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Abstract

Tasks that require modeling of both language and visual information such as image captioning have

become very popular in recent years. Most state-of-the-art approaches make use of image repre-

sentations obtained from a deep neural network, which are used to generate language information

in a variety of ways with end-to-end neural network-based models. However, it is not clear how

different image representations contribute to language generation tasks. In this paper, we probe the

representational contribution of the image features in an end-to-end neural modeling framework and

study the properties of different types of image representations. We focus on two popular vision to

language problems: the task of image captioning and the task of multimodal machine translation.

Our analysis provides interesting insights into the representational properties and suggests that end-

to-end approaches implicitly learn a visual-semantic subspace and exploit the subspace to generate

captions.

1 Introduction

There has been a substantial interest in multimodal tasks that combine language and vision.

One such a task is Image Captioning (IC) where given an image the goal is to generate a

caption that describes it (Vinyals et al., 2015; Karpathy & Fei-Fei, 2015; Kiros et al.,

2014). This interest has driven the community to create a series of datasets, including

IAPR-TC12 (Grubinger et al., 2006), UIUC PASCAL Sentences and Flickr8k (Rashtchian

et al., 2010), Flickr30k (Young et al., 2014) and MSCOCO (Chen et al., 2015), the largest

of them all. This has also led to the very popular MSCOCO captioning challenges. The

success in IC has inspired other, more advanced, vision to language problems, including

Visual Question Answering (VQA) (Antol et al., 2015) and Multimodal Machine Transla-

tion (MMT) (Specia et al., 2016; Elliott et al., 2017).

Recent advances in deep learning models in the area of sequence modeling using re-

current neural networks (RNN) have led to highly effective ways of learning sequential

tasks (Elman, 1990). End-to-end deep neural models achieve impressive results for various

tasks including language modeling (Mikolov et al., 2010) and machine translation (Bah-

danau et al., 2015). For IC, most state-of-the-art models condition a deep recurrent se-

quence generator (i.e., an RNN) on some image information. The image information is

usually the penultimate layer of a Convolutional Neural Network (CNN) that has been
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pre-trained for object classification (Karpathy & Fei-Fei, 2015; Vinyals et al., 2015). Al-

ternatively, other layers in the network are used along with attention mechanisms on these

representations to condition the RNN-based generator (Kiros et al., 2014; Xu et al., 2015;

Wu et al., 2016). The success obtained in these tasks comes to some surprise given the

differences between the representational spaces of image embeddings and the language

in RNN-based models. End-to-end deep neural IC methods are able to generate captions

without resorting to higher-level semantic mappings of the image space into the language

space. More recent work has also investigated representations of the image in the form of

attributes, such as the objects potentially appearing in it, using class-based probabilistic

distributions (Yao et al., 2017). These methods achieve even better results on standard test

sets for the tasks of IC and VQA (Wu et al., 2016). In MMT, the results are less conclusive.

This raises interesting questions about the informativeness of different types of represen-

tations, in particular, low versus high-level information in the context of vision to language

tasks. A sparse, attribute-level representation is indicative of the presence of a pre-defined,

limited number of attributes (often objects) given an image. On the other hand, dense, low-

or mid-level or the CNN activation-based image representations are expected to capture

more details in the images, such as abstract scene information.

Previous work utilizes several types of image representations coupled with different

ways to use them in vision to language tasks. However, it is not clear what the represen-

tational contribution of these different types of image information is and why different

representations lead to certain words being generated over others. In this work, we study

the influence of different types of image information in a controlled setup and empirically

probe the informativeness of the image representations. Our main contributions are:

• We study the effect of different image level representational features in the context

of end-to-end IC and MMT systems.

• We show that end-to-end models conditioned on image representations mostly per-

form image matching in a common image-text space to generate sentences.

• We show that a low-dimensional, sparse and interpretable vector also performs com-

petitively with higher-dimensional CNN image embeddings, suggesting that such

low-dimensional features may be sufficient to generate sentences in the visual-

semantic subspace.

2 Background and Related Work

In this section, we first describe various approaches used to tackle IC and MMT tasks

(Sections 2.1 and 2.2 respectively). We then describe recent efforts in exploring differ-

ent representations for vision to language tasks that provide some context for our study

(Section 2.3).

2.1 Image Captioning Approaches

Approaches for IC can be categorised into three primary groups: (i) pipelined approaches;

(ii) retrieval approaches; (iii) end-to-end approaches.
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Fig. 1: RNN conditioned on different types of image representations: (a) penultimate layer;

(b) posterior over object class labels; and (c) averaged word representations for the top-k

object classes.

Pipelined approaches. We call early work on IC ‘pipelined’ as it follows a sequence of

steps: first, object categories are explicitly detected with visual object detectors; then the

output of such detectors is used as input to generate image descriptions through a gener-

ative model, such as template filling (Yao et al., 2010; Kulkarni et al., 2011; Yang et al.,

2011; Li et al., 2011; Mitchell et al., 2012; Elliott & de Vries, 2015), combining phrases

from a corpus (Li et al., 2011), generating trees (Mitchell et al., 2012) or learning a statis-

tical language model (Fang et al., 2015). Such methods are capable of generating captions

not seen at training time, although their performance depends on the quality of the visual

detectors, whose outputs form the input ‘representation’ to the caption generator.

