to develop a model that

separates the documents based on authorship. From the Federalist papers (Mosteller
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and Wallace 1963), to more recent work on determining authorship of Dutch student

essays (van Halteren et al. 2005), there has been a large amount of successful work

performed in authorship attribution. Authorship attribution has also been utilised

in criminal trials in the USA (Chaski 2005).

Standard machine learning methods are often used in modern authorship attri-

bution, such as nearest neighbour algorithm or support vector machines, to learn a

model once an appropriate representation for the dataset has been chosen. For this

reason, most of the work in AA focuses on finding appropriate representations of the

datasets (see Raghavan, Kovashka amd Mooney 2010). The method of representing

a corpus for use in machine learning algorithms is considered the most important

part of an AA study. This aspect of AA is outlined in the Section 2.2.

2.2 Data representations

As authorship attribution is typically focused on the analysis of natural language in

texts, machine learning algorithms need the data to be represented in some numerical

form. The main goal of this stage is to calculate the distance between documents,

allowing machine learning algorithms to use this distance to populate models from

the data. Current methods focus on the extraction of features from documents and

then compare scores on each feature. An example of a standard feature is the mean

word length. For this feature, the mean word length of each author’s writings would

be calculated and would then form part of a larger dataset. A document with a

similar mean word length to a given author would be considered more likely to be

written by that author compared to other authors. In the literature, there are two

main methods of extracting features: static features and dynamics features. Static

features are chosen before training begins, while dynamic features are chosen as part

of the learning process. An example of using dynamic features would be to take the

top 50 words in a corpus, and use the frequency of each to create a dataset.

Using static features have been the predominant method for authorship attribution

until only very recently. Over 1,000 static features had been suggested in the literature

by 1997 (Rudman 1997), and this work makes no attempt to test all and each

combination of features. Zheng et al. (2006) summarised the huge number of

features into four subsets; character, word, syntactic and structural features. It was

found that all four subsets contained information that increased the accuracy of an

authorship attribution model. However, not all combinations of subsets were tested,

making it possible that subsets of features exist that contain better information than

the full set.

Dynamic-feature-based representations have recently emerged as a better altern-

ative than static methods for AA. A large number of models for choosing features

have been suggested in the literature for AA of different forms, with varying degrees

of success. These models include using a bag-of-words model (Layton and Watters

2009) and using n-grams (Frantzeskou et al. 2007). Character-level n-grams have

enjoyed high levels of success in the literature, and will be detailed further in this

work, described in Sections 2.5 and 2.6.



296 R. Layton, P. Watters and R. Dazeley

Once the data have been represented in a way that can generate distances between

documents in an effective manner, analysis of these representations can begin. The

next four subsections outline popular methods of data representation methods for

AA, including feature-based representations, and character-level n-grams both at a

Global and Local levels.

2.3 Static features

As noted earlier, the work of Zheng et al. (2006) summarised the literature’s large

number of authorship features into four subsets of features based on different attrib-

utes of text: lexical features, syntactic features, structural features and content specific

features. Lexical features can be further split into two categories: character-based

features and word-based features. These representations of text were developed to

identify which subsets of features would be more reliable in determining authorship

in a supervised learning environment. All feature sets were found to add some

information, as the collection of all four feature subsets was the most accurate one,

after applying a series of supervised learning algorithms to the resulting dataset. Not

all groups of the subset combinations were used in the testing, which leaves open

the possibility that a better group of these subsets may be achievable. The feature

list, summarised from Zheng et al. (2006), is given below with lexical features split

into character- and word-based features.

2.3.1 Character features

The first of these subsets of features considers a document to be a series of

characters. Features include a count of each individual character, as well as the

proportion of certain classes of characters, such as alphanumeric or upper-case

letters used.

• Total number of characters.

• Proportion of alphabetic characters in document.

• Proportion of upper-case letters.

• Proportion of digit characters.

• Proportion of white space characters.

• Proportion of specifically tab characters (\t).
• Frequency of each distinct character that appears in all documents.

• Frequency of each character in {~@#$%^&*-_=+><[]{}/\— }.

