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Abstract

In this work, we introduce the task of Open-Type Relation Argument Extraction (ORAE):
Given a corpus, a query entity Q and a knowledge base relation (e.g., “Q authored notable
work with title X”), the model has to extract an argument of non-standard entity type
(entities that cannot be extracted by a standard named entity tagger, e.g., X: the title of
a book or a work of art) from the corpus.

We develop and compare a wide range of neural models for this task yielding large
improvements over a strong baseline obtained with a neural question answering system.
The impact of different sentence encoding architectures and answer extraction methods
is systematically compared. An encoder based on gated recurrent units combined with a
conditional random fields tagger yields the best results. We release a data set to train and
evaluate ORAE, based on WikiData and obtained by distant supervision.

1 Introduction

Systems for turning unstructured information from textual corpora (such as

Wikipedia and newspaper corpora) into structured representations are crucial tools

for harnessing the vast amounts of data available on-line. Automatic detection of

relations in text allows humans to search and find relevant facts about entities,

and it allows for further processing and aggregation of relational information. A

prototypical user for such a system would be, e.g., an analyst who is interested in

facts about a specfic organization or person, or a social scientist who is interested

in aggregating facts over time for trend detection.

Entity-driven relation extraction is the problem of identifying relevant facts for

a query entity Q (e.g., Q = “Steve Jackson”) in a large corpus according to a pre-

defined relational schema that defines relations such as “Q authored notable work

with title X”. Systems solving this task are often complex pipelines containing

modules for information retrieval, linguistic pre-processing and relation classifica-

tion (cf. Surdeanu (2013)).
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2 Open-Type Relation Argument Extraction

While the main focus in relation extraction has previously been on relation clas-

sification (i.e., predicting whether a relation holds between two given arguments),

quantitative analysis has repeatedly shown that argument identification (often per-

formed by carefully engineered submodules) has at least as big of an impact on

end-to-end results (Pink et al., 2014; Roth, 2015). Moreover, in previous bench-

marks (Surdeanu, 2013; Zhang et al., 2017), relations have been selected such that

the vast majority of arguments are of standard types (e.g., person, location, organi-

zation) and can be detected by a named entity recognizer. Even for standard named

entity types, argument identification is hard for complex cases like nested named

entities because different levels of granularity are relevant for different relations.

Consider, for example, the following two named entity tagging errors:

• [Popular Kabul]ORG lawmaker [Ramazan Bashardost]PER , who camps out in

a tent near parliament ...

• [Haig]PER attended the [US Army]ORG academy at [West Point]LOC ...

In the above example, a pipelined system which relies on the tagging output cannot

extract Kabul as the city-of-residence for the query Ramazan Bashardost. It can

also not extract US Army academy at West Point as the school-attended for the

query Haig, even though the relation is expressed explicitly by the verb attended.

Argument identification of nonstandard types (e.g., a title of a book or a work of

art), which is the focus of this work, is even more challenging.

Comparison of end-to-end relation extraction systems, as in the Knowledge Base

Population (KBP) English Slot Filling shared task (Surdeanu, 2013; Angeli et al.,

2014), indicates that recall is the most difficult metric to optimize in entity-driven

relation extraction. Further analysis (Pink et al., 2014) showed that named entity

tagging is, after relation prediction, the main bottleneck accounting for roughly

30% of the missing recall. It is also worth noting that tagging or matching errors

may harm twice: once for missing the correct answer, and secondly for returning

an incorrect answer span.

The key motivation for our research is that identification of the query entity is

relatively easy and causes few errors: string match and expansion heuristics using

information retrieval methods work well and need not rely on entity tagging. In

contrast, identification of the slot filler is hard, especially if a diverse range of entity

types is considered. Consequently, we give the relation prediction model full freedom

to select a slot filler from all possible sub-sequences of retrieved query contexts.

Based on this motivation, we define the task of Open-Type Relation Argument

Extraction (ORAE), a more general form of entity-driven relation classification. In

contrast to the standard setting (which has been the focus of KBP), the key novelty

of ORAE is that slot fillers of any type are admissible; they are not restricted to the

standard entity types like person and location. Broadening the definition of types

at the same time allows us to broaden the definition of relations and we can handle

relations that pose difficulty for standard relation classification.