Retrieval approaches. Retrieval approaches to IC retrieve existing captions from the train-

ing set or an external dataset. These methods include projecting images and captions onto

a common representation space (Farhadi et al., 2010; Hodosh et al., 2013; Socher et al.,

2014) and utilizing some image similarity measure (Ordonez et al., 2011) among other

methods. For example, Hodosh et al. (2013) use Kernel Canonical Correlation Analysis

to project images and their captions into a joint representation space, in which images

and captions can be related and ranked to perform illustration and annotation tasks. Such

retrieval methods produce image captions that are fluent and expressive (since they are

‘copied’ from human-authored captions in the training set) but cannot produce novel cap-

tions. Work towards generating novel captions retrieves and combines existing text frag-

ments (Kuznetsova et al., 2012; Kuznetsova et al., 2014) or prunes irrelevant fragments for

better generalization (Kuznetsova et al., 2013). The resulting captions, however, may still

be irrelevant to the image content. On the image side, such methods mainly use a global im-
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age representation (e.g., the penultimate layer of a CNN) or an intermediate representation

such as a semantic tuple.

End-to-End approaches. Finally, end-to-end, deep neural network-based approaches are

currently the most popular method for IC, yielding state-of-the-art results. These ap-

proaches were inspired by the success shown in transferring image representations to other

tasks (Razavian et al., 2014) using simple transfer learning approaches. End-to-end meth-

ods will be discussed in more detail in Section 3. In general, such approaches extract

image-related features using a CNN, which are then fed to an RNN caption generator.

A popular and simple approach to condition the RNN on the image representation is by

initializing the start state of the RNN with the image encoding (Karpathy & Fei-Fei, 2015;

Vinyals et al., 2015) as shown in Figure 1. The CNN model used in most state-of-the-

art approaches for IC (and MMT) is based on a classification model trained to optimally

perform on an object classification task. The visual representation obtained as the activa-

tions of the penultimate layer have been shown previously to generalize to other tasks in

the framework of transfer learning (Donahue et al., 2014). Most previous approaches use

pre-trained deep CNN networks, such as VGGNet (Karpathy & Fei-Fei, 2015), Inception

CNN (Vinyals et al., 2015) and ResNet (Yao et al., 2017), to obtain an image represen-

tation that is fed into a continuous sequence generator. Attention mechanisms have also

been used. For example, Xu et al. (2015) learns an IC model that attends to the output of a

convolutional layer of a CNN.

Other ways of inducing representations in end-to-end approaches include attribute-level

information. These correspond to the class-based predictions of the image network, i.e.

the posterior probability distribution on a pre-defined set of classes that can correspond to

objects in the image as shown in Figure 1. Wu et al. (2016) further fine-tune the pre-trained

image network on a new label set. This fine-tuning helps the image network predict classes

that correspond to the expected vocabulary.

Image captions generated by end-to-end systems can be novel to a certain extent depend-

ing on search configurations, e.g. the beam size used during decoding. In these approaches,

the proportion of novel descriptions has been reported to be between 30% to 50% for op-

timally trained systems (Devlin et al., 2015; Vinyals et al., 2016; Karpathy, 2016). The

number of unique captions generated by such systems has also been reported to be approx-

imately 30%. Humans, in contrast, rarely repeat descriptions, having a rate of 95%–99%

unique descriptions reported for the MSCOCO dataset (Devlin et al., 2015; Karpathy,

2016). End-to-end systems also require a lot of parallel corpora (images with captions)

for training, making it hard to adapt to different languages, styles or domains. Thus, end-

to-end systems seem to predominantly ‘memorize’ parallel corpora, making it seemingly

more like a ‘retrieval machine’ rather than genuinely generating image descriptions as in

older pipelined approaches.

We refer readers to Bernardi et al. (2016) for an in-depth discussion on various image

captioning approaches.
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(a) IC (b) Multimodal NMT

Fig. 2: Typical architecture of IC and MMT systems. In (a), the input image is encoded as

a vector, and a description is decoded using an RNN. In (b), the source sentence encoding

is used as decoder input, and the image embedding as input to either (or both) the source

encoder or target decoder.

2.2 Multimodal Machine Translation Approaches

The task of MMT is closely related to that of IC. Most existing work focuses on end-to-

end approaches, with an additional RNN used to encode the source sentence to produce a

sequence of encoded vectors. Figure 2 illustrates the differences between typical IC and

MMT architectures. In MMT, the visual information can be used to condition the source

RNN, the target RNN, or both (Elliott et al., 2015). Most existing work obtain the best

results by combining the penultimate layer of the CNN (via concatenation, summation,

etc.) with the final state of the source sentence representation and using it to initialize the

target RNN (Caglayan et al., 2016; Calixto et al., 2016; Huang et al., 2016).

Recent work also explores an attention mechanism where they use lower level CNN

features of the images, such as a convolutional layer, and condition the source and the target

sentences on the image features (Calixto et al., 2016; Calixto et al., 2017). The intuition

here is that the lower-level CNN features capture information about different areas of the

images and an attention mechanism could learn to attend to specific regions while both

encoding the source and decoding the target sentence.

Alternative approaches rely on pre-generated candidate translations for each source sen-

tence from a text-only MT model, which are then reranked based on visual information

(Shah et al., 2016), or use image information by pivoting on it to find relevant captions

in external corpora (Hitschler et al., 2016). Approaches that exploit multi-task learning to

jointly model how to translate and learn visually grounded representations showed promis-

ing results (Elliott & Kádár, 2017).

2.3 Studying Visual Representations

Recent work in analyzing multimodal representations include (Devlin et al., 2015; van

Miltenburg & Elliott, 2017), which focus on linguistic regularities in the generated cap-

tions. They are interested in comparing different IC architectures and the properties of the
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produced captions. In contrast, our work focuses on studying visual representations and

their impact in vision to language tasks.

