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Abstract

The extraction of templates such as “regard X as Y” from a set of related phrases requires
the identification of their internal structures. This paper presents an unsupervised ap-
proach for extracting templates on-the-fly from only tagged text by using a novel relaxed
variant of the Sequence Binary Decision Diagram (SeqBDD). A SeqBDD can compress a
set of sequences into a graphical structure equivalent to a minimal DFA, but more compact
and better suited to the task of template extraction. The main contribution of this paper
is a relaxed form of the SeqBDD construction algorithm that enables it to form general
representations from a small amount of data. The process of compression of shared struc-
tures in the text during Relaxed SeqBDD construction, naturally induces the templates we
wish to extract. Experiments show that the method is capable of high-quality extraction
on tasks based on verb+preposition templates from corpora and phrasal templates from
short messages from social media.

1 Introduction

The extraction of frequently appearing templates such as “regard X as Y” or “Mag-

nitude X earthquake at Y” is a challenging problem since it requires an analyzer to

capture the structure of the frequently appearing phrases, and detect which part

should be represented by the slots. In this article, a template is defined as a fre-

quently co-occurring subsequence of words containing one or more slots, where a

slot is replaceable by another word sequence. In other words, a template in this

article is a sequence of elements of length longer than one, where an element is

either a word or a slot: at least one element is a slot, the other elements are words.
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2 Hirano, Tanaka-Ishii and Finch

The template itself, or the word sequences filling the slots in this article are not

necessarily limited to linguistic NP, VPs and PPs.

Classically, such templates have been considered in relation to collocations such

as in (Smadja, 1993). Collocations without slots are readily extractable by finding

n-grams that form atomic chunks. Therefore researchers have been turning their

attention to the more difficult and general task of extracting templates with slots.

The problem has been addressed in part in the form of the extraction of verb

structures. Baldwin and Kim (2010) showed the possibility of MWE (multi-word

expressions) extraction by only using n-grams and co-occurrences, without using a

parser.

Since templates are related to the grammatical structure of the phrases, one

possibility is to use a parser. However, the kinds of text and languages that can be

processed by a parser are strictly limited, since they are generally built from clean

annotated corpora. In addition parse trees can be deep, and the recursive nature

of parse trees means there are no limits on the depth of the structures involved,

potentially leading to a heavy computational burden.

Templates, as defined at the beginning of the article, are commonly found in

the social media: social media text is usually short (around 140 characters in the

case of Twitter) and many distributers use automatic bots to communicate the re-

cent database updates. We consider the extraction of these templates as one target

application of our approach. Social media text can cause issues even with a well-

trained parser, since their word sequences are often non-grammatical. Furthermore,

the grammatical structures found in this type of text are typically shallow making a

full-blown parser less appropriate for this task than a technique that focuses on the

shallow structure directly. It may be possible to develop an unsupervised parsing

technique to handle social media text, but a general high quality method for un-

supervised parsing is still being sought (Headden, Johnson, and McClosky, 2009).

One possible explanation for this is the difficulty inherent in analyzing the struc-

ture recursively. Another related field, shallow parsing ((Abney and Abney, 1991;

Huang, Xu, and Yu, 2015)) is well-established and devoted to obtaining shallow

linguistic analyses. These techniques typically segment a sentence into grammat-

ical structures. While pursuing this line may have led to fruitful results, instead,

we chose to try an alternative unsupervised method, a graphical method that pro-

duces a flat analytical structure, as opposed to the potentially unlimited depth of

the structures that can be created by a full parser.

Our proposed unsupervised method extracts templates through the construc-

tion of a structure equivalent to a minimum deterministic finite state automaton

(minDFA) (Daciuk, Mihov, Watson, and Watson, 2000). Our implementation uses

Sequence Binary Decision Diagrams (SeqBDDs) to allow the automata to be more

memory efficient than traditional minDFA (around 20% was reported in (Denzumi,

Yoshinaka, Arimura, and Minato, 2016)), and furthermore permits the graph to be

constructed on-the-fly.

The technique we propose facilitates the mining of text from the social media,

but can also find application in the more general field of lexicography and corpus

linguistics. Patterns of word usage can play an important role for enriching dictio-
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naries, and moreover serve language learners as in the lexical templates found in

the Collins Cobuild English Dictionary (Francis, Hunston, and Manning, 1998). As

a means of determining such templates, the key word in context (KWIC) technique

is often employed to rapidly display words in their textual context, although the

template identification must be done laboriously by hand.

The primary contribution of this paper is to propose an algorithm for automat-

ically constructing graphical representations of text designed specifically for auto-

matic template extraction. The SeqBDD (or minDFA) is the starting point of this

work, and we show empirically that it is capable of generating templates with high

precision, but suffers from low recall. We propose a relaxed algorithm for SeqBDD

construction to overcome this fundamental shortcoming. Usually, attempting to

raise recall leads to a lowering of precision, but in this work, the relaxation process

increases the number of templates being extracted while at the improving their

quality, leading to gains in both precision and recall.

2 Related Work

We are interested in extracting the templates as defined at the beginning of Intro-

duction. Although word sequences filling the slots in this article are not necessarily

limited to linguistic units such as NP, VPs and PPs, we want the results to be

meaningful linguistically. The templates studied in this article can be considered

multi-word expressions (MWEs) with slots, where MWEs are coined (Baldwin and

Kim, 2010), as “the split configuration of the verb-particle constructions (VPCs)”.

A detailed summary of the acquisition of multi-word expressions is well set out

in this reference. In brief, active research in MWEs was triggered by the seminal

paper of Sag, Baldwin, Bond, Copestake, and Flickinger (2002). In the work that

followed, various attempts have been made to acquire MWEs, such as co-detection

of English and Japanese templates by statistical methods (Kita, Kato, Omoto, and

Yano, 1994), or the extraction of verbs and noun-type idiom candidates (Fazly,

2006). Duan et al. (2006) reapply a method to extract frequent patterns from DNA

sequences. Since the basic technique is based on finding longest common subse-

quences, the method does not handle gaps. Several different methods for extract-

ing MWEs using a bilingual corpus have also been proposed (de Medeiros Caseli,

Ramisch, das Graças Volpe Nunes, and Villavicencio, 2010; Zarrießand Kuhn, 2009).

In more recent work, Nagy T. and Vincze (2014) focus on the extraction of verb-

particle combinations, each of which has a verb and a particle. Their method can

handle gaps since it is a syntax-based method that uses a parser, but this requires

a fully annotated gold standard. A more recent work attempts to extract MWEs

without wildcards. Tu and Roth (2012) study the method to detect phrasal verbs

using machine learning techniques. Although slots are considered in this article, the

application is limited to 6 verbs and 19 prepositions. Some recent studies attempt

to extract from grammatically structured data, such as treebank and parsed data.

Sangati and van Cranenburgh (2015) extract multiword expressions from frequently

appearing fragments in the treebank. Since the method is able to exploit a treebank,

the accuracy of the method is higher than the unsupervised methods. Another study
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(Martens, 2010) attempts to find frequent subtrees from parsed data. Our approach

differs from these in that it assumes no grammatical structure in the input.

From the opposite perspective, the proposed method is aimed at discovering the

underlying structure in related phrases in an unsupervised manner, and as such it

is broadly related to work in the field of unsupervised grammar induction.

In the field of natural language processing, the induction of grammars more com-

plex than regular grammars has been actively studied. In (Klein and Manning,

2004), an unsupervised dependency parser DMV was proposed which successfully

induced structure from a modest amount of data. The success of this early ap-

proach stimulated further research in the field. Headden et al. (2009) introduced

valence frames and lexical information into their induction process, giving rise to a

substantial improvement in performance (Gimpel and Smith, 2012). The method of

Klein and Manning (2004) was improved in (Gimpel and Smith, 2012) by introduc-

ing concave models that could be optimized without the problem of local minima.

