
Natural Language Engineering 1 (1): 1–54. Printed in the United Kingdom

c© 2013 Cambridge University Press

1

Identifying Signs of Syntactic Complexity for
Rule-Based Sentence Simplification

R I C H A R D E V A N S

C O N S T A N T I N O R Ă S A N
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Abstract

This article presents a new method to automatically simplify English sentences. The
approach is designed to reduce the number of compound clauses and nominally bound
relative clauses in input sentences. The article provides an overview of a corpus annotated
with information about various explicit signs of syntactic complexity and describes the
two major components of a sentence simplification method that works by exploiting
information on the signs occurring in the sentences of a text. The first component is
a sign tagger which automatically classifies signs in accordance with the annotation
scheme used to annotate the corpus. The second component is an iterative rule-based
sentence transformation tool. Exploiting the sign tagger in conjunction with other NLP
components, the sentence transformation tool automatically rewrites long sentences
containing compound clauses and nominally bound relative clauses as sequences of
shorter single-clause sentences. Evaluation of the different components reveals acceptable
performance in rewriting sentences containing compound clauses but less accuracy when
rewriting sentences containing nominally bound relative clauses. A detailed error analysis
revealed that the major sources of error include inaccurate sign tagging, the relatively
limited coverage of the rules used to rewrite sentences, and an inability to discriminate
between various subtypes of clause coordination. Despite this, the system performed well
in comparison with two baselines. This finding was reinforced by automatic estimations of
the readability of system output and by surveys of readers’ opinions about the accuracy,
accessibility, and meaning of this output.

1 Introduction

In this article, we present an automatic method to simplify sentences on the basis

of their syntactic structure with the aim of reducing the number of compound

clauses and nominally bound relative clauses that they contain. Developed within

the EC-funded FIRST project,1 the method was integrated within a system

1 rgcl.wlv.ac.uk/projects/FIRST (last accessed on 14th September 2018).

rgcl.wlv.ac.uk/projects/FIRST
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called OpenBook designed to assist carers in the conversion of texts into a more

accessible form for people with autistic spectrum disorder (ASD). Many of the

language technology components integrated in the system, including the sentence

simplification component, are beneficial for other types of user. In this article, we

refer to our automatic sentence simplification tool as OB1. It is applicable in a wide

range of contexts in which sentence simplification can facilitate human and machine

processing of language.

Research carried out in the FIRST project revealed that people with ASD find

it difficult to read complex sentences, compound sentences, and simple sentences

containing complex phrases (Martos, Freire, González, Gil, Evans, Jordanova,

Cerga, Shishkova, and Orasan, 2013). Quirk, Greenbaum, Leech, and Svartvik

(1985) note that the elements of clause structure in English are subject, verb,

object, complement, and adverbial. In this context,

• complex sentences are sentences in which one of the elements is realised by a

subordinate clause,

• compound sentences are sentences of which the immediate constituents are

two or more coordinate clauses, and

• simple sentences are independent clauses for which no element is clausal.

Elements realised as phrases in simple sentences may themselves be complex

and include embedded clauses of various types, including compounds (e.g.

object elements realised as noun phrases with post-modifying relative

clauses).

People with ASD have comparatively short working memory span (Bennetto,

Pennington, and Rogers, 1996) and find it easier to process sentences less than 15

words long (Martos et al., 2013). Caplan and Waters (1999) note that the text

comprehension of people with different levels of verbal working memory capacity

depends on the number of propositions conveyed in the sentences that texts contain.

Propositions are atomic statements that express simple factual claims (Jay, 2003).

They are considered the basic units involved in the understanding and retention of

text (Kintsch and Welsch, 1991).

Sentences containing compound clauses and nominally bound relative clauses2

convey relatively large numbers of propositions and have a large propositional

density, which is defined as the ratio of propositions to words in a sentence

(DeFrancesco and Perkins, 2012). As a result, they can adversely affect the speed

and accuracy of syntactic processing of a wide range of readers. Examples (1) and

(2) are sentences containing a compound clause and a nominally bound relative

clause, respectively.3

2 In this article, we use the term nominally bound to denote relative clauses that modify
a head noun and that are introduced by a relative pronoun whose interpretation is
derived from that noun.

3 The examples presented in this article are indexed using numbers in parentheses and
were selected from our annotated corpus (Section 3).
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(1) But [[she displays the same ingrained showmanship]; and [she plays the same

straight bat to questions about his inner compulsions]].

(2) [Anäıs, [who was conceived at Christian Dior’s house in Montreux]], was said

to share her mother’s blonde hair and blue eyes.

The method we describe in the current article automatically detects clause

compounds and nominally bound relative clauses and rewrites sentences containing

them as sequences of sentences containing fewer clauses. The propositional density

of input sentences is thus reduced, as is the minimum verbal working memory span

required for their comprehension.

Our new method for sentence simplification is designed to rewrite sentences

containing compound clauses and nominally bound relative clauses without

exploiting a syntactic parser, reducing the number of these constituents that they

contain. An expected by-product of the rewriting process is a reduction in the

propositional density of the texts being processed. In this article, for brevity, we

refer to sentences containing compound clauses as Type 1 sentences and sentences

containing nominally bound relative clauses as Type 2 sentences. For Type 1

sentences, the sentence rewriting process depends on accurate identification of

compound clauses and their conjoins. For Type 2 sentences, it depends on accurate

identification of bound relative clauses and the matrix elements that they modify. In

this article, we present the two main components of our method. These include a ML

approach to categorise various explicit signs of syntactic complexity with respect

to their syntactic linking and bounding functions (sign tagging) and a rule-based

method for sentence transformation which exploits sign tagging.

The work described here draws on our previous work on the development of

a method for sentence simplification for use in biomedical information extraction

(Evans, 2011), the development of a corpus annotated with information about the

linking and bounding functions of explicit signs of syntactic complexity (Evans and

Orasan, 2013), and the development of an automatic method to classify such signs

(Dornescu, Evans, and Orasan, 2013). The research presented in this article extends

this work in several ways, described below.

Evans (2011) presented a rule-based method for sentence simplification that is

based on a shallow sentence analysis step and an iterative sentence transformation

step. The main contributions of that method were a new approach to automatic

sentence analysis and a method for rewriting sentences on the basis of that analysis.

The analysis step includes:

1. tokenisation of input texts to enable identification of sentences, words, and a

pre-specified set of potential coordinators,4

2. part of speech tagging, and

3. a ML method to classify potential coordinators.

4 Comprising commas, conjunctions, and adjacent comma-conjunction pairs, these
potential coordinators comprise only a subset of the signs of syntactic complexity
discussed in Section 3 of the current article.
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The classification scheme used in that work provides detailed information on a wide

range of clausal and sub-clausal types of coordination but offers limited information

about different types of subordination. Despite this, Evans’s (2011) approach proved

to be useful in a biomedical information extraction task and compared favourably

with an approach based on full syntactic analysis using the Stanford parser.

The method for sentence simplification that we present in our current article

differs from that of Evans (2011) by nature of the fact that Evans’s system was

designed to process text of a restricted type (clinical vignettes), containing a more

restricted range of syntactic structures. For simplification of Type 1 sentences,

the sentence transformation rule set used in Evans’s (2011) system comprised just

four rules. Lacking information about many subordinate clause boundaries, his

system is unable to simplify sentences containing the types of syntactic complexity

prevalent in texts of the registers of news and literature. It is incapable of simplifying

Type 2 sentences. By contrast, the system that we present in our current article is

able to simplify sentences containing a wider range of syntactic structures and was

developed for use with texts of multiple registers. In terms of evaluation, the output

produced by Evans’s (2011) system was not assessed intrinsically or with respect

to grammatical correctness, readability, or meaning. In the current article, we use

these criteria to evaluate the output of our system and compare its performance

with that of two baseline systems.

In previous work, Evans and Orasan (2013) described the development of a

corpus of three registers annotated with information about the specific linking and

bounding functions of various explicit signs of syntactic complexity. Dornescu et al.

(2013) described the development of a sequence tagging approach to automatically

classify such signs with respect to the annotation scheme presented by Evans and

Orasan (2013). We summarise the research presented in these papers in Sections

3 and 4 of the current article. We provide more detailed evaluation of the sign

tagger than was included in the paper by Dornescu et al. (2013) and include

analysis of a confusion matrix, presentation of the 95% confidence interval of its

micro-averaged F1 score, and explore the impact of sign tagging on the task of

sentence simplification. We also compare the accuracy of our sign tagger with that

of a majority class baseline.

The remainder of our article is structured as follows. Section 2 provides an

overview of previous work in sentence simplification. Section 3 describes the signs

of syntactic complexity addressed in our research, the corpus annotated with

information about those signs, and the annotation scheme used for this purpose. It

also presents the findings of a corpus analysis. Section 4 presents our method for

automatic sentence analysis which exploits a machine learning method to classify

a range of explicit signs of syntactic complexity in accordance with our annotation

scheme. Our approach to sentence transformation is described in Section 5. It

takes automatically analysed sentences as input and uses an iterative rule-based

method to convert multi-clause sentences into sequences of sentences containing

fewer clauses (Section 5.1). Evaluation of the sentence simplification method and

its two components (analysis and transformation) is presented in Section 6. Our
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evaluation of the sentence transformation process includes comparisons of system

output with human-produced simplifications of test sentences (Section 6.2.1),

analysis of changes in the estimated readability of sentences transformed using the

simplification method (Section 6.2.2), and investigation of readers’ opinions on the

grammaticality, accessibility, and meaning of automatically transformed sentences

(Section 6.2.3). In Section 7, conclusions are drawn and possible directions for future

work considered.

2 Related Work

In this section, we provide a survey of work related to the task of sentence

simplification, with an emphasis on those methods which exploit information about

the syntactic structure of input sentences for the transformation process. For

brevity, as it is not the focus of our method, we do not cover previous work related

to the task of lexical simplification here.

Automatic sentence simplification is one aspect of text simplification, a topic that

has been addressed in several lines of research since the 1990s. Numerous rule-based

methods for sentence simplification have been developed (e.g. Chandrasekar, Doran,

and Srinivas (1996); Siddharthan (2006); De Belder and Moens (2010)) and used

to facilitate NLP tasks such as biomedical information extraction (Agarwal and

Boggess, 1992; Rindflesch, Rajan, and Hunter, 2000), semantic role labelling

(Vickrey and Koller, 2008), and dependency parsing (Jeĺınek, 2014).

Previous work has addressed the task by exploitation of a range of language

resources and NLP tools, including shallow pre-processing (e.g. Siddharthan (2006))

and syntactic parsing tools (e.g. Canning (2002); Vickrey and Koller (2008); Bott,

Saggion, and Figueroa (2012)), sentence-aligned parallel corpora of texts in their

original form and in a manually simplified form (e.g. Coster and Kauchak (2011);

Wubben, van den Bosch and Krahmer (2012); S̆tajner, Calixto, and Saggion

(2015)), and syntactically-annotated versions of such corpora (e.g. Zhu, Bernhard,

and Gurevych (2010); Feblowitz and Kauchak (2013); Siddharthan and Angrosh

(2014)). In sections 2.1–2.2 we present an overview of the most relevant previous

research in sentence simplification, highlighting differences between the methods

used in those approaches and those used in the sentence simplification system that

we present in the current article.

2.1 Rule-Based Approaches

In many of the approaches exploiting shallow pre-processing, rules are triggered by

pattern-matching applied to the output of text analysis tools such as partial parsers

and part-of-speech (PoS) taggers. Siddharthan (2006) describes a method in which

input text is analysed using a tokeniser, chunker, and PoS tagger. In this approach,

handcrafted patterns are used to identify the grammatical roles of NPs, to resolve

pronominal anaphora, and to “split” complex sentences containing relative clauses

and compound constituents, including clausal and sub-clausal constituents. The

handcrafted patterns are expressed in terms of prefix conjunctions (e.g. though,
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when, if ) and infix conjunctions (e.g. and, but, because), and commas. The method

is based on an iterative simplification method exploiting rules which include

operations for sentence ordering, for ensuring anaphoric cohesion, for preserving

rhetorical relations, and for generating appropriate determiners when splitting

sentences that contain relative clauses. In some respects, Siddharthan’s (2006)

method is similar to the one we propose in this article. However, the transformation

rules used in his system are based on shallow information such as part of speech and

chunk patterns and no disambiguation of conjunctions or commas is performed. The

rules used by our new system for sentence simplification also exploit information

about the coordinating and bounding functions of various lexical and punctuational

markers of syntactic complexity. Our approach integrates a ML-based classifier of

these markers (Section 4) to provide a more detailed analysis of input sentences.

Evans’s (2011) approach, discussed in Section 1, is another example of rule-based

sentence simplification.