Most slot filling methods make heavy use of named entity recognition (Zhang

et al., 2016), but named entity recognizers address only pre-defined types (for which

there is training data with annotated entities). Non-standard types cannot be recog-
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nized without special engineering (e.g., compiling lists of entities or writing regular

expressions). To address this, we propose a set of new relation argument extraction

methods in this article that do not require a named entity recognizer.

In summary, this article makes the following contributions:

• The formulation and motivation of Open-Type Relation Argument Extraction

(ORAE) as a problem in information extraction, and a novel dataset for

Wikidata relations that contain an argument that is of non-standard type.

• A range of different neural network architectures for solving ORAE and their

evaluation in extensive experiments:

— We compare different neural architectures (encoders) for computing a sen-

tence representation suitable for argument extraction. The proposed en-

coders are based on convolutional networks (Collobert et al., 2011), re-

current networks (Chung et al., 2014), and self-attention (Vaswani et al.,

2017).

— We compare different neural architectures (extractors) for extracting an-

swers from this sentence representation. The proposed extractors are based

on pointer models (Vinyals et al., 2015), linear chain conditional random

fields (Lafferty et al., 2001; Lample et al., 2016), and table filling (Miwa

and Sasaki, 2014).

2 Encoding and extraction architectures

A big class of errors in end-to-end relation extraction systems are missing or inexact

named entity tags and, in a pipelined model, lost recall cannot be regained (Pink

et al., 2014; Roth, 2015). The models we propose aim at overcoming this problem

by skipping the named entity recognition step altogether, and instead predicting

a slot filler (or none) for query entities and the relations of interest. Our models

do not perform a separate task of entity recognition; but of course they have to

do entity recognition implicitly since extracting a correct slot filler requires correct

assessment of its type and correct assessment of the type of the query entity. The

aim of this work is to develop models that predict knowledge graph relations for

concepts that have non-standard type in a query-driven setup, and to explore a

wide range of possible solutions to this problem.

Figure 1 shows the general setup in which our argument prediction models can

be applied. The practical scenario is one where a user seeks to extract relational

information from a large text corpus for a list of relevant query entities and relations

(depending on the query entity type, Surdeanu (2013)). We call this scenario query-

driven KBP. In query-driven KBP, input to the argument prediction model is a

context that has been provided by the retrieval system for the relevant query entity,

for example:

• Query: “Alexander Haig”

• Context: “Haig attended the US army academy at Westpoint.”

The relation of interest is also provided to the model (if there are several possible
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Candidate instances

Input: Lagos is a 
privately held jewelry 
company based in
Philadelphia

Query match: Lagos

Relation: org:product 
Corpus

Lagos Inc.
Steve Jackson
...

Query entities

org:product
per:notable_work
...

Relations

Argument
prediction

org:product(Lagos Inc., jewelry)

...

Instance creation:
Information Retrieval
Query Matching

Fig. 1. Schematic overview of a query-driven knowledge base population system.

The focus of this work is developing an argument prediction component that can

extract non-standard entities.

relations for a query type, several instances are created). In traditional approaches

to query-driven KBP, the query and a second potential argument is marked by

named-entity tagging, and a simple classification prediction has to be made for all

potential relations, for example:

• “[Haig]Query attended the [US army]Answer academy at Westpoint .”

works-for ⇒ Yes/No?

• “[Haig]Query attended the [US army]Answer academy at Westpoint .”

school-attended ⇒ Yes/No?

• “[Haig]Query attended the US army academy at [Westpoint]Answer .”

born-in ⇒ Yes/No?

• ...

In our ORAE approach, the answer has to be identified simultaneously with

deciding whether the relation holds or not.

• “[Haig]Query attended the US army academy at Westpoint .”

works-for ⇒ Answer?

school-attended ⇒ Answer?

born-in ⇒ Answer?

...

We conceptually break our models for argument prediction down into three com-

ponents:

• Lookup layer: Representation of the context sentence. We use the same

input representation throughout our experiments.

• Encoder: Layers that compute a representation for every position in the

sentence, combining information from other positions.
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Suffix embs.

Prefix embs.

Word embs.

Position embs.

Relation emb. (repeat)

Relation emb.

<QUERY> is a jewelry company org:product

Encoder

Extractor

jewelry

Input

Lookup

Output
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Fig. 2. Lookup layer and architecture overview.

• Extractor: Last part of the architecture; it computes the extracted answer

as the output.

A model consists of the lookup layer followed by an encoder layer, followed by a

decoder layer. The remainder of this section provides a detailed discussion of layer

variants.

