
1

Hierarchical Reinforcement Learning for
Situated Natural Language Generation†

NINA DETHLEFS and HERIBERTO CUAYÁHUITL
Heriot-Watt University,

Mathematical and Computer Sciences,

Edinburgh, UK.

(Received 4 August 2014)

Abstract

Natural Language Generation systems in interactive settings often face a multitude of
choices, given that the communicative effect of each utterance they generate depends
crucially on the interplay between its physical circumstances, addressee and interaction
history. This is particularly true in interactive and situated settings.

In this article, we present a novel approach for situated Natural Language Generation in
dialogue that is based on hierarchical reinforcement learning and learns the best utterance
for a context by optimisation through trial and error. The model is trained from human-
human corpus data and learns particularly to balance the trade-off between efficiency and
detail in giving instructions: the user needs to be given sufficient information to execute
their task, but without exceeding their cognitive load.

We present results from simulation and a task-based human evaluation study comparing
two different versions of hierarchical reinforcement learning: one operates using a hierarchy
of policies with a large state space and local knowledge, and the other additionally shares
knowledge across generation subtasks to enhance performance. Results show that sharing
knowledge across subtasks achieves better performance than learning in isolation, leading
to smoother and more successful interactions that are better perceived by human users.

1 Introduction

Natural Language Generation (NLG) systems across domains typically face an un-

certainty with respect to the best utterance to generate in a given context. This is

particularly true in interactive scenarios that involve constant verbal or non-verbal

† This research was supported by the German Research Foundation DFG under a grant for
the Transregional Research Centre SFB/TR8 Spatial Cognition, project I5-DiaSpace.
It was also supported by the European Commission’s FP7 programmes under grant
agreement no. 287615 (PARLANCE) and no. ICT-248116 (ALIZ-E). We would like to
thank John Bateman, Jette Viethen, Alexander Koller, Konstantina Garoufi, Kristina
Striegnitz, Oliver Lemon, Michael Strube and David Schlangen for comments and in-
teresting discussions on the work presented. A special thanks to Kristina Striegnitz and
Konstantina Garoufi for helping us make sense of the GIVE challenge data.

2 N. Dethlefs and H. Cuayáhuitl

Fig. 1. Generation example in the GIVE domain (Byron et al., 2009), where some

instructions are more felicitous than others. The intended referent button is circled.

feedback from a human user. The reason is that utterances can have different ef-

fects depending on the physical circumstances, addressee and interaction history of

the context in which they occur. This article presents a hierarchical optimisation

approach for situated NLG.

Situated NLG can be defined as generation in an enriched physical context, in-

cluding features of a (real or virtual) environment, such as landmarks and users.

The context in this setting is typically not static but undergoes dynamic changes

triggered by linguistic or non-linguistic actions by the system or the user. Often, as

in our case, situated NLG also deals with an additional element of interactivity in

that the user can immediately react to the system’s instructions through linguis-

tic or non-linguistic actions. Figure 1 shows an example of the type of generation

scenario we will address in this article. It shows a spatial situation (from the per-

spective of the user) and a set of possible instructions which differ with respect

to their level of granularity in identifying the (circled) referent button. A trade-off

in situated NLG is often between generating efficient instructions and detailed in-

structions. Since the user is constantly moving through a virtual world, instructions

need to contain just the right amount of information so that the user’s cognitive

load remains low and they do not get lost. In the figure, only instruction (c) seems

to balance this trade-off appropriately. Instruction (a) is ambiguous and instruction

(b) is complete, but long and difficult to memorise for a user on the move.

While different techniques are conceivable to address this efficiency vs detail

trade-off, we will present an optimisation framework that is based on hierarchi-

cal reinforcement learning and optimises its decision making over time through a

trial and error search. To this end, we design a hierarchy of learning agents, each

of them representing a specific generation subtask. A hierarchical policy is then

trained from interaction with a simulated environment which was trained from a

corpus of human-human interactions. We argue that using reinforcement learning,

an NLG agent is able to try a multitude of generation strategies under different

circumstances and discover the optimal one automatically.

The hierarchical setup offers the additional benefit of a divide-and-conquer ap-

proach. This provides a modular and easy-to-maintain architecture, makes learning

Hierarchical Reinforcement Learning for Situated NLG 3

faster and our technique more scalable than flat reinforcement learning setups due

to the reduced policy search space. A possible disadvantage of using a modular ar-

chitecture is that knowledge variables are specific to a particular generation subtask,

such as referring expression generation or navigation. This automatically assumes

an independence among subtasks which may not necessarily hold in practice. We

therefore compare two different versions of a hierarchical reinforcement learner in

this article: one that shares task-based knowledge across generation subtasks, using

a joint optimisation, and one that does not, using an isolated optimisation. Shared

knowledge is pre-defined by the system designer. Our hypothesis is that by sharing

knowledge the learning agent becomes more aware of the global effects of its actions

rather than being confined to the local context of a particular subtask. By trying

alternative sequences of decisions and observing the user’s reactions, the system

then becomes able to predict their effects on the utterance as a whole.

The article is organised as follows. In Section 2, we review related work in three

areas: (i) the application of reinforcement learning to NLG, (ii) the sharing of

knowledge across subtasks, and (iii) the state-of-the-art in situated NLG. Section

3 will then introduce the GIVE task, the situated scenario we are addressing in

this article. Subsequently, Section 4 will give an overview of flat and hierarchical

reinforcement learning and discuss its application to situated NLG. We will present

the learning agent’s training setting in Section 5, followed by an evaluation in

Section 6. The evaluation consists of two parts: (a) a simulation-based evaluation;

and (b) a task-based evaluation comparing joint and isolated policy learning for

hierarchical reinforcement learning. It also makes a comparison with other state-of-

the-art approaches to situated NLG. Finally, Section 7 will draw conclusions and

discuss directions for future research.

2 Related work

In this section, we will review previous research on applying reinforcement learning

to optimising sequences of NLG decisions and its relation to planning approaches.

Further, we will discuss the sharing of knowledge across application subtasks and

the state-of-the-art in situated NLG. For each strand of work, we highlight com-

monalities and differences with our proposed approach.

2.1 Reinforcement learning for NLG in interactive systems

Reinforcement learning (RL) has become a popular method for optimising dialogue

management decisions for flat (Singh et al., 2002) and hierarchical decision prob-

lems (Cuayáhuitl et al., 2010). It has been appreciated especially for its ability of

automatic optimisation, discovery of fine-grained behaviour from human data and

adaptability under uncertain circumstances (Williams and Young, 2007).

The NLG community has successfully adopted RL rather recently and with a spe-

cific focus on optimising generation for interactive systems (Lemon, 2011). Rieser,

Lemon and Liu (2010) apply RL to information presentation in a spoken dialogue

system that gives restaurant recommendations to users. A particular focus is on

4 N. Dethlefs and H. Cuayáhuitl

whether database hits should be summarised for the user, contrasted given the

user’s preferences or whether a single recommendation should be given. An opti-

mal action policy here depends both on the user’s preferences and the number of

database hits. Similarly, Janarthanam and Lemon (2010) use RL to optimise NLG

in troubleshooting dialogues where users are assisted in setting up a broadband

connection. A special focus of this work is the fact that the user learns new jargon

during the interaction with the system so that the learnt policy needs to be sensitive

to a dynamic user model.

Reinforcement learning has also been applied to other natural language processing

tasks (Branavan et al., 2009), which often use task completion as the primary

component of their reward function and therefore require less or no simulation. In

contrast, RL applications in dialogue or generation typically need to be trained in

interaction with human users, which makes training more expensive. Even though

simulated environments can be used, they often rely on linguistic or pragmatic

features which may require annotation, depending on the domain. One possible

solution to mitigate this problem has been to use Wizard-of-Oz data collections

(Rieser and Lemon, 2008), which automatically log wizard actions and therefore

can be used to bootstrap simulated environments from small data sets.

Research on reinforcement learning for NLG is in several ways related to planning.

In particular, it is often seen as a possible solution to AI planning in which well-

studied algorithms are used for finding action strategies for NLG tasks from a

pre-defined set of knowledge and constraints. Please see (Koller and Petrick, 2011)

for a recent survey of planning approaches to NLG. In contrast to other approaches,

RL is particularly suited for tasks in which we are unsure of the best strategy to

achieve a goal and wish the system to find an optimal policy automatically from

interactions with the environment and user.

This article follows the general direction of the RL research discussed above by

representing situated NLG as a sequential decision making problem that can be

solved using trial and error search in an interactive context. In contrast to previous

work, however, which has relied predominantly on flat RL, we formulate our NLG

task as a hierarchical optimisation problem. This is often more scalable than flat RL

settings and can be applied to larger search spaces, such as more complex generation

scenarios than those that can be addressed using a flat RL setup.

2.2 Sharing knowledge across subtasks

A number of recent studies have presented evidence in favour of a joint treatment

of subtasks by sharing knowledge among them. Angeli, Liang and Klein (2010)

present a robust domain-independent NLG system that employs a joint treatment of

content selection and surface realisation. In their approach, each generation decision

is handled by a log-linear classifier that has access to all previous decisions and

achieves better accuracy and human ratings than a system whose’s information is

restricted to the local context. Lemon (2011) presents a joint optimisation approach

to NLG and dialogue management in the area of information presentation. He shows

that using reinforcement learning for the optimisation, a jointly optimised policy

Hierarchical Reinforcement Learning for Situated NLG 5

can learn when it is most advantageous to present information to the user or when

to ask for more details to refine the query. In Cuayáhuitl and Dethlefs (2011b), we

present a hierarchical reinforcement learning approach to spatially-aware dialogue

management by optimising it jointly with route planning in a wayfinding domain.

We show that the spatially-aware system—optimised jointly—generates the shortest

possible route by adapting to individual users’ prior knowledge by guiding them

past landmarks they are familiar with and avoiding junctions that cause confusion.

In addition to the studies discussed above, there have been suggestions for a joint

treatment of syntax and semantics/discourse (Stone and Webber, 1998; Marciniak

and Strube, 2004; Marciniak and Strube, 2005), of NLG and speech synthesis (Bu-

lyko and Ostendorf, 2002; Nakatsu and White, 2006), of speech and gestures (Stone

et al., 2004) and content planning and realisation (Bontcheva and Wilks, 2001).

All of them have demonstrated that a joint treatment of interrelated tasks can

significantly outperform its isolated counterpart. All of the joint architectures dis-

cussed above (Angeli, Liang, and Klein, 2010; Lemon, 2011; Cuayáhuitl and Deth-

lefs, 2011b) work essentially by making additional knowledge available to the com-

ponents involved. Typically, this is knowledge that has traditionally been specific

to one module of the system and is now shared between two or more modules in

order to achieve a joint knowledge base on which to base decisions. These joint

architectures have deliberately not attempted to share their full knowledge base,

which would be computationally expensive. Instead, they have shared small parts of

knowledge which were discovered from domain data or which the system designer

expected to positively affect performance. In this way, they are computationally

scalable and do not sacrifice the benefits of a modularised architecture.

A further approach to considering NLG decisions interdependently are systems

like SPaRKy (Walker et al., 2007). Here, sentence generation takes an overgenera-

tion and ranking approach. In a first step, a randomised set of alternative sentence

plans is generated. In a second step, these are ranked according to a boosting score

that predicts user ratings of the outputs. Joint decision making is possible in that an

n-best list of alternatives is passed between modules, which can each be considered

in the next module.

Here, we will follow the direction of sharing knowledge across generation subtasks

so as to provide a richer context for decision making to our learning agent. In this

way, the full utterance context can be considered rather than local context alone.

2.3 Situated Natural Language Generation

Related work on situated NLG has explored a range of different methods. Denis

(2010) presents a rule-based approach to GIVE which works by systematically elim-

inating distractor buttons until a unique reference to a target object is possible.

To achieve this, he makes use of the fact that referring expressions are not only

determined by context but also modify it. Benotti and Denis (2011b) present an

approach to GIVE based on corpus-based selection, which maps situations in the

GIVE environment directly to human descriptions. This technique works with few

or no annotations and therefore greatly reduces development costs. Also training

6 N. Dethlefs and H. Cuayáhuitl

from unannotated data, Chen, Kim and Mooney (2010) present a system that learns

to interpret and generate language based on pairs of action sequences and textual

descriptions of RoboCup games. A particular challenge is that the action sequences

are ambiguous in that not every action is described in the corresponding text. The

authors’ best performing system in terms of surface realisation was optimised for

precision by comparing generated system output against human-authored text. For

content selection, the authors train their generator using a variant of the EM al-

gorithm to estimate which events are worth including in a textual description and

which are not.

Using supervised learning for situated generation, Stoia, Shockley, Byron and

Fosler-Lussier (2006) use decision trees to learn content selection rules for noun

phrases in a situated generation setting. Similarly, Dale and Viethen (2009) and

Viethen, Dale and Guhe (2011) use decision trees to learn content selection rules

for referring expressions in spatial settings. Garoufi and Koller (2011a) use a plan-

ning approach to make a first set of content selection decisions and then apply

a maximum entropy model to resolve the remaining nondeterminacy with respect

to surface realisation. All of these approaches have demonstrated that supervised

learning is attractive for learning behaviour from a labelled corpus, discovering in-

terdependencies between choices and performing decision making based on human

behaviour. In contrast, based on the principle of assigning delayed rewards for a

sequence of actions, reinforcement learning is typically well suited for optimising

sequential decision making problems such as situated interaction. An example appli-

cation is an NLG system that needs to generate an effective and coherent sequence

of instructions. This principle is discussed in detail in Section 4.

3 Situated Natural Language Generation in the GIVE environment

Generation in situated settings typically requires the NLG system to adapt to

changing circumstances in its physical environment, such as new objects and spatial

configurations. In addition, we assume interaction with a constantly moving user,

so that the system needs to monitor their progress and keep them on track.

3.1 Generating Instructions in Virtual Environments (GIVE)

The GIVE task (Generating Instructions in Virtual Environments) involves two

participants, one instruction giver and one instruction follower, who engage in a

‘treasure hunt’ through a set of virtual worlds. The task can be won by finding

and unlocking a safe and obtaining a trophy from it. It can be lost by stepping

onto one of a number of red tiles and activating an alarm. To solve the task, the

instruction giver has to guide the instruction follower in navigating through a world,

and pressing a particular sequence of buttons. The sequence of buttons corresponds

to a code that will, if pressed in the correct order, unlock the safe and release the

trophy. There are also a number of distractor buttons present, though, which either

have no effect or trigger an alarm. In the original GIVE task (Byron et al., 2009;

Koller et al., 2010), the role of the instruction giver is taken by an NLG system of

Hierarchical Reinforcement Learning for Situated NLG 7

the kind that we will develop in the remainder of this article. The NLG system’s

action set includes navigation instructions, such as moving to the left/right, going

straight, or leaving the room. The system also generates referring expressions, which

need to be accurate in order to distinguish intended referents from their distractors.