Focusing on MMT, Lala et al. (2017) show that, given reliable image information in the

form of captions, an ideal MMT system would be able to significantly benefit and obtain

better translations.

Vinyals et al. (2016) and Karpathy et al. (2016) present an analysis of lexical and syn-

tactic properties of the generated captions. They conclude that almost 80% of the time the

best caption for an image in the validation or test sets of MSCOCO can be retrieved from

its training set, and that beam size often dictates the diversity in the output captions. Lebret

et al. (2015) also analyzed the syntax of image captions in Flickr30k and MSCOCO and

found that they comprise a simple and predictable structure.

The MSCOCO shared task (Chen et al., 2015) showed that participating systems using

variants of retrieval-based approaches (Devlin et al., 2015; Kolář et al., 2015) performed

competitively with end-to-end approaches. Recent work seems to suggest that, in the end-

to-end learning framework, using posterior distributions over a refined set of object classes

(relevant to captions) performs better than using lower level dense image representations

(Wu et al., 2016; You et al., 2016). Vinyals et al. (2016) note that using a better image

network (a network that performs better on the image classification task) results in im-

provements in the generated captions.

In this paper, we concentrate on the image side of image captioning, and systematically

investigate the contribution of different types of visual representations in these tasks and

study plausible reasons that drive the language generation component. We focus on the

currently dominant end-to-end approaches, which represent the state-of-the-art for both IC

and MMT. We acknowledge that there might be other types of approaches, e.g. Fang et al.

(2015) use different architectures and also achieve strong performance, but studying these

is left for future work.

3 Model Setting

We base our IC implementation on a simple end-to-end approach by Karpathy & Fei-

Fei (2015), and consider most state-of-the-art systems as predominantly variants of this

architecture. We use the Long Short-Term Memory (LSTM) RNN (Hochreiter & Schmid-

huber, 1997; Chung et al., 2014) as our generative network, as described in Zaremba et

al. (2014) for IC.

In order to use the image information, we first perform a linear projection of the image

representation followed by a non-linearity as shown below:

Imfeat = σ(W ·Im)

Here, Im ∈ Rd is the d-dimensional initial image representation, W ∈ Rd×m is the linear

transformation matrix, σ is the non-linearity. We use exponential linear units as the non-

linearity (Clevert et al., 2015) since it is faster to compute. Following Vinyals et al. (2015),

we initialize the LSTM generative sequence model with the projected image information.

For MMT, we first build an attention-based, encoder-decoder framework as described in

Luong et al. (2015). We explore two approaches to use image information: (i) conditioning
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the encoder on image information; (ii) conditioning the decoder on image information.

Both (i) and (ii) are similar to the afore-described approach for IC.

The sentence generator is trained to generate sentences conditioned on the image rep-

resentation (IC and MMT), and also on the source sentence representation for MMT. This

is done by using the cross-entropy loss. That is, the sentence-level loss corresponds to the

sum of the negative log likelihood of the correct word at each time step. For IC:

Pr(S|Imfeat; θ) =
∑

t

log(Pr(wt|wt−1..w0; Imfeat)) (1)

where Pr (S|Imfeat; θ) is the sentence level loss conditioned on the image features

Imfeat and Pr(wt) is the probability of the word wt at time step t.

For MMT, given a source sentence F and the image features Imfeat, we obtain the

negative log-likelihood of the target sentence E as:

Pr(E|F, Imfeat; θ) =
∑

i

log(Pr(wt|wt−1..w0;F, Imfeat)) (2)

where Pr(E|F, Imfeat; θ) is now conditioned on both the source sentence F and the image

features Imfeat and wt are words corresponding to the sentence in the target language.

The standard maximum likelihood objective is used to train the model, with teacher forc-

ing as described in Sutskever et al. (2014) where the correct word information is fed to the

next state in the LSTM. Inference is usually done using approximate techniques like beam

search and sampling methods (Karpathy & Fei-Fei, 2015; Vinyals et al., 2015). In this pa-

per, as we are mainly interested in studying the effect of different image representations,

we focus on the language output that the models can most confidently produce. Therefore,

in order to isolate any other variables from the experiments, we generate captions using a

greedy argmax based approach, i.e. no beam search.

4 Image Representations

Various representations are explored in this paper to study the representational contribution

of images for both IC and MMT. We first provide an overview of the various pre-trained

image networks used to obtain image features (Section 4.1), which are then used to form

image representations for IC (Section 4.2) and MMT (Section 4.3).

4.1 Pre-trained Image Networks

In computer vision, CNNs became the de facto choice for image representations after the

successful performance of the AlexNet CNN (Krizhevsky et al., 2012) in the 2012 Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC 2012) (Russakovsky et al.,

2015). Such networks are trained on the ILSVRC dataset for object classification, i.e. clas-

sifying images into a set of 1,000 pre-defined categories or synsets (“is this an image of a

cat?”). Intermediate layers of the CNN are also often extracted and used as off-the-shelf

features for various other vision tasks (Donahue et al., 2014; Razavian et al., 2014). For

IC and MMT, it is worth noting that the object categories may not be directly relevant to

the captions and vice versa (the captions may mention concepts that are not covered by the
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1,000 categories). We explore the following two CNNs, both pre-trained on the ILSVRC

dataset:

VGG19: VGGNet (Simonyan & Zisserman, 2015) achieved a top-5 accuracy of 92.7% in

the ILSVRC 2014 challenge, making it among the top two best performing networks at the

time. VGGNet is found to generalize well to different datasets and tasks, and is thus still

widely used for different tasks. We use the pre-trained 19-layer version of VGGNet, which

is reported to give slightly better performance in object classification over the 16-layer

version, at the expense of being more complex.