2.1.1 Methods Exploiting Syntactic Parsing

A large number of sentence simplification methods proposed in the past exploit

automatic sentence analysis using syntactic parsers. These include techniques based

on handcrafted transformation rules operating over the derived syntactic structure

of input sentences and extraction of the syntactic relations or dependencies between

words and the syntactic roles of constituents identified in those sentences. In

many cases, the syntactic transformation rules employed in these methods are

implemented using synchronous grammars rather than surface-based text editing

operations. They are typically used to simplify input sentences by re-ordering

constituents or splitting sentences that contain compounds or complex constituents

into simple sentences containing independent clauses (Angrosh and Siddharthan,

2014; Ferrés, Marimon, and Saggion, 2015; Mishra, Soni, Sharma, and Sharma,

2014; Rennes and Jönsson, 2002).

In previous work, several applications have been developed with the aim of

improving text accessibility for human readers. Max (2000) described the use of

a syntactic parser for sentence rewriting to facilitate the reading comprehension of

people with aphasia. In the PSET project, Canning (2002) implemented a system

which exploits a parser in order to rewrite compound sentences as sequences of

simple sentences and to convert passive sentences into active ones. Scarton, Palmero

Aprosio, Tonelli, Martin-Wanton, and Specia (2017) developed a multilingual

syntactic simplification tool (MUSST) in the SIMPATICO project, which sought

to improve the experience of citizens and companies in their daily interactions with

public administration. The English sentence simplification tool includes components

for sentence analysis, exploiting the Stanford dependency parser (de Marneffe,

MacCartney, and Manning, 2006), to determine whether or not input sentences

should be transformed, and to identify discourse markers and relative pronouns,

which will be useful in the simplification of conjoint (compound) clauses and relative

clauses. MUSST’s syntactic simplification process implements the handcrafted rules

proposed by Siddharthan (2004) and Siddharthan and Angrosh (2014) and applies
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them to the syntactic analyses generated for input sentences by the dependency

parser. These include rules to split sentences containing conjoint clauses, relative

clauses, and appositive phrases and to convert passive sentences to active. After

applying the simplification rules, MUSST also performs a generation step in

which truecasing is applied to output sentences and discourse markers lost in

the simplification process are re-inserted. When processing sentences in Public

Administration texts, Scarton et al. (2017) report an accuracy of 76% for their

system when simplifying English sentences, and taking into account a wider range

of operations that those that are the focus of our paper. In Section 6.2, we compare

the accuracy of MUSST with that of our approach, focusing only on the task of

simplifying Type 1 and Type 2 sentences in texts of several different registers.

Although we focus on simplification of English sentences in this article, rule-based

methods have also been proposed for the processing of other languages (e.g.

Daelemans, Höthker, and Tjong Kim Sang (2004); Brouwers, Bernhard, Ligozat,

and Francois (2014); Suter, Ebling, and Volk (2016)). Several researchers have also

developed methods to facilitate the process of acquiring sentence simplification

rules from manually simplified corpora of languages such as Brazilian Portuguese

(Aluisio, Specia, Pardo, Maziero, and Fortes, 2008; Aluisio, Specia, Pardo, Maziero,

Caseli, and Fortes, 2008) and Basque (Gonzalez-Dios, Aranzabe, and Diaz de

Ilarraza, 2018). Seretan (2012) presented a method to semi-automatically derive

syntactic simplification rules for French sentences. Her method is based on a

component to automatically identify sentences that require simplification and on

manual analysis of the syntactic structures of complex and simple French sentences.

The outputs of these two processes are then used to formulate rules to transform

sentences with complex syntactic structures into sentences with simpler syntactic

structures. Due to its modular design, we expect that the method for sentence

simplification that we present in the current article will be easy to port for use with

other languages. However, we have not so far made this type of adaptation.

In general, the weakness of approaches exploiting syntactic parsing is that they rely

on high levels of accuracy and granularity of automatic syntactic analysis. Previous

research has demonstrated that the accuracy of parsers is inversely proportional to

the length and complexity of the sentences being analysed (Tomita, 1985; McDonald

and Nivre, 2011). Rather than exploiting full syntactic parsing, the approach to

sentence simplification that we present in this article exploits a shallow and robust

syntactic analysis step.

2.2 Data-Driven Approaches

More recently, the availability of resources such as Simple Wikipedia has enabled

text simplification to be included in the paradigm of statistical machine translation

(Yatskar, Pang, Danescu-Niculescu-Mizil, and Lee, 2010; Coster and Kauchak,

2011). In this context, translation models are learned by aligning sentences in

English Wikipedia (EW) with their corresponding versions in Simple English

Wikipedia (SEW). Manifesting Basic English (Ogden, 1932), the extent to which
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SEW is accessible to people with reading difficulties has not yet been fully assessed.

Effective SMT relies on the availability of representative pairs of texts in their

original and converted forms. As a result, there are currently only a limited number

of contexts in which SMT approaches are likely to be effective. Xu, Callison-Burch,

and Napoles (2015) are critical of the use of SEW to support SMT-based text

simplification.

2.2.1 Methods Exploiting Parallel Corpora

Despite these caveats, the availability of sentence-aligned parallel corpora of texts

in their original and simplified forms provides additional opportunities to develop

methods for sentence simplification. From a sentence-aligned collection of articles

from EW and SEW, Coster and Kauchak (2011) derived the probabilities that

various ngrams from EW occur in an edited form in SEW as a result of various

transformation operations including phrase rewording, deleting, reordering, and

splitting. They exploited the resultant phrase table in the development of a

phrase-based statistical machine translation (PB-SMT) model to translate texts

into a simplified form.

Wubben et al. (2012) applied this basic approach and also integrated a re-ranking

metric to ensure that sentences generated by the model are sufficiently unlike

the originals to constitute suitable transformations. This approach captures the

intuition that generated sentences should be as fluent and informative as the

originals, but sufficiently different from them. The models learned perform lexical

substitutions, phrase deletion, and phrase reordering.

S̆tajner et al. (2015) exploited a sentence-aligned parallel corpus of Spanish

containing texts in their original versions and two simplified versions of decreasing

complexity (manifesting “light” and “heavy” simplification). They applied methods

from SMT to learn the simplification model and developed a language model for

use by it from a set of sentences of restricted length (fifteen words or less). This

was done to promote the simplicity of sentences generated by the system.

Zhang and Lapata (2017) applied methods from neural machine translation to

develop DRESS, the deep reinforcement learning sentence simplification system.

Trained on parallel corpora of unmodified and manually simplified English text,

their method uses recurrent neural networks to implement an encoder-decoder

architecture network to transform input word sequences into a simplified form.

The system was trained in a reinforcement learning framework to ensure that the

generated output satisfies constraints on simplicity, fluency, and meaning. The types

of transformation operation learned by the model which affect sentence structure

include those performed by other systems described in this section: addition,

copying, deletion, and re-ordering of words and phrases.

The approach to sentence simplification that we present in this article does not

depend on the availability of parallel corpora of text in its original form and in a

manually simplified form. It does not apply text editing operations of the type used
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in phrase-based machine translation or neural machine translation. Our approach

is iterative and rule-based rather than exploiting empirically derived phrase tables.

2.2.2 Methods Exploiting Syntactically Parsed Parallel Corpora

Several methods for sentence simplification have exploited syntactically annotated

sentence-aligned parallel corpora of texts in their original and simplified forms.

Zhu et al. (2010) developed an approach to sentence simplification using PB-SMT.

Data from a sentence-aligned parallel corpus of EW/SEW articles was syntactically

parsed. This syntactic information was exploited when computing the probabilities

of transformation operations applied to sentences in EW generating the aligned

sentences in SEW. The approach was able to derive these probabilities from

information about syntactic structure such as constituent size and information

about the occurrence in the constituent of relative pronouns. A PB-SMT approach

was then used to learn syntactic transformation operations from this data. The

types of transformations learned included phrase splitting, dropping and reordering,

and substitution operations.

Feblowitz and Kauchak (2013) presented a method in which syntactic

transformation rules are learned from a syntactically annotated parallel corpus

of texts in their original and simplified forms. The rules were encoded in a

synchronous tree substitution grammar (STSG) formalism, which models syntactic

simplification. The authors improved the simplification model by incorporating

additional syntactic information to better discriminate between input structures

for which transformations should be applied and those for which they should not.

Paetzold and Specia (2013) developed a system exploiting the Tree Transducer

Toolkit to learn syntactic transformation rules from a syntactically parsed parallel

corpus of texts in their original and simplified forms. The acquired rules are applied

to input sentences parsed using the Stanford constituent parser.5 Transformations

learned in this approach include lexical and syntactic simplifications. The authors

developed a set of heuristic filters to prevent the system from learning spurious rules.

These filters ensure that, in order to be incorporated in the model, a candidate rule

must either be general enough, must split one sentence into multiple sentences, must

delete information, or must apply to structures which contain connectors such as

and and or.

Angrosh, Nomoto, and Siddharthan (2014) developed an approach incorporating

one method for syntactic and lexical simplification and a second method for

sentence compression. Lexicalised sentence transformation rules were learned from a

syntactically parsed parallel corpus. These rules included both lexical and syntactic

transformations. The sentence compression method employed techniques from

integer linear programming and dynamic programming to select the best from

among a large set of candidate node deletions to be applied to the syntactically

analysed input sentences.

5 Available at https://nlp.stanford.edu/software/srparser.html (last accessed on
11th September 2018).

https://nlp.stanford.edu/software/srparser.html
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Siddharthan and Angrosh (2014) present a method exploiting techniques from

PB-SMT to learn a synchronous grammar applying transformations to parse

trees for text simplification. In their method, the synchronous grammar is

semi-automatically acquired from a syntactically parsed sentence-aligned parallel

corpus of articles from EW and SEW. These transformations include lexicalised

rules for insertion, deletion, and re-ordering of syntactic constituents together with

morphological transformation of verb forms to enable conversion of sentences from

passive voice to active. A substantial part of the grammar consists of handcrafted

rules to enable transformations that are more difficult to learn, such as the

conversion of passive sentences to active, the splitting of complex sentences and

compounds, and the standardisation of quotations. The authors applied a simple

text generation component to ensure that sentences produced by the system are

ordered in a way that matches that of the original text.

Narayan and Gardent (2014) present a method for sentence simplification in

which a phrase-based SMT model learned from a parallel corpus of sentence-aligned

EW and SEW articles is improved through the integration of deep semantic

information. This is derived from Boxer (Bos, 2008), a tool which provides

information on the discourse representation structure of input sentences. Semantic

information from this parser is used to improve the splitting of complex sentences by

ensuring preservation of multi-word units (entities and concepts) in the generated

sentences and by avoiding the deletion of the obligatory arguments of verbs.

The field of text summarisation also includes approaches that exploit sentence

rewriting. For example, Cohn and Lapata (2009) present a syntactic tree-to-tree

transduction method to filter non-essential information from syntactically parsed

sentences. This compression process often reduces the syntactic complexity of those

sentences. An advantage of their method over the one that we present in this

article is that it can identify elements for deletion in the absence of explicit signs of

syntactic complexity. However, as with all methods exploiting full syntactic parsing,

the approach is computationally expensive, with relatively long run times. One

recent approach to sentence compression was presented by Klerke, Goldberg, and

Søgaard (2016). Their method exploits LSTM learning in a joint-learning task to

integrate information from CCG supertagging and eye tracking data for sentence

simplification. The model is used to compress sentences by identifying non-essential

words and phrases for deletion. The methods proposed by Cohn and Lapata (2009)

and Klerke et al. (2016) both work by applying deletion operations. As with all

such methods, they run the risk of omitting relevant information in their output.

In addition to the exploitation of handcrafted rules, several systems based

on a syntactic analysis of input texts include a post-processing module to

improve the quality of the sentences that they generate. Bott et al. (2012)

integrated a probabilistic component into their system to assess the suitability of

applying transformation operations to input sentences. This approach to syntactic

simplification was integrated into the Simplex text simplification system, designed

to convert texts into a more accessible form for people with Down’s syndrome

(Saggion, S̆tajner, Bott, Mille, Rello, and Drndarevic, 2015). Vickrey and Koller

(2008) included a machine learning method in their sentence simplification tool
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to decide on the set of transformations to apply when processing input sentences.

In addition to a syntactic dependency analysis, Siddharthan (2011) integrated a

generator in his system to sequence the application of handcrafted transformation

rules and to ensure agreement between constituents in automatically generated

sentences. Brouwers et al. (2014) developed an approach in which all possible

transformations in their grammar are applied to input sentences and a method

using integer linear programming and four assessment criteria is used to select the

best of these.

The methods described in this section rely on two resources that are not exploited

by the approach to sentence simplification that we present in this article: syntactic

parsers and large syntactically analysed corpora. The former are ill-suited to the

sentence simplification task, as noted in Section 2.1.1, while the latter are relatively

scarce resources that are not available for texts of all registers. These methods

involve the learning of sentence transformation rules from syntactically parsed

parallel corpora. The rules used by our sentence simplification system are not

derived in this way. They are based on a shallow and robust analysis step in

which explicit signs of syntactic complexity are classified with respect to their

specific syntactic coordinating and subordinating functions. In our context, implicit

syntactic structure is not tagged directly, but is inferred from the classification of

explicit signs.