To do this, the virtual worlds also contain a set of landmarks, such as plants or

furniture, which can be used as points of reference. The instruction follower, or

user, is restricted to a number of non-verbal actions. They can either move to the

front, left, right or back, or press a button. They can in addition ask for help by

pressing a help button or cancel the game by pressing escape. Note that even though

the user’s actions are confined to non-verbal behaviour, the task still resembles a

dialogue setting in that the user is able to react to any instruction that the system

produces. Figure 3 shows excerpts from three interactions between two humans

during the GIVE task.

3.1.1 The GIVE-2 corpus

The GIVE-2 corpus (Gargett et al., 2010) is a collection of (63 English and 45 Ger-

man) human-human dialogues on the GIVE task that was collected in a Wizard-

of-Oz study to shed light on the strategies that human instruction givers employ

when giving navigation instructions and referring expressions (REs) to their inter-

locutors. Participants in this scenario played three games in three different virtual

worlds. After the first game, they switched roles for the last two games.

To facilitate the automatic analysis of the GIVE corpus dialogues and to provide

our learning agent with information about the target domain, we annotated the

English set of dialogues according to the annotation scheme shown with an example

annotation in Figure 2. The annotations1 concern four areas: (1) the utterance itself

and its type, (2) the semantic choices of a referring expression, where the set of

spatial relations is taken from Bateman, Hois, Ross and Tenbrink (2010), (3) the

spatial environment, i.e. the situational setting in which an instruction is produced,

and (4) the user’s reaction to an instruction. The user reaction feature is key and

will play an important role in training the learning agent in Section 5.2.

3.1.2 Instruction types in the human data

As an example of the task our NLG system faces, consider the instruction sequences

of the GIVE corpus in Figure 3. All of these examples refer to the same situation,

but instruction givers still employ a range of fundamentally different instruction

giving strategies. Instructions differ in length, abstraction and semantic choices.

We group them here into three types. Each type is characterised by a number of

qualitative features discussed in the following.

The first instruction sequence guides the user by a high-level navigation strat-

egy. It makes explicit reference to the dialogue history and to locations that the

1 Available from http://www.macs.hw.ac.uk/~nsd1/Research_files/annotations.
zip [accessed August 31, 2013].

8 N. Dethlefs and H. Cuayáhuitl

Utterance
string=turn left and press the blue button left of the yellow, time=20:54:55

Utterance type
content=orientation,RE [straight, path, direction, destination, confirm, stop, repair]
navigation level=low [high]

Referring Expression
within dialogue history=true [false], within field of vision=true [false]
referent colour mentioned=true [false] , distractor colour mentioned=true [false]
mention distractor=true [false] , landmark mentioned=false [true]
spatial relation=lateral projection [none, distance, middle, proximal, functional
control, functional containment, non projection axial, frontal projection, vertical
projection]

Environment
number of landmarks=0 [1, 2, 3, more], number of distractors=1 [0, 2, 3, more]
discriminative colour referent=false [true], discriminative colour distractor=false

[true]

User
user position=on track [off track],
user reaction=perform desired action [perform undesired action, wait, request help]

Fig. 2. Sample annotation for a navigation instruction followed by a referring expression.

Alternative annotation values are given in square brackets behind the actual values. This

set of (possible) annotations defines our annotation scheme for the GIVE-2 corpus.

instruction follower has visited previously and is expected to remember (including

how to get there). This strategy makes use of the structure of the environment by

referring to doors, paths and rooms.

The second instruction sequence, in contrast, relies exclusively on guiding the

instruction follower by low-level navigation. Every required action is explicitly ver-

balised and there is no reference to the environmental structure or dialogue history.

High-level instructions represent contractions of low-level instructions.

The third instruction sequence, finally, lies in between the two extremes. While

it takes advantage of the environmental structure and visual information, there are

no references to the dialogue history. We call this mode of instruction giving mixed.

To design an NLG system that can solve the GIVE task, we will be concerned

mainly with the generation of the following six instruction types.

• Destination Instructions aim to guide a user to their next subgoal in the

virtual world, mainly by specifying the goal, rather than the way to the des-

tination. An example is Head back to the room with the plant.

• Direction Instructions indicate changes of direction to the user, such as Turn

left at the door.

• Orientation Instructions instruct the user to change their orientation. An

example is Turn 180 degrees left.

• Path Instructions serve to guide the user along a certain path, as in Follow

the corridor until you reach a door.

• Instructions to go straight aim to guide the user to go straight. An example

is Keep going straight.

Hierarchical Reinforcement Learning for Situated NLG 9

1.a
1.b

1.c

1.d

2.a

2.b

2.c

2.d

2.f
2.g

2.h

3.a

3.b

3.c

3.d 3.e

Fig. 3. Examples of instructions which can be categorised as high-level, low-level and

mixed instructions (all describing the same situation) taken from the GIVE corpus. The

arrows on the maps on the left show the route segment that is described in each instruction.

The instruction follower’s initial position is indicated by the person in the lower-left room.

• Referring Expressions are instructions to press a particular button, for exam-

ple, Push the red button to the left of the yellow.

The hierarchy of learning agents will make decisions at different level of granular-

ity to contribute to the generation of these six instruction types. While the agent’s

knowledge is partially informed by the annotations of the GIVE corpus, it is also

informed by linguistic knowledge that was obtained through manual analysis of the

domain. Note however that the route plan is provided by the GIVE client,2 which

informs the NLG system about the next (sub-)goal and about how to get there. It

also provides information about the user’s location, spatial objects and visibility.

2 http://code.google.com/p/give2/downloads/list [accessed August 31, 2013].

10 N. Dethlefs and H. Cuayáhuitl

In the end, though, the learning agent has to decide how much detail to provide to

the user and whether to realise route plans step-by-step or all at once.

4 A hierarchical optimisation approach for language generation

A central characteristic of RL-based approaches is that they typically specify ab-

stract system goals, such as help the user set up the broadband connection without

using words they do not understand and without unnecessary descriptions (Ja-

narthanam and Lemon, 2010), or help the user find a restaurant they like without

presenting every possible option to them, but still give them a good overview of the

choices (Rieser, Lemon, and Liu, 2010). The system is always just told what to

achieve, but not how to achieve it. It is then the learning agent’s objective to try

different strategies and discover the best. For our situated NLG task, we could say

that we wish the agent to guide the user to the nearest navigation (sub-)goal, e.g.

the next button to press, so that they get there as quickly as possible and obtain the

trophy with as few problems and confusions as possible.

4.1 Reinforcement learning

The goal of an RL agent is to map situations to actions in a goal-directed manner

so as to maximise a long-term, numeric reward signal. The computational model

underlying RL agents is the Markov Decision Process, or MDP (Sutton and Barto,

1998). A standard MDP can be defined formally as a four-tuple 〈S,A, T,R〉.

• S = {s0, s1, s2, . . . , sN} is a set of states that summarise all information,

present and past, that the agent needs in order to behave in its world of situ-

ations. It includes, for example, the status of the environment, such as present

objects and buttons, the user’s state of confusion or the next navigation ac-

tion to execute. States must allow the agent to monitor its progress in the

learning task at any time and observe the effects that its actions have. Thus

whenever the agent takes an action a in state s at time step t, the updated

state st+1 = s′ (at time step t+ 1) should represent the action’s effect on the

environment. In this way, the agent is able to learn from its experience.

• A = {a0, a1, a2, . . . , aM} is the set of actions available to the agent. It defines

the agent’s behavioural potential and forms the basis for decision making

and the principle of learning from trial and error. Example actions include

generating instructions such as turn left, mentioning the colour of a referent

or telling the user to stop.

• T is a probabilistic state transition function indicating the next state s′ from

the current state s and the action a. It represents the way in which an action

changes the current state of the world. T is represented by a conditional

probability distribution P (s′|s, a) satisfying
∑
s′∈S P (s′|s, a) = 1,∀(s, a). For

example, if the user has to press a particular button, this will be represented

with probability p for the state transition to the state with the right button

pressed, and probability 1 − p for transitioning to a different state due to a

wrong action (such as a wrong button pressed).

Hierarchical Reinforcement Learning for Situated NLG 11

• R is a reward function R(s′|s, a) specifying a numeric reward that an agent

receives for taking action a in state s. Rewards allow the agent to evaluate

its decision making process. The reward at time t + 1 is also denoted by r′.

Rewards provide the primary feedback mechanism for the agent.

The dynamics of an MDP can be described as follows. At the beginning of an

interaction between the agent and the environment, when the time step t = 0, the

agent receives a representation of the current situation, called the state st ∈ S. It

needs to perform an action at ∈ A. As a result, the agent will receive a reward

rt+1 ∈ R and observe the next state st+1 ∈ S, which is the updated environment

state. This process can be seen as a finite sequence of states, actions and rewards

{s0, a0, r1, s1, a1, ..., rt−1, st}. Any mapping from states to actions is called a policy.

Ultimately, the agent’s goal is to learn an optimal policy denoted by π∗, a mapping

from every state s to an action a that will yield the highest expected return. An

optimal policy can be found according to

π∗(s) = arg max
a∈A

Q∗(s, a), (1)

where Q∗ is the function of expected rewards for executing action a in state s

and then following π∗. For learning single-task NLG policies using flat RL, such

a function can be found using algorithms such as SARSA (Sutton, 1996) or Q-

Learning (Watkins, 1989), among others. See Sutton and Barto (1998) or Szepesvari

(2010) for a detailed account of the RL paradigm.

4.2 Hierarchical reinforcement learning

RL systems with large state spaces are affected by a problem referred to as the

curse of dimensionality, the fact that state spaces grow exponentially with the

number of state variables they take into account. When the state space grows

too large, the agent will not be able to find an optimal policy for a task, which

affects its practical application in large systems (such as many real-world systems

or the one we are designing for GIVE). The best one can do in such situations

is to provide an approximate solution, such as a divide-and-conquer approach to

optimisation. For this, we divide the generation task into several subtasks, which

have smaller state spaces and can therefore find a solution more easily. In other

words, we learn a hierarchy of policies for generation subtasks, rather than learning

one single policy for the whole task. An alternative way of dealing with the curse

of dimensionality is to use function approximation techniques (Henderson, Lemon,

and Georgila, 2005; Pietquin et al., 2011; Jurćıcek, Thompson, and Young, 2011),

which are not guaranteed to converge to optimal policies, though.

Any flat learning agent that is characterised by a single MDP can be decomposed

into a set of subtasks M i
j , where i and j are indexes that uniquely identify each

subtask in a hierarchy of subtasks such that M = {M0
0 ,M

1
0 ,M

1
1 ,M

1
2 , . . . ,M

X
Y }.

These indexes do not specify the order of execution of subtasks, because the order

of execution is subject to learning. Each subtask, or agent in the hierarchy, is defined

as a Semi-Markov Decision Process (or SMDP) M i
j =

〈
Sij , A

i
j , T

i
j , R

i
j

〉
, in which Sij

12 N. Dethlefs and H. Cuayáhuitl

= {s0, s1, s2, . . . , sN} is a set of states of subtask M i
j . A

i
j = {a0, a1, a2, . . . , aM} is

a set of actions of subtask M i
j that can be either primitive or composite. Primitive

actions are single-step actions as in an MDP and receive single rewards. Composite

actions are temporally-extended actions that correspond to other subtasks in the

hierarchy and are children of the current, their parent, subtask, such as referring

expression generation. Composite actions receive cumulative rewards.

The execution of a composite action, or subtask, takes a variable number of time

steps τ to complete which is characteristic of the SMDP model (and distinguishes

it from an MDP). The parent SMDP of a subtask passes control down to its child

subtask and then remains in its current state st until control is transferred back to

it, i.e. until its child subtask has terminated execution. It then makes a transition

to the next state s′. T ij is a probabilistic state transition function of subtask M i
j ,

and Rij is a reward function Rij(s
′, τ |s, a) for subtask M i

j that specifies the reward

that the agent receives for taking action a ∈ Aij (lasting τ time steps) and making

a transition from state st to state st+τ ∈ Sij . Discounted cumulative rewards of

composite actions are computed according to rt+1+γrt+2+γ2rt+3+ · · ·+γτ−1rt+τ ,

where γ is called the discount rate, a parameter which is 0 ≤ γ ≤ 1 and indicates

the relevance of future rewards in relation to immediate rewards. As γ approaches

1, both immediate and future rewards will be increasingly equally valuable. The

equation for optimal hierarchical action selection is

π∗ij(s) = arg max
a∈A

Q∗ij(s, a), (2)

where Q∗ij(s, a) specifies the expected cumulative reward for executing action a in

state s and then following π∗ij . For learning hierarchical NLG policies, we use the

HSMQ-Learning algorithm (Dietterich, 2000), a hierarchical version of Q-Learning.

During policy learning, Q-values are updated according to the following update rule

(Sutton and Barto, 1998, p. 37)

NewEstimate← OldEstimate+ StepSize [Target−OldEstimate] . (3)

Using the notation above, this corresponds to

Qij(s, a)← Qij(s, a) + α
[
r + γτ max

a′
Qij(s

′, a′)−Qij(s, a)
]
, (4)

where α is a step-size parameter. It indicates the learning rate which decays from

1 to 0, for example as in α = 1/(1 + visits(s, a)), where visits(s, a) corresponds

to the number of times that the state-action pair (s, a) has been visited previous

to time step t. Please see Cuayáhuitl (2009), p. 92, for its application to spoken

dialogue management, and Dethlefs and Cuayáhuitl (2010) for an application to

NLG besides this journal.

5 Training and learning setting

Section 4 has provided an abstract description of hierarchical RL, which we will

now apply to situated NLG. We will first design the state and action space for our

hierarchical reinforcement learner for the GIVE task. This will be a linguistically-

informed knowledge engineering task. We will then define a simulated environment

Hierarchical Reinforcement Learning for Situated NLG 13

Virtual World

User Knowledge

Base (estimated)
Agent Know-

ledge Base

Simulated User

 Behaviour

 NLG

Strategy

Generation environment

Agent behaviour

user

state

user

action

world

state

Fig. 4. Illustration of the interaction between the learning agent (upper box) and its

learning environment (lower box). Within the learning environment, three types of infor-

mation are considered: (1) the knowledge base of the agent, (2) the virtual world and (3)

information about the user, such as the user’s knowledge base and behaviour.

and reward function and train the hierarchical learner in a set of training navigation

worlds.