2.3.2 Word features

The second subset of features takes a document to be a series of words in sentences

and include statistics on the sizes of words and vocabulary richness metrics, such as

Yule’s K measure (Yule 1939). These features are as follows:

• total number of words,

• proportion of short words (less than four characters),
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• proportion of characters used within words (as opposed to punctuation),

• mean word length,

• mean sentence length by number of characters,

• mean sentence length by number of words,

• ratio of number of distinct words to the total number of words:

|set(words)|/|words|,
• number of hapax legomena (words that occur once only),

• number of hapax dislegomena (words that occur exactly twice),

• Yule’s K measure (Yule 1939),

• Simpson’s D measure (Simpson 1949),

• Sichel’s S measure (Sichel 1975),

• Brunet’s W measure (Brunet 1978),

• Honore’s R measure (Honoré 1979),

• proportion of words of each length from 1 to 19 inclusive,

• proportion of words of length more than or equal to 20.

2.3.3 Syntactic features

The third subset of features is syntactic features counting the punctuation marks

and the frequency of certain function words. These features are as follows:

• frequency of each punctuation mark in {,.?!:;’"},
• frequency of function words as listed in the Appendix of Zheng et al. (2006).

Examples include which, that and among.

2.3.4 Structural features

The fourth and final subset of features in the feature subsets are the structural

features derived from how text is structured. Note that the last three points refer

specifically to email-based authorship attribution, as this was the application domain

given in Zheng et al. (2006). The features used are as follows:

• total number of lines,

• total number of sentences,

• total number of paragraphs,

• number of sentences per paragraph,

• number of characters per paragraph,

• number of words per paragraph,

• use email as signature,

• use telephone as signature,

• use URL as signature.

2.3.5 Content-specific features

Content-specific features were also given in Zheng et al. (2006), being the frequency

of content specific keywords to the email authorship application that was presented.
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These features present an expert-knowledge-driven feature selection, which improved

the accuracy of the final models derived by Zheng et al. (2006).

2.3.6 Feature subset attributes

All of the features above are numerical, allowing for the calculation of distances

between documents to occur, once its feature-based representation has been derived

by considering the values of each feature as an element in a vector. Documents

are then mapped onto a vector space, and distances can be calculated using any

standard vector space distance metric. Examples include the Euclidean, Manhattan,

Chebyshev and Cosine distance metrics although there are many more in the

literature. Vector space modelling is an important abstraction in machine learning

and forms the feature representation basis in many machine learning methods. The

ability to map authorship features to a vector space has enabled a large range of

machine learning algorithms, such as support vector machines, to be used in AA

studies.

2.4 Dynamic features using n-grams

An important modelling concept for dynamic features is to consider a document

as a series of overlapping subsequence of tokens, called n-grams. In authorship,

a document can be considered as a sequence of characters, words, sentences or

even paragraphs. A character-based n-gram considers a document as a series of

overlapping sequential subsets of characters. Token-based n-grams can capture not

only the information found at the token level, but can also find information relating

to higher level tokens.

One common application of n-grams in AA is to use character-level n-grams

(Kešelj et al. 2003; Frantzeskou et al. 2007)1. Character-level n-grams provide

information at the character level, as well as word and sentence information. As an

example of syntactic information gained, the high appearance of the exclamation

mark (!) shows an informal text, as this rarely appears in formal writing. Another

example is structural information that can be retrieved, particularly from formatting

text, such as in a HTML document. The high use of <BR> as opposed to </P> when

formatting text indicates a stylistic choice made by the author.

There are two main methods of capturing character-level n-grams that are explored

in the literature: global and local. Global n-grams calculate the distribution of the

most frequent n-grams over the entire training set, often referred to as a bag-of-n-

grams. The term ‘Global n-grams’ is used to clarify the distinction between those

and Local n-grams. Local n-grams are a more recent application of n-grams for

authorship attribution in which an author’s writing style is profiled using features

specific to that author. Both global and local n-grams are often used as dynamically

1 The work of Frantzeskou et al. (2007) is titled Identifying authorship by byte-level n-grams.
The examples given are all character-level n-gram, which is a small difference when using
ASCII encoding but a large difference when using Unicode. In this work, we refer to the
same extraction of features as character level.
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derived models, and these two types of n-gram models are detailed in the following

two subsections.

2.5 Global n-grams

Representing text using n-grams has been a popular technique for many years

(Cavnar 1975) as it is robust against minor variations in text, such as typographical

errors, and also does not require document preprocessing, such as word stemming.

Representing text using character-level n-grams has become increasingly popular in

more recent literature (Koppel, Schler and Argamon 2009) due to its combination of

both character-level and word-level representations. Taking English as an example,

four-letter n-grams comprise a large proportion of the words contained in English as

separate n-grams, as well as covering formatting, such as the use of double spacing,

and the specific use of formatting characters, such as using double spacing between

sentences. The use of n-grams also allows for the collection of a larger number of

features for smaller texts, as (|d| − n + 1) n-grams will be extracted for a document

d of character length |d|. This increase in the amount of data extracted from short

documents has proven to be a successful technique (Koppel et al. 2009).