2.1 Lookup layer

In our problem formulation (argument extraction), a query entity and relation of

interest are provided to the model, and the missing argument has to be found. The

model is therefore conditioned on the query, and it has knowledge of the query

position. We indicate the query position through wildcarding, where we replace the

query by a special token <QUERY>, and additionally we also use position embeddings

to indicate the distance of other tokens to the query position. The relation in

question is already provided at this stage to the model through the learned relation

embeddings. There is one embedding per relation.

Specifically, the lookup layer provides embeddings for five types of information

useful for answer extraction that are concatenated for each position in the input

context (see Figure 2). For input position i, the input representation vector ei is a

concatenation of vectors:1

ei = [e(wi); e(pi); e(si); e(i− j); e(r)] (1)

• Word embeddings (embedding size 100). Words contained in the pretrained

1 Vectors are column vectors by default. Semicolons [· · · ; · · · ] indicate vertical stacking
along the column-axis, and commas [· · · , · · · ] indicate horizontal concatenation along
the row-axis.
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GloVe vectors2 are initialized with those vectors, otherwise they are initialized

randomly. The vector e(wi) is the embedding of wi, the word at position i.

• Affix embeddings. Prefix and suffix embeddings (length: 2 characters, em-

bedding size: 100) are learned in order to capture simple part-of-speech or

named entity type generalization patterns (capitalization, morphological in-

dicators). The vectors e(pi) and e(si) are the embeddings of the prefix and

suffix of wi.

• Position embedding. Since the first experiments using convolutional neural

networks (CNNs) for relation extraction (Collobert et al., 2011; dos Santos

et al., 2015) encoding the relative position to relation arguments has been

key to good performance. We encode the relative position with respect to

the query. Position encoding is used for all extractors, not only CNNs. The

vector e(i−j) is the embedding of the relative position (i−j) w.r.t. the query

position (j). The position embedding has size 10.

• The relation embedding identifies the relation to the model and is repeated

for every position in the input context. The vector e(r) is the embedding of the

relation r. The relation embedding size is set to 12, the number of relations.

We denote the dimensionality of the input representation as k (k = 3 ∗ 100 +

10 + 12 = 322). All embedding vectors are fine-tuned during training. The k × n
matrix containing the input representations for all n positions is denoted by E =

[e1, · · · , en].

2.2 Encoders

The sentence encoder translates the output of the lookup layer with neural net-

work architectures that consider a wider context. We use three different alternative

instantiations.

2.2.1 RNN encoder

In the recurrent neural network (RNN) encoder architecture, each candidate sen-

tence is encoded by two layers of bi-directional Gated Recurrent Units (GRU)

(Chung et al., 2014) with a hidden size of 200 (100 per direction). The hidden rep-

resentation for position i in the first GRU layer is the concatenation of a left-to-right

and a right-to-left GRU hidden state. It is denoted by:

h
(1)
i = [

−→
h

(1)
i ;
←−
h

(1)
i ] (2)

Where the GRU hidden states are computed via the recurrences:

−→
h

(1)
i = GRU(

−→
h

(1)
i−1, ei) (3)

←−
h

(1)
i = GRU(

←−
h

(1)
i+1, ei) (4)

2 https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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The second layer GRU takes the first layer as input and computes

h
(2)
i = [

−→
h

(2)
i ;
←−
h

(2)
i ] accordingly:

−→
h

(2)
i = GRU(

−→
h

(2)
i−1,h

(1)
i ) (5)

←−
h

(2)
i = GRU(

←−
h

(2)
i+1,h

(1)
i ) (6)

We did not observe a significant increase in performance on development data

when using more layers, so the encoder output for the RNN encoder is hRNN
i = h

(2)
i .

2.2.2 CNN encoder

CNNs are used with padding such that the number of input steps equals the number

of output steps. We use 4 different filter widths: 3, 5, 7 and 9. For each filter width,

we stack 3 layers with 32, 64 and 128 filters respectively. The ReLU activation is

applied to each filter, and dropout (drop probability of 0.2) is applied between the

convolutional layers. The outputs of the last layer (for each filter width), and the

relation embedding, are concatenated and used as input for the answer extractor.