2.2.3 Methods Exploiting Deep Parsing and Semantic Analysis

Several methods for sentence simplification exploit deep parsing and automatic

methods for semantic analysis. Jonnalagadda, Tari, Hakenberg, Baral, and

Gonzalez (2009) presented a method for syntactic simplification which includes

a pre-processing step in which spurious phrases are deleted, the names of certain

entities (genes) are normalised, and noun phrases are replaced. After pre-processing,

input sentences containing multiple clauses are split into independent clauses using

information about linkage relations identified by the Link Grammar parser6 and

about the distribution of commas in the sentences.

Miwa, Sætre, Miyao, and Tsujii (2010) applied a method based on deep parsing

to pre-process sentences, removing unnecessary information to expedite a relation

extraction task. They developed handcrafted rules to identify entity mentions,

relative clauses, and copulas in sentences and to exploit the syntactic analysis

to delete those parts of the sentence not mentioning entities. Transformation

operations performed in this approach include the replacement of compound phrases

by the final conjoin in the phrase that refers to an entity of interest and the deletion

of matrix NPs with appositions referring to an entity of interest.

Sheremetyeva (2014) presents an approach to sentence simplification in patent

claims. Her method exploits a variety of advanced pre-processing steps including

6 Available at https://www.abisource.com/projects/link-grammar (last accessed on
11th September 2018).

https://www.abisource.com/projects/link-grammar
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supertagging to identify semantic information about the words, terminology, and

predicates in the text. Phrases are identified using a chunker based on phrase

structure grammar rules and relations between predicates and their arguments are

identified using an approach based on domain permutation graphs. These tools are

used to identify the full set of predicate-argument dependencies in input sentences

and to generate new simple sentences on the basis of each of them. Our approach,

which is used to process texts of multiple registers and domains, performs no

deep semantic analysis of this kind. We suspect that the approach presented by

Sheremetyeva (2014), involving extraction of predicate-argument dependencies and

sentence generation, would be difficult to adapt for accurate simplification of texts

that are not patent claims.

Sections 2.2.2 and 2.2.3 have included descriptions of several sentence compression

methods. One disadvantage of such methods is that they are “destructive” in the

sense that information is deleted rather than preserved as a result of compression.

Although some information loss is inevitable in text simplification, our method is

designed to minimise it. Currently, information conveyed by conjunctions and other

signs of syntactic complexity is lost in our approach but information conveyed by

other function words and content words is preserved.

To conclude this review of related work, we noted that many of the previous

rule-based approaches to sentence simplification are based on a relatively coarse

analysis of syntactic structure and are often designed for use in a specific application

area, such as domain-specific information extraction. In our case, we sought to

develop an approach incorporating an analysis step detailed enough to support

simplification of a variety of syntactically complex structures. Approaches based

on the full syntactic analysis of input sentences have the potential to perform a

larger variety of more precise transformation operations but they may be time

consuming to run and unreliable when processing the types of sentence most in need

of simplification. Methods for sentence simplification based on statistical machine

translation are efficient to run but depend on the availability of large collections

of sentence-aligned parallel corpora. This type of data is expensive to produce,

especially in the case of systems designed to exploit syntactically parsed data. In

general, methods for simplification based on sentence compression are unsuitable

for our purpose because we seek to improve the accessibility of information

in input sentences rather than deleting it. For these reasons, we developed a

method for sentence simplification of English (Section 5) which is designed to be

meaning-preserving and which integrates a new component for syntactic analysis

that is not based on syntactic parsing but is based on the automatic classification

of various explicit textual signs of syntactic complexity (Section 4). Development

of this classifier is based on the analysis described in the next section.

3 Empirical Analysis of Syntactic Complexity in English

In this section, we consider syntactic phenomena that can hinder the

comprehensibility of English texts. Caplan and Waters (1999) observe that
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propositionally dense sentences are relatively difficult to understand. Syntactic

structures such as compound clauses and complex NPs contain multiple clauses

and can be propositionally dense. Intuitively, automatic syntactic parsing could

be used to detect the occurrence of these types of structures in input sentences.

However, the reliability of syntactic parsing depends on the length and complexity

of the sentence being processed, with long complex sentences being processed less

accurately and considerably more slowly than short simple ones (Tomita, 1985;

McDonald and Nivre, 2011). In light of this drawback, we instead focus on various

shallow markers which can indicate the presence of syntactically complex structures

in English sentences. We present a scheme to encode information on the specific

linking and bounding functions of these signs of syntactic complexity, including

information on the sentence structures that they signal. We annotated a corpus in

accordance with this scheme and present an analysis of the corpus.

Compound and nominally bound relative clauses contribute to sentence

complexity. The conjoins of compound clauses are linked by paratactic syntactic

relations, while nominally bound relative clauses are linked to the noun phrases that

they modify by hypotactic syntactic relations (Quirk et al., 1985). Our analysis of

English texts indicated that hypotactic and paratactic relations are often indicated

by the occurrence of punctuation marks, conjunctions, complementisers, wh-words,

and multi-token units consisting of punctuation marks followed by one of the other

types of indicating word. In this paper, we refer to these lexical/punctuational

markers as signs of syntactic complexity, or signs.

Numerous syntactically annotated resources have been developed for English. The

Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) is widely exploited

for the development of syntactic processors in NLP. However, this resource does

not encode detailed information on the coordinating and bounding functions

of punctuation marks and other signs of syntactic complexity. Maier, Kübler,

Hinrichs, and Kriwanek (2012) described work in which a new annotation layer was

added to the Penn Treebank dataset, encoding information about the coordinating

function of commas and semicolons. However, their scheme only discriminates

between coordinators and non-coordinators without identifying specific subtypes

of coordination. For this reason, researchers exploiting the resource developed by

Maier et al. (2012) for the purpose of sentence simplification would need to develop

additional methods to further disambiguate commas and semicolons. They would

need additional sources for information on the bounding and linking functions

of lexical signs. Van Delden and Gomez (2002) developed a dataset to support

automatic identification of the syntactic roles of commas. That annotation only

encodes information about commas and does not support analysis of other signs

(conjunctions, complementisers, etc.).

3.1 Corpus and Annotation Scheme

Due to the noted poor performance of syntactic parsers when analysing complex

sentences, we sought to develop an approach to sentence simplification that does

not exploit a syntactic parser. Our intuition was that information on the specific
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linking and bounding functions of signs of syntactic complexity could form the basis

of a shallow rule-based approach to sentence simplification. This intuition guided

our design of the annotation scheme.

Rather than directly annotating the syntactic structure of each sentence, which is

a time consuming and onerous process, we annotated a relatively small set of signs

of syntactic complexity with information that will enable us to make inferences

about the syntactic structure of sentences. The annotation provides information on

the spans of subordinated syntactic constituents (their left and right boundaries).

It also provides information on the syntactic categories and relative size of both

subordinate constituents and the conjoins of compound constituents. It should be

noted that under this annotation scheme, conjoins and subordinate constituents are

not explicitly annotated. Only the signs themselves are tagged. Full details of the

annotation scheme are presented in Evans and Orasan (2013).

We took this approach to support development of a sentence simplification

method that can easily be ported to other languages in the context of a multilingual

project. We therefore opted for the simple, two-step approach presented in this

article which, with the exception of the language-specific rewriting rules, can be

applied to other languages by performing the relatively simple annotation task

described in this section.

Texts of three registers (news, health, and literature), were collected from the

METER corpus (Gaizauskas, Foster, Wilks, Arundel, Clough, and Piao, 2001), and

the collections available at patient.co.uk and Project Gutenberg (gutenberg.org),

respectively, to form the corpus. These texts were annotated with information about

the syntactic functions of various signs of syntactic complexity. The characteristics

of the texts are summarised in Table 1. The columns Docs and Sents display the

total number of documents and sentences in the corpus. The next two columns

provide information on the numbers of words and the average length of sentences

in each collection. The final column provides information on the numbers of signs

of syntactic complexity in each collection (Total) and the average number of signs

per sentence (Per Sent).

Table 1: Characteristics of the annotated corpus.

Words Signs
Per Per

Register (Source) Docs Sents Total Sent Total Sent

Health (patient.co.uk) 783 175 037 1 969 753 11.25 180 623 1.032
Literature (Gutenberg) 24 4 608 95 739 20.78 11 235 2.440

News (METER) 825 14 854 307 734 20.71 29 676 1.997

Inspection of Table 1 reveals that sentences in texts of the health register are

approximately half as long as those found in texts of the other two registers. In

line with intuition, sentences in these texts contain just over half as many signs
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of syntactic complexity as sentences in texts of the news register. From this table,

we may infer that sentences in texts of the literary register are more syntactically

complex than those of news or health (2.440 signs per sentence vs. 1.997 and 1.032,

respectively). We manually annotated information about 10 756 signs in texts of

the register of health, 11 204 in the register of literature, and 12 718 in the register

of news.7 In the corpus, two main classes of signs were observed: coordinators and

subordination boundaries.

3.1.1 Coordinators

Coordinators include conjunctions ([and ], [but ], and [or ]), punctuation marks ([,]

and [;]), and multi-token units consisting of a punctuation mark followed by a

lexical sign ([, and ], [, but ], [, or ], [; and ], [; but ], and [; or ]). We restricted the

annotation to a relatively unambiguous subset of coordinators to facilitate both the

manual annotation task and the automatic tagging process described in Section 4.

Conjunctions have an exclusively coordinating function while the functions of signs

that include punctuation marks are more ambiguous, serving as coordinators in

some contexts and as subordination boundaries in others.

The tags used in our annotation scheme are acronyms indicating the type of

constituents coordinated by each sign:

• The first part of the acronym indicates the coordinating function (C).

• The second part indicates the syntactic projection level (Chomsky, 1970)

of the linked constituents: lexical (L), intermediate (I), maximal (M), and

extended (E).

• The third part of the acronym indicates the syntactic category of the

compound: verbal (V), nominal (N), adjectival (A), adverbial (Adv),

prepositional (P), or quantificational (Q). Sentences (3)–(6) are examples of

coordination involving constituents of different projection levels and different

grammatical categories.

(3) A drifter who killed three friends in horrific axe [CLN and] knife attacks

was given three life sentences yesterday.

(4) Addressing the six men [CIN and] six women, Judge Mellor said: ’You

may have guessed that this is the GM trial.

(5) BA immediately announced that it would appeal against the ruling,

which it branded “wrong in fact [CMP and] in law”.

(6) After months of hype, Star Wars: The Phantom Menace had its royal

premiere last night - [CEV and] my fears came true.

This approach follows from the treatment of constituent structure in syntactic

theories such as Government and Binding. In our context, it provides a

7 The annotated corpus and annotation guidelines are available at http://rgcl.wlv.ac.
uk/demos/SignTaggerWebDemo/ (last accessed on 14th September 2018).

http://rgcl.wlv.ac.uk/demos/SignTaggerWebDemo/
http://rgcl.wlv.ac.uk/demos/SignTaggerWebDemo/
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way to discriminate between signs that coordinate or bound different types

of constituents that share the same syntactic category (morphemic, lexical,

intermediate, phrasal, or clausal).8

• The fourth part of the acronym is optional and takes a numerical value. It

is used to distinguish between coordination of different subtypes of NPs and

VPs. Each number corresponds to coordination of conjoins that are:

1. complete, such as tag CMV1 in (7).

2. incomplete, with ellipsis of the head of the second conjoin, such as tag

CMV2 in (8).

3. incomplete, with ellipsis of the complement of the head of the first conjoin,

such as tag CMV3 in (9).

4. incomplete, with ellipsis of the head of the first conjoin, such as tag CMN4

in (10).

Thus, we tag signs linking two adjectives as CLA whereas signs linking noun

phrases, verb phrases, and clauses are tagged CMN1, CMV1, and CEV,

respectively.9

(7) McKay had been on the payroll five years[CMV1 , but] feared he would

go on a ‘last-in, first out’ basis, said Mr Sloan.

(8) But Justice Kay added: “It is a sorry state of affairs when Mr Blunkett

{has to explain away}i his own letters as mistaken and unclear

[CMV2 and] φi a statement by the Prime Minister as an incorrect

representation of policy, taken out of context”.10

(9) A spokeswoman told The Express: “There is not φi [CMV3 and] cannot

be {a deal}i, the BBC owns the rights to the name Blackadder and no

deal can be signed without our consent.”11

(10) ‘This case is not about whether GM crops are a good φi [CMN4 or]

a bad {thing}i,’ he said.

We include example sentences containing one of the three most commonly occurring

types of coordinator in examples (11)–(13). Although some of these examples

contain multiple signs of syntactic complexity, for clarity, we only highlight those

8 In generative approaches to syntax, phrases are considered to be the maximal
projections of lexical items that are their heads and clauses are considered to be
extended projections of the tenses of main verbs. These constituents are termed
projections of words and verb tenses because their structure is determined by them.

9 In this article, we provide examples only of the most relevant classes. Examples
illustrating every class of sign are available in the annotation guidelines (see Footnote
5).

10 In these examples, the antecedent of the elision, φi, is marked using braces.
11 This could be considered an example of the coordination of head verbs in the sentence,

but the fact that these words are modified by negation implies that this coordination
is at the phrasal rather than lexical level. Despite its rarity (2 or 3 cases in more than
30 000 signs), we included this class in our scheme to ensure that it could capture a
more complete range of grammatical distinctions.
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of the relevant class. Our automatic classifier (Section 4) tags all the signs in each

input sentence.