The Global n-grams methodology first examines the entire dataset to determine

the subset of n-grams to use for document representation. In practice, collecting all

n-grams results in many n-grams that are only used rarely, and add noise to the

dataset. A final, shorter list is created by selecting the L most frequently occurring

n-grams for the entire dataset. The representation of the corpus is then given by

collecting the frequency of each n-gram in this shorter list for each document in the

training set. This provides a point in a vector space that can be used to calculate

distances between documents, and distance can then be calculated using any of the

previously mentioned distance metrics for vector spaces.

2.6 Local n-grams

The Local n-grams methodology is based on a concept of an ‘author profile’, which

is ‘the set of the L most frequent n-grams with their normalised frequencies’(Kešelj

et al. 2003), for a given author. From these author profiles, two methods in the

literature exist for determining the distance between two profiles for authors A1 and

A2. They are the common n-grams (CNG) method (Kešelj et al. 2003) and source

code author profiling (SCAP) method (Frantzeskou et al. 2006, 2007).

The CNG method uses the relative distance between two document profiles or

author profiles, which is a summation over the distance between usage of each

n-gram used by each profile. The frequencies for the L most frequently occurring

n-grams are compared using (1), to determine a distance between the two profiles

(Kešelj et al. 2003)

K =
∑

x∈XP1
∪XP2

(
2 · (P1(x)− P2(x))

P1(x) + P2(x)

)2

, (1)
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Table 1. Description of each problem in the AAAC Corpus. Final column is the mean

number of characters per document in each problem

Problem Language Authors Training Testing Mean length

Problem A American English 13 38 13 4553.3

Problem B American English 13 38 13 6189.8

Problem C American English 4 17 9 99784.6

Problem D English 3 12 4 121781.0

Problem E English 3 12 4 145895.7

Problem F Middle English 3 60 10 2942.2

Problem G American English 2 6 4 393324.9

Problem H Spoken English 3 3 3 28270.0

Problem I French 2 5 4 730443.0

Problem J French 2 5 2 653391.7

Problem K Serbian-Slavonic 3 14 4 29551.7

Problem L Latin 4 6 4 18761.5

Problem M Dutch 8 48 24 5235.1

where Pi(x) is the frequency of term x in profile Pi and XPi
is the set of all n-grams

occurring in profile Pi.

The SCAP method uses the simplified profile intersection similarity metric, which

ignores the frequencies, and instead uses only the set of the L most frequently

occurring n-grams. Simplified profile intersection finds the size of the intersection of

the two sets of n-grams, normalised by dividing the result by L (Frantzeskou et al.

2006). This provides a similarity measure S between two profiles P1 and P2, which is

subsequently converted to a distance metric DS using the equation DS = 1− S
L
. The

SCAP method is comparable in accuracy to the CNG method, despite the much

lower computational cost (Frantzeskou et al. 2007). Both of these methods have

been shown to be very effective in different areas. For example, SCAP was used for

authorship attribution of Twitter messages, to achieve a very high accuracy with 50

authors in a difficult domain (Layton, Watters and Dazeley 2010).

2.7 The Ad-hoc authorship attribution competition

One issue that has been identified in the literature is the lack of meaningful

benchmark tests for AA (Juola 2004). A series of 13 authorship problems of a

variety of types were collected and formed a corpus to overcome this limitation,

to enable the direct comparison of different authorship attribution methods (Juola

2008). An overview of each problem is given in Table 1. A competition, named

the ad-hoc authorship attribution competition (AAAC), was run as part of the

2004 Joint International Conference of the Association for Literary and Linguistic

Computing and the Association for Computers and the Humanities (ALLC/ACH

2004) (Juola 2004). The competition attracted 12 teams, with the winner of the

competition achieving an accuracy of 70.6%. Detailed results and a discussion of

the competition are available in Juola (2008).
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The AAAC corpus is predominantly English, with eight of the problems being

in some form of English (American English, British English, Middle English and

Spoken English). The problems overall represent a wide variety of languages, but do

have a strong focus on languages derived from Europe. There are no Asian, Arabic

or African languages in the corpus. Their exclusion is problematic, since languages

often have quite different concepts for language features, such as word boundaries,

sentences and characters. One example of this structural difference is in Chinese text,

where word boundaries are less defined than the languages contained in this corpus

(Li and Sun 2009). Analysis of these languages is considered outside the scope of

this paper, but should be considered in future work in this area.