ResNet152: ResNet (He et al., 2016) reported a top-5 classification accuracy of 97.4% in

the ILSVRC 2015 challenge, a significant improvement over VGGNet. The improvement

resulted from drastically increasing the number of layers to 152, compared to VGGNet’s

19. We also explore using the output of the pre-trained 152-layer version of ResNet for IC

and MMT to investigate whether the improvement in classification accuracy on ILSVRC

helps with downstream vision to language tasks.

We also explore two other variants of ResNet152:

Places365-ResNet152: Zhou et al. (2014) trained a CNN on the Places2 dataset (Zhou

et al., 2017) to classify 365 scene categories (sky, baseball stadium, etc.). We investigate

whether these networks predicting scene-specific categories are useful for IC, despite not

predicting object-specific categories. We experiment with ResNet152 pre-trained solely on

the Places2 dataset. Similar to the 1,000 ILSVRC categories, the scene categories may not

be relevant to the captions, and some scenes mentioned in the captions may not exist in the

365 scene categories.

Hybrid1365-ResNet152: Zhou et al. (2014) also proposed training a CNN on the con-

catenation of both ILSVRC and Places2 datasets, thus predicting both object and scene

categories (1,365 classes). Therefore, we examine whether such a network combining both

types of information can be helpful for vision to language tasks. This network is again

based on the ResNet512 architecture.

4.2 Image Representations for IC

We now describe different representations explored for the task of IC. These include a

lower-bound baseline (Section 4.2.1), representations derived from image classification

(Section 4.2.2), and representations derived from object detectors (Section 4.2.3).
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4.2.1 Lower-bound representation

Random: We condition the LSTM on a 300-dimensional vector containing random val-

ues sampled uniformly between [0, 1)1. This represents a worst case image feature and

provides an artificial lower bound.

4.2.2 Representations from image-level classification

We explore various representations derived from pre-trained CNNs (Section 4.1):

Penultimate layer (Penultimate): Most previous attempts for IC use the output of the

penultimate layer of a CNN pre-trained on the ILSVRC data. Previous work motivates us-

ing ‘off-the-shelf’ feature extractors in the framework of transfer learning (Razavian et al.,

2014; Donahue et al., 2014). Such features have been often applied to IC (Mao et al., 2015;

Karpathy & Fei-Fei, 2015; Gao et al., 2015; Vinyals et al., 2015; Donahue et al., 2015) and

have been shown to produce state-of-the-art results. Therefore, for each image, we extract

the fc7 layer of VGG19 (4096D) and the pool5 layer for the ResNet152 variants (2048D) .

Class prediction vector (Softmax): We investigate higher-level image representations,

where each element in the vector is an estimated posterior probability of object cate-

gories. As previously noted, the categories may not directly correspond to the captions

in the dataset. While there are alternative methods that fine-tune the image network on a

new set of object classes extracted in ways that are directly relevant to the captions (Fang

et al., 2015; Wu et al., 2016; Yao et al., 2017) we study the impact of off-the-shelf pre-

diction vectors on the IC task. The intuition is that category predictions from pre-trained

CNN classifiers may also be beneficial for IC, alongside the standard approach of using

mid-level features from the penultimate layer. Therefore, for each image, we use the pre-

dicted category posterior distributions of VGG19 and ResNet152 (1000 object categories),

Places365-ResNet152 (365 scene categories), and Hybrid-ResNet152 (1365 object and

scene categories).

Object class word embeddings (Top-k): Here we experiment with a method that utilizes

the averaged word representations of top-k predicted object classes. We first obtain Softmax

predictions using ResNet152 for 1000 object categories (synsets) per image. We then select

the objects that have a posterior probability score > 5% and use the 300-dimensional pre-

trained word2vec (Mikolov et al., 2013) representations2 to obtain the averaged vector

over all top object categories. This is motivated by the central observation that averaged

word embeddings can represent semantic-level properties and are useful for classification

tasks (Arora et al., 2017).

1 We also tried using 1,000-dimensions, but it yielded slightly poorer results.
2 https://code.google.com/archive/p/word2vec/
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4.2.3 Representations from object-level detections

We also explore representing images using information from object detectors that iden-

tify instances of object categories present in an image, rather than a global, image-level

classification as described earlier. The output of visual detectors can help form a more

interpretable and informative image representation:

• Ground truth (Gold) region annotations for instances of 80 pre-defined categories

provided with MSCOCO, the dataset we use for the IC experiments. It is worth

noting that these were annotated independently of the image captions, i.e. people

writing the captions had no knowledge of the 80 categories and the annotations (and

vice versa). As such, there is no direct correspondence between the region annota-

tions and image captions.

• The state-of-the-art object detector YOLO (Redmon & Farhadi, 2017) pre-trained

on MSCOCO for 80 categories (YOLO-Coco), or pre-trained on MSCOCO and

ILSVRC for 9000 categories (YOLO-9k) in a weakly supervised fashion (bound-

ing boxes surrounding object instances are not provided).

We explore several representations derived from instance-level object class annota-

tions/detectors above:

Bag of objects (BOO): We represent each image as a sparse bag of objects vector, where

each element represents the frequency of occurrence for each object category in the image

(Counts). We also explore an alternative representation where we only encode the presence

or absence of the object category regardless of its frequency (Binary), to determine whether

or not it is important to encode object counts in the image. These representations help us

examine the importance of explicit object categories and in a sense interactions between

object categories (dog and ball) in the image representation. We investigate whether such

a sparse and high-level BOO representation is helpful for IC. It is also worth noting that

BOO is different from the Softmax representation above as it encodes the number of object

occurrences, not the confidence of class predictions at image level. We compare BOO

representations derived from the Gold annotations (Gold-Binary and Gold-Counts) and

both YOLO-Coco and YOLO-9k detectors (Counts only).