5.1 The hierarchy of learning agents interacting with the environment

This section will provide details of the knowledge engineering involved in applying

hierarchical RL to GIVE. We first explain how the learning agent interacts with its

environment during training (and execution) and then define a hierarchy of learning

agents specifically for GIVE.

5.1.1 Interaction with the environment

An illustration of the agent-environment interaction, as required during learning or

execution of the learning agent, is shown in Figure 4. The agent’s behaviour, rep-

resented by the upper box, is following a policy π∗, which indicates the best action

for a given state at time t, amt = π∗(smt). Here, m stands for machine. This action

is passed to the generation environment, where its effects on the user and the

virtual world are observed and represented in the updated state smt+1. Interaction

with the generation environment is the main contributor to the agent’s learning

process. It contains three types of information: information concerning the knowl-

edge base, the virtual world and the user. The agent’s knowledge base contains

all knowledge held by the agent about the virtual world, the user and the current

generation state and history. From here, knowledge is also distributed to different

learning agents and enters their state representation. The virtual world contains

objects of the world, such as buttons and objects as well as the user’s concrete

14 N. Dethlefs and H. Cuayáhuitl

Root

Reference Navigation

 Button

Reference
Utterance

Planning
Low-level High-levelRepair

 Referring

Expression
Destination Direction Orientation Path Straight

Fig. 5. Hierarchy of learning agents for content selection (solid lines), utterance planning

(dashed lines) and surface realisation (dotted lines) of navigation and referring expression

generation. The arrows indicate the flow of control as it is passed down from parents to

child agents. The agents are indexed by their policies π0
0 . . . π

3
5 for SMDPs M0

0 . . .M
3
5 .

position and angle in the world. During training, this knowledge is estimated from

the simulated environment (see Section 5.2), during execution it is taken directly

from the GIVE environment and planner.3 Knowledge of the virtual world is passed

to the agent’s knowledge base as the world state wt so that it can be taken into

account for action selection. In return, the current agent state smt is passed back

to the virtual world so that it can be taken into account for updates to the world.

The user’s knowledge base contains all knowledge about the virtual world that

the user has gained. For example, if the user has pressed a certain button or visited

a particular room previously, we assume that the user is now familiar with these

objects. Such user knowledge can only be estimated since we can never be certain

about the user’s knowledge. The simulated user behaviour is the agent’s main

way of learning about the user’s current state, such as whether the user is confused

or not, and to evaluate its own action policies. User behaviour is classified into four

actions: perform desired action, perform undesired action, wait and request help.

Since the user cannot communicate verbally in GIVE, this limited action reposi-

tory provides a sufficient notion of the user’s state. The user state sut is passed to

the action simulator from the user’s knowledge base so that actions can be esti-

mated based on the user’s knowledge. User actions aut produced by the simulator

(or the actual user during a game) are communicated back to the knowledge base

as updates.

Hierarchical Reinforcement Learning for Situated NLG 15

So

S1

S2 S3 S4

S5

S6

S7 S8 S9 S10

S11

S12

S13

ao

a1

a2 a3 a6

a5

a8a7 a9

Root

Navigation

Utterance Plan High-Level

Destination

Fig. 6. This hierarchy of state-action sequences shows the high-level dynamics of states,

actions and transitions for an example generation episode for a high-level navigation in-

struction. The empty circles represent generation states (s0=initial state, s13=final goal

state), the dark (blue) circles represent composite actions, the light (green) circles repre-

sent primitive actions, and the dotted arrows represent state transitions across learning

agents. The low-level details of this example are given in Appendix B.

5.1.2 The hierarchy of learning agents

As a more concrete description of how knowledge and actions are passed between

agents, Figure 5 shows the hierarchy of learning agents we designed for the GIVE

task. It comprises 14 different agents whose policies can be roughly categorised

as tasks of content selection (π0
0 , π1

0 , π1
1 , π2

0 , π2
2 , π2

3 and π2
4), utterance planning

(π2
1) and surface realisation (π3

0...5). Note that information is always passed between

learning agents in the form of state updates that follow user or system actions.

Content selection is responsible for all semantic decisions made by the learning

agent, such as whether to choose a high- or low-level navigation strategy, whether

to mention a referent’s colour or not, etc. Utterance planning focuses on how

to organise semantic content into a distinct set of messages. For example, should a

set of instructions be aggregated or presented separately, what thematic structure

should be used, etc. Surface realisation finally chooses a realisation for the ut-

terance from a set of candidates (Section 5.3) for our six instruction types. For a

joint optimisation, these 14 agents would share certain knowledge variables among

them. This shared knowledge is pre-defined by the system designer and gives us

the opportunity to optimise subtasks jointly rather than in isolation. It allows the

learning agents to consider different types of decisions interdependently that affect

the trade-off between detail and efficiency in situated interaction. At the same

time, it preserves the benefits of a modular architecture.

3 http://code.google.com/p/give2/downloads/list [accessed September 3, 2013].

16 N. Dethlefs and H. Cuayáhuitl

Generation always begins with the root agent M0
0 (indexed by its policy π0

0)

which has the option of taking primitive actions or invoke composite actions of

reference or navigation. In the latter case control is passed to a child subtask, agent

M1
0 for reference or agent M1

1 for navigation, respectively. The flow of control is

indicated by the arrows in Figure 5. During the process of generating an utterance,

control is passed between agents, such as from parent to child when a subtask is

called, and from child back to parent once a subtask has terminated. Whenever

control is transferred back to the root agent, an episode has been completed and

execution terminates. One episode (from state s0 to state sT) corresponds to one

utterance. Figure 6 illustrates the passing of control between agents during a gen-

eration episode. In this case, a destination instruction is generated, which uses a

high-level navigation strategy. In addition, an utterance plan is needed which spec-

ifies how the instruction fits in with other instructions.

While this figure only provides a high-level example, please see Appendix B

for all details and individual actions and state transitions. The complete state-

action space of the hierarchical learning agent has a size of
∑
i,j |Sij × Aij | =∑

i,j

[
(
∏
k(i,j) |fk(i,j) |)× |Aij |

]
= 1, 480, 869.4 Here, (i, j) represents an agent in

the hierarchy, fk(i,j) represents the feature set of agent (i, j) and k refers to features

k in agent (i, j). In contrast, a flat agent using the same states and actions would

have the (very large) state-action space of |S × A| = (
∏
k |fk|) × |A| = 3 × 1057,

indicating the advantage of using a hierarchical decomposition for more scalable

decision making. The complete state-action space of the hierarchical agent (and

the pre-specified shared knowledge variables for a joint optimisation) are given in

Appendix A.

5.2 The simulated environment

Typically, a reinforcement learning agent needs to be exposed to a large number

of interactions during training to learn an optimal policy. Since it is impractical

to use real users for these interactions, we use a simulated environment instead

and estimate it from our annotations of the GIVE corpus. Our goal is to simulate

different spatial surroundings in which the agent can try a multitude of action

strategies in order to learn an optimal one by trial and error. The effect of each

action will be simulated in the form of a user reaction from among Y ={perform

desired action, perform undesired action, wait, request help}. Users in our training

data were generally cooperative so that a good system action strategy always results

4 The detailed calculation involves computing the sum over all possible state-action pairs
per agent. For the agents specified in Appendix A, this is (2 × 2 × 5 × 5 × 3 × 5) +
(2 × 2 × 3 × 5 × 2 × 2 × 2 × 2 × 5) + (2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 5 × 2 ×
2 × 2 × 2 × 2 × 14) + (2 × 2 × 2 × 4 × 4 × 5 × 9 × 3 × 18) + (3 × 2 × 2 × 3 × 2
× 5 × 2 × 2 × 3 × 2 × 5) + (2 × 3 × 2 × 2 × 2 × 3 × 2 × 3 × 6) + (3 × 2 × 2 × 2
× 4 × 2 × 2 × 4) + (4 × 7 × 4 × 8 × 3 × 19) + (3 × 5 × 4 × 7 × 3 × 15) + (5 × 4
× 3 × 3 × 9) + (5 × 7 × 7 × 7 × 3 × 23) + (6 × 5 × 5 × 3 × 13) + (2 × 2 × 3 × 4
× 2 × 5 × 2 × 2 × 3 × 10) + (2 × 2 × 2 × 3 × 3), in the order in which the agents
appear in Appendix A. In the non-hierarchical RL case, numbers have to be multiplied
instead of summed, because no hierarchical decomposition applies.

Hierarchical Reinforcement Learning for Situated NLG 17

in the user performing the desired action. All other user reactions indicate a non-

optimal system action.

Our simulated environment is based on two Naive Bayes classifiers, one for simu-

lating user reactions Y (the classes) to referring expressions and one for simulating

user reactions to navigation instructions. We use two separate classifiers rather

than one because different feature sets are relevant for each system action type. For

simulating user reactions to referring expressions, we use the following features X:

• discriminating colour referent x0 ={true, false}, indicates whether the

referent’s colour is uniquely identifying or not,
• discriminating colour distractor x1 ={true, false}, indicates whether any

of the distractor’s colours are uniquely identifying or not,
• number of distractors x2 ={0, 1, 2, 3, more}, indicates the number of

distractors present, if any,
• number of landmarks x3 ={0, 1, 2, 3, more}, indicates the number of

landmarks present, if any,
• is visible and near x4 ={true, false}, indicates whether the referent button

is near and visible to the user (the conditions to press a button),
• referent colour mentioned x5 ={true, false}, indicates whether the sys-

tem’s instruction included the colour of the referent, and
• within dialogue history x6 ={true, false}, indicates whether the button is

already in the dialogue history, e.g. because it has been pressed before.

For simulating user reactions to navigation instructions, we use the following fea-

tures Z:

• number of landmarks z0 ={0, 1, 2, 3, more}, indicates the number of land-

marks present, if any,
• is visible and near z1 ={true, false}, indicates whether the button is visible

and near (or whether we need to navigate further towards it),
• navigation level z2 ={high-level, low-level}, indicates whether the system’s

instruction was a high- or low-level type instruction,
• navigation content z3 ={destination, direction, orientation, path,

straight}, indicates the type of navigation instruction generated, and
• within dialogue history z4 ={true, false}, indicates whether the next tar-

get (a button, room or other object) is already in the dialogue history.

Using these feature sets, we predict user reactions from our annotations of the

GIVE corpus by sampling from the distribution P (Y |X) for referring expressions,

and by sampling from P (Y |Z) for navigation instructions. All features describ-

ing the environment, such as the number of buttons or landmarks present, were

simulated from unigram language models estimated from the GIVE corpus. These

features were simulated with the same distribution as they occur in the GIVE cor-

pus, but deliberately so that the agent would encounter as many different settings

as possible and not be restricted to the GIVE worlds5 shown in Figure 7.

5 The worlds of the GIVE corpus, used for training, can be downloaded from http://
www.give-challenge.org/research/page.php?id=software [accessed April 22, 2013].

18 N. Dethlefs and H. Cuayáhuitl

Trophy Trophy TrophyUser User User

Fig. 7. Illustration of the training worlds that are the basis of the simulated environment.

All worlds require skills for navigation and disambiguation at a medium level of difficulty.

To train our classifiers, we used the Weka toolkit (Witten and Frank, 2005)6, and

evaluated our classifiers in a ten-fold cross validation. For referring expressions, our

classifier achieved an accuracy of 78% and for navigation instructions an accuracy

of 86%, yielding an average of 82%. As a baseline, a ZeroR (majority class) classifier

yields an average accuracy of 69% by always voting for the most likely option.

5.3 A three-dimensional reward function

We use a reward function with three dimensions for optimisation: (1) one for achiev-

ing maximal user satisfaction, (2) one for rewarding human-like surface realisation

decisions and (3) one for optimising the proportion of alignment and variation in

system utterances. Each of them will be discussed in turn.

5.3.1 Dimension 1: User satisfaction

The first dimension aims to maximise user satisfaction. According to the PAR-

ADISE framework (Walker et al., 1997; Walker, Kamm, and Litman, 2000), the

performance of a (spoken) dialogue system can be modelled as a weighted function

of task success and dialogue cost measures (e.g., number of turns, interaction time,

etc.). We argue that PARADISE is also useful to assess the performance of an inter-

active NLG system, since both objective measures (e.g., task success) and subjective

measures (e.g., ease of understanding) seem equally relevant for NLG systems in

situated contexts. To identify the strongest predictors of user satisfaction (US) in

situated dialogue and NLG systems, we performed an analysis of subjective and

objective dialogue metrics collected with an indoor wayfinding system, based on

PARADISE (Dethlefs et al., 2010) . We used a graded task success (GTS) metric

(Tullis and Albert, 2008), rather than a binary (success=1 / failure=0) metric, so

as to be more sensitive to problems that users experienced during navigation. This

metric assigns different numerical values depending on the problems that users en-

6 www.cs.waikato.ac.nz/ml/weka/ [accessed September 1, 2013]

Hierarchical Reinforcement Learning for Situated NLG 19

countered. It is defined as follows, where FTL means “finding the target location”.

GTS =

1 for FTL without problems

2/3 for FTL with small problems
1/3 for FTL with severe problems

0 other.

In order to identify the relative contribution that different factors have on the

variance found in user satisfaction scores, we performed a standard multiple linear

regression analysis on our data. Results revealed that the metrics ‘user turns’ and

‘graded task success’ were the only predictors of user satisfaction at p < 0.05. The

binary task success metric was not significant (p < 0.39). Based on this, we ran a

second analysis using only those variables that were significant predictors in the first

regression analysis, i.e. graded task success and the number of user turns (which

are negatively correlated). We obtained the following performance function:

Performance = 0.38N (GTS)− 0.87N (UT), (5)

where 0.38 is a weight on the normalised value of GTS and 0.87 is a weight on the

normalised value of UT (the number of user turns).7 Using this reward function, our

learning agent is rewarded for short interactions (as few user turns as possible) at

maximal (graded) task success. User turns correspond to user reactions following

system instructions. They are estimated from the simulated environment. If the

user reacts positively (carries out the instructions), task success is rated with 1; if

they hesitate once, it is 2/3, if they hesitate more than once it is 1/3 and if they get

lost (carry out a wrong action), it is 0. In this way, the agent receives the highest

rewards for the most efficient utterance followed by a positive user reaction. This

reward function is used by all agents M0
0 . . .M

2
4 dealing with content selection and

utterance planning. Rewards are assigned after each system instruction and the

user’s reaction (i.e. whenever an agent of M0
0 . . .M

2
4 has reached its goal state).