3 Recentred local profile derivation

This paper proposes a new method for calculating distance, derived from the method

used in Kešelj et al. (2003). Rather than remove the concept of a language profile, the

proposed method uses the language profile in the calculation of distance between

an author and document. The candidate author with the smallest distance to a

document of unknown authorship is considered the most likely to be the true

author. This chapter outlines the steps taken to derive the proposed method, named

RLP.

In their work on authorship attribution, Kešelj et al. (2003) cite the following

equation from Bennett (1976) to calculate the distance between authors or documents

M and N

d(M,N) =
∑
I,J

[M(I, J)− E(I, J)] · [N(I, J)− E(I, J)] , (2)

where E is given as the ‘standard English’ model. M(I, J), N(I, J) returns the

normalised frequency for models M and N, respectively, for the character bi-gram

composed of the Ith and Jth letters of the alphabet. I and J are iterated over

all possible values between 1 and 26 inclusive. It is argued that E is an obviously

language-dependent feature, and is dropped to form the simpler equation

d(M,N) =
∑
I,J

[M(I, J)−N(I, J)]2 . (3)

Kešelj et al. (2003), giving f1 and f2 as their profiles and fi(n) to be the normalised

frequency of the n-gram n, derive the following equation, the relative distance metric

described in Section 2.6, from (3) (Kešelj et al. 2003)

d(f1, f2) =
∑

n∈profile

(
2 · (f1(n)− f2(n))

f1(n) + f2(n)

)2

, (4)

which is similar to (3), except that it is now normalised by dividing by the mean

of f1(n) and f2(n). The term profile in (4) is defined as the union of the L most

frequently occurring n-grams in both f1 and f2. These profiles are referred to as local

profiles, since they are derived locally, without any global knowledge of the rest of

the training set of documents. While this method has been shown to be effective in
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authorship attribution studies, the score for the AAAC corpus was 68.9%, indicating

potential for improvement.

We propose that rather than remove the concept of a language profile, the

following equation can be derived from (2) using such a profile

d(f1, f2) =
∑

n∈profile

(f1(n)− E(n)) · (f2(n)− E(n)). (5)

Normalising by the absolute distance of the variation between each profile and

the standardised English profile gives the distance metric

d(f1, f2) =
∑

n∈profile

(f1(n)− E(n)) · (f2(n)− E(n))

‖f1(n)− E(n)‖ · ‖f2(n)− E(n)‖ . (6)

Note that (6) is the cosine distance between the recentred profile counts. This choice

of normalisation method is not mandatory, and other normalisation methods may

be shown in the future to be more effective.

One problem with the above equation is the existence of a standardised profile of

language for a set of documents. Given the varied nature of a single language, the

varied nature of different languages and the varied nature of the use of language

by an author for different tasks, it seems improbable that a standardised profile of

a language can be created that would be applicable to a given authorship problem.

It remains a possibility, but is considered a problem outside the scope of this paper.

Instead, we use the entire training set as an approximation to the language profile.

This has a benefit of working for different languages without changing the algorithm:

the standardised language profile is approximated by finding the normalised mean

usage of each feature within the training set of documents.

From (6), the concept of a profile is created in much the same way as it is for the

CNG method. However, as (6) is concerned with the distance from corpus profile,

this is used as our ranking criterion. Therefore, a document or author profile f1

is given as the top L features, ranked by absolute distance to the language default.

Finally, when an n-gram occurs in one profile but not the other, the true value is

used, not a default value of 0 as used by Kešelj et al. (2003). The combination of

the above definition of an author or document profile with (6) as the distance metric

will be referred to as RLP.

The RLP algorithm differs from CNG in three key areas. First, the algorithm

that accompanies this equation differs slightly in that if an n-gram is not in the

top L n-grams for the other profile, its value in the equation is 0, not the actual

value within the document. Second, using the concept of a language default would

compare documents with extra information about expected values, rather than

comparing them absolutely. If two documents share a similar value for a given

n-gram, but both are very different from the expected value for the language, this is

a more surprising result than if the values were similar to the expected value for that

language. Third, since features will be compared against the expected value, negative

values for features are possible if a feature is actually used much less than expected.

For this reason, a profile – of either a document or author – is made of the L most
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Algorithm 1 Generic RLP Algorithm for arbitrary features

Require: D, a collection of training documents with known authors.

Require: L, the number of features to choose for each author and document profile.

Require: profile function outlined in algorithm 2.