However, at present the accuracy of the state-of-the-art unsupervised methods eval-

uated on Penn Treebank text (Marcus, Marcinkiewicz, and Santorini, 1993) is below

70% when the relative to the state-of-the-art supervised methods achieve over 93%

(Gimpel and Smith, 2012; Klein and Manning, 2004). Therefore, it may be difficult

to replace current supervised parsers with unsupervised parsers to use for template

extraction.

A template considered in this work has the basic structure of a regular expression

(that we will model using automaton-related data-structures), and therefore next we

summarize previous work related to regular expression induction that directly con-

cerns template induction. The work can be roughly partitioned into three: heuris-

tics, regular grammar induction, and methods related to finite state automata.

Many have performed template induction based on heuristics, such as (Pei, Han,

Mortazavi-Asl, Pinto, Chen, Dayal, and Hsu, 2001; Cui, Kan, and Chua, 2004; Kim,

2010; Han, Pei, and Yin, 2000), just to mention a few. Most of the approaches are

original but none are theoretically grounded. The remainder of the previous work

related to regular expressions presented here has some mathematical framework as

a basis.

Regular grammar induction algorithms are able to extract a regular grammar

from a set of phrases with similar structure. These techniques have had wide ap-

plication to sequences in general including the extraction of DNA patterns. Fernau

(2009) suggested a simple bottom-up regular expression induction strategy that

we replicated and applied to natural language. Unfortunately it resulted in a huge

number of trivial regular expressions. Moreover, it is not straightforward to apply

the method to template extraction since it has no mechanism for slot creation.

Most of the previous work discussed so far is based on prefix sharing of similar

phrase instances. This however generates huge amount of template candidates that

have similar infix and suffix structures. The point of phrasal template induction is

to identify shared common structures anywhere in the phrases, and abstract them

into slots.

Template extraction has a broad range of potential applications. One potential

application is to support lexicographers in building/enriching dictionaries for hu-
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mans and machines. The application can take a dynamic form, for example, by

extending the keyword in context (KWIC) system (Hunston and Francis, 2000),

which shows the words immediately preceding and following the node word, up to

a predetermined length. In fact, our work was partly motivated by an idea presented

in “pattern grammars” (Hunston and Francis, 2000). The authors assembled the

Collins Cobuild Grammar Templates dictionary (Francis, Hunston, and Manning,

1996, 1998), and claim that texts are formed of patterns defined as word sequences

that may contain slots (and we use the term template to represent this concept

hereafter). The patterns allow for parsing any sentence using pattern grammar,

as each word in the sentence will occur with its own pattern. Hunston and Fran-

cis (2000) shows this under the heading of ‘pattern flow’. Although the Collins

Cobuild English Dictionary was constructed manually, they suggest the possibility

of automating the procedure with an extended form of the KWIC system. This

work takes a first step to answer this challenge, by means of the SeqBDD. This

work was motivated by this fundamental work, but the templates we extract are

different from patterns of this Pattern Grammar, in which patterns are defined

as sequences of phrase or clause types (e.g. ’that-clause’, ’noun phrase’) that are

dependent on specific verbs, nouns or adjectives.

Another genre of application, as mentioned in the previous section, relates to so-

cial media, which has abundant repetitive patterns and shallow structure. Baldwin

et al. (2013) shows these common characteristics threading through social media,

through building and analyzing a corpus consisting of various types of social media.

This suggests how patterns could be one possible key to information extraction. The

identification of patterns would also create a means of compressing the data. This

paper will later study the proposed method in the context of these two potential

applications: the verb+preposition template extraction as an example towards an

extended KWIC method, and pattern acquisition from social media.

3 The Sequence BDD

Given a set of linguistic phrases with a similar structure, we want to extract the

common structure as a template: a sequence of words and slots. The first attempt

of doing this made use of a Trie structure. The Trie however, does not allow for

sharing the infix and suffix. Broadly, for template extraction, we are interested in

representations that also allow for the sharing of common structures within infixes

and suffixes.

Among the different data structures that allow this type of sharing, we chose

the SeqBDD (Sequence Binary Decision Diagram) as our basis. The SeqBDD is a

descendant of two different formal methods: of Binary Decision Diagrams (BDD)

and acyclic Deterministic Finite state Automata (DFA)1.

Therefore, the explanation of SeqBDD has two aspects: SeqBDD as one descen-

dant of BDD; and the other in contrast to DFA. We provide the former in §3.1, and

1 The reason why DFA are acyclic is that all string sets we need to model are finite.
Similarly, the SeqBDD is also acyclic.
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a

b b

c c c c

0 0 0 1 0 1 1 0

a
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c
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c

1

(a) Binary decision tree (b) BDD

Fig. 1. A binary decision tree and corresponding BDD structures representing the

Boolean function abc̄ ∨ ab̄c ∨ ābc.

the latter in §3.2. The basis of the SeqBDD can be found in (Loekito, Bailey, and

Pei, 2010; Denzumi, Yoshinaka, Arimura, and Minato, 2016), and the definitions

and algorithms necessary to replicate our method are all provided in this article.

3.1 SeqBDD as a descendant of BDD

SeqBDDs are descendants of Binary Decision Diagrams (BDDs) (Bryant, 1986) that

are graphical structures able to express Boolean functions. For example, consider

the Boolean function ‘abc̄∨ab̄c∨ ābc’. The function can be represented as the binary

decision tree structure shown in Fig.1(a). Solid edges in the graph represent truth

(1-edge), and dashed edges represent falsehood (0-edge). The leaf nodes represent

final truth and falsehood as 1 and 0, respectively. It is clear from the figure that

the tree contains many common substructures. For example, a node labeled ‘c’ is

connected to the 0- and 1-terminal nodes multiple times. The study of BDD has

tackled the elimination of such redundancy in binary decision trees (Bryant, 1986;

Knuth, 2009).

The minimization of the representation is conducted by exhaustively applying

two reduction operations for merging identical subgraphs: 1) node sharing (share

all equivalent subgraphs), and 2) node deletion (delete all redundant nodes where

both outgoing edges lead to equivalent subgraphs) (Bryant, 1986; Knuth, 2009).

Equivalent subgraphs are defined recursively: two nodes are in equivalent subgraphs

if their labels are identical and the heads of their outgoing edges are also in the

equivalent subgraphs. For example, in Fig.1(a) the central two nodes labeled ‘c’ are

both in equivalent subgraphs that extend down to the leaf nodes. These subgraphs

are merged into the left ‘c’ node at the bottom in Fig.1(b) using the node sharing

operation.

As for the node deletion, the left-most node labeled ‘c’ in Fig.1(a) is deleted us-

ing the node deletion operation 2) since both outgoing edges lead to the 0-terminal

node. Its incoming edge (from node ‘b’) is redirected to the shared equivalent sub-
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(a) Trie (b)min-DFA (c)SeqBDD
Fig. 2. Equivalent Trie, minDFA and SeqBDD representing:

{ac, abc, aac, acc, abbc}.

graph of its children (the 0-terminal node). It is clear that the graph in (b) is

considerably more compact than (a).

A SeqBDD (Loekito, Bailey, and Pei, 2010) is a BDD dedicated to representing

a set of sequences. A set of sequences is treated as a Boolean function; the function

being True if the sequence is a member of the set, and False otherwise. Since the

number of False members are infinite, they are not explicitly shown in SeqBDD.