More specifically, for filter width 3, the first layer CNN computes a 32-dimensional

representation vector h
(1;3)
i (we write h

(1;x)
i for filter width x) where each en-

try h
(1;3)
i,f is computed from the input representation using the 3 ∗ k - dimensional

weight vector w
(1;3)
f for a particular filter f , and the ReLU activation:3

h
(1;3)
i,f = ReLU(w

(1;3)T
f e[i−1:i+1]) (7)

where e[i−1:i+1] = [ei−1; ei; ei+1] and ReLU is defined component-wise as

ReLU(x) = max(0,x).

The second (and third) layer CNN computes a representation of size 64 (and 128)

using the analogous formula:

h
(2;3)
i,f = ReLU(w

(2;3)T
f h

(1;3)
[i−1:i+1]) (8)

(Respectively h
(3;3)
i,f = max(0,w

(3;3)T
f h

(2;3)
[i−1:i+1]) for the final third layer.)

The analogous formulas are applied for filter widths 5,7 and 9 (only considering

wider contexts [i−2 : i+2] etc). The final output of the CNN encoder is the concate-

nation of the 3rd layer output for each filter width. For the CNN architecture (but

not for the other encoders), we observed small improvements on the development

data by again concatenating the relation embeddings at each position:

hCNN
i = [h

(3;3)
i ; h

(3;5)
i ; h

(3;7)
i ; h

(3;9)
i ; e(r)] (9)

2.2.3 Self-attention encoder

A third encoder uses the multi-headed self-attention architecture of Vaswani et al.

(2017) to get an encoding for each position in the sequence. In self attention, the

input representation for each position is used as a query to compute attention

3 We omit the bias term in affine transformations for readability.
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scores for all positions in the sequence. Those scores are then used to compute the

weighted average of the input representations.

In multi-headed self-attention, input representations are first linearly mapped

to lower-dimensional spaces, and the output vectors of several attention mecha-

nisms (called heads) are concatenated and form the output of one multi-headed

self-attention layer. An attention head a encodes a sequence of input vectors into

a sequence of output vectors h
(a)
i . Different heads pay attention to (i.e., put

weight on) different parts or interactions in the input sequence. Different heads

are parametrized independently (the respective parameters are marked by a super-

script (a) to indicate that they are head-specific).

For one attention head a in the first self-attention layer, we obtain the vector for

position i:

h
(a)
i = Attention(W q(a)ei,W

K(a)E,WV (a)E) (10)

where W q(a),WK(a),WV (a) are linear transformations (matrices specific to head a)

to map the input representation into lower-dimensional space, and the matrix

E = [e1, . . . , en] is the matrix that contains the input representation (e.g., from

the lookup layer, Section 2.1). The function computing the resulting vector (from

q = W q(a)ei, K = WK(a)E and V = WV (a)E) is defined by:

Attention(q,K, V ) = V softmax(KTq) (11)

We follow the setup described in Vaswani et al. (2017) and use 8 attention heads

(each with a hidden size of 25 resulting in an overall hidden size of 200). The input

to the self-attention mechanism is transformed by a feed-forward layer (output size

200, ReLU activation), and the output of the attention heads at each position is

followed by two feed-forward layers (output sizes 400 and 200, ReLU activations)

One self-attention layer (the combination of self-attention heads and feed-forward

layers) is stacked 3 times. More repetitions did not yield significant improvements

on development data. See figure 3 for a diagram depicting the architecture of one

self-attention layer.

We deviated from the setup described in Vaswani et al. (2017) in the following

ways, each of which improved the performance on the development data:

1. We included residual connections that add the input of the self-attention

mechanism directly to the output, rather than having two residual connections

within each layer.

2. We used batch normalization (Ioffe and Szegedy, 2015) rather than layer

normalization (Ba et al., 2016) after concatenation of the attention heads

and the MLP, respectively.

As for the RNN and CNN encoders, the result is a vector representation hATTN
i

for each position in the sentence.

2.3 Extractors

Extractors take the encoder output and predict the argument span (conditioned

on the query entity and the relation of interest). If there is no argument for the
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(a) h2

(a) hn−1
(a) hn

(a)

...h1
(1) h2

(1) hn−1
(1) hn

(1)

...h1
(8) h2

(8) hn−1
(8) hn

(8)

...

...