Pseudo-random vectors: To further probe the capacity of IC models to make use of image

representations, we experiment with noisy vectors that contain object-level information.

More specifically, we examine a type of representation where similar objects are repre-

sented using similar random vectors. We then form the representation of the image from

BOO Gold-Counts and BOO Gold-Binary; formally, Imfeat =
∑

o∈Objects f × φo, where

φo ∈ Rd is an object-specific random vector and f is a scalar representing counts of the ob-

ject category. We call these pseudo-random vectors. In the case of Pseudo-random-Counts,

f is the frequency counts from Gold-Counts. In the case of Pseudo-random-Binary, f is

either 0 or 1 based on Gold-Binary. We use d = 120. We investigate whether these seem-

ingly random representations (but which have a latent structure) can generate reasonable

captions.
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4.3 Image Representations for MMT

Based on the observations from our experiments for IC, we explore the following image

features for MMT:

Penultimate layer (Penultimate): As with previous successful approaches to MMT (Elliott

et al., 2015; Huang et al., 2016; Libovický et al., 2016), we use image information ob-

tained from the penultimate layer of a pre-trained image network. Since we observed that

ResNet152-based representations were slightly better for IC, we only use ResNet152 pre-

trained on object classification for MMT, with representations from the penultimate layer

(Pool5) of the network.

Class prediction vector (Softmax): As in IC, we also use the posterior distribution from

ResNet152 (1,000 object categories) as image information.

5 Experiments and Results

To study the efficacy of vision to language models and understand the contribution of

image information, we perform a series of experiments on standard datasets. We explore

end-to-end approaches to IC and MMT, and make our source code and models available

for replicability.

5.1 Datasets

IC: We use the most widely used evaluation setup for IC, i.e. MSCOCO (Chen et al.,

2015). The dataset consists of 82,783 images for training, with five captions per image, thus

totaling 413,915 captions in total. The validation set consists of 40,504 images and 202,520

captions. We perform model selection on a 5000-image development set and report the

results on a 5000-image test set using standard, publicly available3 splits of the MSCOCO

validation dataset as in previous work (Karpathy & Fei-Fei, 2015).

Details about the collection of the images and captions can be found in (Chen et al.,

2015). While other image captioning datasets exist (Grubinger et al., 2006; Rashtchian

et al., 2010; Young et al., 2014), we focus on MSCOCO as it is more recent and has been

extensively used and evaluated in an open platform4. More information on different image

captioning or image description datasets can be found in (Ferraro et al., 2015).

MMT: We use the Multi30k (Elliott et al., 2016) English-German (en-de) MMT dataset

which was released as part of the WMT 2016 shared task on MMT (Specia et al., 2016).

The dataset consists of English-German sentence pairs, where the English sentence is a

caption belonging to the Flickr30k dataset (Young et al., 2014) and the corresponding Ger-

man sentence is a translation of this description professionally crafted. We also experiment

with using the same data and flipping the translation direction, i.e. with a German-English

3 http://cs.stanford.edu/people/karpathy/deepimagesent
4 http://cocodataset.org/
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(de-en) dataset. This dataset is reasonably small, containing 29K sentence pairs for train-

ing, 1K for development, and 1K for test. As in most datasets derived from IC tasks, sen-

tences are very short: on average 11.9 tokens for English, and 11.1 tokens for German.

5.2 Evaluation Metrics

We evaluated system outputs using standard metrics for IC and MMT.

IC: The most common metrics for IC are BLEU (Papineni et al., 2002), Me-

teor (Denkowski & Lavie, 2014) and CIDEr (Vedantam et al., 2015). All of these metrics

are based on some form of n-gram overlap between the system output and the reference

captions (i.e. no image information is used). BLEU is computed from 1-gram to 4-gram

precision scores (B-1 . . . B-4); as n increases (longer phrases) there will be less chances

of an n-gram match, resulting in a decrease in the overall score from B-1 to B-4. Me-

teor is an f -measure based metric that finds the optimal alignment between chunks of

matched text and can incorporate semantic knowledge by allowing terms to be matched to

stemmed words, synonyms and paraphrases, if such resources are available for the target

language. CIDEr was developed specifically for image captioning, and measures the av-

erage cosine similarity between a generated caption and a reference, each represented as

TF-IDF weighted bag of n-grams. We compare each system generated caption against five

reference captions. We used the publicly available cocoeval script for evaluation5. Note

that there are inherent weaknesses with these automatic metrics as they often do not corre-

late well with human judgements (Elliott & Keller, 2014; Kilickaya et al., 2017; Anderson

et al., 2016). This is also reflected in the official MSCOCO metrics based on human judge-

ments6. Other metrics have emerged in an attempt to address this issue (Anderson et al.,

2016), but they have not been widely adopted.

MMT: We use the official metrics of the WMT16 MMT task – 4-gram BLEU and Meteor

– computed using the publicly available multeval script7. Each generated caption is com-

puted against one reference (human) translation. These are the mostly widely used metrics

by the machine translation community for translation evaluation.

5.3 Model Settings and Hyperparameters

IC: We use a 2-layer LSTM with 128-dimensional word embeddings and 256-dimensional

hidden dimensions.

MMT: We use a single hidden layer encoder and decoder both with 128-dimensional word

embeddings and 256-dimensional hidden dimensions. We train with dropout set to 0.3 for

the RNNs.