Paths along the solid arrows through the graph encode members of the set. For ex-

ample, Fig.2(c) represents the set: {ac, abc, aac, acc, abbc},where ‘acc’ is represented

by a → a 99K b 99K c → c → 1 (i.e. encode a, then do not encode a, not b, encode

c, encode c). Note that a path can include False edges (dashes), but these do not

encode elements of the sequence. A symbol in the sequence is generated from the

label of the tail of a traversed edge if the edge is a True edge.

When building a SeqBDD, it is not necessary to first construct a (potentially

huge) binary decision tree and then apply reduction rules to reduce it. Rather, for

SeqBDD, the final compact structure is built on-the-fly (Loekito, Bailey, and Pei,

2010; Denzumi, Yoshinaka, Arimura, and Minato, 2016), by merging two SeqBDD

graphs, basically composed of node sharing and deletion rules2. The obtained Se-

qBDD graph is minimal, having the minimal number of nodes necessary to accept

a given set of input.

2 A faster construction is proposed by use of union operator (Bryant, 1986) (Knuth,
2009).
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3.2 SeqBDD vs. Minimal DFA

A SeqBDD is one way to represent a set of sequences in a compact manner, another

is a deterministic finite state automaton (DFA), defined as follows:

acyclic DFA : 〈Σ, Γ, δ, sstart, send〉,
SeqBDD : 〈Σ, V, E, sstart, {0, 1}〉,

where each element in the 〈. . .〉 tuples denotes the set of accepted elements (the

alphabet so far), set of nodes, set of edges, start3 and end states, from left to

right respectively. They differ essentially in that BDD labels a node, whereas DFA

labels an edge. A Trie is one such DFA. For example, a Trie representing the set of

sequences {ac, abc, aac, acc, abbc} is shown in Fig.2(a).

Similar to the original binary decision tree, there are many common edges which

can be shared, such as the edges from ‘c’ to the final node. A minDFA, a DFA

with the smallest number of nodes that accepts the same set of sequences, can

be constructed using the algorithms, originally proposed in (Daciuk, Mihov, Wat-

son, and Watson, 2000). Briefly, two nodes are contracted when the labels of the

incoming edges and outgoing edges are identical. For our example, the proposed

algorithm generates Fig.2(b). (b) is considerably more compact than (a). We now

have two different compact graphical representations: the SeqBDD (Fig.2(c)) and

the minDFA (Fig.2(b)) for the same set of sequences.

Comparing the two graphs even in this simple toy example, we see three advan-

tages of SeqBDD (c) over minDFA (b). First, and above all, with respect to our

objective of template extraction, (b) does not show the template aXc, since the c

labels are distributed over multiple edges and are not contracted. This is different

in (c), where we clearly see the template. This natural ability to encode templates

arises from the fundamental difference that the SeqBDD labels nodes.

Second, (b) is less compact compared with the same representation in the Se-

qBDD shown in (c), since (b) has 9 labeled graphical objects, whereas (c) only has

6. This can be theoretically analyzed using the mathematical notation presented at

the beginning of this subsection. Let |X| denote the number of elements of a given

set X. It has been recently proven (Denzumi, Yoshinaka, Arimura, and Minato,

2016), that minDFA requires O(|δ|) whereas SeqBDD O(|V |) computational space

complexity, and furthermore, |V | ≤ |δ| where minDFA can be |Σ| times larger than

the former (Denzumi, Yoshinaka, Arimura, and Minato, 2016). In other words, a

SeqBDD is theoretically never larger than the equivalent minDFA. Moreover, the

article reports an empirical comparison of memory use and SeqBDD reduced mem-

ory requirements by 10-22% relative to a minDFA. This is a considerable amount

when considering that (as will be explained in the experimental section) a single

target template can require several gigabytes of allocation.

Third, the algorithm proposed in (Daciuk, Mihov, Watson, and Watson, 2000)

is entitled incremental, but it is applied to a given graph incrementally. In other

words, the algorithm of (Daciuk, Mihov, Watson, and Watson, 2000) is not on-

line. This can be very costly for a large-scale natural language application, since

3 The start states are suppressed in Figures 1 and 2, to save space.
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(a)SeqBDD constructed 
   with two phrases

(b)SeqBDD constructed 
   with four phrases
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��
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Fig. 3. (a) is when two phrases {w1x1x2x3w2, w1x4x5x6w2} are given as input. (b)

is when four phrases {w1x1w2x3w3, w1x1w2x4w3, w1x2w2x3w3, w1x2w2x4w3} are

given as input.

a huge Trie graph structure must be rendered in memory prior to applying the

algorithm (Daciuk, Mihov, Watson, and Watson, 2000). This contraction requires

O(|δ|), computational time complexity where δ is the number of edges. In contrast,

as noted earlier, the application of Loekito, Bailey, and Pei (2010); Denzumi, Yoshi-

naka, Arimura, and Minato (2016) effects a direct, incremental construction of the

minimal representation.

4 Relaxed SeqBDD

As will be shown in the evaluation section, a straightforward application of SeqBDD

as a means to extract a set of templates leads to a result of low coverage (recall),

although the quality of output templates is high. This is a consequence of the

strictness of the node sharing operation. The SeqBDD faithfully represents the

supplied data set, but it is not clear whether this data structure is optimal with

respect to template extraction.

An example is given in Fig.3, where the wj are lexical items and xi are the

potential slots. The original SeqBDD can learn the structure in the left figure from

just 2 training examples (i.e. {w1x1x2x3w2, w1x4x5x6w2}). To learn the structure

shown in the right figure, however, it requires examples of 4 different forms to

appear (i.e. {w1x1w2x3w3, w1x1w2x4w3, w1x2w2x3w3, w1x2w2x4w3}). If even one

of these phrases did not appear in the input set, then the graph structure gets

separated, as in for example the structure in the left figure and the potential slot

before and after w2 cannot be captured. In general, when a template has n slots,

a number of corresponding phrases that must be included in the input set grows

combinatorially with respect to the variety of the items around the n slots. Although
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such combination is possible in natural language, the huge number of required

occurrences cannot be actually observed in real data.

In order to cope with this strictness, we relax the algorithm given by Denzumi

et al. (2011): we call the proposed graph structure Relaxed SeqBDD and explain

it below. Since we cannot expect all examples to occur in reality, we instead look

at False phrases represented by the graph. The set of False phrases represented by

the SeqBDD include the following two types:

1. phrases that did not occur

2. phrases that should not occur

In SeqBDD, the 1 is not represented, whereas the latter is omitted: if represented

using a less compact form of original BDD, they are connected to 0-terminal nodes.

The issue is that possible phrases that did not appear get included in 2 by the

standard process of SeqBDD construction.

The idea of the Relaxed SeqBDD is to relax the algorithm so that all the phrases

that share 0-terminal nodes get merged during construction. To realize this, only

the node sharing rule of the construction algorithm needs to be modified: The node

sharing rule for the SeqBDD is described in §3.1, and is intuitively depicted in Fig.4.

In the figure of original algorithm (a), one can see that nodes are only shared when

both their True and False subgraphs are equivalent, which is called zero suppression

reduction rule, in the study of BDD. In the proposed Relaxed SeqBDD as shown

in Fig.4(b), this rule is replaced by the relaxed version that shares the subgraphs

having the common subgraph leading to the 0-terminal node. As a means to satisfy

this constraint, the True children are combined using the union operator proposed

in (Loekito, Bailey, and Pei, 2010), where its algorithm is provided in Appendix

A. The combination process results in the sharing of the structures of both True

children, and is illustrated in Fig.4(b); in the figure, the two True subgraphs of u

and v are combined using the union operation.