(11) The following weekend he was off sick [CEV and] no pancakes were

contaminated.

(12) When the bailiffs ignored Mrs Amor’s requests to “sod off”, she stormed

upstairs [CMV1 and] returned with a double-barrelled shotgun.

(13) The victims were Steven Parker, 21[CMN1 ,] Paul Thompson, 22[CMN1 ,

and] Panayi Kouroushi, 30, all from Groby, Leics[CMN1 ;] Steven Curtis,

28, of Newton Linford, Leics[CMN1 ; and] Jeremy Goodall, 30, of Leicester

Forest East.

3.1.2 Subordination Boundaries

Subordination boundaries include complementisers ([that ]), wh-words ([what ],

[when], [where], [which], [while], and [who]), punctuation marks ([,], [;], [:]), and

multi-token units consisting of a punctuation mark followed by any of the lexical

signs (e.g. [, which] or [; and ]). As in the case of coordinators, we restricted the

annotation to a relatively unambiguous subset of explicit subordination boundaries.

In terms of their function, complementisers and wh-words are used exclusively to

bound subordinate constituents while signs which include punctuation marks (e.g.

[,] and [, and ]) are ambiguous, as noted earlier. For subordination boundaries, the

tags used in the annotation scheme are acronyms indicating the type of constituents

bounded by these signs. The first part of the acronym may indicate the left

(SS) or right (ES) boundary of a subordinated constituent.12 The second part of

the acronym indicates the syntactic projection level of the bounded constituent.

These include maximal and extended projections.13 The third part of the acronym

indicates the syntactic category of the bounded constituent. These may be verbal

(V), nominal (N), adjectival (A), adverbial (Adv), or prepositional (P). There

are also tags for subordinated constituents such as interjections (SSMI/ESMI),

direct quotes (SSCM/ESCM), tag questions (STQ), and constituents of ambiguous

syntactic category (SSMX/ESMX).

We provide example sentences containing one of the three most commonly

occurring types of left boundaries of subordinate constituent in (14)–(16). As in

(11)–(13), although some of these examples contain multiple signs of syntactic

complexity, for clarity, we only highlight those of the relevant class.

(14) “Yolanda was the sort of person [SSEV who] always needed to have a

12 Start of a subordinated constituent (SS) or end of a subordinated constituent (ES).
13 Grammarians typically consider subordination to be a link between clauses, sometimes

with elided elements (Quirk et al., 1985). In this research, we label clauses with elided
elements in accordance with their extant elements. For example, subordination of an
-ed participle clause is considered subordination of a verb phrase under our approach.
When extant elements cannot be categorised as a single subclausal unit such as a noun
phrase, then the subordinated constituent is considered clausal.
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boyfriend and would pick up when she had one, but if not she would

nosedive.”

(15) Noel Gallagher became a father yesterday after his wife[SSMN ,] Meg

Mathews, gave birth to a girl.

(16) They left the tenant a note on a cornflakes box, which read[SSCM :] ‘We’ve

missed you this time.’

Examples (17)–(19) are sentences containing one of the three most commonly

occurring types of right boundary of subordinate constituent. As before, in these

examples we only highlight signs of syntactic complexity of the relevant class.

(17) Yolanda, who was due to sit exams in English, History and Art[ESEV ,] was

“disorganised” and had been under-achieving at school, Ms Hamblett-Jahn

said.

(18) ‘Within the confines of the nursery[ESMP ,] her treatment of them was

markedly different.’

(19) The rival chef, Oliver Peyton[ESMN ,] had claimed Mr White’s Titanic

restaurant was a replica of his own Atlantic Bar and Grill - which is housed

in the same West End hotel.

In the next section, we provide some analysis of the annotated corpus that we

developed.

3.2 Annotated Data

Two linguists annotated signs of syntactic complexity in the corpus with

information on their linking and bounding functions. A subset of each register (1000

signs of each) was annotated by both linguists.14 The values of Kappa obtained for

the annotations were 0.80 for signs annotated in texts of the news register, 0.74

for those in the health register, and 0.76 for those in the literary register. These

levels imply a minimum of “substantial agreement” between annotators (Cohen,

1960). Evans and Orasan (2013) provide information on the most frequent types of

disagreement.

In Table 1, we presented statistics about the number of signs annotated for each

register. Table 2 displays the frequency distribution of the twenty most common

signs and the twelve most common tags assigned in the three text registers. Space

restrictions prevent display of the full distribution of 35 annotated signs and 38

assigned tags. The row Total provides information on the total number of signs of

each class in the corpus.

Sentence (20) is an example illustrating annotation in accordance with this

scheme.

14 With regard to annotation rate, after a period of approximately one month away from
the task, Evans was able to annotate 100 signs in under 25 minutes (four signs per
minute).
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(20) Before he was hired by Addaction[ESMAdv ,] he had headed a team

of armed robbers from the Meadows estate [CEV and] he had already

been convicted of more than 30 offences involving burglary[CMN1 ,]

theft[CMN1 ,] firearms[CMN1 ,] unlawful sexual intercourse [CMN1 and]

possession of drugs.

It contains multiple signs of syntactic complexity. The annotation provides

information on the syntactic function of each. The first sign is the right boundary

of the subordinate adverbial phrase Before he was hired by Addaction, the second

sign links two clauses in coordination, while the subsequent signs link noun phrase

arguments of the verb involving in coordination. As noted earlier, the purpose of

our annotation scheme is not to mark syntactic constituents themselves, as is the

case in most types of syntactic annotation. In our scheme, only the signs are labeled,

not the constituents whose presence they signal.

The annotated data indicates no upper limit on the number of signs of syntactic

complexity that a sentence may contain. The largest number of signs found in

a sentence of this corpus is 30.15 Almost two thirds (63.64%) of the sentences

containing more than 20 signs are of the literary register. In our corpus, 46.55% of

sentences contained at least one sign of syntactic complexity.

The signs [,], [and ], and [that ] were the most common signs of syntactic

complexity across all three registers. The signs [;] and [, and ] were relatively

frequent in literary text while the conjunction [or ] was most frequent in the

register of public health information. When considering all signs and not just the

twenty most frequent, most were left boundaries of subordinate clauses (SSEV),

coordinators of verb phrases (CMV1), and coordinators of noun phrases (CMN1).

In this article we present a method designed to rewrite sentences that contain

compound clauses and bound relative clauses, which contain signs of class

CEV and/or SSEV. The rewriting process depends on accurate identification

of several additional tags. Tabulating absolute and cumulative frequencies of

signs and tags reveals a skewed distribution. This fact, illustrated in Table 2,

provides an indication of the challenge posed in developing automatic methods

to accurately assign tags that occur infrequently in the annotated data to signs

of syntactic complexity. At present, due to limited resources, we consider the

processing of additional signs of syntactic complexity (e.g. conjuncts, adjuncts,

conditional/adversative/comparative conjunctions, conditionals, etc.) to be a topic

for future research. The automatic identification and categorisation of such signs

may bring benefits for other syntactic processing systems. In the next section, we

present our automatic method for classifying signs of syntactic complexity.

4 Sign Tagging: An Automatic Approach to Sentence Analysis

State of the art PoS taggers provide little information on the syntactic functions

of conjunctions, complementisers, wh-words, and punctuation marks, and are of

15 Sentences containing more than 25 signs are present in each of the three registers.
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limited use for automatic sentence simplification. Detailed information can be

derived from syntactic parsers but this information may be inaccurate for long

complex sentences. Further, exploitation of such information may be non-trivial,

requiring detailed processing of the syntactic tree structure.

Van Delden and Gomez (2002) developed a tool to provide information on the

linking and bounding functions of commas. Their method operates in two phases.

In the first, 38 finite state automata are applied to PoS-tagged data to derive an

initial tagging of commas. In the second, information from a tag co-occurrence

matrix derived from hand annotated training data is used to improve the initial

tagging. The system achieves accuracy of 91-95% in identifying the syntactic

functions of commas in a collection of encyclopaedia and news articles. The inability

of the method to process other signs limits its usefulness in automatic sentence

simplification.

The method proposed by Evans (2011), and described in Section 1, relied

on memory-based learning to classify potential coordinators (including commas

and a limited number of conjunctions) in clinical texts. The method had an

overall accuracy of 83.2% in assigning one of 30 class labels to 7 types of

potential coordinator. His approach was developed for use in a restricted, relatively

homogeneous domain (patient notes), demonstrating only a limited range of

syntactic constructions. As a result, the approach is inadequate for tagging signs in

the texts considered in our current research.

The absence of automatic tools to identify the full set of syntactic functions of the

full set of signs motivated us to develop a new sign tagger, exploiting our annotated

corpus (Section 3.2). This sign tagger, together with details of its development

and implementation, are presented in the paper by Dornescu et al. (2013). In this

section, we provide an overview of the method and provide examples to clarify

certain aspects of the implementation. Our initial motivation for developing the

sign tagger was to perform a shallow syntactic annotation of input texts for use in

various NLP applications such as information extraction, where a wider range of

syntactic transformation operations is seen to be beneficial. The method proposed is

based on a ML algorithm which is able to classify each sign according to the classes

annotated in our corpus. The algorithm relies mainly on the context of the sign to

determine its class. We conducted experiments to optimise the performance of our

sign tagger by evaluating it with alternate settings of four parameters: algorithm

type, tagging mode, features used to represent instances in the training data, and

the selection of training data. The evaluation was carried out over the annotated

part of the corpus presented in Section 3 and is expressed using the evaluation

metrics typically used in NLP: precision, recall, f-measure and accuracy. In all the

experiments, 10-fold cross validation was employed.16

With regard to algorithm type, we found that sequence-based CRF tagging

models (Lafferty, McCallum, and Pereira, 2001; Sutton and McCallum, 2011)

provided better performance in the automatic tagging of signs than methods in

16 An online demo of our sign tagger is also available at rgcl.wlv.ac.uk/demos/
SignTaggerWebDemo.

rgcl.wlv.ac.uk/demos/SignTaggerWebDemo
rgcl.wlv.ac.uk/demos/SignTaggerWebDemo


22 Evans and Orăsan

which each sign is tagged independently of other signs in the same sentence. Our

approach thus contrasts with that of Evans (2011), in which signs are classified

independently. In our approach, texts are treated as sets of token sequences, with

each sequence corresponding to a sentence in the text. A prediction is made of

the tag of every token in the text, not just the subset of tokens that are signs of

syntactic complexity.17 The tags to be assigned are treated as variables that depend

both on other observed variables and on the probabilities of the potential tags of

other tokens occurring in the same sentence.

When applying the CRF tagger, two tagging modes were evaluated. In the first

(simple), signs of syntactic complexity in the training data were tagged with the

classes specified in Section 3, while non-signs were tagged NA to indicate that

they are not signs of syntactic complexity. 90% of the tokens being tagged in this

setting are non-signs and we were concerned that the derived tagging models would

prioritise accurate tagging of non-signs at the expense of the task we are really

interested in, the tagging of signs. In this article, evaluation scores are reported in

the context only of sign tagging, not token tagging. In the simple tagging mode,

the model operates at acceptable levels of accuracy when sign tagging (0.7846 <

acc < 0.8323). In the second tagging mode (BIO), signs of syntactic complexity

in the training data were tagged with the class labels specified in Section 3, while

non-signs were tagged with a class label matching that of the closest preceding sign.

Table 3 displays a sample of the annotations used in each of the two tagging modes.

The sign tagger has slightly better accuracy when operating in the BIO tagging

mode (0.7991 < acc < 0.8383).18

Two types of representation of training instances were tested. In the first (core),

tokens were represented by evaluating three sets of feature templates:

1. Unigrams consisting of:

• the orthographic form of the token being tagged,

• the orthographic form and the part of speech, in combination, of the token

being tagged,

2. Bigrams consisting of:

• the parts of speech of the token being tagged and the following token,

3. Trigrams consisting of:

• the parts of speech of the preceding token, the token being tagged, and

the following token,

• the parts of speech of the token being tagged, and the following two tokens.

The CRF++ package (Kudo, 2005) was used to derive the sequence tagging

model. Tokens in the training data were represented using a set of feature templates

which encode an evaluation of the external observed variables. We built the core

17 In this context, signs comprising a punctuation mark followed by a word are treated as
single tokens.

18 The difference is marginal, but the simple tagging mode achieves superior performance
to the BIO mode when applied to texts of the health register (F1 = 0.8358 vs. 0.8300).
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Table 3: Training sample for the Simple and BIO tagging modes

Token PoS Simple BIO

There EX NA NA

are VBP NA NA

a DT NA NA

couple NN NA NA

of IN NA NA

scenes NNS NA NA

that WDT SSEV SSEV

involve VBP NA SSEV

sex NN NA SSEV

in IN NA SSEV

that DT SPECIAL SPECIAL

show NN NA SPECIAL

but CC CEV CEV

they PRP NA CEV

focus VBP NA CEV

on IN NA CEV

the DT NA CEV

faces NNS NA CEV

. . NA CEV

feature set by first evaluating a baseline sequence tagging model, derived using

CRF++, in which tokens were represented by a single feature template specifying

the orthographic form of the token being tagged. Models in which tokens were

represented by a candidate feature template in isolation were then derived and

evaluated. Those with superior performance to the baseline were included in the

core feature set. This core set was supplemented with unigram feature templates

evaluating the features proposed by Evans (2011) to create an extended feature set.