For both IC and MMT, as training vocabulary we retain only words that appear at least

twice.

5 https://github.com/pdollar/coco
6 http://cocodataset.org/#captions-leaderboard
7 https://github.com/jhclark/multeval
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5.4 Results

Representation B-1 B-2 B-3 B-4 M C

Random 0.48 0.24 0.11 0.07 0.11 0.07
S

o
ft

m
ax

VGG19 0.62 0.43 0.29 0.19 0.20 0.61

ResNet152 0.62 0.43 0.29 0.19 0.20 0.62

Places365-ResNet152 0.60 0.41 0.28 0.19 0.19 0.56

Hybrid1365-ResNet152 0.60 0.41 0.27 0.18 0.19 0.60

P
en

u
lt

im
at

e VGG19 (fc7) 0.65 0.46 0.32 0.22 0.21 0.69

ResNet152 (Pool5) 0.66 0.48 0.33 0.23 0.22 0.74

Places365-ResNet152 0.61 0.41 0.27 0.19 0.19 0.55

Hybrid1365-ResNet152 0.65 0.46 0.32 0.23 0.22 0.72

Embeddings Top-k 0.62 0.42 0.28 0.19 0.20 0.63

BOO

Gold-Binary 0.65 0.47 0.32 0.22 0.22 0.75

Gold-Counts 0.66 0.48 0.33 0.23 0.22 0.80

YOLO-Coco 0.65 0.46 0.32 0.22 0.22 0.75

YOLO-9k 0.64 0.44 0.30 0.20 0.20 0.67

Pseudo-random
Pseudo-random-Binary 0.65 0.47 0.33 0.22 0.22 0.74

Pseudo-random-Counts 0.65 0.46 0.31 0.20 0.21 0.78

Table 1: Results on the MSCOCO test split for IC, where we vary only the image repre-

sentation and keep other parameters constant. The captions are generated with beam = 1

.

5.4.1 Image Captioning

We first report results of IC on MSCOCO in Table 1, where the IC model (Section 3)

is conditioned on the various image representations described in Section 4. As expected,

using random image embeddings clearly does not provide any useful information and per-

forms poorly. The Softmax representations with similar sets of object classes (VGG19,

ResNet152, and Hybrid1365-ResNet152) have very similar performance. However, the

Places365-ResNet representations perform worse. We note that the posterior distribution

may not directly correspond to captions as there are many words and concepts that are not

contained in the set of object classes. Our results differ from those by (Wu et al., 2016; Yao

et al., 2017; Fang et al., 2015) where the object classes have been fine-tuned to correspond

directly to the caption vocabulary. We posit that the degradation in performance is due to

spurious probability distributions over object classes for similar looking images.

The performance of the Pool5 image representations shows a similar trend for VGG19,

ResNet152, and Hybrid1365-ResNet152, with ResNet152 showing slightly better scores.

Once again, the Places365-ResNet representation performs worse. The representations

from the image network trained on object classes is probably able to capture more fine-

grained image details from the images, whereas the image network trained with scene-

based classes captures more coarse-grained information.

The performance of the averaged top-k word embeddings is similar to that of the Softmax

representation. This is interesting, since the averaged word representational information is

mostly noisy: we combine top-k synset-level information into one single vector. However,

it still performs competitively.
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The performance of the Bag of Objects (BOO) sparse 80-dimensional annotation vec-

tor is better than all other image representations, if we consider the CIDEr scores. This is

despite the fact that the annotations may not directly correspond to the semantic informa-

tion in the image or the captions. The sparse representational information is indicative of

the presence of only a subset of potentially useful objects. We notice a marked difference

with Binary and Count-based representations. This takes us back to the motivation that im-

age captioning ideally requires information about objects, as well as interactions between

objects, with attribute-level information such as number. Although our representation is re-

ally sparse on the object interactions, it captures the basic concept of the presence of more

than one object of the same kind, and thus provides additional information. A similar trend

is observed by Yin & Ordonez (2017), although in their models they further try to learn

interactions using another RNN for encoding objects.

Using objects predicted with YOLO-Coco performs better than using objects predicted

with YOLO-9k. This is expected as YOLO-Coco was trained on the same dataset hence

obtaining better object proposals. With YOLO-9k, a significant number of objects were

predicted for the test images that had not been seen in the training set (around 20%).

The most surprising result is the performance of the pseudo-random vectors. Both the

pseudo-random-Binary and the pseudo-random-Count vectors perform almost as well as

the Gold objects. This suggests that the RNN is able to isolate the noise and learn some

form of a common ‘visual-semantic’ subspace.

5.4.2 Multimodal Machine Translation

Model
en-de de-en

BLEU Meteor BLEU Meteor

Pool5-enc 32.9 51.3 36.5 35.1

Pool5-dec 32.3 50.4 37.6 35.6

Softmax-enc 32.7 50.8 37.0 35.1

Softmax-dec 33.0 51.0 36.3 34.2

Caglayan et al. (2016)† 34.1 53.2 – –

Table 2: Results for en-de and de-en MMT test sets. † are best WMT16 results taken from

Caglayan et al. (2016) which are generated based on a combination of statistical machine

translation and re-scoring.

For MMT, we summarize the results in Table 2. Our models do not reach the perfor-

mance of the top system at WMT16, but such a system is actually a combination of multi-

ple strategies. We compare with one of best performing systems — Caglayan et al., (2016).