Unlike the original node sharing rule, there is danger of creating a cyclic graph

with the proposed method (for example, in Fig.3 right figure, a cyclic graph can

get generated if node w3 was unified with node w1). As a consequence sharing

is not performed if it would result in a cyclic graph. This new rule allows the

BDD structure to represent word sequences that have not occurred in the data.

Our hypothesis is that this will make the structure more suitable for template

extraction, because observations are necessary to make the generalizations leading

to templates.

The idea is formally defined as follows as a modification of the original theory

of SeqBDD (Denzumi, Yoshinaka, Minato, and Arimura, 2011). In order to show

clearly where the modifications are, we follow a similar descriptive form to the

algorithms presented in the article. The modification of the definition is shown

mathematically first and then we show which part of the algorithm must be modi-

fied.

Mathematically, a subgraph v is characterized by the tuple 〈v.top, v.0, v.1〉, where

v.top denotes the top node of the subgraph v, v.0 and v.1 denote the subgraphs

under v, through 1-edge (called True subgraph) and 0-edge (called False subgraph),
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0
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1
1 0 1

share

(a)Original Sharing Rule

!.0 !.1!.1	(= #.1)!.0	(= #.0)

!.$%& #.$%& !.$%&

0 0 11 0 1

share

(b)Relaxed Rule

Union

!.1 ".1 !.0 !.1
+

".1!.0	(= ".0)

!.$%& ".$%&
! "

!.$%&

(a) Original sharing rule

(b) Relaxed sharing rule
Fig. 4. Original and Relaxed Sharing rules

Algorithm 1 Reduce : SeqBDD Reduction algorithm

Input: v /*acyclic graph*/
Output: The reduced graph
1: if v = 0- or 1-terminal node then
2: return v
3: else
4: return Get node(v.top,Reduce(v.0), Reduce(v.1))
5: end if

respectively. In the original (Denzumi, Yoshinaka, Minato, and Arimura, 2011), the

subgraphs u and v are shared in the SeqBDD when:

〈v.top, v.0, v.1〉 == 〈u.top, u.0, u.1〉,

where the Relaxed SeqBDD shares u and v when:

〈v.top, v.0〉 == 〈u.top, u.0〉.

Given this simple modification, the algorithm of the Reduce procedure shown in

Algorithm 1 (which in fact calls Algorithm 2) can be modified as in Algorithm 3.
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Algorithm 2 Get node : Original

Input: v.top, g0, g1

Output: Graph processed with node sharing and zero suppression reduction rules

1: if g1 = 0-terminal node then
2: return g0 /*zero suppression reduction rule*/

3: end if

4: u← hash table(〈v.top, g0, g1〉)
5: if u 6= null then
6: return u /*node sharing rule §3.1*/

7: end if

8: v.0← g0

9: v.1← g1

10: hash table(〈v.top, g0, g1〉)← v /*hash table : Hash subgraphs globally*/
11: return v

Algorithm 3 Get node : Proposed Relaxed Version

Input: v.top, g0, g1

Output: Graph processed with relaxed node sharing and zero suppression rules

1: if g1 = 0-terminal node then
2: return g0 /*zero suppress reduction rule*/

3: end if

4: u← hash table(〈v.top, v.0〉)
5: if u 6= null then

6: if ¬∃ path from u.top to v.top then

7: u.1← Union(g1, u.1)
8: return u /*relaxed node sharing rule §4*/

9: end if

10: end if

11: v.0← g0

12: v.1← g1

13: hash table(〈v.top, g0〉)← v /*Note: hash key differs from Algorithm 2*/
14: return v

The sharing of two graphs occurs by providing a subgraph v to the function

Reduce, as in Algorithm 1. The graph reduction process is performed by recursively

calling the Reduce function (line 5). The Reduce function uses a Get node function

that implements the graph sharing and zero suppress reduction rule (see §3.1). To

realize the Relaxed BDD, we only have to modify this Get node function, where

Algorithm 2 shows the original Get node algorithm and Algorithm 3, the proposed

algorithm. The differences are shown in red in Algorithm 3.

The Get node function acquires the top node of the subgraph v, and the two sub-

graphs that are processed by the Reduce function. Until line 4, the two algorithms

are the same (for processing the zero suppress reduction rule). Then, the sharing is

processed by acquiring the existing common graph as u. The graph is stored in the
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hash table, that maintains a table of constructed graphs (as pointers), using node

and subgraphs as keys. The key point of the difference of the proposed Algorithm

3 from the original Algorithm 2 lies in this hash table function. In the original, the

hash table stores a structure given the triplet 〈v.top, v.0, v.1〉, whereas the modified

method is only given the pair 〈v.top, v.0〉.
Fig.4 (a) and (b) show the difference of the sharing rules of the original triplet

〈v.top, v.0, v.1〉 and the relaxed pair 〈v.top, v.0〉. In the original version of Algorithm

2, if a common part u already exists, then, u is returned; if not g0 and g1 are linked

as v.0 and v.1. In the modified version of Algorithm 3, the procedure is the same,

but in addition, the cyclic condition is examined (line 6), and if no cycles exists,

unification is conducted (line 8). This Union function is a predefined function to

unify two subgraphs which is provided in Appendix A. The operator is exactly the

same as that defined in (Denzumi, Yoshinaka, Minato, and Arimura, 2011).

In order to show the effect of the Relaxed SeqBDD, Fig.5 illustrates two

graphs, a SeqBDD and a Relaxed BDD, generated for the three input sequences

{abefi, acegi, adehi}. In (a), the original SeqBDD is shown, where the e in the

middle is not merged. With SeqBDD, to create the figure as in (b), the input must

be {abefi, abegi, abehi, acegi, acefi, acehi, adegi, adefi, adehi}, where all combina-

tions of prefix {ab, ac, ad} and suffix {fi, gi, hi} should occur. The SeqBDD there-

fore does not incorporate any unseen but possible input. RelaxedBDD allows the

generation of (b), from the three inputs, assuming the possibility of occurrence of six

unseen inputs. Of course this is a double-edged sword: the algorithm will certainly

decrease the precision of template extraction of aXeY i, but will increase the re-

call. The effectiveness of this modification can only be verified with real evaluation,

which we provide in §6 and §7.

5 Postprocessing of a Relaxed SeqBDD to Obtain templates

Given a set of word sequences, a Relaxed SeqBDD is constructed by using an on-

the-fly algorithm, thus explained. Then, we apply the following procedure to obtain

the final templates out of the Relaxed SeqBDD.

The appropriate form of input word sequence depends on the problem as will

be shown in the following two evaluation sections. In our work, the input word

sequences are labeled with POS tags, and the SeqBDD is constructed based on the

POS tags (Σ is the set of POS tags). The words are nevertheless preserved in the

nodes as auxiliary information, in the form of lists containing the words at nodes

that were contracted through node sharing operations during BDD construction.

Let Wu be the set of words at node u ∈ V , f(w) be the relative frequency of

w ∈ Wu.

Fully constructed SeqBDDs are post-processed as follows.

0. POS-tagging: To build a relaxed SeqBDD, all word sequences must be POS

tagged.

1. Delete Falsehood: The 0-edges are simply deleted, since they are no longer

necessary.
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(a) Original SeqBDD (b) Relaxed SeqBDD

Fig. 5. Original and Relaxed SeqBDDs for the input data of {abefi, acegi, adehi}

Fig. 6. Post-processed SeqBDD representing: {ac, abc, aac, acc, abbc} same as

Fig.2.