The learning algorithm propagates this reward back to all agents that contributed

to the decisions that led to the generated instruction.

5.3.2 Dimension 2: Naturalness

The second dimension focuses on surface realisation performed by agents M3
0...5. We

have decided to base surface realisation decisions based on probabilities of surface

forms as they occur in the GIVE corpus and use these probabilities as rewards to

inform the agent’s learning process. While in this particular case we use Bayesian

Networks to represent probabilistic generation spaces per instruction type (for des-

tination, direction, orientation, path, ‘straight’ and referring expression), nothing

depends on the model chosen. Any surface realiser that is able to return a proba-

bility given a surface form would be suitable, including n-gram language models.

7 We normalised all values to account for the fact that they can be measured on different
scales according to N (x) = x−x̄

σx
, where σx corresponds to the standard deviation of x.

20 N. Dethlefs and H. Cuayáhuitl

Please see Dethlefs and Cuayáhuitl (2011) for the details of how our Bayesian Net-

works were trained and Dethlefs and Cuayáhuitl (2012) for a comparison with other

graphical models.

For generating natural surface forms, the agent’s rewards will be based on the

probability of the word sequence it has generated. This means that having generated

word sequence w0 . . . wn, it will receive the probabilistic reward Pr(w0...wn). In

Bayesian Networks, this reward can be obtained through probabilistic inference,

according to

Surface String Probability = Pr(w1 . . . wn|e), (6)

where w1 . . . wn refer to individual words, and e can correspond to non-linguistic

context derived from the interaction history. For example, if we wanted to com-

pute the probability of the sentence go to the sofa, this can be expressed as

Pr(verb=go, prep=to, relatum=the sofa|e).

5.3.3 Dimension 3: Balancing alignment and variation

The third dimension of the reward function aims to balance the proportion of align-

ment and variation in a natural and human-like fashion. It is used by the surface

realisation agents M3
0 . . .M

3
5 . From the human GIVE data, it was observed that

instruction givers tend to self-align with their own utterances and vary them in an

about equal fashion. An example of this is provided in Table 1. The aligned phrases

here are shown in bold-face and the number of instructions intervening between

aligned instructions are given in parentheses. In the first example, the instruction

giver uses the phrase you want with high frequency and across instruction types.

The phrase per se has a rather low frequency in the corpus on the whole (1.8% of

all verbs). In the second example, the instruction giver produces referring expres-

sions almost exclusively using the verbs click (33.3% in this dialogue and 33% in

the entire corpus) and hit (66.6% in this dialogue, 6.6% in the corpus). We can

see that human instruction givers do not only self-align with their own utterances,

but they also introduce a significant amount of variation, possibly to reduce the

repetitiveness of their utterances.

We will not investigate the question here of why variation (or alignment) occurs

in human discourse, but see Levelt (1989), Belz and Reiter (2006) and Foster and

Oberlander (2006) for some hypotheses. Rather we will take the stance that if it

occurs as ubiquitously as we have observed in our human data, then it should be part

of the agent’s learning objectives. Therefore, we define a constituent alignment score

(CAS) which indicates the proportion between alignment and variation for each

constituent in the discourse. It is computed as CAS = Lexical Tokens in Discourse

/ Total Number of Tokens, which yields a number in the range of [0 . . . 1]. Please see

Dethlefs and Cuayáhuitl (2010) for details of this computation and its background.

We would like our agent to generate utterances so that the CAS for each utterance

is as close to 0.5 as possible. To achieve this, we assign each generated utterance

a probabilistic reward sampled from a Gaussian distribution. In probability theory

this has a probability density function defined as f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , where µ

Hierarchical Reinforcement Learning for Situated NLG 21

Examples of Alignment in the GIVE Corpus

(1) Lexical Alignment Across Instruction Types

. . . (15 instructions) . . .

great, you want to press that green button . . . (1 instruction) . . .

you want to press the yellow on the wall to the left first . . . (3 instructions) . . .

you wanna get that red button . . . (1 instruction) . . .

now you want to get the blue button . . . (9 instructions) . . .

you want to exit the room you are in . . . (17 instructions) . . .

you want to keep going straight but to the left . . . (25 instructions) . . .

okay you want to take a left . . . (13 instructions) . . .

(2) Lexical Alignment in Referring Expressions

ok, hit the blue button on the wall behind you . . . (11 instructions) . . .

click the green button . . . (1 instruction) . . .

click the yellow button on the wall

now click the red button directly behind you . . . (1 instruction) . . .

now hit the blue one directly next to the yellow one

ok, hit the other red button, closer to the opening . . . (4 instructions) . . .

hit the green button near the couch . . . (1 instruction) . . .

and hit the red button . . . (4 instructions) . . .

hit the yellow button . . . (7 instructions) . . .

Table 1. Examples of (self-)alignment in the GIVE corpus. In the first example, the

instruction giver uses the phrase you want with high frequency and across instruc-

tions. In the second example, the instruction giver uses exclusively the verbs click

and hit in their referring expressions. The number of intervening instructions are

shown in parentheses behind each instruction.

refers to the mean and σ2 refers to the variance. The right-hand side of this equation

is also commonly denoted as N (x|µ, σ2) so that the probability density function

that we use for the sampling of rewards can be defined as:

P (CAS) ≈ N (CAS|µ, σ2), (7)

where in our case we used a mean of µ = 0.5, a variance of σ = 0.2. A CAS score

in the range [0 . . . 1] indicates the proportion of alignment and variation.

22 N. Dethlefs and H. Cuayáhuitl

5.3.4 Bringing all dimensions together

For the final experiments, we can bring all dimensions of the reward function to-

gether by summing rewards whenever more than one applies.8 For example, at the

end of an utterance (upon reaching the goal state), usually the reward for the Per-

formance of the utterance will apply, the reward for the Surface String Probability

and the reward for Alignment Variation. Accordingly, the reward for the utterance

can be computed as

Reward = Performance + Surface String Probability + P (CAS). (8)

For all dimensions and agents, a reward of −1 is assigned for every action in the

hierarchy so as to prevent the agent from choosing actions multiple times and

entering into loops. For example, it could happen that an agent chooses an action

repeatedly that has yielded a positive reward in the past (such as choosing a surface

realisation for the verb), even though it does not change the state of the environment

anymore and instead fails to take other relevant actions (such as choosing a surface

realisation for the direction). A small negative reward for repeated actions that do

not change the state of the environment can therefore prevent such loops.

6 Evaluation

In this section, we will evaluate our hierarchical learning framework both in simula-

tion and in a human evaluation study. We will focus particularly on a comparison of

a joint generation policy, with shared knowledge, and an isolated generation policy.

A brief comparison with state-of-the-art approaches for GIVE is also provided.

6.1 Simulation-based evaluation

Using simulation, we have trained two policies, a joint policy and an isolated policy.

A qualitative analysis after 150 thousand training episodes reveals the following

learnt behaviour. Figure 8 compares the average rewards (averaged over ten runs)

of (a) a jointly optimised policy, i.e. using shared knowledge, and (b) an isolated

policy, using no shared knowledge. We can see that a joint optimisation achieves

higher overall rewards over time. An absolute comparison of the average rewards

(rescaled from 0 to 1) of the last 1000 training episodes of each policy shows that

the joint behaviour improves the isolated behaviour by 34% (p < 0.0001).

The joint policy has learnt to prefer high-level navigation over low-level naviga-

tion, but switch the navigation strategy when the user gets confused. It uniquely

identifies a referent button by preferring the use of a discriminating colour, and

otherwise (if neither the referent nor a distractor has a discriminating colour) use

either a spatial relation, a distractor or a landmark (in this order of preference). If

a distractor is used, the referent is located in relation to it, such as Press the yellow

8 This relies on the assumption that all rewards have equal weight with respect to the
overall performance. Experimentation with different weights are left for future work.

Hierarchical Reinforcement Learning for Situated NLG 23

10
2

10
3

10
4

10
5

−35

−30

−25

−20

−15

−10

−5

A
v
e
ra

g
e
 R

e
w

a
rd

Episodes

Joint

Isolated

Fig. 8. A comparison of average rewards attained by the joint policy, using shared

knowledge, and the isolated policy, using no shared knowledge, over time.

Table 2. Sample dialogue using the jointly optimised policy. The system starts using

a high-level navigation strategy, and then switches to low-level as the user gets

confused. Eventually it switches back to high-level.

No. Conversant Utterance

1 USR starts game: ‘How do I get to the trophy?’
2 SYS Go until the end of the hall and turn to the right.
3 USR hesitates (i.e., waits for more than four seconds)
4 SYS Turn 90 degrees right, then go straight.
5 USR executes instructions
6 SYS Now go until the end of the corridor and turn left.
7 USR executes instructions
8 SYS Good! Now walk to the red button left of the blue.
9 USR executes instructions
10 SYS Click the red button.
11 USR performs desired action: presses red button
12 SYS Very good.

button beside the blue. In addition, it will use composite presentations for at most

two instructions (and aggregate them) and incremental displays otherwise. It has

learnt to use temporal markers for more than three instructions. Finally, the agent

has learnt to balance the trade-offs of variation and alignment while still acting in

accordance with the language model.

Tables 2 and 3 show example interactions (from simulation) with the joint and

isolated policy, respectively. These dialogues illustrate the importance of graded

task success: while both users are successful in the end, the user of the jointly

24 N. Dethlefs and H. Cuayáhuitl

Table 3. Sample dialogue using the isolated policy. The agent prefers efficient in-

struction giving. It uses high-level navigation and aggregates utterances where pos-

sible. In terms of repair, only the immediately preceding utterance is repaired.

No. Conversant Utterance

1 USR starts game: ‘How do I get to the trophy?’
2 SYS Go to the end of the hall and then turn left.
3 USR hesitates (i.e., waits for more than four seconds)
4 SYS Turn 90 degrees right, go straight and go down the corridor.

Then turn left.
5 USR turns right, requests help
6 SYS Go to the end of the hall and then turn left.
7 USR undesired action: turns left
8 SYS Wait! Go back, then straight and then follow the corridor.
9 USR executes instructions
10 SYS Very good. Now go to the red one left of the blue and

click the button.
11 USR undesired action: presses blue button
12 SYS No, not this one! I meant the other button. Click it.
13 USR hesitates (i.e., waits for more than four seconds)
14 SYS Click the red.
15 USR performs desired action
16 SYS Very good.

optimised dialogue is likely to have a substantially higher user satisfaction than the

user interacting with the isolated system. We can also see that utterances in the

isolated case are on average longer and seem to balance efficient instruction giving

and the user’s cognitive load less optimally than the joint policy.

6.2 Task-based evaluation

In this section, we compare our jointly optimised policy with a policy optimised in

isolation in a human evaluation study. We formulate the hypothesis that the sharing

of knowledge across generation subtasks can lead to more successful interactions

with fewer problems that are more positively perceived by human users.

6.2.1 Experimental methodology

We use objective and subjective metrics based on the PARADISE framework

(Walker et al., 1997) for evaluating dialogue systems in order to evaluate our sys-

tems for the GIVE task. Table 4 gives an overview of the objective metrics that

we use to evaluate the two system versions, jointly optimised and optimised in iso-

lation. Under the category interaction efficiency, we find metrics such as the time

that an interaction took, the number of system turns and system words, and the

number of user turns (we count as user turns help requests or hesitations that last

Hierarchical Reinforcement Learning for Situated NLG 25

Table 4. Objective metrics that were logged during interactions.

Objective Metric Description

Interaction Efficiency
(O1) Elapsed time (mm:ss) How long was the interaction?
(O2) System turns How many system turns?
(O3) System words How many system words overall?
(O4) System words per turn How many system words per turn?
(O5) User turns How many user turns (help requests, hesitations)?

Interaction Quality
(O6) User help requests How many user help requests?
(O7) User hesitations How many user hesitations?
(O8) User false actions (all) How many false user actions overall?
(O9) User false actions (navigation) How many false user navigation actions?
(O10) User false actions (REs) How many false user manipulations?

Task Success
(O11) Binary Task Success Was the game won or lost?
(O12) Graded Task Success Was the game won without problems, with

small problems, with severe problems or lost?

longer than a pre-specified threshold of 4 seconds). Under the interaction quality

category, we count the number of user help requests and user hesitations (the sum

of which corresponds to the ‘user turns’ metric under interaction efficiency), the

number of false user actions overall, the number of false user navigation actions,

and the number of false user manipulation actions (i.e., false button presses). The

‘false user actions overall’ metric corresponds to the sum of false navigation and

manipulation actions. Finally, under the category task success, we distinguish av-

erage binary task success (won or lost) from average graded task success (GTS)

which penalises task difficulty in different ways, as defined in Section 5.3.1.

Binary task success is always 1 if a game was won (regardless of the number of

problems) and 0 if it was lost. For graded task success, we assume that every user

hesitation or help request indicates a problem, and assign the value of 2/3 (small

problems) for more than five user turns, the value of 1/3 (severe problems) for more

than ten user turns, and the value of 0 for a lost game. The objective metrics were

designed based on PARADISE, but tailored specifically to our scenario, so as to

measure the success of instructions in a situated interaction scenario. Results of the

objective metrics were induced automatically from log files.

Table 5 shows the subjective metrics we use to evaluate the user satisfaction of our

two systems. While questions Q1-Q6 are taken almost directly from PARADISE,

questions Q7-Q10 were included to test some specifics of our situated NLG scenario.

These metrics were obtained through questionnaires that participants were asked

to fill after each game they played.

26 N. Dethlefs and H. Cuayáhuitl

Table 5. Subjective metrics and the questions that were asked to obtain them.

Subjective Metric Question

(Q1) Easy to Understand Was it easy to understand the system?
(Q2) Task Easy Was it easy to find the trophy?
(Q3) Interaction Pace Was the speed of the interaction okay?
(Q4) What to Do Did you know at each moment what to do?
(Q5) Expected Behaviour Did the system work as you expected it to?
(Q6) Future Use Would you use this system in the future?
(Q7) Appropriate Help Did the system help you appropriately when you needed it?
(Q8) Enjoy Game Did you enjoy the game?
(Q9) Recommend to Friend Would you recommend the system to a friend?
(Q10) Naturalness Was the language of the system natural (non-robotic)?