Their system uses a phrase-based statistical machine translation model, plus a re-scoring

strategy using language model and visual information in the form of the penultimate layer

of a pre-trained VGG network. The most interesting observation is that Pool5 and Softmax

perform similarly, as in the IC task, and that the efficacy of the use of the visual information

in the encoding versus decoding seems to depend on the type of visual representation and

also on the dataset. In fact, no clear trend could be observed and additional experiments

are needed, ideally with more realistic translation (not image captioning) data.
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6 Analysis and Discussion

In what follows we further analyze the results for the IC task, for which the representations

and models studied in this paper seem to show a clearer trend than for MMT.

(a) Bag of objects (b) ResNet152 Softmax (c) Places365 Softmax

(d) Hybrid1365 Softmax (e) Embeddings (f) ResNet152 Pool5

(g) Places365 Pool5 (h) Hybrid1365 Pool5 (i) Pseudo-random

Fig. 3: The cosine distance matrix between six groups: three MSCOCO categories and

pairwise combinations of the three categories) from the training dataset. Each group is

represented by the average image feature of 25 randomly selected images from the category

or combination of categories.

6.1 Image Representations

We first compare different image representations with respect to their ability to group

and distinguish between semantically related images. For this, we selected three cate-

gories from MSCOCO (“dog”, “person”, “toilet”) and also pairwise combinations of these

(“dog+person”, “dog+toilet”, “person+toilet”). Up to 25 images were randomly selected

for each of these six groups (single category or pair) such that the images are annotated

with only the associated categories. Each group is represented by the average image fea-

ture of these images. Figure 3 shows the cosine distances between each group, for each of

our image representations. The Bag of Objects representation forms the clearest clusters,

as expected (e.g. the average image representation of “dog” correlates with images con-

taining “dog” as a pair like “dog+person” and “dog+toilet”). The Softmax representations

seem to also exhibit semantic clusters, although to a lesser extent. This can be observed
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with “person”, where the features are not semantically similar to any other groups. The

most likely reason is that there is no “person” category in ILSVRC. Also, Place365 and

Hybrid1365 Softmax (Figure 3c) also showed very strong similarity for images contain-

ing “toilet”, whether or not they contain “dog” or “person”, possibly because they capture

scene information. On the other hand, Pool5 features seem to result in images that are more

similar to each other than Softmax overall.

→

(a) Pool5

→

(b) Softmax

→ ...

(c) Bag of Objects

Fig. 4: Visualization of the t-SNE projection of the initial representational space (left) vs.

the transformed representational space (right).
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6.2 Transformed Representations

To test the possibility that the RNN conditioned on visual information learns some sort

of common ‘visual-semantic’ space, we explore the difference in representations between

the initial representational space and the transformed representational space. The transfor-

mation is learned jointly as a subtask of image captioning. To visualize both representa-

tional spaces, we use Barnes-Hut t-SNE (van der Maaten & Hinton, 2008) to compute a

2-dimensional embedding over the test split. In general, we found that images are initially

clustered by visual similarity (Pool5) and semantic similarity (Softmax, Bag of Objects).

After transformation, linguistic information from the captions leads to different types of

clusters.

Figure 4 highlights some interesting observations about the changes in clustering across

three different representations. For Pool5, images seem to be clustered by their visual ap-

pearance, for example snow scenes in Figure 4a, regardless of the subjects in the images

(people or dogs). After transformation, separate clusters seem to be formed for snow scenes

involving a single person, groups of people, and dogs. Interestingly, images of dogs in fields

and snow scenes are also drawn closer together.

Softmax (Figure 4b) shows many small, isolated clusters before transformation. After

transformation, bigger clusters seem to be formed – suggesting that the captions have again

drawn related images together despite being different in the Softmax space.

For Bag of Objects (Figure 4c), objects seem to be clustered by co-occurrence of object

categories, for example toilets and kitchens are clustered since they share sinks. Toilets and

kitchens seem to be further apart in the transformed space.

A similar observation was made by Vinyals et al. (2016) in which the authors observe

that end-to-end IC models are capable of performing retrieval tasks with comparable per-

formance to the task-specific models that are trained with ranking loss.

6.3 Generated Captions

In this section we provide a qualitative analysis of different image representations and gain

insights into how they contribute to the IC task. Bag of Objects led to a strong performance

in IC despite being extremely sparse and low-dimensional (80D). Analyzing the test split,

we found that each vector consists of only 2.86 non-zero entries on average (standard devi-

ation 1.8, median 2). Thus, with minimal information being provided to the RNN generator,

we find it surprising that it is able to perform so well.

We compare the output of the remaining models against the Bag of Objects represen-

tation by investigating what each representation adds to or subtracts from this simple, yet

strong model. We start by selecting images (from the test split) annotated with the exact

same Bag of Objects representation – which should result in the same caption. For our qual-

itative analysis, several sets of one to three MSCOCO categories were manually chosen.

For each set, images were selected such that there is exactly one instance of each category

in the set and zero for others. We then shortlisted images where the captions generated

by the Bag of Objects model produced the five highest and five lowest CIDEr scores (ten

images per set). We compare the captions sampled for each of the other representations.

Figure 5 shows some example outputs from this analysis. In Figure 5a, Bag of Objects
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Representation CIDEr

(∆)

Caption

Bag of objects 2.78

(+0.00)

a bird is perched on a branch in the sun .

VGG19 softmax 3.14

(+0.36)

a owl is perched on a branch of a tree .

ResNet softmax 3.67

(+0.89)

a owl is perched on a branch in a tree .

Places365 soft-

max

2.00

(-0.77)

a bear is sitting on a branch in the wilderness .

Hybrid1365 soft-

max

0.01

(-2.77)

a giraffe standing in a field of grass .