In evaluations exploiting the CRF model to tag signs in texts of the news register,

use of the extended feature set was found to be more accurate than use of the core

feature set (acc of 0.8058 vs. 0.7846).

We were also interested in variation in the performance of the sign tagger as

a result of a mismatch between the register of the text being tagged and the

register of the text from which training data was derived. In every case, there was

a considerable reduction in accuracy when training data of one register was used

to tag signs in text of a different register. We conducted a comparative evaluation

of sequence taggers exploiting training data of a register matching that of the

testing data with taggers exploiting training data derived by combining instances

belonging to all three registers (ensuring complementarity with test instances). This

experiment showed that training a single tagging model on the entire multi-register
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dataset yields slightly better performance (acc = 0.8250) than models trained on

data derived from texts matching the register of the input (acc = 0.8196).

The sign tagger presented in this article uses a CRF sequence tagging model,

running in the BIO tagging mode, using the extended feature set to represent

instances, and exploiting training data derived from texts of all three registers. A

detailed evaluation of the sign tagger and its influence on the sentence simplification

task is presented in Section 6.1.

5 Sentence Transformation

Our new method for sentence simplification combines data-driven and rule-based

approaches. In the first stage, input sentences are tokenised and part-of-speech

tagged using the TTT2 language processing package (Grover, Matheson, Mikheev,

and Moens, 2000).19 After this, signs of syntactic complexity are identified and

classified using the machine learning approach described in Section 4. One of the

strengths of our method is that it only requires these two shallow and reliable

pre-processing steps.

Our system is an improved version of Evans’s (2011) method, exploiting a better

method for sentence analysis (Section 4) and a larger set of sentence transformation

rules (Section 5.2). In response to our specific user requirements (Martos et al.,

2013), the new method is designed only to simplify sentences containing compound

clauses (Type 1) and nominally bound relative clauses (Type 2). This is in contrast

to Evans’s (2011) approach which simplified sentences containing clausal, phrasal,

and lexical compounds for the purpose of information extraction.

5.1 The Algorithm

We observed in our corpus that there is no upper limit on the number of signs of

syntactic complexity that a sentence may contain. For this reason, we applied an

iterative approach to sentence rewriting. A single rewriting operation is applied in

each iteration according to the class labels of the signs occurring in the sentence.

Each application of a rewriting operation converts an input sentence containing

signs of syntactic complexity into two sentences, each containing fewer signs. These

rewriting operations apply exhaustively until the system is unable to detect any

bound relative clauses or compound clauses in the derived sentences.

Our sentence simplification method exploits Algorithm 1. Two iterative processes

are used to rewrite the original sentence and each of the sentences generated in the

working set. The first process applies rules to rewrite Type 1 sentences (containing

compound clauses). It ends when no compound clauses can be detected in any of

the sentences in the working set. The second process applies rules to rewrite Type

19 The experiments described in this paper relied on TTT2 but the current version is the
implementation of the Brill tagger (Brill, 1994) distributed with GATE and used in the
ANNIE application (Hepple, 2000). In our estimation, PoS tagging errors do no have a
great influence on the accuracy of our sentence simplification method.
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Input: Sentence s0, containing at least one sign of syntactic complexity of

class c, where c ∈ {CEV, SSEV}.
Output: The set of sentences A derived from s0, that have reduced

propositional density.

1 The empty stack W ;

2 O ← ∅;
3 push(s0,W );

4 while isEmpty(W ) is false do

5 pop(si,W );

6 if si contains a sign of syntactic complexity of class c (specified in Input)

then

7 si1 , si2 ← rewritec(si);

8 push(si1 ,W );

9 push(si2 ,W );

10 else

11 O ← O ∪ {si}
12 end

13 end
Algorithm 1: Sentence rewriting algorithm

2 sentences (containing bound relative clauses). In a similar fashion, this process

ends when no bound relative clauses can be detected in any of the sentences in the

working set.20

Application of the rules used in these processes (line 7 of Algorithm 1) is triggered

by detection of tagged words and signs in the input sentence. Signs of class CEV

indicate the occurrence of at least one compound clause in the input sentence.

Signs of class SSEV following nouns in the sentence indicate the occurrence of at

least one nominally bound relative clause. Clause coordinators in input sentences

are detected from right to left in this algorithm, so that the rightmost conjoins

of compound clauses are split first. By contrast, the left boundaries of subordinate

clauses are detected from left to right, so that least deeply embedded relative clauses

are split first. We have not evaluated the impact of the direction of matching on the

quality of output produced by our method but the transformation rules discussed

in the next section were manually developed with these facts in mind. Detection of

other types of signs has a role to play in the automatic rewriting process as it can

be used by our rules to identify clause boundaries.

5.2 Transformation Rules

Rules applied in the first process convert Type 1 sentences into two new sentences,

each of which contains one fewer sign of class CEV than its antecedent. In total, 28

20 The sentences of input documents are processed one at a time, rather than all being
enqueued in a single batch. The stack only holds the sentence being processed and its
intermediate derivations.
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rules of this type were developed. Rules applied in the second process convert Type

2 sentences into two new sentences, each containing fewer signs of class SSEV than

its antecedent. 125 rules of this type were developed.

The rule sets associated with each sign tag (SSEV and CEV) were developed

incrementally by using the sentence simplification method to process the annotated

corpus described in Section 3.1. The texts described earlier, annotated with

information about signs of syntactic complexity, were used for this purpose. Each

rule set was initialised as an empty set. When processing a sentence which both

contains at least one sign of the relevant class and does not match any existing

sentence rewriting pattern, the sentence was printed and the program stopped. We

then manually formulated a new pattern to match the compound clause (CEV) or

complex phrase (SSEV) in the sentence together with an associated transformation

operation and added the resulting rule to the relevant rule set. This process

continued until we perceived that the addition of new rules to process previously

unseen sentences was introducing errors in the processing of sentences that had

previously been processed successfully. In this approach to development of the rule

sets, the focus was on the capacity of the rules to correctly match the different

elements of sentences containing compound clauses and complex constituents.

After inclusion in the rule set, transformation operations were edited manually on

inspection of the resulting output sentences generated. During development, formal

evaluation of the sentence rewriting rules and the combined operation of the rule

sets was not performed due to the absence at that time of gold standard evaluation

data. The texts used for development of the rules were not included in the gold

standard used to evaluate our system.

Table 4 and Table 5 each display the three most frequently triggered rules used to

rewrite Type 1 and Type 2 sentences, respectively. In these examples, the triggering

patterns are expressed in terms of elements defined in Table 6. The * operator

is used to indicate non-greedy matching. Sentence rewriting was facilitated by

accurate identification of signs linking clauses (CEV), noun phrases (CMN1), and

adjective phrases (CMA) in coordination and signs serving as the left or right

boundaries of bound clauses, including relative (SSEV/ESEV), nominal/appositive

(SSMN/ESMN), and adjective (SSMA/ESMA) clauses.

The transformation operations applied to Type 1 sentences generate pairs of

sentences in which the sentence containing the first conjoin precedes the sentence

containing the second. In the case of Type 2 sentences, the reduced sentence

containing the matrix NP21 precedes the sentence linking the matrix NP to the

predication of the relative clause. The use of stack operations means that the

simplification occurs in a depth-first manner. In a sentence containing two clause

conjoins, each of which contains one complex NP, the output is ordered so that the

sentence containing the reduced first conjoin is followed first by the sentence linking

the matrix NP of that conjoin to the predication of its bound relative clause, then

by the sentence containing the reduced second conjoin, and finally by the sentence

21 This sentence is reduced because the transformation operations delete the nominally
bound relative clause.
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linking the matrix NP in the second conjoin to the predication of its bound relative

clause. In this way, sentences containing formerly complex NPs are immediately

followed by the sentences that provide more information about those NPs.

Table 4: Example rules used to rewrite Type 1 sentences (rewriteCEV (si))

Rule Pattern Original sentence Rewritten form

CEV-24 [A B] Kattab of Eccles, Kattab, of Eccles,
↓ Greater Manchester, Greater Manchester,

[A.] was required to use was required to use
[B.] diluted chloroform diluted chloroform

water in the remedy[, water in the remedy.
but ] the pharmacy The pharmacy only
only kept concen- kept concentrated
trated chloroform, chloroform, which is
which is twenty twenty times stronger.
times stronger.

CEV-12 [A that B C] “He was trying to “He was trying to
↓ intimate that mum intimate that mum

[A that B.] was poorly [and ] we was poorly.” “He was
[A that C.] should have expected trying to intimate that

that she might die we should have expected
at any time.” that she might die at

any time.”

CEV-27 [A vEV B “C D] He said to me, He said to me, ‘You’re
↓ ‘You’re dodgy[,] dodgy.’ He said to me,

[A vEV B “C.] you’re bad news[,] ‘you’re bad news.’ He
[A vEV B “D.] you know you’re said to me, ‘you know

bad news.’ you’re bad news.’

Although the patterns used in the rule sets only explicitly refer to a small number

of class labels, it is necessary to discriminate between them accurately. For example,

when simplifying a sentence such as (21),

(21) Helen[SSCCV , who] has attended the Carol Godby Theatre Workshop in

Bury[SSMN ,] Greater Manchester[ESMN ,] since she was five[ESCCV ,] has

also appeared in several television commercials.

it is necessary to discriminate between the two final commas to accurately identify

the span of the nominally bound relative clause.

6 Evaluation

In this section, we present our evaluation of the sentence analysis and sentence

transformation methods that we developed. This includes an assessment of the

suitability of the sign tagger for the sentence transformation task (Section 6.1.1)

and evaluation of the sentence transformation method by comparison of its output
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Table 5: Example rules used to rewrite Type 2 sentences (rewriteSSEV (si))

Rule Pattern Original sentence Rewritten form

SSEV-1 [A wn* B sESEV C] Drummond[, who] Drummond was jail-
↓ had pleaded not ed for three months

[A wn C.] guilty, was jailed for concurrently on each
[wn B.] three months concurr- of six charges of wil-

ently on each of six fully killing, taking
charges of wilfully and mistreating bad-
killing, taking and gers. Drummond had
mistreating badgers. pleaded not guilty.

SSEV-43 [A a/an wn* wn In February last year In February last year
wNNP wV BD C] police raided a council police raided a coun-

↓ house [which] Francis cil house. It was the
[A a/an wn* wn.] rented in St Ann’s. council house Fran-

[It was the wn* wn cis rented in St
wNNP wV BD C] Ann’s.

SSEV-61 [A wIN wDT wn* One’s heart goes out One’s heart goes out
wV B] to the parents of the to the parents of the

↓ boy [who] died so boy. That boy died
[A wIN wDT wn*.] tragically and so so tragically and so
[That wn* wV B] young. young.

Table 6: Elements used in sentence rewriting patterns

Element Denotation

The detected sign of class c
Upper case letters (A-D) Sequences of zero or more characters matched in a

non-greedy fashion
wPOST Word of PoS post, from the Penn Treebank tagset

(Marcus et al., 1993)
wn Nominal word
wv Verbal word, including –ed verbs tagged as adjectives
sTAG Sign of syntactic complexity with tag tag
vEV Clause complement verb (e.g. accept, deny, mean,

retort, said, etc.)
word Word word

with human simplified text (Section 6.2.1), by reference to automatic estimations

of the readability of its output (Section 6.2.2), and by reference to readers’ opinions

on the grammaticality, accessibility, and meaning of its output (Section 6.2.3).

6.1 Evaluation of the Sign Tagger

Table 7 shows the results of testing the performance of our sign tagger in texts

of all three registers, using ten-fold cross-validation. Register is the register of the
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text data being tagged. Columns P , R, and F1 display the precision, recall, and

F1-score statistics obtained by the tagger. Signs is the total number of signs of

syntactic complexity in the test data, Corr is the number of signs tagged correctly

while Incorr is the number tagged incorrectly. Accuracy (Acc) is the ratio of Corr

to the sum of Corr and Incorr. Column Bsln displays the accuracy of a baseline

classifier which tags signs with the class labels most frequently observed for signs

of each type in the annotated corpus presented in Section 3.