E ← profile(D), the language profile

for each author Ai of documents in D do

fAi
← profile({Di ∈ D : author(Di) = Ai}, L, E)

end for

for each testing document ti do

fti ← profile(ti, L)

Gti ← arg min
Aj

d(ti, Aj), the guessed author where d is (6).

end for

return G, the guesses for each testing document

Algorithm 2 Profiling a set of documents for RLP; algorithm profile(D)

Require: D∗, a set of documents

Require: L (optional), the number of features to choose

Require: E (required only if L given), a language default profile

for each document Di in D∗ do

for each feature f do

Pf ← Pf + f(Di), the value of feature f for the document

end for

end for

for each feature f do

Pf ← Pf/|D ∗ |, normalise frequencies

end for

if L not given, then

return P , the full profile

else

for each feature f do

Pf ← Pf − Ef , recentre value

end for

limit← sorted ({absolute(Pf)∀f ∈ P })L
{limit is the Lth highest absolute value from the profile after recentreing}
P∗ ← {Pf∀f ∈ P : absolute(Pf) ≥ limit})

end if

return P , the profile of the set of documents D∗

distinctive feature, rather then the L most frequently used features. In Section 4, the

experimental methodology for testing the effectiveness of RLP compared to other

methods is given.
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4 Experimental methodology

The results of two sets of experiments are reported in this paper, corresponding

to the research questions proposed in Section 1.1. First, RLP using n-grams was

compared against both the CNG and SCAP methods from the literature, detailed

in Section 2.6. Second, RLP using features described in Section 2.3 was compared

against using each of the possible combinations of the subsets described in the

literature. Both sets of experiments were run using the AAAC corpus described in

Section 2.7. Together, these experiments were used to determine if the RLP method

improved classification accuracy against related experiments.

For the n-gram experiment, RLP was compared to both Local n-gram metrics

defined in Section 2.6, CNG and SCAP. Documents from the testing set were

assigned to the author with the lowest mean distance to each document that the

author was known to have authored in the training set. Parameter values chosen

were n between 2 and 5 inclusive and L was chosen for values 50, 100, 500, 1,000,

2,000, 3,000 and 5,000. These ranges were chosen to provide good coverage over the

range of values shown in the literature. Other tests performed by the authors show

little variation at values above the upper limits and between the chosen L values.

For the feature-based RLP experiment, RLP was compared to combinations of

predefined subsets. The subsets were the four main subsets described in Section

2.3; Character, Word, Syntactic and Structural. Each of the 15 combinations was

tested for both RLP and non-RLP tests. For the non-RLP test, distance between

feature values was calculated using three distance metrics: Euclidean, Cosine and

Correlation distance. For the RLP test, as there were 251 features extracted from

the corpus, the L values ranged between 20 and 200 in steps of 20.2 The distance

metric for the RLP test was the best performing metric in the non-RLP test. Not all

subset combinations had enough features for each L value (e.g. the structural subset

has only six features for this corpus), and therefore, there were different upper limits

for some combinations.

Results were compared using classification accuracy using a ‘nearest author’

classification in which a document was assigned to the author closest to it. The

distance between a document and author was calculated as the mean distance

between a document, and each of the documents known to be from that author.

Further to this, the results were compared against the results from the AAAC as

listed in Juola (2008).

As a final step to the methodology, we used a blending ensemble to combine the

parameter sets for RLP. For each dataset, the training set was split by removing one

document and training the model. The model was then tested to see if it accurately

attributed the removed document. This was run for each document in the training

set, and the parameter set was scored using the mean accuracy of this approach

across each excluded document. The top five scoring parameters were then ensembled

using the weighted voting approach employed by Kešelj and Cercone (2004). In this

ensemble, a document was classified according to the nearest author method above

2 Having values of L more than 251 would always include all features.
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Table 2. Mean classification accuracy on the AAAC corpus using the CNG

methodology

n 50 100 500 1000 2000 3000 5000

2 0.572 0.518 0.610 0.580 0.507 0.507 0.507
3 0.536 0.589 0.607 0.635 0.627 0.659 0.599
4 0.591 0.613 0.615 0.571 0.633 0.631 0.603
5 0.528 0.512 0.579 0.557 0.572 0.543 0.573

Table 3. Mean classification accuracy on the AAAC corpus using the SCAP

methodology

n 50 100 500 1000 2000 3000 5000

2 0.537 0.441 0.541 0.443 0.400 0.400 0.400
3 0.524 0.609 0.618 0.643 0.554 0.472 0.475
4 0.535 0.575 0.659 0.574 0.668 0.572 0.543
5 0.511 0.551 0.649 0.614 0.592 0.560 0.520

for each of the parameter sets that were part of the ensemble. Each classification

was weighted by the ratio between the distances to the second closest and closest

author using this method. As an example, if a document was closest to Author A

with a distance of 0.4, and Author C was the next nearest author with a distance of

0.9, the weight would be 0.9
0.4

= 2.25. The author with the highest combined weighted

vote was chosen as the prediction by the ensemble.