VGG19 fc7 0.18

(-2.59)

a black and white image of a bird sitting on a window sill .

ResNet pool5 0.38

(-2.40)

a large black bear standing in a forest .

Places365 pool5 0.34

(-2.43)

a giraffe standing in the middle of a forest .

Hybrid1365 pool5 3.03

(+0.26)

a bird is perched on a branch in a tree .

Embeddings 2.38

(-0.40)

a bird sitting on a branch in a window .

(a) Bag of objects: bird (1)

Representation CIDEr

(∆)

Caption

Bag of objects 0.09

(+0.00)

a large airplane flying through a blue sky .

VGG19 softmax 0.00

(-0.09)

a man in a baseball cap and sunglasses is holding a baseball bat .

ResNet softmax 0.00

(-0.09)

a man is holding a baseball bat in a batting cage .

Places365 soft-

max

0.06

(-0.03)

a dog is standing in the grass with a ball in its mouth .

Hybrid1365 soft-

max

0.00

(-0.09)

a man holding a tennis racquet on a tennis court .

VGG19 fc7 0.73

(+0.63)

a plane is sitting on a runway with a few people .

ResNet pool5 0.01

(-0.08)

a train is on the tracks in a city .

Places365 pool5 0.00

(-0.09)

a giraffe standing in a fenced in enclosure .

Hybrid1365 pool5 0.01

(-0.08)

a man holding a baseball bat standing next to home plate .

Embeddings 0.01

(-0.09)

a baseball player holding a bat on a field .

(b) Bag of objects: airplane (1)

Representation CIDEr

(∆)

Caption

Bag of objects 0.01

(+0.00)

a man wearing a suit and tie standing in front of a building .

VGG19 softmax 0.04

(+0.04)

a woman in a pink wig and a pink dress .

ResNet softmax 0.00

(-0.00)

a man in a suit and tie is smiling .

Places365 soft-

max

0.13

(+0.12)

a woman with a red polka dotted dress tie .

Hybrid1365 soft-

max

0.06

(+0.05)

a woman in a red dress is talking on a cell phone .

VGG19 fc7 0.24

(+0.24)

a woman with a cell phone in her hand .

ResNet pool5 0.08

(+0.08)

a woman in a red shirt and tie .

Places365 pool5 0.10

(+0.09)

a woman is holding a cell phone to her ear .

Hybrid1365 pool5 0.05

(+0.04)

a woman in a dress shirt and tie holding a parasol .

Embeddings 0.00

(-0.01)

a man wearing a tie and a shirt and a tie .

(c) Bag of objects: person (1), tie (1)

Fig. 5: Example outputs from our system with different representations, the sub-captions

indicate the annotation along with the frequency in braces. We also show the CIDEr score

and the difference in CIDEr score relative to the Bag of Objects representation.
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achieved a high CIDEr score despite only being given “bird” as input, mainly by ‘guess-

ing’ that the bird will be perching/sitting on a branch. The object-based Softmax (VGG

and ResNet) models led to an even more accurate description as “owl” is the top-1 pre-

diction of both representations (96% confidence for VGG, 77% for ResNet). Places365

predicted “swamp” and “forest”. The Penultimate features on the other hand struggled

with representing the images correctly. In Figure 5b, Bag of Objects suffered from lack

of information (only “airplane” is given), the Softmax features mainly predicted “chain-

link fence”, Places365 predicted “kennel” (hence the dog description), and it is most likely

that Penultimate has captured the fence-like features in the image rather than the plane. In

Figure 5c, Softmax features generally managed to generate a caption describing a woman

despite not explicitly containing the “woman” category. This is because other correlated

categories were predicted, such as “mask”, “wig”, “perfume” and “hairspray”, and for

Places365 “beauty salon” and “dressing room”. ResNet predicted categories like “stetho-

scope”, “suit”, “cloak”, where we assume that doctor roles may be male-dominated in the

dataset, thus generating ‘man’.

6.4 Uniqueness of Captions

Model Unique (%)

BOO Gold-Counts 29.5

Top-k Class(Embeddings) 29.0

Softmax(ResNet152) 28.7

Pool5 (ResNet152) 28.8

Human 99.4

Table 3: Unique captions with beam = 1.

Challenges with IC datasets have been well explored in previous work. Karpathy et

al. (2016) perform both word level and syntactic level analysis on the MSCOCO and

Flickr8k datasets and concludes they both lack diversity. This means that most of the cap-

tions are generic descriptions and can fit multiple images. This extends directly for our

experiments on the IC and MMT datasets.

We now turn to the question on the ability of representations to produce unique captions

for every distinct image. We use the validation portion of the MSCOCO dataset, which

contains 40,504 images, and produce captions with four types of image representations.

We report the results in Table 3. We observe that in almost all cases, the produced repre-

sentations are far from unique. In most cases, there is a significant portion of the captions

that are repeated. This has also been observed by Devlin et al. (2015) on different test

splits, but using retrieval-based and pipeline methods for IC.

7 Conclusions

Our experiments probe the contribution of various types of image representations and shed

some light on the utility of image representations for vision to language tasks. We observed
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that a conditional RNN-based language model is capable of making sense of noisy informa-

tion and correctly clustering the noisy representation in the projected space. However, the

task datasets do not reflect the paucity of information content in the image representation

and, in most cases, we obtain repeated captions for similar sets of images. Our empirical

observations indicate that the direct use of lower-level image features may not be the only

way to condition an RNN, and that higher-level, abstract, semantic features may also be

beneficial in order to capture the semantic aspects of the images. As future work, we are

interested in exploring more complex models that use attention-based architectures and

those that exploit latent spaces.
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