Table 7: Evaluation results of the sign tagger for text of three registers

Register P R F1 Signs Corr Incorr Acc Bsln

Health 0.841 0.824 0.830 10 796 8900 1896 0.824 0.422

Literature 0.860 0.838 0.847 11 204 9392 1812 0.838 0.387

News 0.816 0.799 0.805 12 718 10 163 2555 0.799 0.393

Our analysis focuses on performance statistics obtained when tagging signs in

texts of the news register but our findings also apply to the sign tagging of texts

of other registers (health and literature). Table 8 shows the per tag performance

of the sign tagger. The column Support displays the number of signs assigned each

tag by human annotators in the training data. The column Cumulative Frequency

displays the percentage of training instances assigned the current tag and the tags

preceding it in the table. To illustrate, 42.81% of the training data consists of

signs tagged SSEV, CMV1, and CMN1. Statistics are displayed for the 14 most

frequently occurring tags in the test data. The lower part of the table displays

statistics micro-averaged over the fourteen most frequently occurring tags (Top 14 ),

the 26 tags occurring least frequently (Bottom 26 ), and all the tags (All) in the test

data. Inspection of the micro-averaged statistics reveals that the predictions have

a good balance between precision and recall. There is more variance when looking

at performance over specific tags or signs. For example, sign tagging is accurate

for some tags (e.g. SSEV, SSCM, SSMA and ESCM), with F1 > 0.9. Most of

these tags mark the left boundaries of subordinate clauses. Other tags, despite

occurring with comparable frequency, are more difficult to assign (e.g. CMN1,

ESEV, ESMP, ESMN, and ESMA) and the tagger is substantially less accurate in

tagging them (F1 < 0.7). Signs tagged by this latter set serve as the right boundaries

of subordinate clauses, suggesting that identification of the ends of constituents

is more difficult than identification of their beginnings. This is especially true of

the right boundaries of multiply-embedded clauses, where one sign serves as the

right boundary of several constituents. As we note in Section 6.1.1, this influences

the accuracy of the sentence transformation process. The human annotators were

required to tag these signs as the right boundaries or coordinators of the most

superordinate left-bounded constituent. Signs are labelled with only one tag.

Table 9 is a confusion matrix that includes statistics on the eight most frequent
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Table 8: Evaluation of the sign tagger over individual tags in the register of news

Cumulative

Tag P R F1 Support Frequency (%)

SSEV 0.96422 0.92977 0.94668 3275 25.75

CMV1 0.86180 0.80828 0.83418 1111 34.48

CMN1 0.73812 0.66006 0.69691 1059 42.81

SSMN 0.88650 0.83842 0.86179 885 49.94

CEV 0.80708 0.77949 0.79305 907 56.90

SSCM 0.96587 0.97586 0.97084 580 61.51

ESEV 0.63830 0.56314 0.59837 586 66.07

SSMA 0.93032 0.95736 0.94365 516 70.12

ESMP 0.58577 0.56112 0.57318 499 74.05

SSMP 0.84691 0.81667 0.83152 420 77.70

CLN 0.75352 0.69181 0.72135 464 81.00

ESMN 0.59719 0.61005 0.60355 418 84.29

SSMV 0.84179 0.81034 0.82577 348 87.03

ESCM 0.92073 0.93789 0.92923 322 89.56

Micro-average:

Top 14 0.8504 0.8133 0.8315 11390 89.56

Bottom 26 0.4926 0.6769 0.5702 1328 10.44

All 0.7991 0.7991 0.7991 12718 100.0

types of confusion made by our tagger in news texts. The tags listed in column 1

are those assigned by human annotators, ranked by frequency of confusion, while

tags listed in the column headers are those assigned by our tagger.22 The Errors

column displays the total number of errors of each type made by the sign tagger

when processing the test data.

Two types of confusion are of direct relevance to the sentence simplification

process. First, the sign tagger confuses signs coordinating noun phrases (CMN1)

with signs coordinating clauses (CEV). This results in the system applying

transformation rules in sentences to which they should not apply. These errors

may occur because the constituents adjacent to clause coordinators are often noun

phrases in the object position of the first clause and the subject position of the

second. Second, the sign tagger frequently confuses the relative pronoun that as a

determiner or anaphor (SPEC) rather than as the left boundary of a subordinate

clause (SSEV). As a result, some sentences containing complex noun phrases will

22 In Table 9, K/R abbreviates key (gold standard) and response (sign tagger),
respectively.
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not be transformed by the system. The sign tagger also frequently mistakes the

right boundaries of subordinate clauses for the right boundaries of other phrases,

most notably prepositional phrases and noun phrases. As a result, the sentence

simplification method is likely to make errors when identifying the right boundaries

of relative clauses, and simplifying sentences that contain complex noun phrases.

As with the confusions when tagging NP coordinators as clause coordinators, there

are surface similarities in the contexts of use of the signs involved in these latter

types of confusion.

Table 9: Confusion matrix of the sign tagger for texts of the news register

K/R CEV CMN1 CMV1 ESEV ESMN ESMP SPEC SSEV Errors

CMN1 0.352 - 0.179 0.029 0.045 0.029 0.047 0.012 351
ESEV 0.193 0.008 0.074 - 0.232 0.243 0.047 0.193 296
ESMP 0.023 0.027 0.018 0.265 0.173 - 0.031 0.134 221
ESMN 0.017 0.008 0.037 0.167 - 0.234 0.071 0.023 208
SSEV 0.057 0.016 0.006 0.110 0.064 0.084 0.323 - 202
SSMN 0.028 0.191 0.012 0.053 0.050 0.184 0.055 0.094 199
CMV1 0.102 0.113 - 0.053 0.023 0.004 0.126 0.000 192
CEV - 0.152 0.167 0.090 0.014 0.021 0.118 0.064 176
CLN 0.028 0.245 0.025 0.004 0.000 0.004 0.008 0.000 131

We presented per sign evaluation of the tagger in Dornescu et al. (2013), though

the results are omitted here for brevity. When testing the system on texts of the

news register, excellent performance was achieved when tagging the complementiser

[that ] and wh-words such as [who], [when] or [which] (F1 > 0.95). Due to the skewed

distribution of signs, more than 83% of tagging errors were linked to the two most

frequent signs [,] and [and ] (F1 = 0.75).

For manual annotation of the signs of syntactic complexity, Evans and Orasan

(2013) report agreement between human annotators of κ = 0.7667. When evaluating

our sign tagger in each of the ten folds, mean κ = 0.7533. In both cases, the

confidence interval (α = 0.05) was narrow (0.0011 and 0.0014, respectively). In light

of this, and given the similarity of the sign tagger to human annotators in terms

of classification accuracy, we would not expect that the availability of additional

training data would evoke significantly better performance from the sign tagger.

We also doubt the proposition that performance would be dramatically improved

through the use of more recent ML approaches such as deep learning or the use of

more recent pre-processing tools.

With a level of accuracy similar to that of human annotators, we believe that

the output of the sign tagger will be useful in the analysis step of our method for

sentence simplification. In Section 6.1.1, we consider performance of the tagger in

assigning the correct class labels to signs that are explicit elements in our sentence

transformation rules.
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6.1.1 Suitability for Use in Sentence Simplification

The rules comprising function rewriteCEV (Section 5.2) depend on accurate

detection of two classes of signs:

1. clause coordinators (CEV) and

2. left boundaries of subordinate constituents ({SSEV, SSCM, SSMA, SSMAdv,

SSMI, SSMN, SSMP, or SSMV})

Thus, for sentence rewriting, confusions between tags of the set specified in 2

are irrelevant (e.g. confusion between SSEV and SSCM). By contrast, confusion

between tags of different sets specified in 1-2 is relevant (e.g. confusion between CEV

and SSMA). Table 10 displays the accuracy with which the sign tagger assigns the

two sets of class labels relevant to rewriting Type 1 sentences (containing compound

clauses). There, row SSX pertains to signs tagged with any of the class labels in

the set listed in 2. Considered over the full set of signs, the tagger assigns these

class labels with a micro-averaged F1-score of 0.9318.

Table 10: Evaluation of the sign tagger over tags exploited in the rewriting of Type

1 sentences

True- False- False-

Tag P R F1 Support Pos Pos Neg

CEV 0.7991 0.7991 0.7991 876 700 176 176

SSX 0.9794 0.9251 0.9515 6076 5621 118 455

Micro-average:

All 0.9556 0.9092 0.9318 6952 6321 294 631

The rules comprising the function rewriteSSEV (Section 5.2) depend on accurate

detection of four classes of signs:

1. noun phrase coordinators (CMN1),

2. right boundaries of bound relative clauses (ESEV),

3. right boundaries of direct quotes (ESCM), and

4. left boundaries of subordinate constituents ({SSEV, SSCM, SSMA, SSMAdv,

SSMI, SSMN, SSMP, or SSMV}).

Thus, for sentence rewriting, confusions between tags in the set specified in 4

are irrelevant (e.g. confusion between SSEV and SSCM). By contrast, confusion

between tags in the sets specified in 1-4 are relevant (e.g. confusion between SSMA

and ESEV or between CMN1 and SSMP). Table 11 displays the accuracy with

which the sign tagger assigns these four sets of class labels. There, row SSX pertains

to signs tagged with any of the class labels in the set specified in 4. The sign tagger
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Table 11: Evaluation of the sign tagger over tags exploited in the rewriting of Type

2 sentences

True- False- False-

Tag P R F1 Support Pos Pos Neg

CMN1 0.7286 0.6628 0.6942 1041 690 257 351

ESEV 0.5261 0.4789 0.5014 1041 272 245 296

ESCM 0.9207 0.9379 0.9292 322 302 26 20

SSX 0.9794 0.9251 0.9515 6076 5621 118 455

Micro-average:

All 0.9142 0.8598 0.8862 8480 6885 646 1122

assigns class labels belonging to these four sets to signs with a micro-averaged

F1-score of 0.8862.

Over all the tags exploited in the two types of sentence rewriting, the tagger

assigns class labels with a micro-averaged F1-score of 0.9075.

6.2 Evaluation of Sentence Transformation

In this section, we present our evaluation of the sentence transformation process.

This includes the results of experiments in which system output is compared with

simplifications made by human experts (Section 6.2.1), the readability of system

output is estimated using selected readability indices (Section 6.2.2), and humans

rate the grammaticality and accessibility of system output and the extent to which

this output conveys the same meaning as the original sentences in the texts (Section

6.2.3).

6.2.1 Comparison with Human-Produced Transformations

We evaluated automatically rewritten sentences generated by our system in terms

of accuracy, assessed by reference to gold standards produced by linguists. We

developed resources to support automatic evaluation of our system. This type

of evaluation can be replicated easily to facilitate development of the system. In

our experiments, we also compared system performance with that of two baseline

methods.

Gold Standards

We developed two datasets constituting gold standards for these tasks against which

system output could be compared. They were developed by a linguist who was

a native speaker of English and was well-versed in English grammar. She was

presented with output generated by the sentence simplification system when it
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was used to automatically simplify Type 1 sentences (1009 sentences of the three

registers – 325 Health, 419 Literature, and 265 News) and when used to simplify

Type 2 sentences (885 sentences of the three registers – 137 Health, 379 literature,

and 369 news). The linguist produced the gold standard by manually correcting

automatically transformed sentences generated by the system. She was asked to

undo transformations involving the arguments of clause complement verbs and

transformations triggered by the mis-classification of signs without coordinating

or bounding functions. She was also asked to correct grammatical errors in the

output sentences. The goal of the task she was undertaking and the way in which

the algorithm worked were verbally explained to the linguist and the sentence

simplification tool was demonstrated before the post-editing task began.

The sentence simplification method was applied to texts of all three registers.

Table 12 contains information about the subset of data used to test the method

when reducing the number of compound clauses in sentences. The column Signs

contains two sub-columns: All, which displays the number of signs of syntactic

complexity in the data, and CEV, which displays the number of signs tagged CEV

by human annotators (Oracle) and by the automatic tagger described in Section

4 (OB1 ). Compound Clauses displays the number of clauses in the data set that

contain one or more coordinated clause conjoins. It comprises one column (Gold)

which displays the number of compound clauses identified by linguists in the data

set (the gold standard) and another (OB1 ) which displays the number identified

by the sentence transformation method described in Section 5. Derived Sentences

is the number of sentences generated as a result of simplifying Type 1 sentences.

Sub-column Gold displays the number of sentences generated by the linguists in

the gold standard while sub-column OB1 displays the number generated by the

automatic sentence simplification tool. In our evaluation, we filtered sentences that

did not contain signs manually tagged as being of class CEV.

Table 12: Characteristics of the test data used to evaluate the method to simplify

Type 1 sentences

Signs Compound Derived

CEV Clauses Sentences

Register Tokens All Oracle OB1 Gold OB1 Gold OB1

Health 7 198 885 375 265 364 229 698 470

Literature 15 067 2 181 442 511 425 291 1 154 686

News 7 270 898 311 294 293 276 607 564

Table 13 contains information about the subset of data used to test the sentence

simplification method when reducing the number of bound relative clauses in

sentences. In many cases, the meanings of the column headings are the same as

those provided about Table 12. In Table 13, sub-column SSEV of Signs displays



Identifying Signs of Syntactic Complexity for Sentence Simplification 35

the number of left boundaries of bound relative clauses in the data set. Bound

Relatives displays the number of sentences in the data set that contain one or more

bound relative clauses. Derived Sentences is the number of sentences generated as

a result of simplifying Type 2 sentences. We filtered sentences that did not contain

signs manually tagged as being of class SSEV.