5 Results

5.1 n-gram results

Tables 2 and 3 show the classification accuracies for using both the CNG and SCAP

methods on the AAAC corpus for the full range of parameter values for n and L.

The corresponding accuracies using RLP are given in Table 4. The highest accuracy

obtained for CNG was 0.659 when n = 3 and L = 3000, while SCAP achieved 0.668

when n = 4 and L = 2000. The highest accuracy for RLP was 0.681 for n = 3

for L ≥ 1000. Results showed few overall trends, with high results appearing for a

variety of combinations of n and L for each of the three algorithms. One trend that

was consistent was that RLP scored higher, not only overall, but with fewer features

than either CNG or SCAP.

5.2 Feature-based results

Table 5 contains the results from each of the 15 combinations of the four feature

subsets described in Section 2.3. It can be seen that the word subset provided a

negative effect on the results, with the syntactic and structural subsets providing a

positive effect. The highest accuracy noted was 0.563 for the Syntactic and Structural
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Table 4. Mean classification accuracy on the AAAC corpus using the RLP

methodology

n 50 100 500 1000 2000 3000 5000

2 0.667 0.667 0.667 0.667 0.667 0.667 0.667
3 0.658 0.658 0.678 0.681 0.681 0.681 0.681
4 0.620 0.634 0.648 0.648 0.648 0.648 0.648
5 0.584 0.584 0.592 0.594 0.617 0.620 0.620

Table 5. Mean classification accuracy on the AAAC corpus using feature subsets for

different distance metrics

Subsets cosine correlation Euclidean

Character 0.423 0.442 0.425
Word 0.308 0.334 0.315
Syntactic 0.527 0.516 0.532
Structural 0.544 0.523 0.524
Character + Word 0.330 0.330 0.315
Character + Syntactic 0.472 0.472 0.501
Character + Structural 0.467 0.467 0.495
Word + Syntactic 0.308 0.289 0.315
Word + Structural 0.317 0.291 0.321
Syntactic + Structural 0.563 0.544 0.519
Character, Word + Syntactic 0.311 0.311 0.315
Character, Word + Structural 0.330 0.292 0.315
Character, Syntactic + Structural 0.464 0.464 0.501
Word, Syntactic + Structural 0.317 0.298 0.321
All Subsets 0.311 0.311 0.315

subset combination, using the cosine distance. The Euclidean distance had the highest

mean accuracy of the three metrics, with 0.402 compared to 0.399 and 0.392 for

cosine and correlation, respectively. However, the median was lower with accuracies

of 0.321, 0.330 and 0.334 for Euclidean, cosine and correlation, in that order.

Tables 6 and 7 give the corresponding results using RLP for profile creation.3

Overall, we found that profile sizes above 100 did not affect the results. The mean

for L = 20 was the highest of each of the values chosen, which was significantly

higher than for L ≥ 100 (p-value of 0.013), but not for L = 60 (p-value of 0.16).

The highest score reported was 0.553 for L ≥ 40, using the Character and Syntactic

combination. It is interesting that this combination outperformed the Syntactic and

Structural combination, which was clearly the better combination without RLP.

This indicates that RLP works well for character-based features, which includes

the Character feature subset and character-level n-grams. Further evidence for this

can be found in the higher score when using the Character subset only with RLP,

3 Cells in Table 6 are blank when there were less features in the subset combination than for
the given profile size. Subset combinations were removed from Table 7 if there were less
than 100 features.
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Table 6. Mean classification accuracy on the AAAC corpus using feature subsets for

values of L ≤ 100 using RLP

Subsets 20 40 60 80 100

Character 0.441 0.441 0.441
Word 0.309 0.289
Syntactic 0.521 0.521 0.521 0.521 0.521
Structural 0.518
Character Word 0.297 0.258 0.278 0.278 0.278
Character Syntactic 0.547 0.553 0.553 0.553 0.553
Character Structural 0.412 0.412 0.412
Word Syntactic 0.270 0.328 0.270 0.270 0.270
Word Structural 0.347 0.328
Syntactic Structural 0.470 0.470 0.476 0.476 0.476
Character Word Syntactic 0.278 0.258 0.316 0.220 0.220
Character Word Structural 0.328 0.328 0.289 0.309 0.309
Character Syntactic Structural 0.461 0.461 0.469 0.469 0.469
Word Syntactic Structural 0.309 0.270 0.270 0.270 0.270
All Subsets 0.309 0.328 0.309 0.309 0.251