6.2.2 Experimental setup

Setting and Participants We compare two systems for the GIVE task in a human

evaluation study involving 19 participants, 79% (15 out of 19) female and 21% (4

out of 19) male, with an age average of 24.5.9 The two systems to be compared

generated instructions for the GIVE task in three different worlds, which were

chosen to be different from the training worlds, in order to assess the generalisability

of our learnt policies. We thus used the hierarchy of policies that was trained in the

training worlds and evaluated them in the evaluation worlds (rather than training

a separate hierarchy of policies specifically for the evaluation worlds). The learnt

NLG policy was therefore environment-independent. Future work can in addition

investigate how policies can be adapted during interactions via online learning.

In the evaluation, one system used a jointly optimised policy, the other system

used a policy that was optimised in isolation. Participants were asked to play three

games. They were chosen so as to ensure that each participant played with at least

one jointly optimised system and one system optimised in isolation. Apart from

this condition, systems were chosen randomly from a uniform distribution.

Evaluation worlds For the human evaluation, we used the virtual worlds from the

official GIVE challenge 2.510 of 2011 (Striegnitz et al., 2011). They are shown in

Figure 9. While the main skills required in the training worlds (cf. Figure 7) were

navigation and disambiguation of a medium level of complexity, the evaluation

worlds require a range of different skills. While evaluation world 1 was designed to

9 While we cannot exclude the possibility that the strong gender bias had an impact on
our results, both GIVE challenges were faced with a similar situation. GIVE-2 had 79%
of male participants, while GIVE-2.5 was slightly more balanced with 58%. Despite
the gender bias found in both evaluations, no significant effect on task success or the
subjective metrics was found in either evaluation.

10 http://www.give-challenge.org/research/page.php?id=give-2.5-index [accessed
April 22, 2013]

Hierarchical Reinforcement Learning for Situated NLG 27

Trophy User
Trophy User Trophy User

Fig. 9. Illustration of the evaluation worlds. World 1 is most similar to the training worlds

in that it requires navigation and disambiguation skills at a medium level of difficulty.

World 2 is focused on referring expression generation and World 3 on complex navigation.

be similar to the training worlds, evaluation world 2 focuses on referring expressions.

A large number of same-coloured buttons are located close to each other in different

spatial arrangements so that disambiguation becomes a challenge. Evaluation world

3 requires sophisticated navigation skills in all rooms, especially in a maze-like

corridor in which users can quickly lose orientation or a room full of alarm tiles

where any wrong step may cause the alarm to be triggered. Finally, it includes a

room with many small rooms that require precise navigation.

6.2.3 Experimental results

Following the human evaluation study, we analysed the results in order to draw

conclusions with respect to the effects that a joint or an isolated optimisation has

on interactions and user satisfaction. Overall, the analysis is based on 57 games.

Objective metrics Table 6 compares average results (with their corresponding stan-

dard deviations) for the joint and the isolated setting and shows the p-values indi-

cating the significance of the comparison between both settings. We can see that

the jointly optimised system performs better than the system that was optimised

in isolation according to almost all metrics. It produces shorter interactions using

fewer words and turns and causes fewer user turns and hesitations and higher task

success. The key findings can be summarised as follows.

• The isolated policy produces significantly more system words (O3) than the

joint policy (p < 0.04). This difference could be interpreted as a suboptimal

balance between efficiency and detail in instructions. When the joint policy

is able to achieve an equal (or higher) task success using fewer words, the

isolated policy most likely included redundant detail.

• The isolated policy produces significantly more system words per turn (O4)

than the joint policy (p < 0.0001). This difference again points to a suboptimal

balance of choosing or organising utterance contents. The cognitive load that

is imposed on the user during an interaction is increased with the number of

system words per turn that the user needs to keep in mind. (Unnecessarily)

long utterances can therefore lead to user confusions and affect task success.

28 N. Dethlefs and H. Cuayáhuitl

Table 6. Results for the objective evaluation metrics per policy for the joint and the

isolated setting. The objective metrics are organised into three groups, interaction

efficiency (EFF) (the lower values, the better), interaction quality (QUA) (the lower

values, the better) and task success (TS) (the higher values, the better). Numbers

in the third and fourth column refer to averages (per game) and are given together

with their standard deviations. The final column shows p−values for the comparison

obtained with a paired t-test. The best result per metric is indicated in bold-face.

Objective Metric Joint Isolated p−val.

EFF

(O1) Elapsed Time (mm:ss) 11:40 ± 5:54 13:19 ± 4:56 0.28
(O2) System turns 314.5 ± 151.3 330.2 ± 80.6 0.7
(O3) System words 3025.3 ± 1522 3887.7 ± 1271 0.04
(O4) System words per turn 9.6 ± 1.3 12.1 ± 1.5 0.0001
(O5) User turns 20.7 ± 14.0 22.2 ± 8.7 0.7

QUA

(O6) User help requests 2.4 ± 3.0 2.0 ± 1.4 0.6
(O7) User hesitations 18.4 ± 12.6 20.3 ± 8.7 0.5
(O8) User false (all) 21.4 ± 15.5 19.3 ± 6.9 0.6
(O9) User false (navigation) 11.0 ± 7.6 12.8 ± 6.2 0.4
(O10) User false (manipulation) 10.3 ± 10.4 6.5 ± 3.7 0.1

TS
(O11) Binary TS 0.80 ± 0.4 0.61 ± 0.5 0.1
(O12) Graded TS 0.43 ± 0.3 0.23 ± 0.2 0.009

• The joint policy achieves higher task success than the isolated policy. While

the difference in terms of binary task success (O11) only shows a statistical

trend (p < 0.1), the difference in graded task success (O12) is significant at

p < 0.0009. This means that users interacting with the joint policy encounter

fewer problems and experience more smooth and successful interactions. This

is also reflected in the large difference between binary and graded task success.

The comparison of the joint and the isolated policy seems to suggest that a joint

optimisation leads to shorter, more efficient and more successful interactions. An

exception to the overall trend is represented by metric O8, the number of false

user actions overall, and metric O10, the number of false manipulation actions, i.e.

wrong button presses. While users of the joint policy press on average 10.3 (±10.4)

wrong buttons, users of the isolated policy press only 6.5 (±3.7) wrong buttons

on average. The reason for this is most likely that few users in the joint setting

pressed a very high number of wrong buttons, as is indicated by the high standard

deviation of the O10 metric. The majority of users pressed very few (or no) wrong

buttons, however.

Subjective metrics The subjective user ratings indicate the user satisfaction with

each system. Table 7 summarises the results, where the last column in the table

provides the p-value for the comparison of the previous two columns. Overall, we

Hierarchical Reinforcement Learning for Situated NLG 29

Table 7. User satisfaction results per policy (scores range from 1 to 5 and are the

better, the higher). Numbers refer to averages per game and are shown with standard

deviations. The last column shows p−values for the comparison of systems. The best

results per metric are indicated in bold-face.

Subjective Metric Joint Isolated p−value

(Q1) Easy to Understand 3.4 ± 1.0 3.26 ± 1.09 0.6
(Q2) Task Easy 3.01 ± 1.02 3.0 ± 1.16 0.9
(Q3) Interaction Pace 2.9 ± 1.32 2.86 ± 1.45 0.9
(Q4) What to Do 3.43 ± 1.02 2.91 ± 1.08 0.08
(Q5) Expected Behaviour 3.67 ± 1.14 3.52 ± 1.03 0.6
(Q6) Future Use 2.6 ± 0.8 2.56 ± 0.89 0.9
(Q7) Appropriate Help 3.3 ± 1.04 2.87 ± 1.21 0.1
(Q8) Enjoy Game 2.95 ± 1.08 2.56 ± 1.03 0.1
(Q9) Recommend to Friend 3.0 ± 1.16 2.56 ± 1.26 0.1
(Q10) Naturalness 3.36 ± 0.95 3.21 ± 1.07 0.6
Sum (maximal score 50) 31.62 29.31

can see a clear tendency of users preferring the joint over the isolated policy. The

user satisfaction ratings for all games can be summarised as follows.

• Users consistently rate the joint policy better than the isolated policy, even

though unfortunately none of the differences is statistically significant.

• The metric ‘Expected Behaviour’ (Q5) receives the highest ratings for both

the joint (3.67 ± 1.14) and the isolated (3.52 ± 1.03) policy. In turn, ‘Future

Use’ (Q6) receives the lowest, 2.6 (±0.8) for the joint policy and 2.56 (±0.89)

for the isolated policy. For the latter case, the metrics ‘Enjoy Game’ (Q8) and

‘Recommend to Friend’ (Q9) are rated similarly low. Especially the metrics

Q8 and Q9 can mean that users of the isolated policy enjoyed their games less

than users of the joint policy. The metric ‘Future Use’ in contrast could also

have a different interpretation. Users may not have seen the usefulness of using

the game in the future because they are not interested in video games: on a

scale of 1 (i.e. ‘playing never’) to 5 (i.e. ‘playing very often’), our participants

rated themselves as playing video games between ‘rarely’ and ‘never’ (1.78).

An alternative interpretation is that users found the pace of the interaction

too fast, as indicated by the ‘Interaction Pace’ (Q3) metric, so that slowing

the interaction pace down could lead to higher user satisfaction.

• The metric ‘What To Do’ (Q4) showed the biggest difference in user ratings

between the joint (3.43 ± 1.02) and the isolated (21 ± 1.08) system. While it is

not statistically significant, it shows the strongest trend among all individual

subjective categories. Users seemed to find instructions generated by the joint

system more easy to interpret and felt more safely guided through the task.

Despite an overall trend that users seem to prefer the joint over the isolated

policy, we were not able to report any significant differences. Related work on the

30 N. Dethlefs and H. Cuayáhuitl

evaluation of spoken dialogue systems suggests a factor analysis (Möller et al., 2007;

Wolters et al., 2009; Dzikovska et al., 2001). An explanatory factor analysis explains

the variability found in a set of observed, correlated variables in terms of a set of

unknown latent variables, or factors. These factors are often fewer than the initial

set of variables and reveal those underlying subjective categories that users were

concerned about in their ratings. The advantage of a factor analysis is often that it

reveals those subjective experiences with a system that matter to users, rather than

reflecting the system designer’s expectations–as is often the case with pre-defined

questionnaires. Please see Hone and Graham (2000) for details on a factor analysis

applied to spoken language processing. A factor analysis applied to our subjective

metrics of the GIVE evaluation showed the following. An illustration is provided in

Figure 6.2.3.

Two factors were identified as accounting for 65% of the variability found in user

ratings. For Factor 1, which we can call Usability, subjective metrics (Q4) ‘What to

Do’, (Q8) ‘Enjoy Game’ and (Q9) ‘Recommend to Friend’ had high factor loadings

of > 0.80. Factor loadings indicate the correlations between questionnaire items.

For Factor 2, which we can call Pace, only subjective metric (Q3) ‘Interaction

Pace’ had a high factor loading of > 0.80. The difference between the joint and

the isolated policy for factor Pace was not significant at 0.9. While the difference

for factor Usability was not significant either, at p < 0.07, at least, we can observe

a statistical trend for this factor. All in all, these results indicate that statistical

significance may have been achieved here if more data was available.

6.3 Comparison with Systems from the GIVE Challenge

To allow for a comparison of our hierarchical RL framework with other state-of-

the-art approaches to situated NLG, Table 8 contrasts our results with objective

and subjective metrics collected for several systems in the GIVE-2 and GIVE-2.5

challenges. The former was run in 2010 and collected games from 1825 participants.

The latter was run in 2011 and collected 536 games. The official results were dis-

cussed in Koller et al. (2010) and Striegnitz et al. (2011), respectively. GIVE-2.5

was run with the same evaluation worlds as our evaluation. The worlds in GIVE-2

were comparable in that all three worlds posed different challenges for the systems.

World 1 was designed to be most similar to the training worlds, while World 2

focused on referring expressions and World 3 on navigation. All evaluations were

therefore carried out in comparable, if not identical, virtual worlds. All subjective

scores in the table were rescaled from the −100 to +100 scale used in GIVE to our

1 to 5 scale.

We chose seven systems for our comparison, the two best systems of GIVE-2 (NA

and S) and the five best systems from GIVE-2.5 (P1, P2, C, CL and L). Since the

overall results of GIVE-2.5 were better than of GIVE-2, we included more systems

from the latter challenge in order to make a more challenging comparison.11

There is unfortunately not always a perfect match between subjective metrics,

11 No systems from GIVE-1 are compared because the setup of the first study was different

Hierarchical Reinforcement Learning for Situated NLG 31

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

Factor 1: USABILITY

F
a
c
to

r
2
:
P
A

C
E

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8
Q9

Q10

Fig. 10. Illustration of two factors, from an explanatory factor analysis, that explain

65% of the variability found in subjective user ratings: ‘usability’ and ‘pace’.

but we wanted to include them nevertheless for a more comprehensive point of

comparison. In particular, not all questions that we asked participants were the

same that GIVE participants were asked. For category Q3, while we asked subjects

Was the speed of the interaction okay?, GIVE asked participants to rate the state-

ment The system’s instructions were visible long enough for me to read them. For

category Q4, we asked Did you know at each moment what to do? while the GIVE

questionnaire contained I was confused about which direction to go in. Finally, while

we asked Did the system give you appropriate help when you needed it? for category

Q7, GIVE used The system immediately offered help when I was in trouble. All ob-

jective and other subjective categories have a direct correspondence. Unfortunately,

the number of questionnaire items differed in GIVE-2 and GIVE-2.5, so that some

fields in the table cannot be compared. Since we are comparing data from separate

evaluations, the results in Table 8 serve more as an indication rather than a direct

in that users were not able to move through the environment freely, but had to move
in discrete steps.