2. Weight edges: The edges are then weighted by the absolute frequency of the

number of phrases that goes through the edge. In order to reduce the com-

plexity of the graph, all edges with frequency one are removed.(Fig.7(a))
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(a)Procedure 1 and 2
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(a)Procedure 1 and 2
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(b)Procedure 3 : Obtain paths
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(c)Procedure 4 : Find slots

Sequence  of  <slot> → Single  <slot>
• [freq]3	:	regard			<slot>		as		���
• [freq]2	:	regard			<slot>		as		���

Merge [freq]	5:	regard	<slot>	as	…

(d)Procedure 5 : Merge templates

• [freq]3	:	regard			<slot>		as	���
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(c)Procedure 4 : Find slots

Sequence  of  <slot>   → Single  <slot>
• [freq]3	:	regard			<slot>		as		���
• [freq]2	:	regard			<slot>	<slot>	as		���

Merge [freq]	5:	regard	<slot>	as	…

(d)Procedure 5 : Merge templates

(a) Procedure 1 and 2 
(b) Procedure 3 : Obtain paths 

(c) Procedure 4 : Find slots (d) Procedure 5 : Merge templates 

if θ=0.5

・[weight] 

・[weight]

・[weight] 

・[weight]・[weight] 

・[weight]

Fig. 7. SeqBDDs post-processing examples

3. Obtain paths: Obtain all paths connecting to the starting status of sstart
4.

Weight each path with the minimum frequency of the edge included in the

path. (Fig.7(b))

4. Find slots: Each node u along a path is labeled as “lexical” if maxw∈Wu
f(w) ≥

θ, “slot” otherwise, where θ is set to best suit the problem. This transforms

a path into a template with slots. (Fig.7(c))

5. Merge templates: Merge identical templates and weight the final template by

the sum of the weights of the merged templates. (Fig.7(d))

The output consists of a frequency-ranked list of templates. For example, Fig.2(c)

is transformed into Fig.6 through procedures 1 and 2 above, where the template

‘aXc’ is now readily visible: the output nodes and edges of the real examples are

labeled by the weights. Procedure 4 defines which nodes are slots.

The overall procedure above is equivalent to determining the paths by maximal

flow (Cormen, Leiserson, and Rivest, 1990). Since the edges e ∈ E of the SeqBDD

are weighed by frequency, the maximal flow in every path is naturally limited by the

minimum frequency edge (Procedure 3). We believe that this is a natural procedure

to extract a template given a SeqBDD graph, but other possible strategies exist

and remain future research.

We show how this postprocessing proceeds using Fig.7. Let us assume that there

are 5 input phrases5 :

4 There are nodes that are not connected to sstart, caused by elimination of branches at
step 2.

5 Many NPs in this slot could be longer than this, but here short toy examples are given
only for explanation.
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regard him as · · ·
regard her as · · ·
regard it as · · ·
regard the problem as · · ·
regard some money as · · ·

The Relaxed BDD is constructed and by eliminating unnecessary information

through procedures 1 and 2, and the graph would look as that in (a): the graphs

are aligned horizontally here (due to space limitations), nodes indicate shared POS,

and edges are annotated with frequencies. Examination of paths through procedure

3 gives potential template candidates as in (b). Then lexical/slot nodes are judged

with the relative frequency function f as in (c) through procedure 4. Lastly, the

equivalent templates are merged to obtain the the final results through 5 as in (d).

6 Verb+Preposition Template Extraction

We first present a large-scale experiment that attempts to extract verb templates

out of given sentences. A verb+preposition template here is a template that involves

a verb, such as “regard X as Y”. This test intends to evaluate the performance of

the method using a clean dataset, acquired from a dictionary.

For this purpose, the verb+preposition templates were collected by searching

Oxford Advanced Learner’s Dictionary for phrasal verbs with slots. This extraction

was based on the annotation provided by the Dictionary, for example “regard X

as Y” where X and Y are slots. We considered verbs with multiple slots, only,

and excluded verbs that only have one slot. The slots can be located at the end

of the template as in “regard X as Y”. To collect such instances, a verb list was

acquired from the British national corpus, we scanned the Learner’s dictionary for

every verb, and extracted the verb+preposition templates with slots using regular

expressions. We obtained a set of 976 templates.

For each template, the sentences containing all words in the template were ob-

tained from the English Gigaword Corpus (fifth edition; LDC2011T07), consisting

of 180 million sentences lemmatized and POS tagged using the Stanford CoreNLP

tools (Manning, Surdeanu, Bauer, Finkel, Bethard, and McClosky, 2014). The

sentences that included the verb were obtained and then filtered using regular ex-

pressions so that a span between the slots was at most five words. For example,

for the template “regard X as Y”, all sentences with the words “regard” and “as”

were extracted, under the constraint that the number of words between “regard”

and “as” was at most five. Similar constraints have often been used in previous

work, notably (Baldwin and Kim, 2010). The proposed method and the parser-

based method that we compare with (defined in the following) were then used to

discover the templates from these search phrases.

For the proposed method, we extracted ranked lists of template hypotheses from

the search phrases, using the method described in §5, after the sentences in the

search phrases were reduced to sets of subsequences following the main verb. Since

there is no established baseline for this task, another plausible method using a parser

was created for comparison. This method using a parser is an unfair baseline, since
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Fig. 8. Extracting parser-based template hypotheses.

the parser-based method uses vastly more resources, requiring a parser trained on

a structurally annotated corpus, whereas our method uses only tagged corpus. In

fact, these are two different methods which could even complement each other for

the task of phrase structure induction. Hereafter, we call this alternative method

to be compared with our method, the parser-based method.

In this parser-based method, first the search phrases for all of the 976 templates

being studied were dependency parsed. The parser was the Stanford Parser, based

on universal dependencies. The procedure is conducted by providing the whole

sentence to the parser. Fig.8-1 shows 3 such sentences for the template “share X

with Y”. Fig.8-2 shows the dependencies of the verb in the template. In Fig.8-3

template hypotheses for the parser-based method are created from sentences that

contain the same dependencies, for example the second two sentences in the figure

both contain the dependencies: [dobj] and [prep with] and these give rise to a

single template hypothesis with a count of 2. The hypothesis counts reflect the

number of sentences that share the same dependencies, and are used to rank the

template hypotheses (Fig.8-4).

The performance was evaluated by mean reciprocal rank (MRR) (Manning,

Raghavan, and Schütze, 2008) and recall, to judge the quality of the lists of ex-

tracted template hypotheses. Recall is the proportion of the correct verb template

that were extracted. As for what corresponds to the precision, since the output

templates are ranked and the rank must be evaluated, we used MRR. MRR is the

average of reciprocal rank of the correct verb+preposition template in the output

list. Let Q be the number of test cases, for each of which the procedure extracted

a template at rank ri (i = 1, . . . , Q).

MRR =
1

Q

Q∑
i=1

1

ri
(1)

When the correct template was not extracted for a set of search phrases, its rank

was considered to be ∞. In this experiment, Q = 976.
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Fig. 9. verb+preposition template extraction from the Gigaword corpus

The results are shown in Fig.9. To observe the effect of dataset size, dataplots

show the average MRR and recall of templates that had more than a specific cutoff

threshold number of search phrases. The cutoff values used were: 0, 100, 200, 300,

500, 1k, 2k, 5k, and 10k. These values are annotated only on the ‘SeqBDD(θ = 1.0)’

orange curve on the graph; on all other curves the cutoff variables run in the same

manner.

We first examine the parser-based method and the two variants of the proposed

method as follows:

Parse in black dotted line. The parser-based method.

SeqBDD (θ = 1.0) in orange dotted line. (For θ, see §5.)

Relaxed SeqBDD (θ = 0.5) in red line with triangles.