Table 7. Mean classification accuracy on the AAAC corpus using feature subsets for

values of L ≥ 120 using RLP

Subsets 120 140 160 180

Syntactic 0.521 0.521 0.521
Character Syntactic 0.553 0.553 0.553 0.553
Word Syntactic 0.270 0.270 0.270 0.270
Syntactic Structural 0.476 0.476 0.476 0.476
Character Word Syntactic 0.220 0.220 0.220 0.220
Character Syntactic Structural 0.469 0.469 0.469 0.469
Word Syntactic Structural 0.270 0.270 0.270 0.270
All Subsets 0.251 0.251 0.251 0.251

compared to without RLP (0.441 compared to 0.423). Each other subset, by itself,

was either comparable, or was lower with RLP (Word: +0.001, Syntactic:−0.006,

Structural: −0.026).

6 Discussion

The results presented in this paper indicate that RLP works effectively for Local

n-gram models and/or character-based subsets. The best accuracy obtained using a

single parameter set for RLP using Local n-grams was 0.681. This would place the

algorithm, with its simple ‘nearest author’ classification algorithm, and using a single

metric, third in the AAAC4 behind Koppel and Schler’s method (Koppel, Akiva and

Dagan 2006) and behind Kešelj and Cercone’s method (Kešelj and Cercone 2004).

4 This ignores hoover2, which used the Internet to provide answers.
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The authors are confident that a more robust classification algorithm could boost

the score further, which would be part of future work in this area.

Across the parameters chosen, the RLP had the highest mean and lowest variance,

0.646 and 0.001, respectively, compared to CNG (μ = 0.578, σ2 = 0.002) and SCAP

(μ = 0.542, σ2 = 0.006). This result is statistically significant, with RLP scoring higher

than CNG and SCAP, with p-values of less than 0.001. The low variance shows

stability in the results across variations in parameters, suggesting that the technique

may be able to be performed in a variety of settings with little customisation to the

task. As an example, classification on a new language may benefit from this relative

stability, as the selection of parameters has less of an impact on the performance of

the algorithm.

More evidence suggesting the robustness of RLP compared to CNG and SCAP

can be observed through the change in accuracy as L increases. For each value

of n, the accuracy improved at a decreasing rate as the value of L was increased.

This suggests that due to the ranking of features by distinctiveness, adding features

return reduced results. This contrasts to both CNG and SCAP where adding features,

ranked by frequency, can affect the accuracy either positively or negatively with little

pattern. This makes RLP much more stable as L values change and monotonically

increasing with increasing L values.

In general, RLP scored lower than type-based subsets for feature-based datasets,

for most subset combinations. However, it was shown that Character features

improved with RLP, indicating that character features, in general, improve using

RLP. One possible future avenue of this work would be to incorporate RLP-based

adjustments, for only some of the features in a model.

A side result from this research is that using n-grams was shown to be better

for authorship attribution in this context than a feature-based model. The highest

accuracy for a feature-based RLP was 0.553 compared to 0.681 for n-gram-based

RLP. For non-RLP methods, the highest feature-based accuracy was 0.563, while

the highest n-gram accuracy was 0.662, a clear margin.

7 Ensemble results using weighted voting

As a final step for the experiments, weighted voting was applied to the n-gram

version of RLP to boost the accuracy, based on the ensemble used Kešelj and

Cercone (2004) using CNG. The method was extended by using the accuracy of the

parameters in determining a held-in dataset with the training set, as described in

Section 4. All parameter values were selected.