Table 13: Characteristics of the test data used to evaluate the method to simplify

Type 2 sentences

Signs Bound Derived

SSEV Relatives Sentences

Register Tokens All Oracle OB1 Gold OB1 Gold OB1

Health 3 481 501 214 229 176 125 260 129

Literature 13 280 1 967 430 525 404 206 482 260

News 25 850 2 534 531 619 401 372 598 501

Evaluation Using Overlap Metrics

We used an existing implementation of the SARI metric (Xu, Napoles, Pavlick,

Chen, and Callison-Burch, 2016)23 to evaluate the sentence simplification systems

described in this article. Xu et al. (2016) note that SARI “principally compares

[s]ystem output [a]gainst [r]eferences and against the [i]nput sentence.” It is based

on a comparison of each simplified sentence generated by a system in response to an

input sentence with both the original form of the input sentence and with the set of

simplified sentences generated by human simplification of the input sentence. This

metric is preferred to BLEU for the evaluation of sentence simplification systems

because it is noted to correspond better with human judgements of simplification

quality (Xu et al., 2016). We adapted the implementation of SARI, which evaluates

sentences in isolation, to compute an average score over all simplified sentences

output by the systems.

In addition to the SARI evaluation metric, we calculated the F1-score of our

method as the harmonic mean of precision and recall, given by Algorithm 2. In this

algorithm,

sim = 1− (
ld(h, r)

max(length(h), length(r))
)

where h and r are sentences occurring in the gold standard and in the system

response, respectively; ld is the Levenshtein distance between h and r (Levenshtein,

1966); and length(x) is the length of x in characters. The intuition for use of

23 Available at https://github.com/cocoxu/simplification/blob/master/SARI.py
(last accessed on 14th September 2018).

https://github.com/cocoxu/simplification/blob/master/SARI.py
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Algorithm 2 is to find the best matches between sentences produced by the system

and sentences in the gold standard while still allowing some small differences

between them.

Input: H – set of simplified sentences in the gold standard for a given input

sentence S

R – set of simplified sentences produced by the system for input

sentence S.

H0 ← H.

R0 ← R.

Output: Precision, Recall

1 matched pairs = 0

2 while |H| 6= 0 and |R| 6= 0 do

3 h, r ← arg max
h∈H,r∈R

(sim(h, r))

4 if sim(h, r) > 0.95 then

5 H = H\{h}
6 R = R\{r}
7 matched pairs += 1

8 else

9 break

10 end

11 end

12 Precision = matched pairs
|H0|

13 Recall = matched pairs
|R0|

Algorithm 2: Evaluation algorithm for sentence simplification

Table 15 displays evaluation statistics for methods to simplify Type 1 sentences.

The Bsln sub-columns display the performance results of a baseline system

exploiting the same rules as OB1 but with each sign tagged using the majority class

label observed for that sign in our annotated data. With the exceptions of those

listed in Table 14, all signs were tagged with class label SSEV (left boundaries of

subordinate clauses). Comparison of these results with those in the OB1 columns

indicates the contribution made by the automatic sign tagger to the simplification

task. The MUSST column presents evaluation results for a reduced version of

the MUSST sentence simplification system (described in Section 2.1.1).24 MUSST

implements several types of syntactic simplification rule. In this table, we focused

on performance of the one which splits sentences containing conjoint (compound)

clauses, which, like the rules used by OB1, are used to simplify sentences of

Type 1. We deactivated the other transformation functions (simplifying relative

clauses, appositive phrases and passive sentences). The Orcl sub-columns display

24 Available at https://github.com/carolscarton/simpatico_ss (last accessed on 11th
September 2018).

https://github.com/carolscarton/simpatico_ss
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the performance of the sentence rewriting method when it exploits error-free sign

tagging. The column OB1 displays the performance of our system when operating

in fully-automatic mode, exploiting the sign tagger described in Section 4.

Table 14: Tags most frequently assigned to the signs in our annotated corpus

Majority

Tag Signs

CEV [; or], [: but], [: and], [; but], [; and], [, but], [, and]

CLN [or]

CMN1 [, or]

CMV1 [and]

ESEV [,]

SPECIAL [: that]

SSCM [:]

Table 15: System performance when simplifying Type 1 sentences

F1-score SARI

Register Bsln MUSST OB1 Orcl Bsln MUSST OB1 Orcl

Health 0.362 0.281 0.495 0.613 0.201 0.124 0.362 0.514

Literature 0.150 0.101 0.208 0.262 0.203 0.087 0.202 0.229

News 0.233 0.237 0.690 0.706 0.119 0.171 0.596 0.623

When transforming Type 1 sentences in the registers of health and literature,

the output of our automatic method is more similar to the gold standard than the

output of the baseline system is. In this task, we see that the performance of OB1

also compares favourably with that of the reduced version of MUSST, which exploits

a syntactic dependency parser. Calculated by comparing per-sentence Levenshtein

similarity between sets of rewritten sentences, two-tailed paired samples t-tests

revealed the results of both comparisons to be statistically significant for both F1

and SARI metrics for texts of all registers (p� 0.01). The only exception was when

comparing the SARI scores obtained by the bsln and OB1 systems (p = 0.0604).

By contrast, when simplifying Type 2 sentences in texts of the registers of

literature and news (Table 16), the baseline is more accurate than our automatic

method. This result was statistically significant for literary texts (p < 0.0005). The

performance of OB1 was superior to that of the baseline system when processing

texts of the health register. This difference in performance was also statistically
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Table 16: System performance when simplifying Type 2 sentences

F1-score SARI

Register Bsln MUSST OB1 Orcl Bsln MUSST Orcl OB1

Health 0.231 0.063 0.306 0.315 0.207 0.020 0.285 0.296

Literature 0.572 0.000 0.516 0.791 0.168 0.008 0.204 0.289

News 0.583 0.141 0.577 0.629 0.434 0.056 0.451 0.467

significant (p < 0.0005). We observe that for the task of simplifying Type 2

sentences, performance of the OB1 system is far superior to that of the reduced

version of MUSST.

The SARI evaluation metric indicates few statistically significant differences in

the accuracy of the OB1 and bsln systems when simplifying Type 2 sentences. A

statistically significant difference in performance was only evident for sentences of

the health register, where p = 0.036. By contrast, differences between the accuracy

scores obtained by OB1 and MUSST are statistically significant, in favour of OB1,

when simplifying Type 2 sentences in texts of all registers (p� 0.01).

Evaluation of Individual Rules and Error Analysis

We investigated the accuracy of the individual rules exploited by OB1. In this

context, accuracy is the ratio of the number of applications of each rule that led

to the derivation of correct output sentences to the total number of applications of

the rules. Overall, the rules used to transform Type 1 sentences have an accuracy of

0.6990. The rules used to transform Type 2 sentences have an accuracy of 0.5829.

Two primary sources of error were found: the specificity of the rules, which limits

their coverage; and the inability of the method to discriminate between signs of

class CEV linking bound relative clauses and those linking independent clauses.

We categorised and quantified errors made by the OB1 and MUSST systems.

For us, each error is a sequence of sentences output by the system in response to

a given input sentence that is less than 95% similar to the sequence of sentences

produced by linguists when simplifying the same sentence. Across all registers, when

transforming Type 1 sentences, information about the five most frequent categories

of error made by OB1 is presented in Table 17.

In Table 17, the columns provide error category labels (error category), examples

of the simplification of a given input sentence by linguists (human simplified),

examples of the simplification of that sentence by our system (OB1 simplified),

the similarity of the two simplifications (Similarity), and the frequency of errors

of this type in our test data (Freq). This information is provided for the five most

frequent categories of error.

Sign tagging errors are those caused when OB1 fails to simplify a sentence
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correctly due to a failure to correctly tag the clause coordinator.25 Incorrect

transformation errors are those caused when the activated transformation rule fails

to generate correct output for some other reason. Missing pattern errors are those

caused when OB1 makes no transformation of the input sentence despite the fact

that the relevant sign of syntactic complexity has been correctly tagged. Overcoming

such errors requires the addition of new transformation rules into the set used by

OB1. The left conjoin too wide and left conjoin too narrow errors are those made

when the patterns used by the transformation rules incorrectly identify the left

boundaries of compound clauses.

In our error analysis, we were able to distinguish sign tagging from missing

pattern errors by examining the tagged versions of input sentences. When the

clause coordinator is tagged as being of a different class, the simplification is a sign

tagging error. When the clause coordinator is correctly tagged, the simplification

is a missing pattern error.

Across all registers, when transforming Type 2 sentences, information about the

five most frequent categories of error made by OB1 is presented in Table 18.

In Table 18, sign tagging errors are those caused when OB1 fails to simplify a

sentence correctly due to a failure to correctly classify the left boundary of the

relative clause. Matrix NP too narrow errors are a subset of those made when

the applied transformation rule fails to correctly identify the left boundary of the

complex NP that the relative clause modifies. Relative clause too narrow errors

are a subset of those made when the applied transformation rule fails to correctly

identify the right boundary of the complex NP that the relative clause modifies.

Incorrect transformation errors are those caused when the activated transformation

rule fails to generate correct output for some other reason.

We also categorised the errors occurring in 100 sentences of each type processed

using MUSST. The two main categories of error were caused by inaccurate syntactic

parsing. This led to failures in detecting compound clauses and complex NPs in

input sentences (91.67% and 97.14% of errors, respectively) and inaccuracies when

transformation rules are applied to incorrectly identified syntactic constituents

(8.33% and 2.86% of errors, respectively). The first of these categories causes a

failure in the system to perform any transformation of a complex input sentence.

Examples of erroneous output generated by MUSST when transformations are

applied to incorrectly parsed sentences (the second category of error) are provided

in Table 19. For comparison, human simplifications of these sentences are provided

in the human simplified column. In this table, column sim. displays the similarity

of the automatically simplified sentence to the human simplified one, as computed

using the sim function described in Section 6.2.1.

25 In this row of Table 17, manual inspection of the automatically tagged sentence revealed
that the clause coordinator and was misclassified as a coordinator of NPs and as a result,
no simplification operation was performed.
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Table 19: Transformations applied to incorrectly parsed sentences ( MUSST)

Trans-
formation
type

Human simplified MUSST simplified Sim.
Freq.

(%)

Compound

clauses

Elaine Trego never

bonded with 16-month-

old Jacob, a murder

trial was told. He was

often seen with bruises,

a murder trial was told.

Elaine Trego never

bonded with Jacob.

And Elaine Trego he

was often seen with

bruises, a murder trial

was told.

0.38 (8.33)

Nominally

bound

relative

clauses

And last night police

said fellow officers had

reopened their files on

three unsolved murders.

These police saw Kevin

Cotterell caged.

And last night police

caged said fellow officers

had reopened their files

on three unsolved mur-

ders. Police saw Kevin

Cotterell.

0.73 (2.86)

6.2.2 Automatic Estimation of Readability

We used six readability metrics to estimate the impact of three sentence

simplification methods (MUSST, OB1, and Orcl) on propositional density, reading

grade level, syntactic complexity, and various aspects of coherence. The selected

metrics were propositional idea density (Brown, Snodgrass, Kemper, Herman,

and Covington, 2008);26; Flesch-Kincaid Grade Level (Kincaid, Fishburne, Rogers,

and Chissom, 1975), obtained via the style package;27 and four metrics from

the Coh-Metrix package (McNamara, Graesser, McCarthy, and Cai, 2014).28

These were syntactic simplicity and three others providing information about text

cohesion:

• referential cohesion, which measures the extent to which words and ideas

overlap across sentences and across the entire text, forming explicit threads

that connect the text for the reader (Lei, 2014),

• deep cohesion, which uses frequency counts of causal and intentional

connectives and the causal and logical relationships expressed within the text.

When the text contains many relationships but few connectives, it is more

difficult to process as readers must infer the relationships between ideas in

the text, and

26 Calculated using CPIDR, available for download via a link at http://ai1.ai.uga.edu/
caspr/ (last accessed on 11th September 2018).

27 Style is a Linux command-line utility, part of the GNU software suite.
28 Calculated using the online demo at http://tool.cohmetrix.com/ (last accessed on

11th September 2018).

http://ai1.ai.uga.edu/caspr/
http://ai1.ai.uga.edu/caspr/
http://tool.cohmetrix.com/
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• temporality, which uses information on the number of inflected tense

morphemes, temporal adverbs, and other explicit cues to estimate the

consistency of tense and aspect in the text to estimate the ease with which it

can be processed and understood.

Flesch-Kincaid Grade Level was selected because it has been widely used in

previous evaluations of syntactic simplification systems (e.g. Woodsend and Lapata

(2011); Wubben et al. (2012); Glavas and Stajner (2013); Vu, Tran, and Pham

(2014)).

Accessible texts are expected to have small values for propositional density and

Flesch-Kincaid Grade Level and large values for the other four metrics. Readability

scores were obtained for texts in their original form and the form output by the

simplification methods when processing Type 1 sentences (Table 20) and Type 2

sentences (Table 21). In the tables, the orig columns present values of each metric

obtained for the original versions of the texts.