32 N. Dethlefs and H. Cuayáhuitl

Metric Sys

Objective Metrics J I NA S P1 P2 L C CL

Binary Task Success 0.80 0.61 0.47 0.40 0.66 0.65 0.68 0.70 0.58

Duration (sec.) 700 799 344 467 407 415 341 538 539

Instructions (no.) 312.3 329 224 244 214 235 211 254 183

Words (total) 3075.6 4024.3 1408 1343 1122 1139 962 1328 1269

Subjective Metrics J I NA S P1 P2 L C CL

(Q1) Easy to Underst. 3.4 3.26 4.05 3.95 / / / / /

(Q3) Interaction Pace 2.9 2.86 2.65 2.5 3.42 3.45 3.77 3.55 2.82

(Q4) What to Do 3.43 2.91 3.02 2.57 3.15 2.9 3.2 3.8 3.17

(Q7) Appropriate Help 3.3 2.87 3.3 2.3 3.7 3.37 3.45 3.8 2.9

(Q8) Enjoy Game 2.95 2.56 2.3 2.3 / / / / 2.6∗

(Q9) Recomm. Friend 3.0 2.56 1.75 1.9 / / / / 1.8∗

(Q10) Naturalness 3.36 3.21 2.4 2.6 / / / / 3.2∗

Table 8. Objective and subjective metrics for our systems (J=Joint and I=Isolated)

compared with the best systems of the GIVE-2 challenge (NA and S) and the

GIVE-2.5 challenge (P1, P2, L, C, CL). ∗ indicates measures taken from Benotti

and Denis (2011b) rather than the GIVE challenge.

comparison and statistical significance is not reported. We can nevertheless make

a number of observations from the data comparison:

• In terms of task success, we can see that our joint policy outperforms all other

systems by at least 10%. This result also holds for other GIVE systems which

were published separately from the challenge, such as Garoufi and Koller

(2010) who achieve 69% and Benotti and Denis (2011b) who achieve 70%.

This result reflects our reward function which placed a substantial weight

on task success, rather than other metrics such as instruction or interaction

length.

• The other objective metrics seem to suggest that both of our systems gen-

erate significantly more instructions and are more verbose than the other

GIVE systems, which led to longer interaction times. This reflects the gen-

eration strategy learnt by our system, which was able to combine high-level

and low-level instructions and aggregate several instructions into one. This

produced many instructions such as Go left and then towards the blue button.

In contrast, many GIVE systems relied predominantly on shorter instructions

such as turn left or press blue.

• In terms of the subjective metrics, we can see that our system is slightly

outperformed in Easy to Understand and Interaction Pace. The latter was

already indicated in our own evaluation, where participants wished that in-

Hierarchical Reinforcement Learning for Situated NLG 33

structions were displayed slightly longer and the system would reduce its

overall interaction speed. On the other hand, our system performs substan-

tially better in What to Do than most competitors and was ranked in the

middle for Appropriate Help.

• We can further see that participants considered our system’s instructions more

natural than its competitors’, enjoyed playing more and would recommend the

game to a friend more often. In terms of naturalness, this is again reflected

in our reward function, where we placed an explicit weight on human-like

surface forms. To an extent, the other metrics confirm our earlier results

in that participants enjoy playing when they win the trophy and they do

not enjoy playing when they lose. Participants may therefore have enjoyed

playing with our system most because it achieved the highest task success

score overall.

• Finally, we can see that while the isolated policy is outperformed in many

categories, it is still able to compete with some systems, such as in the cate-

gories Interaction Pace, Enjoy Game, Recommend to Friend, Naturalness and

Binary Task Success. This indicates that even a policy optimised in isolation

represents a competitive baseline.

The highest overall scores in this comparison were achieved by two rule-based

systems, C (Racca, Benotti, and Duboue, 2011) and L (Denis, 2011). This sug-

gests that a carefully designed ad hoc solution to a problem can still outperform

many data-driven systems in NLG nowadays. Systems P1/P2 (Garoufi and Koller,

2011b) and CL (Benotti and Denis, 2011a) represent more state-of-the-art ap-

proaches. System P1 was using a combination of planning and supervised learning

to NLG that aimed to maximise the understandability of referring expressions (P2

acted as a planning-only baseline). This system received good scores for Interac-

tion Pace and Appropriate Help, possibly because its planning steps guided users

in small steps avoiding confusions and maximising understandability. System CL

used a corpus-based selection approach, choosing instructions from a pre-collected

corpus of human utterances in the same domain. This system was rated well for

Naturalness. The reason is probably that it relied on instructions that humans pro-

duced for the very same situation the system was facing. On the other hand, this

method does not take context into account which can lead to inconsistencies and

low scores in other subjective categories. In summary, the comparison with these

systems shows that our hierarchical RL approach is able to achieve comparable

performance to state-of-the-art systems: while our joint policy is outperformed in

some subjective categories, it achieves higher task success and more enjoyable and

natural interactions than the other systems. This corresponds to the optimisation

metrics that our reward function was designed for.

7 Conclusions and future directions

Natural Language Generation systems for interactive contexts are faced with nu-

merous trade-offs in generating an utterance that is optimally adaptive to the user

34 N. Dethlefs and H. Cuayáhuitl

and situation. Trade-offs include the level of detail chosen in a situation as well

as the speed and efficiency with which instructions can be generated within a dy-

namic and constantly changing context. This article has suggested to address these

challenges using hierarchical reinforcement learning. It extends previous research

on NLG for interactive systems in several ways. First, it represents a novel hierar-

chical optimisation framework for situated NLG. This model is based on a divide-

and-conquer approach and optimises a hierarchy of subtasks rather than one single

complex task. In this way, it is more scalable for large state-action spaces than

previous approaches towards reinforcement learning for NLG. Second, this hierar-

chical model has been trained with a comprehensive data-driven reward function

addressing several aspects of our situated scenario. In contrast, related work has

focused either on hand-crafting reward functions or has induced them for single

aspects of the task only. Finally, we have compared two different learning settings

for our domain, a joint setting in which a policy is learnt with pre-defined shared

knowledge across subtasks, and an isolated setting without any shared knowledge.

Results from simulation and a task-based human evaluation study showed the ben-

efits of the joint architecture in optimising the trade-off between efficiency and

detail in situated interaction. The joint setting led to more successful and effi-

cient interactions that were better perceived by human users than their isolated

counterpart.

Some future research directions are summarised in the following.

First, the idea of jointly optimising the behaviour of distinct, but related, sub-

tasks is likely to enhance the performance of systems beyond NLG and dialogue.

Candidate areas for such a joint treatment are language analysis and production, or

multi-modal systems, where a joint treatment could help to reinforce communicated

contents with non-linguistic behaviours.

Second, RL agents typically learn a behaviour policy offline during a training

phase in a simulated environment and then execute the learnt policy statistically

during deployment. To allow agents to learn from real interactions, however, via

online learning and adaptation, more efficient training algorithms are needed that

allow action values to be computed quickly and reliably so that they could immedi-

ately have an impact on the agent’s current behaviour. See Bohus, Langner, Raux,

Black, Eskenazi and Rudnicky (2006), Cuayáhuitl and Dethlefs (2011a) and Gašić,

Jurč́ıček, Thomson, Yu and Young (2011) for some first advances.

Third, RL agents are typically designed by a system developer who bases his or

her design decisions on knowledge of the task, the domain or the end user of the sys-

tem. Drawbacks are that system development can be slow and labour-intensive, and

different design decisions can have different effects on the performance of a system.

An interesting direction for future research is therefore the investigation of meth-

ods for inducing the structure and features of the learning agent automatically from

human or domain data. In this way, hierarchy construction could be automatised

to accelerate development times and increase reuse of resources. Simultaneously,

the benefits of a modular architecture and of using a divide-and-conquer approach

would be preserved for easy maintenance and scalability to large search spaces.

Hierarchical Reinforcement Learning for Situated NLG 35

Automatic feature induction is also interesting for deciding which features should

be shared between agents for a joint optimisation.

Fourth, RL agents for NLG currently make the simplifying assumption that their

knowledge about the user and environment is complete. This assumption is often

unrealistic because most environments are not fully observable. While research on

Partially-Observable environments has been done on dialogue systems (Williams

and Young, 2007), generation under uncertainty has yet to be transferred to research

on trainable NLG.

Fifth, our model relies on tabular state representations which can affect its scal-

ability as the state-action space grows. While we have suggested a hierarchical

setting to address this problem, function approximation techniques, such as linear

approximation, neural networks or decision trees, are an alternative (or complemen-

tary) method to enhance scalability. Some approaches for dialogue include Hender-

son, Lemon and Georgila (2008), Jurćıcek, Thomson and Young (2011), Pietquin,

Geist, Chandramohan and Frezza-Buet (2011) and Cuayáhuitl, Kruijff-Korboyová

and Dethlefs (2012).

Finally, to evaluate our suggested methods on a larger scale, we would like to

transfer hierarchical RL to new domains, such as text generation, and new appli-

cations, such as sentence compression, summarisation or machine translation.

Appendix A: Hierarchical State and Action Space

This section provides a detailed description of the knowledge and actions available

to each learning agent in the hierarchy in Figure 5, on page 14. Each agent will be

shown as a feature structure and explained in turn. In the state representation Sij ,

variables shown in cursive fonts are shared variables. This means that they were

originally state variables of single agents which can now be accessed by other agents

as well. This is in order to take them into account for their own decision making.

All non-cursive variables are individual state variables that cannot be accessed by

other agents. This is the main difference between learning a jointly optimised policy

and a policy optimised in isolation: while in the former, agents can access shared

state variables, in the latter only individual, non-shared variables exist. The state

space of the isolated agent can therefore be obtained by excluding all cursive state

variables. In the action set Aij , bold-face actions denote composite actions, and the

goal state Gij defines the termination conditions for the agent.

36 N. Dethlefs and H. Cuayáhuitl

S0
0

v1:GoalStatus← {0=continue,1=end}
v2:GoalVisible ← {0=true,1=false}
v3:NextSysAct← {0=navigation,1=reference, 2=confirm,

3=stop navigation, 4=wrong button}
v4:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v5:UserConfusions ← {0=none,1=one, 2=two or more}

A0
0

confirm,
reference M1

0 ,
navigation M1

1 ,
stop navigation,
wrong button

G0

0 [v1=1]

Agent M0
0 , first of all, is the root agent which initiates all generation episodes. It

can either choose a primitive action such as to confirm a previous user action, Well

done!, tell the user to stop navigating, Wait!, or not to press a button, Not this

one!. Alternatively, it can choose a composite action and pass control down to a

child subtask. Agent M1
0 is responsible for references and agent M1

1 is responsible

for navigation instructions.

Specifically, agent M1
0 deals with generating references to buttons or landmarks.

It can make decisions based on the visibility of the next goal, the presence of

landmarks and the reference context. It should also make sure that an utterance

plan has been chosen before presentation to the user. If a button reference needs

to be generated, it may, e.g., call child subtask M2
0 .

S1
0

v6:GoalVisible ← {0=true,1=false}
v7:PresenceOfLandmarks← {0=not present,1=present}
v8:Presentation ← {0=none,1=composite,2=incremental}
v9:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v10:ReferenceContext← {0=button manipulation,1=navigation}
v11:Reference← {0=unfilled,1=filled}
v12:Repair← {0=unfilled,1=filled}
v13:UtterancePlan← {0=unfilled,1=filled}

A1

0

 plan utterance M2
1 ,

generate button reference M2
0 ,

repair utterance M2
2 , do not repair utterance,

generate landmark reference

G1

0 [v11=1,v12=1,v13=1]

Agent M2
0 generates referring expressions to buttons. It decides whether to men-

tion a referent’s colour, a distractor, it’s spatial position, etc., based on information

about the referent’s physical properties. Eventually, it should call agent M3
0 to make

sure a surface form for the referring expression is generated.

Hierarchical Reinforcement Learning for Situated NLG 37

S2
0

v24:ColourDistractor← {0=unfilled,1=filled}
v25:ColourReferent← {0=unfilled,1=filled}
v26:DiscriminatingColourDistractor← {0=false,1=true}
v27:DiscriminatingColourReferent← {0=false,1=true}
v28:Distractor← {0=unfilled,1=filled}
v29:HorizontalRow← {0=false,1=true}
v30:Horizontal← {0=unfilled,1=filled}
v31:NumberOfDistractors← {0=none,1=one, 2=two or more}
v32:PositionInConfiguration← {0=corner,1=edge,2=middle,

3=only button,4=other}
v33:Position← {0=unfilled,1=filled}
v34:Surface← {0=unfilled,1=filled}
v35:Type← {0=unfilled,1=filled}
v36:VerticalRow← {0=false,1=true}
v37:Vertical← {0=unfilled,1=filled}

A2
0

referring expression M3
0 ,

include distractor, do not include distractor,
include type, do not include type,
include referent colour, do not include referent colour,
include distractor colour, do not include distractor colour,
include horizontal position, do not include horizontal position,
include vertical position, do not include vertical position,
include position in configuration

G2

0 [v24=1,v25=1,v28=1,v30=1,v33=1,v34=1,v35=1,v37=1]

Agent M2

0 also shows that many actions are complementary to each other. This

means that there is an action pair, such as include distractor and do not include

distractor, one of which needs to be chosen at each instance in order to update

the corresponding state variable, here Distractor, from unfilled to filled. This is

a precondition for reaching the terminal state and ensures that all actions are

considered by the agent. Since the reward function penalises the agent for each

action it takes, it may otherwise happen that the agent neglects favourable actions

in order to avoid a negative reward.

S1
1

v14:Aggregation ← {0=none,1=conjunction,2=sequence}
v15:AllRoomsKnown← {0=false,1=true}
v16:GoalVisible ← {0=true,1=false}
v17:NavigationContent← {0=mixed,1=low,2=high}
v18:NavigationLevel← {0=unfilled,1=filled}
v19:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v20:Repair← {0=unfilled,1=filled}
v21:RouteLength ← {0=short,1=long}
v22:UserConfusions ← {0=none,1=one, 2=two or more}
v23:UtterancePlan← {0=unfilled,1=filled}

A1
1

plan utterance M2

1 ,
repair utterance M2

2 ,
do not repair utterance,
generate low level M2

3 ,
generate high level M2

4

G1

1 [v18=1,v20=1,v23=1]

In terms of navigation, agent M1

1 is responsible for choosing a navigation level.

It can choose low-level navigation by calling agent M2
3 or high-level navigation

by calling agent M2
4 . Mixed strategies can be generated by alternating these two

38 N. Dethlefs and H. Cuayáhuitl

choices. It can also decide to repair a previous navigation instruction (by calling

agent M2
2), in case the user was not able to comprehend it, and it should make

sure that an utterance plan has been chosen before presentation to the user. Agent

M1
1 shares state variables on the aggregation and presentation strategy with the

utterance planning agent M2
1 so that a good balance between cognitive load and

efficiency can be found.