It can be seen in Fig.9 that the SeqBDD method is able to achieve higher levels

of MRR than the parse-based baseline, but at a cost in terms of its recall. The

proposed Relaxed SeqBDD variant is able to achieve considerably higher levels of

MRR in all cases than both methods without losing ground in terms of recall. It is

impressive how higher MRR was acquired: this is due to the relaxed algorithm that

integrates template candidates scattered in the original SeqBDD. We observed that

for the Relaxed SeqBDD there is a trade-off between MRR and Recall, however, the

Relaxed SeqBDD was able nonetheless able to achieve MRR levels greater than the

other methods even when the level of recall was at its maximum value of 95%. It

is clear from the figure that the baseline and SeqBDD methods depend heavily on

the amount of data, whereas the proposed method appears to be far less sensitive

to the data set size, and is able to achieve respectable MRR and recall on even

the smallest subset of the data used in our experiments. Note, that the parser-

based method used a parser trained on a structurally annotated corpus, whereas

our method used only a tagged corpus.
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The end-to-end runtime performance6, from raw text until the final output for the

proposed SeqBDD method was 72.1 sec and 866.7 MB per template. The Relaxed

SeqBDD method required 247.1 sec for processing and 1.5GB of memory. The

baseline was the fastest, taking only 51.8 sec for processing, but required 2.3 GB of

memory due to the resources required for parsing.

7 Template Extraction from Twitter

In this section, we are concerned with a more real-world application: the extraction

of templates from short text messaging. Twitter, for example, is used for commercial

objectives, and it is relatively common for the information in tweets to be generated

using templates, as in the following examples:

5.1 earthquake, Kermadec Islands region. 2016-06-23 07:44:37 UTC at epicenter (24m ago, depth 55km).

5.5 earthquake, Scotia Sea. 2016-06-23 00:05:39 at epicenter (20m ago, depth 10km).

5.1 earthquake, Southern Mid-Atlantic Ridge. 2016-06-21 17:47:36 at epicenter (19m ago, depth 10km).

6.1 earthquake, Northern Mid-Atlantic Ridge. 2016-06-21 13:26:35 at epicenter (31m ago, depth 10km).

5.3 earthquake, South of the Fiji Islands. 2016-06-21 23:40:40 at epicenter (24m ago, depth 565km).

The automatic extraction of such templates will facilitate the analysis and ex-

traction of structured information. The task in this experiment is to output the

templates for a given set of tweets. Clearly this example is output by a machine

bot: other more real examples are provided in Appendix B.

For this purpose, we collected corpora of Tweets in English and Japanese.

In the case of English, a set of Twitter accounts was mined starting from a

single Twitter account by recursively following the followers of the accounts. A set

of tweets was collected for each account traversed. In the case of Japanese, a list

of tweet sets for accounts was downloaded directly from the web7. Since we are

interested in evaluating template extraction, we downloaded the ones which were

judged to contain templates by the baseline procedure. Extraction from random

data is unlikely to be fruitful, since any extraction algorithm will not work unless

many similar expressions are contained in the original data. Therefore, we have to

filter the dataset first.

The baseline procedure is based on heuristics of substring matching, described as

follows. For a set of tweets for a Twitter account, k-means clustering (Macqueen,

1967) was applied with the similarity between two tweets being the word TF-

IDF vector (Deerwester, Dumais, Furnas, Landauer, and Harshman, 1990). The

procedure partitions the set of tweets into K clusters. Templates were constructed

for each cluster as follows. First, the common words that appear in more than half

of the tweets were identified and preserved as words in the template; then single

slots were created to replace the sequences of remaining words. The most frequent

template was output for each cluster, leading to K templates being output for each

set. Here, we set the value of the K to 20, that presented the highest F-score in

6 In this work, we used the Python language on a PC cluster with CPU of Intel E5 3.4GHz
and 512GB of RAM running on CentOS.

7 URL:http://seesaawiki.jp/w/wikkkiiii/

http://seesaawiki.jp/w/wikkkiiii/
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our final evaluation. If any of the templates contained one slot between two lexical

items, then the list of tweets for the set was said to contain a template. The length

of the expression filling the slot could be longer than five words, different from the

previous evaluation task of verb+preposition template.

This baseline was used to produce the baseline output, and also to create the

gold standard explained as follows. First, using this baseline, we collected a set of

600 tweet sets (1 set per Twitter account) of English tweets, and another set of 600

tweet sets of Japanese tweets: for every set, the template suggested by the baseline

contained more than one slot, and we excluded a set that had short templates with

only one slot. Then, trivial noisy tweets, such as replies and re-tweets together with

those with URLs in the tweets were deleted or replaced automatically by using

regular expressions. They are able to form (unwanted noise) templates, and they

can affect performance, depending on their frequency of occurrence in the tweets.

After cleaning, we constructed two types of gold standard from this preprocessed

data. The two annotators8 manually scanned every tweet set, in which the candidate

template is highlighted by the baseline method. First, every Twitter set is annotated

with whether it contained a template or not. Second, among those which contained

a template, we randomly chose 100 sets and annotated them with the templates;

each account was annotated with multiple possible templates, that were found in

many tweets included in the account.

This set of 100 sets is defined as Template-annotated corpora, and the rest

is defined as Hand-classified corpora. Note that a set of the former always con-

tains a template, whereas an account of the latter does not necessarily have one.

Relatedly, since the baseline procedure is used to collect the data, the recall of the

baseline system is 1.0.

Each set of tweets from the template-annotated corpora was annotated with a

maximum of five templates, created by an independent human annotator (not one

of the authors). For example, the set of tweets in the example above was annotated

with the template:

<slot> earthquake , <slot> . <slot> at epicenter ( <slot> m ago , depth <slot> km ) .

A summary of the template-annotated and hand-classified data is shown in Table

1. Typical sources included news, weather and public information feeds. A set of

tweets consisted of all tweets from a single source. The total size of the corpora was

over three million tweets.

It can be argued that the dataset is biased in favor of the baseline since it was

8 One annotator, who is unrelated to this project, was hired specifically for the annota-
tion task. The other annotator is the first author. The two annotators initially worked
separately. Given the baseline, the annotators were able to observe the appearance of
templates existing in each of the datasets and they worked by modifying the appear-
ance and borders of the templates. The agreement of the two annotators was pretty
high, due to the baseline highlights, even though they were often implausible. Then the
results were discussed by the two annotators to reach a complete agreement, and the
annotators rectified their errors and omissions. The overall result was checked by the
second author. This procedure was conducted before the actual experiments of SeqBDD,
without knowing its output.
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Table 1. Summary information and statistics for the Twitter data-sets.
.

Tweets-set Template-Annotated Hand-classified

Languages and each 100 English each 500 English

the number of sets and Japanese and Japanese

(39 English and 23 Japanese

do not have templates)

Label Manually annotated templates Manually classified whether

(a maximum of 5) a template exist or not

The number of from 478 to 3200 from 261 to 3200

tweets range/Ave. /2578 tweets per sets /2576 tweets per sets

Experiment Both Pattern Classification Only Pattern Classification

and Extraction

created using the baseline. Without use of a tool that gives a hint to human anno-

tators wherein a tweet set contains a template, however, the annotation task was

too difficult and time consuming. Since we cannot use the proposed method for

this task, we used the baseline, even though the resulting comparison will be in

favor of the baseline. However, as will be shown, the proposed method outperforms

the baseline even on such data. Therefore, we believe that the evaluation serves to

demonstrate the effectiveness of our approach.

Two types of experiment were performed. The first used all the 600 data both

in English and Japanese. We call this experiment the Pattern Classification

Experiment. The task is a straightforward classification task to identify whether

or not templates exist in the tweets, and we therefore used the standard evaluation

method of precision/recall/f-score to evaluate the performance. The results are

shown in Table 2.