Table 20: Estimated readability of text output when transforming Type 1 sentences

Register Orig MUSST OB1 Orcl Orig MUSST OB1 Orcl

Propositional Idea Density Flesch-Kincaid Grade Level

Health 0.523 0.521 0.510 0.503 8.9 7.4 6.0 5.4

Literature 0.593 0.588 0.588 0.592 10.3 7.1 5.4 6.0

News 0.505 0.502 0.483 0.482 9.6 7.9 5.4 5.3

Referential Cohesion Deep Cohesion

Health 41.68 37.45 26.43 23.89 96.16 94.41 92.07 90.66

Literature 90.49 50.00 65.17 72.24 72.91 68.79 64.63 63.68

News 40.90 34.83 35.20 51.99 56.36 54.38 48.4 46.02

Syntactic Simplicity Temporality

Health 83.89 91.62 96.78 98.26 52.39 51.2 54.38 53.98

Literature 10.93 58.32 69.50 55.17 63.31 81.86 72.57 76.42

News 46.81 66.64 89.07 85.77 27.76 40.52 30.15 35.94

Inspection of Tables 20 and 21 reveals that all of the automatic systems generate

texts that are more readable, in terms of propositional density and Flesch-Kincaid

Reading Grade level, than the originals. These metrics also indicate that OB1

compares favourably with the MUSST system when simplifying sentences of Type 1

and Type 2. For all registers, the automatic transformation of input sentences led to

the generation of texts with reduced propositional idea density, making them more

readable. When transforming Type 1 sentences in texts of the registers of health

and news, of the fully automatic systems, the greatest reduction in propositional
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Table 21: Estimated readability of text output when transforming Type 2 sentences

Register Orig MUSST OB1 Orcl Orig MUSST OB1 Orcl

Propositional Idea Density Flesch-Kincaid Grade Level

Health 0.500 0.493 0.499 0.500 8.4 8.3 8.3 8.3

Literature 0.597 0.599 0.592 0.594 9.9 9.4 6.8 6.9

News 0.489 0.486 0.478 0.480 10.3 9.6 7.7 7.9

Referential Cohesion Deep Cohesion

Health 39.74 45.62 38.97 41.29 87.70 87.90 87.49 87.49

Literature 70.54 55.57 33.72 66.28 81.59 59.48 77.94 77.04

News 24.51 32.64 18.41 44.04 63.31 65.17 61.79 59.87

Syntactic Simplicity Temporality

Health 68.44 68.44 69.85 68.79 66.28 62.17 65.17 64.06

Literature 22.36 56.36 58.71 46.41 65.17 28.10 58.71 64.06

News 38.59 41.29 81.86 85.77 28.10 30.50 27.76 30.15

idea density was made by OB1. When transforming Type 2 sentences, the same

observation was made for texts of the registers of literature and news.

Inspection of Table 20 reveals that the original versions of the input texts,

estimated by the referential cohesion and deep cohesion metrics, are more readable

than those generated by the fully automatic systems that transform Type 1

sentences. The effect on referential cohesion may be explained by the fact that the

transformation operations increase the numbers of sentences in the texts, reducing

the amount of word overlap between adjacent sentences. These findings can be

taken as evidence that the transformation operations have a disruptive effect on

the coherence of a text. It was noted for texts of all registers. With respect to

referential cohesion, when transforming Type 1 sentences, only the orcl system is

able to generate news texts that are more accessible than the originals. For text of

the health register, use of MUSST harms readability considerably less than OB1,

while the reverse is true when transforming literary texts. When transforming Type

2 sentences, MUSST was the only automatic system to generate texts that were

more referentially cohesive than the originals, in the registers of health and news.

From this, we can infer that the conversion of long sentences with many concept

mentions into sequences of shorter sentences with fewer concept mentions reduces

cohesion by spacing out these mentions over multiple sentences and reducing their

repetition in adjacent ones. The data in Tables 20 and 21 shows that, with respect to

the deep cohesion metric, texts generated by OB1 are not as readable as the originals

(sentences of both types) or those generated by MUSST (Type 1 sentences). One

possible reason for this is that the transformations performed by OB1 generate
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texts containing fewer connectives while those performed by MUSST do not. When

splitting a sentence containing a compound clause into two, MUSST preserves the

conjunction as the first word of the second output sentence.

The statistics presented in Tables 20 and 21 indicate that for all registers, the

sentence simplification systems generate texts with greater syntactic simplicity than

the originals. Overall, the texts generated by OB1 are indicated to be considerably

simpler, syntactically, than those generated by MUSST.

When transforming Type 1 sentences, the temporality columns in Table 20

indicate that texts generated by the automatic systems are more consistent in terms

of tense and aspect than the originals. We observe that the MUSST system brings

greater improvements in this metric than OB1, except when processing health

texts. This implies that the transformation operations applied by OB1 (Section

5.2) introduce more inconsistencies with respect to tense and aspect than those used

by MUSST. When transforming Type 2 sentences, statistics in Table 21 indicate

that, with respect to the temporality metric, none of the automatic systems is able

to improve the readability of the input texts, save for the MUSST system when

processing texts of the news register.

6.2.3 Reader Opinions

Following human-centred evaluation methods used in previous work (e.g. Angrosh

and Siddharthan (2014); Wubben et al. (2012); Feblowitz and Kauchak (2013)),

we used the output of OB1 to create items surveying the extent to which readers

agreed with five statements about the grammaticality, readability, and meanings of

sentences in their original and simplified forms.29 Figure 1 displays one such survey

item. Each participant in this assessment task provided opinions for each of 150

sentences that had been transformed by the sentence simplification method. As a

result, this aspect of our evaluation ignores potentially complex sentences that the

system failed to transform. These failings are captured by the comparison of system

output with human simplifications described in Section 6.2.1.

In our evaluation based on reader opinions, five participants each responded to

eight items30 in nineteen surveys. Four of our participants were fluent non-native

speakers of English while one was a native speaker.31

We converted participants’ extent of agreement with the opinions as integer

values ranging from 1 for strong disagreement to 5 for strong agreement. Overall,

participants grudgingly agreed that sentences generated by OB1 are easy to

understand32 ([3.789, 4.050]) and collectively have the same meaning as the

antecedent sentences ([3.721, 4.017]). Although derived from a smaller number of

29 These criteria are analogous to fluency, simplicity, and meaning preservation,
respectively, used by Angrosh and Siddharthan (2014).

30 Survey 19 contained six items
31 The native speaker was Evans, who also performed the error analysis described in

Section 6.2.1.
32 In this section, we provide 95% confidence intervals in square brackets.
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Fig. 1: Opinion Survey Item

participants, this compares favorably with agreement scores obtained for various

text simplification systems in experiments conducted by Saggion et al. (2015).

Participants rated OB1’s output as most readable for Type 1 sentences of the

news register (µ = 4.053). They rated it as least readable for Type 2 sentences

(µ < 3.9), especially for texts of the literary register (µ = 3.683). Participants

perceived that sentence transformations made by OB1 preserved meaning better

for Type 1 sentences (µ = 3.9853) than Type 2 sentences (µ = 3.7511). Overall,

transformations were felt to best preserve meaning when applied to Type 1 sentences

of the news register (µ = 4.053). Our participants were most undecided (µ = 3.1111)

about the preservation of meaning in output derived from Type 2 sentences in the

health register.

Participants broadly agreed that sentences output by OB1 are grammatical

([4.031, 4.250]) but that the antecedent sentences were already easy to understand
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([4.318, 4.443]). They also strongly agreed that the original versions of the sentences

were grammatical ([4.686, 4.769]). Opinions expressed in the surveys indicate that

participants found the original sentences significantly more readable than those

generated using OB1 (p � 0.05). We noted many cases where participants agreed

equally strongly that sentences were easy to understand in both their original

and simplified forms, despite the fact that, objectively, the latter contained fewer

complex constituents. One possible explanation for this is that survey participants

were not first provided with example sentences demonstrating different levels

of complexity or readability. Access to such examples may have elicited better

informed judgments about the relative complexities of the presented sentences.

We examined correlations (Pearson’s correlation coefficient) between different

variables in the opinion survey. The three most closely correlated (0.6840 ≤ r ≤
0.8168) were between:

1. the perceived readability of sentences generated by OB1 and the perceived

grammatical correctness of those sentences,

2. the perceived readability of sentences generated by OB1 and the perceived

extent to which those sentences preserved the meanings of their antecedents,

and

3. the perceived extent to which automatically generated sentences were

grammatical and the perceived extent to which they preserved the meanings

of their antecedents.

We found no linear relationship between the similarities of system-generated

simplifications to gold standard simplifications and the perceived accessibility and

grammaticality of those simplifications (Pearson’s r = 0.1716 and r = 0.0625,

respectively). There is a small linear relationship between the similarities of

system-generated simplifications to gold standard simplifications and the extent

to which readers perceived that the system-generated simplifications preserve the

meanings of their antecedent sentences (r = 0.3039). This correlation was slightly

closer for simplifications of Type 2 sentences (r = 0.4705).

Our observation from the reader opinion survey is that, overall, participants found

the output of our system to be usable. It was generally agreed to be grammatical,

to be readable, and to preserve the meanings of the original sentences. The results

of the opinion surveys tend to reinforce the findings of a our comparison of system

output with human-produced text simplifications (Section 6.2.1).

7 Conclusions and Future Work

In this article, we presented a rule-based approach to automatically simplify English

sentences by reducing the numbers of compound clauses and nominally bound

relative clauses that they contain. The method exploits components for sentence

analysis and iterative sentence transformation.

Our new sentence analysis component, the tool to tag signs of syntactic

complexity in accordance with a scheme specifying their syntactic linking and

bounding functions, achieved acceptable levels of accuracy. The sign tagger made a
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useful contribution to performance of the overall system, outperforming a baseline

method in which signs are uniformly tagged with empirically observed majority class

labels. Parameters of the sign tagger were set optimally in a performance-driven

development process. The sign tagger is able to identify signs of syntactic complexity

with a wide range of coordinating and bounding functions, which may be useful for

multiple applications. We envisage that it could be used in other NLP tasks such

as syntactic parsing, automatic prosody generation, and for additional types of

sentence simplification, in a manner similar to that described by Evans (2011).

Evaluation of the iterative rule-based approach to sentence transformation

revealed that the rules used to rewrite Type 1 sentences (containing compound

clauses) are considerably more accurate than those used to rewrite Type 2 sentences

(containing nominally bound relative clauses). This may be due to the fact that

in the latter task it is necessary both to identify the spans of nominally bound

relative clauses and to discriminate between free and bound relative clauses. There

is considerable room for improvement of the sentence transformation process.

The number of rules developed and the large number of compound clauses and

bound relative clauses that they fail to process indicates to us that a machine

learning approach to rule development may have better performance. We envisage a

sequence tagging method to identify parts of sentences preceding and following each

compound clause. A similar method would be used to identify the parts of sentences

following complex noun phrases, the phrases to which relative clauses are bound,

and the parts of the sentence preceding those phrases. A substantially smaller set

of rules would then be used to combine these elements into a simplified form. These

methods would be exploited by the functions rewriteCEV and rewriteSSEV , used

in the sentence transformation algorithm (Section 5). In pursuit of this task, future

work will include developing training data to support such an approach to sentence

simplification.

Our evaluation results indicate that the current version of the method is effective

at rewriting Type 1 sentences in texts of the registers of news and health.

However, performance is relatively poor when rewriting Type 2 sentences and

when performing any kind of sentence simplification in texts of the literary register.

This finding is in accord with previous observations about the application of NLP

methods to literary texts.

In this work, we have proposed a shallow method for sentence analysis to

overcome practical difficulties in the syntactic parsing of long complex sentences.

Where feasible, we consider full parsing of input sentences to be preferable to

shallow syntactic analysis for the task of sentence simplification. As a result, we

are interested in investigating the development of a hybrid approach in which the

sign tagger is used as a last resort for the analysis of extremely long sentences and

a syntactic parser is used for the analysis of shorter sentences whose parsing is

computationally feasible.

Our use of the deep cohesion metric to assess the readability of system output

indicates that our approach to sentence simplification leads to some loss of rhetorical

relations expressed in the original texts. One possible way to address this would

be to add new transformation rules to simplify sentences containing conjunctions
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such as but, which signal contrast between the clause conjoins that they link. In

this approach, a sentence-initial “canned” adverb such as however could be inserted

into the simplified sentence containing the second conjoin, re-establishing the lost

rhetorical relation. We plan, in future work, to conduct a more detailed analysis

of the impact of sentence simplification operations on the rhetorical structure of

output texts.

The human-centred evaluation carried out in this research revealed that

participants found the output of the system to be usable. This was determined

on the basis of their responses to opinion surveys focused on the grammaticality,

accessibility, and meaning of sentences output by the method. Subsequent

human-centred evaluations would be improved through the recruitment of larger

numbers of participants in the opinion surveys and the use of more objective

psycholinguistic evaluation methods such as eye tracking, self-paced reading, rapid

serial visual presentation, or reading comprehension testing.

Acknowledgements

This work was supported by the European Commission under the Seventh

(FP7-2007-2013) Framework Programme for Research and Technological

Development [287607]. We gratefully acknowledge Emma Franklin, Zoë Harrison,
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