S2
3

v51:Destination← {0=unfilled,1=filled}
v52:DoorAction← {0=none,1=go through,2=go towards}
v53:GoalVisible ← {0=true,1=false}
v54:Instruction← {0=unfilled,1=filled}
v55:LeavingRoom← {0=false,1=true}
v56:LowLevelContent← {0=direction,1=orientation,2=straight}
v57:Path← {0=unfilled,1=filled}
v58:VisibleAndNear← {0=none,1=objects,2=buttons}

A2
3

generate destination M3

1 ,
generate direction M3

2 ,
generate orientation M3

3 ,
generate path M3

4 ,
generate no path,
generate straight M3

5

G2

3 [v51=1,v54=1,v57=1]

The child agents of task M1

1 , low- and high-level navigation, both deal with con-

tent selection of their particular navigation type. Agent M2
3 generates instructions

of types direction, orientation or straight. It can optionally also include a desti-

nation or path instruction. Agent M2
4 generates instructions of types destination

and path, and optionally a referring expression, in case a button is a destination

instruction. Both agents should ensure that the navigation instructions receive a

surface realisation before being presented to a user by calling agents M3
1...5.

S2
4

v59:DestinationType← {0=other,1=landmark,2=button}
v60:GoalVisible ← {0=true,1=false}
v61:Instruction← {0=unfilled,1=filled}
v62:LeavingRoom← {0=false,1=true}
v63:NextRoomEquals← {0=same,1=previous,2=corridor,3=other}
v64:Path← {0=unfilled,1=filled}
v65:Surface← {0=unfilled,1=filled}

A2

4

 referring expression M3
0 ,

generate destination M3
1 ,

generate path M3
4 ,

generate no path

G2

4 [v61=1,v64=1,v65=1]

Whenever an utterance plan is needed, agentM2

1 can be called. This agent decides

whether to aggregate a set of messages or not, and if so, whether to conjoin them

or order them sequentially. It further chooses an information structure (whether

the theme should be marked or unmarked) and possible temporal markers (first,

second, then, now, etc.). Finally, it decides whether to present information in a

composite manner, i.e. all in one, or incrementally, in a piece-meal fashion. The

former usually supports efficiency, whereas the latter reduces cognitive load. The

agent has access to the navigation level chosen in its state representation so that

this can further be considered for choosing an appropriate presentation strategy.

Hierarchical Reinforcement Learning for Situated NLG 39

S2
1

v38:Aggregation← {0=unfilled,1=filled}
v39:InfoStructure← {0=unfilled,1=filled}
v40:NavigationLevel ← {0=unfilled,1=low,2=high}
v41:NumberOfInstructions← {0=none,1=one, 2=two,3=three or more}
v42:Presentation← {0=unfilled,1=filled}
v43:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v44:RepairStatus ← {0=none,1=repair}
v45:TemporalMarkers← {0=unfilled,1=filled}
v46:UserConfusions ← {0=none,1=one, 2=two or more}

A2

1

choose aggregation, choose no aggregation,
choose aggregation, choose no aggregation,
choose temporal markers, choose no temporal markers,
choose marked theme, choose unmarked theme,
choose composite presentation, choose incremental presentation

G2

1 [v32=1,v33=1,v35=1,v37=1]

Sometimes an utterance can be unsuccessful because the user was not able to

comprehend or interpret it correctly. In such cases, agent M2
2 may be called for a

repair. It can either paraphrase a previously unsuccessful utterance, repeat it, or

switch the current navigation strategy (from high to low level, e.g.).

S2

2

 v47:GoalVisible ← {0=true,1=false}
v48:NavigationLevelContent← {0=low level,1=high level}
v49:Repair← {0=unfilled,1=filled}
v50:UserConfusions ← {0=none,1=one, 2=two or more}

A2

2

[
paraphrase utterance,
repeat utterance,
switch navigation level

]
G2

2 [v40=1]

Agents M3
0...5, finally, deal with generating different surface realisations for the

semantics of referring expressions (agent M3
0), destination instructions (agent M3

1),

direction instructions (agent M3
2), orientation instructions (agent M3

3), path in-

structions (agent M3
4), and instructions to go straight (agent M3

5).

S3
0

v66:Distractor ← {0=true,1=false}
v67:Landmark ← {0=true,1=false}
v68:Position ← {0=true,1=false}
v69:ReDeterminer← {0=unfilled,1=the,2=that,3=empty}
v70:ReSpatialRelation← {0=unfilled,1=adv,2=pp,3=rel clause pp}
v71:ReType← {0=unfilled,1=button, 2=one, 3=it, 4=empty}
v72:ReVerb← {0=unfilled,1=push,2=press,3=click,4=click on,

5=choose,6=get,7=hit, 8=empty}
v73:UserConfusions ← {0=none,1=one, 2=two or more}

A3
0

det the, det that, det empty,
sr adv, sr pp, sr rel clause pp,
type button, type one, type empty, type it,
verb push, verb press, verb click, verb click on,
verb choose, verb get, verb hit, verb empty

G3

0 [v69¬0,v70¬0,v71¬0,v72¬0]

40 N. Dethlefs and H. Cuayáhuitl

S3
1

v74:DesDirection← {0=unfilled,1=direction, 2=straight, 3=empty}
v75:DesPrep← {0=unf.,1=to, 2=toward, 3=empty, 4=into, 5=in, 6=until}
v76:DesRelatum← {0=unfilled,1=room, 2=landmark, 3=empty}
v77:DesVerb← {0=unfilled,1=go, 2=keep going, 3=empty, 4=get,

5=return, 6=continue, 7=walk}
v78:UserConfusions ← {0=none,1=one, 2=two or more}

A3

1

 dir direction, dir straight, dir empty, prep to, prep towards,
prep into, prep in, prep until, relatum room, relatum landmark,
relatum empty, verb continue, verb go, verb walk, verb get,

verb return, verb empty, verb keep going, prep empty

G3

1 [v74¬0, v75¬0,v76¬0,v77¬0]

S3
2

v79:DirDirection← {0=unfilled,1=direction, 2=empty}
v80:DirMeans← {0=unfilled,1=destination, 2=path, 3=location,

4=empty}
v81:DirPrep← {0=unfilled,1=to(the), 2=to(your), 3=empty}
v82:DirVerb← {0=unfilled,1=go, 2=turn,3=bear,4=hang,5=move,

6=empty}
v83:UserConfusions ← {0=none,1=one, 2=two or more}

A3

2

[
dir direction, dir empty, means destination, means path,
means location, means empty, prep to(the), prep to(your), verb empty,
prep empty, verb go, verb turn, verb bear, verb move, verb hang

]
G3

2 [v79¬0,v80¬0,v81¬0,v82¬0]

S3

3

 v84:Direction← {0=unfilled,1=around, 2=round, 3=degrees, 4=empty}
v85:OriMeans← {0=unfilled,1=path, 2=destination, 3=empty}
v86:OriVerb← {0=unfilled,1=turn, 2=you want to turn}
v87:UserConfusions ← {0=none,1=one, 2=two or more}

A3

3

[
dir around, dir round, dir degrees, dir empty, means path,
means destination, verb turn, verb you want to turn, means empty

]
G3

3 [v84¬0,v85¬0,v86¬0]

S3
4

v88:PathMeans← {0=unfilled,1=straight,2=destination,3=direction,
4=empty}

v89:PathPrep← {0=unfilled,1=through,2=along,3=across,4=empty,
5=down, 6=past}

v90:PathRelatum← {0=unfilled,1=tunnel,2=space,3=room,4=landmark,
5=empty, 6=path}

v91:PathVerb← {0=unfilled,1=go,2=keep going,3=walk,4=pass,
5=empty, 6=continue}

v92:UserConfusions ← {0=none,1=one, 2=two or more}

A3
4

means straight, means empty, means destination, means direction,
prep through, prep along, prep across, prep empty, prep down,
verb go, verb keep going, verb walk, verb pass, verb empty,
relatum space, relatum landmark, relatum tunnel, relatum room,
relatum empty, prep empty, relatum path, verb continue, prep past

G3

4 [v88¬0,v89¬0,v90¬0,v91¬0]

S3
5

v92:StrDirection← {0=unfilled,1=straight, 2=forward, 3=straight ahead,
4=ahead, 5=empty}

v93:StrMeans← {0=unfilled,1=direction, 2=destination, 3=orientation,
4=empty}

v94:StrVerb← {0=unfilled,1=go, 2=empty, 3=keep going,
4=you want to go

v95:UserConfusions ← {0=none,1=one, 2=two or more}

A3

5

[
dir straight, dir forward, dir straight ahead, dir ahead, dir empty,
means direction, means destination, means orientation, means empty,
verb go, verb empty, verb keep going, verb you want to go

]
G3

5 [v92¬0,v93¬0,v94¬0]

Hierarchical Reinforcement Learning for Situated NLG 41

All surface realisation agents share knowledge of previous choices. During learn-

ing, each surface realisation agent will make its own surface realisation decisions

and then evaluate their suitability under different circumstances given the rewards

they yielded in different contexts (as described in Section 5.3.2).

Appendix B: An example generation episode

The feature structure on page 39 below shows an example generation episode for

the utterance Go to the sofa, where control is passed from the root agent down to

the bottom of the hierarchy. At all levels, decisions are made towards the final form

of the utterance. Information is passed between agents in the form of state updates

in the agent’s knowledge base.

Generation starts with the root agent M0
0 , whose state s0 includes information on

the current goal status and next system action required. Both kinds of information

are stored in the agent’s knowledge base but originate from the virtual world. The

agent then executes a navigation instruction, which is a composite action, so that

control is passed to the child agent M1
1 . This is a content selection (CS) subtask.

The current state here contains information on that the next goal is visible and on

the current navigation level, which can be low, high or mixed. This information is

available from the generation history. The agent also knows that the current route

leg is short, that the user is not confused and has executed the previous instruction

successfully. All this information enters the agent’s knowledge base through the

virtual world (even though information about the user always originates in the

user’s knowledge base, as shown in Figure 4). Finally, the agent has information

on that the utterance planning agent has not yet been consulted, which is required

though before execution can terminate. It therefore chooses to call agent M2
1 next

to perform utterance planning (UP). Control is passed to the new subagent, which

again has to choose the best action given its current knowledge.

Note that agents M1
1 and M2

1 share several state variables, which are shown

in cursive fonts. Agent M1
1 has knowledge of the presentation type chosen, even

though it has no control over the decision. It is an utterance planning decision and

is therefore made in agent M2
1 . Similarly, agent M2

1 knows the current navigation

level, which is originally determined by agent M1
1 . Such shared state variables are

the main mechanism through which a joint optimisation occurs. Since agents share

knowledge with other agents, they are able to consider this knowledge in their own

decision making process. For example, had agent M1
1 seen that the presentation

strategy chosen by M2
1 was complex, it could have chosen a simpler navigation

strategy. Or conversely, agent M2
1 is able to take the high navigation level chosen by

M1
1 into account for choosing a presentation strategy that eases the user’s cognitive

load. All other variables, which are not shown in cursive fonts, are specific to one

agent and cannot be accessed by others.

42 N. Dethlefs and H. Cuayáhuitl

M0
0 : Root (CS)

s0 = GoalStatus=continue
NextSysAct=navigate

a0 = navigation M1
1

M1
1 : Navigation (CS)

s1 = GoalVisible=true
NavigationLevel=high
NavInstruc.=unfilled
Presentation=unfilled
PrevUserReaction=desired
RouteLength=short
UserConfusions=0
UtterancePlan=unfilled

a1 = utterance plan M2
1

M2
1 : Utterance Plan (UP)

s2 = NavigationLevel=high
Presentation=unfilled
TempMarkers=unfilled
UserConfusions=0

a2 = temporal marker
s3 = TempMarkers=filled
a3 = composite presentation
s4 = Presentation=filled (T)

s5 = UtterancePlan=filled

Presentation=filled

a5 = high-level M2
4

M2
4 : High-level (CS)

s6 = Destin.=sofa
GoalVisible=true
Destin.=unfilled

a6 = destination M3
1

M3
1 : Destination (SR)

s7 = Prep=unfilled
Relatum=unfill.
Verb=unfilled
UserConfusions=0

a7 = verb : go
s8 = Verb=go
a8 = prep : to
s9 = Prep=to
a9 = relatum : sofa
s10 = Relat.=sofa (T)

s11 = Destin..=filled (T)

s12 = NavInstruc.=filled (T)

s13 = GoalStatus=end (T)

Example generation episode for the utterance Go to the sofa. Control is passed from parent to child
agents whenever a composite action is invoked and is passed back upon termination. Agent names along
with their subtask are shown in red, as are terminal states. (T) denotes the terminal state for agent Mi

j .

Every time an agent takes an action, this is reflected in the updated state rep-

resentation at the next time step.12 Once utterance planning is complete with de-

cisions on presentation style and temporal markers, control is passed back to the

calling parent agent, M1
1 .

Subsequently, decisions are made to obtain a high-level navigation instruction

(by calling agent M2
4) and to obtain a surface form for a destination instruction

(agent M3
1 , called by M2

4). The latter is a surface realisation (SR) task, which bases

decisions on lexical and grammatical information such as the verb, preposition and

relatum to be realised. Once a surface form has been chosen, control is passed back

to the calling agent and the destination slot is updated from unfilled to filled. At this

point, control is passed back through several agents that have reached their terminal

state and the generation process is completed. See Figure 6 for an illustration of

the hierarchical state-action sequence of this example. For illustration, this example

has relied on a subset of possible states and actions per agent.

12 For brevity, we show only the updated state variables and omit those that are unchanged
from the original state.

Hierarchical Reinforcement Learning for Situated NLG 43

References

Angeli, Gabor, Percy Liang, and Dan Klein. 2010. A Simple Domain-Independent Proba-
bilistic Approach to Generation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), MIT Stata Center, Massachusetts, USA.

Bateman, John A., Joana Hois, Robert Ross, and Thora Tenbrink. 2010. A Linguistic On-
tology of Space for Natural Language Processing. Artificial Intelligence, 174(14):1027–
1071.

Belz, Anja and Ehud Reiter. 2006. Comparing Automatic and Human Evaluations of
NLG Systems. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), Trento, Italy.

Benotti, Luciana and Alexandre Denis. 2011a. CL system: Giving Instructions by Corpus
Based Selection. In Proceedings of the Generation Challenges Sessions at the 13th
European Workshop on Natural Language Generation (ENLG), Nancy, France.