The precision of the baseline is 0.96 for Japanese and 0.93 for English, indicating

that the heuristic used to extract the candidate template data was of high quality.

Nonetheless, applying the proposed Relaxed SeqBDD method to this data was able

to give respectable gains in both precision and f-score at a small cost in terms of

recall. It is also clear from the table that Relaxed BDD is superior to the method

based on the original SeqBDD in all respects.

The second experiment evaluated the quality of the templates that were actu-

ally extracted, using the Template-annotated corpora (100 each in English and

Japanese). We call this experiment the Pattern Extraction Experiment. Since

the baseline outputs K templates, only the best K templates were considered also

for SeqBDD methods. Similar to the previous work in Fig.9, these ranked lists were

evaluated by mean reciprocal rank (MRR) of the best ranked correct template

appeared in the output list of length K. Here, in formula (1), Q = 200. If there
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Table 2. Template extraction results for all the 600 set of data.

Baseline SeqBDD Relaxed SeqBDD

P 0.964 0.978 0.983

Japanese R 1 0.816 0.985

F 0.982 0.889 0.984

P 0.935 0.954 0.975

English R 1 0.836 0.978

F 0.966 0.891 0.976

are multiple correct templates extracted, the reciprocal of the best rank is used to

obtain the average, and if no correct template was found, then the rank is set as

∞.

The results are shown in Fig.10, English and Japanese altogether. There are

three lines: black, orange dashed and red solid, representing the baseline, SeqBDD

and Relaxed SeqBDD respectively. Each line shows the values of MRR and R,

while varying K. In all cases the recall of the Relaxed SeqBDD was considerably

higher that the SeqBDD method, this was expected and was caused directly by the

relaxation of the algorithm allowing it to be applicable to more cases in the data.

There is of course a trade-off with MRR, although this trade-off proved to not to be

too detrimental, and in fact for all values of K greater than 3, the Relaxed SeqBDD

achieves higher levels of both MRR and recall than the other methods.

The end-to-end runtime performance, from raw text until the final output for

the proposed SeqBDD method was 37.3 sec using 836 MB of memory for a single

tweet-set, the Relaxed SeqBDD method took 210.5 sec and used 1.4GB, whereas

the baseline took 30.9 sec and used 2.3 GB.

Some example extraction results for the Twitter data are shown in the Appendix

B. The patterns are successfully acquired for Twitter examples like B.1 or B.2,

where the pattern frame structure is solid, and the length of the expression filling

the slot is short.

On the other hand, the algorithm fails to extract the correct patterns when the

length of expression filling the slot is large, such as in the example of B.4, due to

the fact that the Sequence BDD graph becomes too sparse. For example, patterns

such as “How to * (URL)” or “Outsourcing Human Resouces * (URL)” could have

very long expression in *. Moreover, if the preprocessing of POS tag fails, then all

that follows also fails, as shown in the example of B.3. The development of methods

for overcoming these issues remains future work.

8 Conclusion

This paper presents a novel method, based on an original relaxed algorithm for

building SeqBDDs, for inducing a template —a subsequent phrase with slots—,



Extraction of Templates using SeqBDD 23

K=20
MRR	=	0.596
Recall	=	0.898

0.1

0.3

0.5

0.7

0.9

0 0.2 0.4 0.6 0.8 1

M
RR

Recall

Baseline SeqBDD Relaxed	SeqBDD

K=1

K=75

Fig. 10. Extraction of Templates from Twitter using Template-annotated corpora.

given a set of phrases having common structure. The SeqBDD whose construction

process we relax, is equivalent to a minDFA but more efficient and well-suited for

template extraction. We proposed a relaxed form of the SeqBDD as a means to

represent sets of word sequences graphically in a compressed form that naturally

discovers structures in the text. The proposed enhancement to the SeqBDD con-

struction process, relaxes the node sharing rule to facilitate a greater degree of node

sharing. The structures inherent in the SeqBDD constructed from the text are then

extracted to produce templates.

We evaluated the proposed relaxed method on two template extraction tasks:

verb+preposition templates, and tweet templates. In verb+preposition template

extraction, the original SeqBDD was able to achieve considerably higher MRR

than a parser-based method, but had lower recall. When relaxing the SeqBDD, the

method was able to substantially exceed the performance of parser-based method

both in terms of MRR and recall. In the more real-world task of tweet template

extraction using more than three million tweets, our experiments show that the

proposed relaxed SeqBDD method was able to outperform the original SeqBDD

by substantially increasing recall while at the same time maintaining high levels of

precision.

This work represents only a first step on the road to inducing templates. This

paper has shown empirically that relaxing the SeqBDD to coalesce very similar, but

slightly different, structures greatly enhanced its utility for template extraction. We

believe further study along these lines would be fruitful in the future. In addition,

we intend to focus on improving the efficiency of the algorithm in future work to

allow it to scale for use on large data sets. This requires a further approximation of

the method, and should be evaluated from the point of view of both accuracy and

speed.

In the future, our work could be linguistically extended from the viewpoint of the

Pattern Grammar, our original motivation; the current work was limited by being



24 Hirano, Tanaka-Ishii and Finch

simplified in order to be realized as a computational procedure. Since the Pattern

Grammar has been supplemented recently by work on Construction Grammars

from Cognitive Linguistics, one possible future path might be to reformulate the

output templates in relation to more formal linguistic notions.

Finally, as for the downstream applications of our method, an implementation

of KWIC that produces templates would be helpful for lexicographers and corpus

linguists. Moreover, we believe that a module for SNS and blog data analysis would

prove useful from industrial perspective.
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A Union operation of SeqBDD

This section explains the Union operator as proposed in (Loekito, Bailey, and Pei,

2010). This Union operator is used in Algorithm 3 line 7.

Given two SeqBDDs P,Q, The operation to produce P ∪Q is shown in Algorithm

4.

First, if either of P and Q are 0-terminal nodes, then the one which is not the

0-terminal node is output. If P and Q are equivalent, then P is output.

In other cases, the top nodes of the two graphs are compared. If they are the

same, then the new top is the P.top and the true/false subgraphs are constructed

by merging P and Q’s true/false subgraphs respectively, where the merging is con-

ducted using the Union operator.

Suppose that P.top is alphabetically smaller than Q.top, then P.top is smaller

than any nodes represented in Q. Therefore, the new top is assigned to be P.top,

and P ’s true subgraph ends with the 1-terminal node. P ’s false subgraph must

be merged with Q where this operation is conducted recursively using the Union

operator.

Algorithm 4 Union

Input: P,Q :SeqBDD

Output: P ∪Q :SeqBDD

1: if P = 0-terminal node then

2: return Q

3: else if Q = 0-terminal node then

4: return P

5: else if P = Q then

6: return P

7: else if (w ← hash table(〈P,Q〉) exists) then

8: return w

9: end if
10: /*Compare top node’s label using alphabetical order*/
11: if P.top = Q.top then
12: w ← Get node(P.top, P.0 ∪Q.0, P.1 ∪Q.1)
13: else if P.top < Q.top then
14: w ← Get node(P.top, P.0 ∪Q, P.1 ∪ 0-terminal node)
15: else if P.top > Q.top then
16: w ← Get node(Q.top, P ∪Q.0, 0-terminal node ∪Q.1)
17: end if
18: hash table(〈P,Q〉)← w
19: return w

B Twitter pattern extraction example

The following subsections provides four examples for the Twitter evaluation,

good/bad and English/Japanese.

A slot of a template is indicated by a POS sequence in parenthesis [ ] and the
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number in parenthesis [ ] at the end of the line shows the usage frequency of the

template.