...
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...h1
ATTN h2

ATTN h3
ATTN hn−1

ATTN hn
ATTN

⨁ ⨁ ⨁ ⨁⨁

Input

Self-attention mechanism

Head 1

Head a

Head 8

Feed-forward layers

Residual connections

Output

Fig. 3. Schematic diagram of self-attention layer.

relation of interest, the empty span is returned. We use three different architec-

tures for argument extraction. In the following, the encoder output at position i

is denoted by hi, irrespective of whether it stems from the RNN, CNN or self-

attention encoder. The matrix H represents the encoder outputs for all positions

in the sentence, its dimensionality is length of the sentence times encoder output

size.

2.3.1 Pointer network

Pointer networks (Vinyals et al., 2015) are a simple method to point to positions

in a sequence by calculating scores (similar to attention), normalizing them using

softmax and taking the argmax. In our case, two pointers are predicted, pointing

to the start and end positions of the relation argument.

Figure 4 (left third) shows the processing flow for the pointer network. First,

a summary vector s is computed for the whole sentence by max-pooling over the

sentence encoder representation (output of “Encoder” in Figure 2), and applying a

fully connected layer with ReLU activation:

s̄ = ReLU(W sPool(H)) (12)

where Pool returns a vector containing the row-wise maximum of a matrix and W s

is a learned affine transformation.

A binary label is predicted through logistic regression from the summary vector

s̄; this label indicates whether the sentence contains an answer argument or not.

The summary vector s̄ is also used as a context vector to compute the pointer scores

for predicting the start position, in a way similar to attention modeling. For each

position in the sentence, the summary vector is concatenated with the encoder
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h1 h2 h3 h4 h5 h6

O O OI I I

h1 h2 h3 h4 h5 h6

Pooling

s
Contains Answer:

Y/N
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end
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end index
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d
ex

Pointer Network Neural CRF Tagger Table Filling

Fig. 4. Three extractor frameworks described in Section 2.3 for predicting an answer

span (from position 3 to 5 in this example, indicated by gray shading) from the

encoder outputs hi.

output representation hi at this position, and from this a score is predicted (using

a MLP with one hidden layer of size 200) indicating how strongly this position

should be associated with the start of a relevant argument. The softmax gives a

distribution over the start positions:

p(start = i) = softmax(MLP ([s̄; hi])) (13)

The end position is predicted by the same mechanism, but in this case the

context vector is not the summary vector s̄. Instead, the softmax distribution over

start positions output by the previous step is used as the context vector (and

concatenated with the encoder outputs hi for score prediction). For sentences that

do not contain an answer argument, the start and end positions are set to point

to the query entity position during training. This way we hope to bias predictions

to be closer to the query entity position. At test time we exclude any predictions

where either the probability that an answer is less than or equal to 0.5, or where

the span overlaps with the query entity position.

2.3.2 CRF tagger

The Conditional Random Field (CRF) tagger model predicts the answer span by

predicting the label "I" for the answer, and "O" otherwise. As in previous work

combining neural networks with CRFs (Collobert et al., 2011; Lample et al., 2016),

the CRF combines local label scores, obtained from the features of the previous lay-

ers, with learned transition weights in order to obtain sequential label consistency:

For an entire label sequence y = (y1, y2, · · · , yn) the global score is defined as:

s(H,y) =

n∑
i=0

Ayi,yi+1
+

n∑
i=1

si,yi
(14)
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where A is a (learned) matrix of transition scores from label yi to label yi+1 (a

special start label y0 is assumed), and si,yi
is the local label score for label yi,

obtained by a (learned) linear mapping from hi.

Viterbi decoding is used to find the predicted answer spans. The local label scores

are also used in our system to assign a confidence value and to find the most likely

answer span if there are several predicted spans.

2.3.3 Table filling

The table filling extractor jointly looks at pairs of sentence positions, and decides

for each pair whether they are start and end positions for the query and relation

on which the network is conditioned. For a start position i and an end position j,

the table filling model decides whether those positions describe the start and end

of the sought answer. The table filling model uses the encoder outputs hi, hj as the

input for this binary decision (I: subspan is answer, O: subspan is not an answer,

see Figure 4, right diagram).

Compared to the pointer network (three model outputs: label, start, end) and

the CRF tagger (number of model outputs = length of sequence), the table filling

model has the most number of outputs to predict, as it needs, in principle, to pair

each position in a sentence with all other (subsequent) positions in the sentence.