Benotti, Luciana and Alexandre Denis. 2011b. Giving Instructions in Virtual Envi-
ronments by Corpus-Based Selection. In Proceedings of the 12th Annual Meeting on
Discourse and Dialogue (SIGdial), Portland, Oregon.

Bohus, Dan, Brian Langner, Antoine Raux, Alan Black, Maxine Eskenazi, and Alexander
Rudnicky. 2006. Online Supervised Learning of Non-Understanding Recovery Policies.
In Proceedings of the IEEE Workshop on Spoken Language Technology.

Bontcheva, Kalina and Yorick Wilks. 2001. Dealing with Dependencies between Content
Planning and Surface Realisation in a Pipeline Generation Architecture. In Proceedings
of International Joint Conference in Artificial Intelligence (IJCAI’01, pages 7–10.

Branavan, S.R.K., Harr Chen, Luke Zettlemoyer, and Regina Barzilay. 2009. Reinforce-
ment Learning for Mapping Instructions to Actions. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the Association for Computational Linguistics and
the 4th International Joint Conference on Natural Language Processing of the AFNLP,
Suntec, Singapore.

Bulyko, Ivan and Mari Ostendorf. 2002. Efficient Integrated Response Generation from
Multiple Targets Using Weighted Finite State Transducers. Computer Speech and Lan-
guage, 16:533–550.

Byron, Donna, Alexander Koller, Kristina Striegnitz, Justine Cassell, Robert Dale, Jo-
hanna Moore, and Jon Oberlander. 2009. Report on the First NLG Challenge on
Generating Instructions in Virtual Environments (GIVE). In Proceedings of the 12th
European Workshop on Natural Language Generation (ENLG), Athens, Greece.

Chen, David L., Joohyun Kim, and Raymond J. Mooney. 2010. Training a Multilin-
gual Sportscaster: Using Perceptual Context to Learn Language. Journal of Artificial
Intelligence Research, 37:397–435.

Cuayáhuitl, Heriberto. 2009. Hierarchical Reinforcement Learning for Spoken Dialogue
Systems. PhD Thesis, University of Edinburgh, Scotland, School of Informatics.

Cuayáhuitl, Heriberto and Nina Dethlefs. 2011a. Optimizing Situated Dialogue Man-
agement in Unknown Environments. In Proceedings of the Annual Conference of the
International Speech Communication Association (INTERSPEECH), Florence, Italy.

Cuayáhuitl, Heriberto and Nina Dethlefs. 2011b. Spatially-aware Dialogue Control Using
Hierarchical Reinforcement Learning. ACM Transactions on Speech and Language Pro-
cessing (Special Issue on Machine Learning for Robust and Adaptive Spoken Dialogue
System), 7(3).

Cuayáhuitl, Heriberto, Ivana Kruijff-Korboyová, and Nina Dethlefs. 2012. Hierarchical
Dialogue Policy Learning Using Flexible State Transitions and Linear Function Ap-
proximation. In Proceedings of the 24th International Conference on Computational
Linguistics (COLING), Mumbai, India.

Cuayáhuitl, Heriberto, Steve Renals, Oliver Lemon, and Hiroshi Shimodaira. 2010. Eval-
uation of a Hierarchical Reinforcement Learning Spoken Dialogue System. Computer
Speech and Language, 24(2):395 – 429.

44 N. Dethlefs and H. Cuayáhuitl

Dale, Robert and Jette Viethen. 2009. Referring Expression Generation Through
Attribute-Based Heuristics. In Proceedings of the 12th European Workshop on Nat-
ural Language Generation (ENLG), Athens, Greece.

Denis, Alexandre. 2010. Generating Referring Expressions with Reference Domain The-
ory. In Proceedings of the 6th International Natural Language Generation Conference
(INLG), Dublin, Ireland.

Denis, Alexandre. 2011. The Loria Instruction Generation System L in GIVE-2.5. In
Proceedings of the Generation Challenges Sessions at the 13th European Workshop on
Natural Language Generation (ENLG), Nancy, France.

Dethlefs, Nina and Heriberto Cuayáhuitl. 2010. Hierarchical Reinforcement Learning for
Adaptive Text Generation. In Proceedings of the 6th International Natural Language
Generation Conference (INLG), Dublin, Ireland.

Dethlefs, Nina and Heriberto Cuayáhuitl. 2011. Combining Hierarchical Reinforcement
Learning and Bayesian Networks for Natural Language Generation in Situated Dia-
logue. In Proceedings of the 13th European Workshop on Natural Language Generation
(ENLG), Nancy, France.

Dethlefs, Nina and Heriberto Cuayáhuitl. 2012. Comparing HMMs and Bayesian Networks
for Surface Realisation. In Proceedings of the 12th Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT), Montréal, Canada.

Dethlefs, Nina, Heriberto Cuayáhuitl, Kai-Florian Richter, Elena Andonova, and John
Bateman. 2010. Evaluating Task Success in a Dialogue System for Indoor Navigation.
In Proceedings of the 14th Workshop on the Semantics and Pragmatics of Dialogue
(SemDial), Poznan, Poland.

Dietterich, Thomas G. 2000. An Overview of MAXQ Hierarchical Reinforcement Learning.
In Symposium on Abstraction, Reformulation, and Approximation (SARA), HorseShoe-
Bay, Texas, USA.

Dzikovska, Myroslava, Johanna Moore, Natalie Steinauser, and Gwendolyn Campbell.
2001. Exploring User Satisfaction in a Tutorial Dialogue System. In Proceedings of the
12th Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

Foster, Mary Ellen and Jon Oberlander. 2006. Data-Driven Generation of Emphatic
Facial Displays. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), pages 353–360, Trento, Italy.

Gargett, Andrew, Konstantina Garoufi, Alexander Koller, and Kristina Striegnitz. 2010.
The GIVE-2 Corpus of Generating Instructions in Virtual Environments. In Proceedings
of the 7th International Conference on Language Resources and Evaluation, Malta.

Garoufi, Konstantina and Alexander Koller. 2010. Automated Planning for Situated Nat-
ural Language Generation. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, Uppsala, Sweden.

Garoufi, Konstantina and Alexander Koller. 2011a. Combining Symbolic and Corpus-
Based Approaches for the Generation of Successful Referring Expressions. In Proceed-
ings of the 13th European Workshop on Natural Language Generation (ENLG), Nancy,
France.

Garoufi, Konstantina and Alexander Koller. 2011b. The Potsdam NLG Systems at the
GIVE-2.5 Challenge. In Proceedings of the Generation Challenges Session at the 13th
European Workshop on Natural Language Generation (ENLG), Nancy, France.

Gašić, Milica, Filip Jurč́ıček, Blaise Thomson, Kai Yu, and Steve Young. 2011. On-
line Policy Optimisation of Spoken Dialogue Systems via Interaction with Human Sub-
jects. In Proceedings of the Automatic Speech Recognition and Understanding Workshop
(ASRU), Waikoloa, Hawaii, USA.

Henderson, James, Oliver Lemon, and Kallirroi Georgila. 2005. Hybrid Reinforcement
Learning for Dialogue Policies from Communicator Data. In Proceedings of the IJ-
CAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems (KRPDS),
Edinburgh, Scotland.

Hierarchical Reinforcement Learning for Situated NLG 45

Henderson, James, Oliver Lemon, and Kallirroi Georgila. 2008. Hybrid Reinforce-
ment/Supervised Learning of Dialogue Policies from Fixed Data Sets. Computational
Linguistics, 34(4):487–511.

Hone, Kate and Robert Graham. 2000. Towards a Tool for the Subjective Assessment of
Speech System Interfaces (SASSI). Natural Language Engineering, 6(3-4):287–303.

Janarthanam, Srinivasan and Oliver Lemon. 2010. Learning to Adapt to Unknown Users:
Referring Expression Generation in Spoken Dialogue Systems. In Proceedings of the
48th Annual Meeting of the Association of Computational Linguistics (ACL), Uppsala,
Sweden.

Jurćıcek, Filip, Blaise Thompson, and Steve Young. 2011. Natural Actor and Belief Critic:
Reinforcement Algorithm for Learning Parameters of Dialogue Systems Modelled as
POMDPs. ACM Transactions on Speech and Language Processing, 7(3):6.

Koller, Alexander and Ronald Petrick. 2011. Experiences with Planning for Natural
Language Generation. Computational Intelligence, 27(1):23–40.

Koller, Alexander, Kristina Striegnitz, Donna Byron, Justine Cassell, Robert Dale, and
Johanna Moore. 2010. The First Challenge on Generating Instructions in Virtual
Environments. In M. Theune and E. Krahmer, editors, Empirical Methods in Natural
Language Generation. Springer Verlag, Berlin/Heidelberg, pages 337–361.

Lemon, Oliver. 2011. Learning What to Say and How to Say It: Joint Optimization of
Spoken Dialogue Management and Natural Language Generation. Computer Speech
and Language, 25(2).

Levelt, Willem. 1989. Speaking: From Intenion to Articulation. MIT Press, Cambridge
Massachusetts.

Marciniak, Tomasz and Michael Strube. 2004. Classification-based Generation Using TAG.
In Proceedings of the 3rd International Conference on Natural Language Generation
(INLG), New Forest, England, UK.

Marciniak, Tomasz and Michael Strube. 2005. Beyond the Pipeline: Discrete Optimization
in NLP. In Proceedings of the 9th Conference on Computational Natural Language
Learning (CoNLL), Ann Arbor.

Möller, Sebastian, Paula Smeele, Heleen Boland, and Jan Krebber. 2007. Evaluating
Spoken Dialogue Systems according to Standards: A Case Study. Computer, Speech
and Language, 21(1):26–53.

Nakatsu, Crystal and Michael White. 2006. Learning to Say It Well: Reranking Re-
alizations by Predicted Synthesis Quality. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (COLING-ACL) 2006, pages 1113–1120,
Sydney, Australia.

Pietquin, Olivier, Matthieu Geist, Sethilkumar Chandramohan, and Hervé Frezza-Buet.
2011. Sample-Efficient Batch Reinforcement Learning for Dialogue Management Op-
timization. ACM Transactions on Speech and Language Processing (Special Issue on
Machine Learning for Robust and Adaptive Spoken Dialogue Systems, 7(7).

Racca, David Nicolás, Luciana Benotti, and Pablo Duboue. 2011. The GIVE-2.5 C
Generation System. In Proceedings of the Generation Challenges Sessions at the 13th
European Workshop on Natural Language Generation (ENLG), Nancy, France.

Rieser, Verena and Oliver Lemon. 2008. Learning Effective Mutlimodal Dialogue Strategies
from Wizard-of-Oz Data: Bootstrapping and Evaluation. In Proceedings the 46th Annual
Meeting of the Association for Computational Linguistics (ACL), Columbus, OH, USA.

Rieser, Verena, Oliver Lemon, and Xingkun Liu. 2010. Optimising Information Presen-
tation for Spoken Dialogue Systems. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL), Uppsala, Sweden.

Singh, Satinder, Diane Litman, Michael Kearns, and Marilyn Walker. 2002. Optimiz-
ing Dialogue Management with Reinforcement Learning: Experiments with the NJFun
System. Journal of Artificial Intelligence Research, 16:105–133.

46 N. Dethlefs and H. Cuayáhuitl

Stoia, Laura, Darla Shockley, Donna Byron, and Eric Fosler-Lussier. 2006. Noun Phrase
Generation for Situated Dialogs. In Proceedings of the 4th International Conference on
Natural Language Generation (INLG), Sydney, Australia.

Stone, Matthew, Doug DeCarlo, Insuk Oh, Christian Rodriguez, Adrian Stere, Alyssa
Lees, and Chris Bregler. 2004. Textual Economy through Close Coupling of Syntax
and Semantics. In ACM Transactions on Graphics 23(3) (SIGGRAPH), pages 506–513,
Los Angeles, CA, USA.

Stone, Matthew and Bonnie Webber. 1998. Textual Economy through Close Coupling
of Syntax and Semantics. In Proceedings of the International Workshop on Natural
Language Generation, Niagara-on-the-Lake, Canada.

Striegnitz, Kristina, Alexandre Denis, Andrew Gargett, Konstantina Garoufi, Alexander
Koller, and Mariet Theune. 2011. Report on the Second Second Challenge on Generat-
ing Instructions in Virtual Environments (GIVE-2.5). In Proceedings of the Generation
Challenges Sessions at the 13th European Workshop on Natural Language Generation
(ENLG), Nancy, France.

Sutton, Richard S. 1996. Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo,
editors, Advances in Neural Information Processing Systems. MIT Press, Cambridge,
Massachussetts, pages 1038–1044.

Sutton, Richard S. and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, Massachusetts.

Szepesvári, C. 2010. Algorithms for Reinforcement Learning. Morgan and Claypool
Publishers, Florida / California.

Tullis, Tom and Bill Albert. 2008. Measuring the User Experience: Collecting, Analyzing
and Presenting Usability Metrics. Morgan Kaufman , San Francisco.

Viethen, Jette, Robert Dale, and Markus Guhe. 2011. The Impact of Visual Context on
the Content of Referring Expressions. In Proceedings of the 13th European Workshop
on Natural Language Generation (ENLG), Nancy, France.

Walker, Marilyn, Candace Kamm, and Diane Litman. 2000. Towards developing general
models of usability with PARADISE. Natural Language Engineering, 6(3):363–377.

Walker, Marilyn, Diane Litman, Candace Kamm, and Alicia Abella. 1997. PARADISE: A
Framework for Evaluating Spoken Dialogue Agents. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics (ACL), Madrid, Spain.

Walker, Marilyn, Amanda Stent, François Mairesse, and Rashmi Prasad. 2007. Individ-
ual and Domain Adaptation in Sentene Planning for Dialogue. Journal of Artificial
Intelligence Research (JAIR), 30:413–456.

Watkins, Chris. 1989. Learning from Delayed Rewards. PhD Thesis, King’s College,
Cambridge, UK.

Williams, Jason and Steve Young. 2007. Partially Observable Markov Decision Processes
for Spoken Dialog Systems. Computer Speech and Language, 21(2):393–422.

Witten, Ian H. and Eibe Frank. 2005. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufman, San Francisco.

Wolters, Maria, Kalliroi Georgila, Johanna Moore, Robert Logie, and Sarah MacPherson.
2009. Reducing Working Load Memory in Spoken Dialogue Systems. Interacting with
Computers, 21(4):276–287.