Each guess from each set of parameters was weighted according to the formula

w = 1 − a/b, where a was the distance from a document to the nearest author

(the guessed author), and b was the distance to the second nearest author. Higher

weights were given to guesses where the distance to the nearest author was much

less than the second nearest author. Using the weighted voting method, Kešelj and

Cercone (2004) achieved a mean accuracy of 0.689 on the AAAC corpus, giving the

target rate to beat using RLP.
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Table 8. Classification accuracy on the AAAC corpus using RLP with weighted

voting as described in Section 7

Problem RLP Ensemble Basline Kešelj et al. (2004)

A 0.462 0.077 0.846
B 0.231 0.077 0.539
C 0.889 0.222 0.889
D 0.750 0.250 0.750
E 0.500 0.250 0.500
F 0.900 0.300 0.900
G 0.750 0.500 0.750
H 1.000 0.333 0.333
I 0.500 0.500 0.750
J 1.000 0.500 0.500
K 0.500 0.250 0.500
L 1.000 0.250 1.000
M 0.542 0.125 0.702

Using the above method, an overall accuracy of 0.694 was achieved on the AAAC

corpus. The performance on each problem of the resulting method is given in

Table 8. This result would have placed RLP in second place in the AAAC behind

Koppel and Schler’s method, which used a much more involved technique described

in Koppel et al. (2006). The gap is only 0.8 percentage points, leaving open the

possibility that other ensemble techniques may be able to improve the results above

this mark.

The improvement from using RLP to CNG in the ensemble was not statistically

significant, with a p-value of 0.91. Despite the much higher mean score for individual

parameters, the ensemble was unable to adequately combine them to form a better

classifier. The reason for this is that the variation in RLP was very low, with

different parameter values scoring very similar and making similar predictions. It

is well known in machine learning that diversity increases ensemble performance

Kuncheva and Whitaker (2003), suggesting that the lack of diversity in RLP results

may be an issue when ensembling. Without variation, an ensemble can do little to

increase the classification results.

The RLP ensemble performed as well as – or better than – the CNG ensemble for

9 of the 13 problems. It performed better for three of the problems, but worse for

four. The problems that it performed poorly on were considered difficult problems

by the creator of the dataset; A, B, I and M. With the exception of problem I,

the other three problems had the highest number of authors, suggesting that the

RLP method – at least under the given ensemble – may perform better for a fewer

number of candidate authors. This can been seen through the methods that RLP

outperformed CNG; C, H and J. These problems had fewer authors, as did the

other problems in which results were the same. This provides further evidence for

this claim.
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8 Conclusions

Two research questions were posed at the beginning of this article relating to

the use of corpus wide information to create locally aware profiles of documents

for authorship attribution. The RLP method was derived in Section 3 and tested

using classification accuracy on the AAAC corpus with the methodology given in

Section 4.

RLP was shown to improve the classification accuracy results of local n-gram-

based profiles, compared against both the CNG and SCAP methods. RLP using

a single set of parameters was able to compete with CNG using weighted voting

in the AAAC, and improved this accuracy when weighted voting was applied

to RLP. The results from the RLP algorithm had a low variance in results, as

parameter values changed, indicating high stability in the algorithm. Importantly,

the accuracy using RLP improved monotonically with increasing L values with

decreasing improvements as L increases. This suggests that the order of n-grams

created by the RLP method is accurately ranking more discriminating n-grams

above those that are less discriminating.

With one exception, RLP was shown to perform as well as – or better than –

CNG, when the dataset contained few authors. RLP also performed better overall

for the entire corpus; however, this increase was not statistically significant. RLP was

also shown to perform generally more poorly for feature-based models. However, it

was discovered that character-based features improved when using RLP.

Overall, the results indicate that using global knowledge about the corpus can

improve classification accuracy for authorship attribution for n-gram-based models

and character-based feature models. The original method used a concept of a

language profile, but this is approximated using a profile of the training corpus.

8.1 Future work

It was noted in Section 3 that the specific method of normalisation used is not a

requirement. Other methods for calculating the distance between profiles could be

used, such as statistical comparisons of some kind, or even other distance metrics, in

the same way that the cosine distance was used indirectly here. The testing of other

metrics could be compared using the same methodology as presented in this paper.

It was noted in the discussion that RLP improved the performance of character-

based features and that it may be possible to use an RLP-based method to improve

the performance of only some of a set of features. Other features may be treated

without RLP, leading to a merging of two methods, i.e. combining the strengths of

both algorithms.

Finally, an examination of the detailed results showed that an accuracy of 81.18%

was possible by simply choosing the parameter values best suited to the language of

the corpus. If the results were taken from any of the n-gram methods used in this

paper (including SCAP and CNG), then this result increased to 88.6% accuracy.

This result improves significantly upon those scored in the AAAC; however, these

results rely heavily on hindsight. The parameter values were chosen because they

had the highest accuracy on each problem in the AAAC corpus. However, if a larger
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scale study of different languages could show stability in the values for n and L,

then these choices would be justified. This would result in a language-dependent

parameter set, removing the problems with trying to find a method that works with

the same parameters for wildly different languages.
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