To reduce the amount of computation that follows from this quadratic complexity,

we limit the maximum length of representable answers to be 5 (which covers 98%

of actually occurring answers). Note that – even though we exclude a large number

of “negative” cells from the table and do not do any prediction for them – the vast

majority of output cells still has the negative label (all but 1 pair of positions is not

a relevant relation argument), introducing a strong bias which may make it harder

for the model to predict a positive label at all. For the combination with the CNN

encoder, it was necessary to double the weights for the positive class, following

Gülçehre et al. (2016), to deal with the highly skewed distribution of output classes

(otherwise the table filling model would predict no answers).

For each pairing (i, j) of potential start and end positions, we concatenate the

encoder vectors for the two positions, and predict the corresponding cell value of

the table. Logistic regression is used for cell prediction :

p(is answer = True|start = i, end = j) = σ([hi; hj ]
Tw(table)) (15)

where a different weight vector w(table) is learned for each answer length.

We experimented with deeper architectures for cell value prediction, but did not

observe any improvements, presumably due to the overwhelming majority of cells

with a negative label.

2.4 Hyper-parameters

The following hyper-parameters were tuned on the development data (according to

instance level accuracy) (Bengio, 2012) over the ranges given below. For tuning,

the encoders were paired with the pointer network extractor (which is most similar
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to the Bidirectional Attention-Flow baseline, Section 4.2.1). We did not tune any

hyperparameters specific to the extractors.

• learning rate: {0.1, 0.01, 0.001}
• number of CNN/GRU/Self Attention layers: {1, 2, 3, 4}
• CNN, maximal window size: {5, 7, 9}
• CNN, maximal number of filters: {64, 128, 256}
• Self-Attention, output size4 (=number of heads * head size):

{50, 100, 200, 400}
• GRU, hidden size: {50, 100, 200, 400}

The resulting hyper-parameter choices are reported in the Sections describing

the respective submodels. We use the 100-dimensional pretrained GloVe vectors of

Pennington et al. (2014) and did not experiment with other word vector variants.

The the size of the relation vector is equal to the number of relations (12, as for

one-hot-encoding, but with the flexibility to arrange similar relations closer to each

other in embedding space). We found that for the position embedding size a value

equal to the square root of the maximum relative distance (in our experiments 10)

gave good performance, and increasing it further did neither improve nor hurt the

model. All models use the Adam optimizer, the best value for learning rate was 0.01

for all models. We found that larger batch sizes in general yielded better results

than smaller ones, resulting in a batch size of 512 (which was the largest we could

efficiently process on our infrastructure).

3 Data set

The models for predicting knowledge graph relations between entities that have non-

standard type, proposed in the previous sections, are evaluated using a distantly

supervised data set that we extracted from WikiData and Wikipedia specifically

for this purpose.

We first identify relations that meet three specific criteria and retrieve entity

pairs for these relations. The three criteria are the following:

(a) Non-standard type. We look for relations that have one argument of a

standard type, the query, and one argument of a non-standard type, the slot.

Training and evaluation are done for the task of identifying correct fillers

for the slot. We consider the MUC-7 named entity types (location, person,

organization, money, percent, date, time) as standard types (Chinchor and

Robinson, 1997).

(b) Open class. There must be a wide range of admissible values for the slot

in question (i.e., the answers must be relational, not categorical (Hewlett

et al., 2016)). For example, the WikiData relation P21 (sex or gender) has

a non-standard argument slot, but only a handful of distinct possible values

are attested in WikiData; so P21 is not a relation that we consider for our

4 Following Vaswani et al. (2017), we use 8 heads.
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relation example sentence

per:occupation [Alan Aubry ]Q ( born 24 September 1974 ) is a French

[photographer ]A .

per:position_held Under pressure , former [Tánaiste]A [Erskine H. Childers]Q
agreed to run .

per:conflict It is named for [Henry Knox ]Q , an [American Revolution-

ary War ]A general .

per:notable_work In the [Steve Jackson]Q Games card game [Munchkin]A ,

there is a card called “ Dwarf Tossing ” .

per:participant_of [Ahlm]Q was listed among the top ten goalscorers at the

[2008 Olympics]A tournament .

per:award_received [Alex Smith]Q’s name was put on the [Stanley Cup]A in

1927 with Ottawa .

per:field_of_work While teaching at Berkeley , [John Harsanyi ]Q did exten-

sive research in [game theory ]A .

org:industry Select stores offer [fast food ]A outlets such as [Subway ]Q
and Taco Bell .

per:noble_family Stefan was the son of Lazar and his wife [Milica]Q , a lateral

line of [Nemanji ]A .

per:ethnic_group [Hamdi Ulukaya]Q was born in 1972 to a [Kurdish]A family

in Turkey .

org:product [Lagos]Q is a privately held American [jewelry ]A company

gpe:office Brown was the de facto [premier ]A of [Province of

Canada]Q in 1858 .