B.1 Good Example : English

Input:@weatherchannel (total 3227 tweets)

-# Severe thunderstorm watch for portions of western ND and northwestern SD is in effect until 3
a.m. CDT. # NDwx # SDwx https://t.co/qOoPdBwWHN

-Florida’s transition to the wet season is kicking into gear this week: https://t.co/zXCGhxHkoR

https://t.co/qodQw0WFqt

-In honor of # MelanomaMonday &amp; @OutruntheSunInc, stay safe w/these facts about #

melanoma. https://t.co/lNnZzk70C9 https://t.co/BfZW6YuciY

-Line of # severe t-storms w/ high winds, perhaps brief # tornado, pushing into # Houston metro.

https://t.co/EU10HpTSOK https://t.co/Vm1bj5X5Xk

-New # severe t-storm watch until 11a CT includes # Houston. Damaging winds main threat.

https://t.co/rUFHq68e8h

-Rinse...repeat. Yet another setup for local flash # flooding in # Texas this week.

https://t.co/iqPzZhX386 # txwx https://t.co/8eYPftAZ5e

-Science is about to make cooking a whole lot easier. From chopping to cleaning up, this robot has

dinner covered. https://t.co/S0eLUABpa4

-Severe T-Storm Watch for portions of Southwest Texas until 10 p.m. CDT. # TXwx

https://t.co/Zizty3vfRH

-Tornado Warning for Aitkin, Itasca and St. Louis Counties in MN until 7:30 PM CDT

https://t.co/TzipGRIIa5

-Tornado Warning for Baltimore and Howard Counties in MD until 2:00 PM EDT

https://t.co/GkZEDFI9ga

-Tornado Warning for Berkeley and Morgan Counties in WV until 5:00 PM EDT

https://t.co/ufrUraPlIP

-Tornado Warning for Cheyenne County in CO until 2:45 PM MDT https://t.co/cW9FalG2TX

-Tornado Warning for Clay, Jasper and Richland Counties in IL until 8:30 PM CDT

https://t.co/f4UT9Vemul

-Tornado Warning for Fannin and Lamar Counties in TX until 6:45 PM CDT

https://t.co/B6MEBnVNC6

-Tornado Warning for Harrison and Marion Counties in TX until 1:45 AM CDT

https://t.co/fFHwLqXQ8n

-Tornado Warning for Ochiltree and Roberts Counties in TX until 8:45 PM CDT

https://t.co/86k9zvmjkY

-Tornado Warning for Tillman County in OK until 2:00 AM CDT https://t.co/aC8vnA4PUk

-We are tracking more # snow in the West &amp; a midweek # severe threat for the # Plains...get

latest forecast NOW on @AMHQ https://t.co/qUB7LQivQE

Output:@weatherchannel (total 98 patterns)

1: Tornado Warning for [NNP] County in [NNP] until [CD] PM CDT ( URL ) [440]

2: Tornado Warning for [NNP] , [NNP] , [NNP] and [NNP] Counties in [NNP] until [CD] PM CDT (

URL ) [36]

3: Tornado Warning for [NNP] County County in [NNP] until [CD] PM CDT ( URL ) [33]

4: [VBN] [9]

5: Tornado Warning for [NNP] County and [NNP] Counties in [NNP] until [CD] PM CDT ( URL ) [9]

6: [IN] [DT] [NN] [9]

7: [CD] [NNS] [8]

8: Severe weather threat [7]

9: LIVE NOW [7]
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10: Tornado of # [6]

11: Tornado [NN] [VBZ] [6]

B.2 Bad Example (Incorrect Template Obtained) : English

Input:@virtualemp

-3 Computing Technologies That Will Change the Face of Business World http://t.co/f2KeWQbHRc
-5 project management hacks to make your project see the light of day http://t.co/TgpWAFVHon

-5 Secrets to Increase # Employee Engagement With Technology https://t.co/Jq8Y0q6iWG #

retention # work # business https://t.co/gN110xSUk4

-6 Consumer Psychology Hacks You Need to Know NOW! - Neuromarketing

https://t.co/uFXBkUoSCe # socialmedia # marketing # smallbiz

-A freelancer can be a handy resource when the work you have is short-term and low-budget

http://t.co/g9aYxXLh6U

-Apart from cost effectiveness, there are certain pertinent advantages of # outsourcing.

-Facebook Acquires Online Shopping Search Engine TheFind http://t.co/56GUwUyVh7

-Googles SDKs Enable iOS, Android Mobile Apps to Work Offline http://t.co/F2BvkuvNfs

-Hire Full Time Remote C++ Programmers To Work Dedicatedly For You: http://t.co/WGFQIeSzOB

-Hiring remote Photoshop experts is the best way to get customized solutions since these are your

very own resources. http://t.co/yyKsIcObJ4

-How To Manage Your Remote Development Team https://t.co/omAllH2DWd # business # devel-

opment # management https://t.co/iqxovtPBKv

-How to measure the success of your digital marketing campaign. Find out at

http://t.co/aQAWHndmEL

-How to Merge your Business Processes with Online Marketing http://t.co/ifIqwGcGES

-How to navigate the dynamic digital marketing world https://t.co/j4FuDd0B12 # marketing #

socialmedia # smallbiz

-http://t.co/Rqf6R7vZGH Benefits of hiring dedicated Blackberry application developers with

http://t.co/SiomE2CdQk

-Infosys shares surge 9% on founder Narayana Murthy’s return http://t.co/KdJrzW8KdB

-Lets check out the facts why a remote dedicated payroll expert is a better resource than a freelancer.

http://t.co/f1LMM5vBIa

-Microsoft and Amazon leading cloud computing performance: Edmund Shing-

https://t.co/vUWrVR7OjV

-Must add tools for your # startup # enterprenuer https://t.co/FauI57Abg7

-Outsourcing Helps You Recruit Professional Lawyers https://t.co/T7n8jW2L63 # Outsource #

Lawyers # smallbusiness

-Outsourcing Human Resources: The Best Business Decision You Will Ever Make. Read on

http://t.co/NCHkgYjpxQ

-Outsourcing Human Resources: The Best Employment Decision You Will Ever Make. Find out why

this is the case. Click http://t.co/Ugv8izBZeQ

-Philippines outsourcing dream crashes unable to meet talent demand http://t.co/YEIWXXPwR7

# outsourcingtrends

-Precise information about Dot Net team model of http://t.co/9z6sNop6jp, have a look!

http://t.co/ChW5TtIaQ2

-Procter &amp; Gamble is doing a major shift in marketing as over 100 brands will be taken off the

shelves: http://t.co/W9gsSRzcsx

-The benefits of hiring a remotely working dedicated interior designer: http://t.co/0CeJKwfDSL

-Twitter Inks Deal with Ad Giant WPP to Expand Data-Driven Marketing: http://t.co/NcB4ZK3Whq

-VE Opens Its Third Office in Birmingham, UK http://t.co/9C8VtWVHbI # whatsnewatve

-Virtual Employee Pvt Ltd, an innovative outsourcing platform has been awarded ISO 9001:2008

Certification. http://t.co/sC9XShsLkU

-Why Is a Dedicated Remote Resource the Best Way to Outsource Your Financial Services?:

http://t.co/4XMDIqVROC

-Why is India the best outsourcing destination for website development? http://t.co/Lsgit0QMP1
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Output:@virtualemp

1: [VBG] to [11]

2: [NNP] , [11]

3: The [JJ] [NN] [NN] [10]

4: [NNP] [VBZ] [JJ] [9]

5: Did [9]

6: [NNS] new [8]

7: How [PRP] [MD] [VB] [8]

8: [NNP] [VBZ] [NNP] [8]

9: [CD] [JJ] [NNS] to [VB] [7]

10: [VBP] you [VBG] [7]
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