Table 1. The table gives, for each relation, its name and an example sentence.

(Query entity and correct answer entity are indicated in brackets.)

train dev test

#instances 673.677 340.050 335.883

#positive instances 224.559 113.350 111.961

#fact triples 132.983 66.925 66.697

#query entities 89.349 46.967 47.155

Table 2. Number of instances, positive instances, distinct fact triples and distinct

query entities for training development and test data.

dataset. As a threshold, we require Wikidata to contain at least 1000 distinct

values for the slot in question.

(c) Substantial coverage. There must be a large number of facts (argument
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relation id #sentences

per:occupation P106 57693

per:position_held P39 47386

per:conflict P607 20575

per:notable_work P800 18826

per:participant_of P1344 14646

per:award_received P166 13330

per:field_of_work P101 13059

org:industry P452 12352

per:noble_family P53 9260

per:ethnic_group P172 7169

org:product P1056 6482

gpe:office P1313 3781

Table 3. The table gives for each relation its name, Wikidata id and number of

training instances.

pairs) in Wikidata for a relation to be eligible for inclusion in our dataset. We

require the minimal number of facts to be 10,000 for each relation.

We check criterion (a) using the WikiData relation descriptions. We use the

WikiData query interface5 and the SPARQL query language to check criteria (b)

and (c), and to retrieve entity pairs (and their surface forms) for all relations.

The relation entity pair tuples are randomly split into training (50%), development

(25%) and test data (25%).

In a second step, we retrieve sentences containing argument pairs (distant su-

pervision sentences). An English Wikipedia dump (2016-09-20) is indexed on the

sentence level using ElasticSearch.6 For each relation argument, aliases are obtained

using Wikipedia anchor text and the query expansion mechanism of the Relation-

Factory KBP system (Roth et al., 2014). Up to ten sentences are retrieved for each

argument pair. Although criterion (c) requires a minimum number of 10,000 facts,

we are not able to find a distant supervision sentence for every pair. Therefore,

the number of actually occurring facts is less than 10,000 for some relations. For

each positive instance (sentence-relation-argument tuple), we sample two negative

instances by replacing the relation with different relations (uniformly chosen at

random).

Table 2 gives an overview of the training, development and test data sizes. Table 3

lists the relations, together with the number of training sentences for each relation.

5 https://query.wikidata.org/
6 https://www.elastic.co/

https://query.wikidata.org/
https://www.elastic.co/
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Pointer Network Neural CRF Tagger Table Filling

P R F P R F P R F

ATTN 75.50 73.51 74.49 72.39 76.41 74.35 78.11 73.78 75.89

CNN 78.23 80.62 79.41 82.59 76.84 79.61 78.47 79.76 79.11

RNN 78.80 79.17 78.99 82.53 81.19 81.86 77.92 81.44 79.64

Table 4. Each cell contains P/R/F on tuple level. The best values for each encoder

(i.e., per row) are underlined, the best values for each extractor (i.e., per column)

are marked in bold.

We renamed the Wikidata ids to be more readable (similar to TAC KBP relations7):

the names contain the entity type of the query argument as a prefix.8

4 Experiments

4.1 Evaluation setup

Each encoder architecture is combined with every extractor architecture. We com-

pute accuracy, precision, and recall by assessing exact string match. We compute

accuracy on a per-instance (query-relation-context) level. For precision, recall, and

f-measure, two variants are computed: instance-level and tuple-level.

In the instance-level setup, the items which are considered are combinations of

query-relation-context-answer (where context is a particular sentence represented

by its id, and answer is the missing argument that is to be extracted). In the tuple-

level evaluation, the sentence id is ignored, and the same fact-tuple is counted only

once, even if it has been extracted from several sentences, i.e., the items to be

considered are combinations of query-relation-answer. The tuple-level evaluation

measures how well the ground-truth facts are recovered, i.e., it corresponds to the

quality of a knowledge graph obtained with the extraction algorithm, since repeated

extractions are only counted once.

Precision and recall are computed from the sets of items, where relevant =

set(correct items) and retrieved = set(predicted items); the f-measure is computed

as usual f = 2pr/(p+ r).

p =
|relevant ∩ retrieved|

|retrieved|

r =
|relevant ∩ retrieved|

|relevant|

7 https://tac.nist.gov/about/index.html
8 The dataset and code are released at http://cistern.cis.lmu.de/orae/.

https://tac.nist.gov/about/index.html
http://cistern.cis.lmu.de/orae/
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4.2 Baselines

4.2.1 Argument extraction using Bidirectional Attention Flow

Levy et al. (2017) formulate relation extraction as a reading comprehension prob-

lem: for each relation, a set of natural language questions is written by humans, and

answers are extracted using the Bi-Directional Attention Flow (BiDAF) network

(Seo et al., 2016). In one of their experiments (the “KB Relations” setting), they do

not provide the full questions, but rather give the relation as an un-analyzed atom

(the question corresponds to the relation as the only pseudo-word). This setting is

applicable to our problem definition (and is simultaneously their best performing

setup), hence we choose this system as a baseline. Since Levy et al. (2017) adapted

a question answering model to the task of relation answer extraction, some parts of

the model setup that help with analyzing natural language questions (such as the

attention mechanism that aligns parts of the sentence with parts of the question)

are superfluous and not helpful for our task. A number of elements of BiDAF are

similar to our model, but instantiated in a different way. (i) Seo et al. (2016) use

character embeddings, we use prefix and suffix embeddings. (ii) In BiDAF, atten-

tion is driven by the query. In one of our settings, we use self-attention where any

input information (words or relation) can recombine information from the whole

sentence. (iii) Similar to the prediction of start and end points in Seo et al. (2016),

one of our architectures is a pointer network. We compare this to two other design

choices for predicting the answer span.

4.2.2 Relation classification using Positional Attention

We also compare to the Position-aware Attention (PosAtt) model of Zhang et al.

(2017), a strong relation classifier that can be used in a pipelined setting. The

PosAtt model requires as input a sentence with the query and an already identified

(by sequence tagging or string matching) answer candidate. PosAtt encodes this

input with a neural architecture that summarizes the sentence using an attention

mechanism that is aware of query and answer candidate positions, and predicts a

relation for the encoded sentence.

Since the relations in ORAE are of non-standard type, and cannot be detected by

off-the-shelf named entity taggers, we identify answer candidates by string match-

ing: Potential answers for a relation are all substrings in a sentence that were

arguments for that relation in the training data.

4.3 Results and analysis

4.3.1 Architecture comparison

Table 4 compares all combinations of encoder and extractor architectures intro-

duced in the previous sections. In order to keep the overview uncluttered, we only

show tuple-level results in Table 4. See Table 5 for additional instance-level results

for selected architectures.

Encoders. For the encoder architectures, one can see that the self-attention
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tuple level instance level

P R F P R F Acc

BiDAF 70.86 78.76 74.60 76.35 75.84 76.10 90.11

PosAtt 83.65 72.11 77.45 – – – –

CNN/CRF 82.59 76.84 79.61 86.25 73.48 79.35 90.02

RNN/Table 77.92 81.44 79.64 82.31 78.38 80.30 91.03

RNN/CRF 82.53 81.19 81.86 86.20 78.25 82.03 91.55

Table 5. Comparison with Levy et al. BiDAF model, and Zhang et al. PosAtt model

applied to our task. Reported results are P/R/F on tuple level and P/R/F/Acc on

instance level. Best results per column marked in bold.

mechanism (ATTN) is the weakest (although competitive to the baselines, see be-

low), reaching an f-measure of 75.89 in the best combination.9

Good results are obtained by the CNN encoder, with the f-measure reaching

79.61 (and with similar results obtained when different extractors are chosen). A

slightly higher f-measure of 81.86 is achieved with the RNN encoder, however, for

this encoder, results vary more depending on the choice of extractor.

Compared to RNN and CNN, self-attention modeling is the least local of

all three encoders, as it can incorporate information from the entire sentence by

the same mechanism; positional information is only captured via the positional

embeddings. The comparatively weak performance of the ATTN encoder indicates

that some locality bias may be beneficial for argument extraction (higher influence

of neighboring words, distance to query), and that non-local modeling, only relying

on positional embeddings, is not sufficient.

The CNN encoder is the most local of all encoders: information of neighboring

words is combined using the stacked filters. The only long-range dependency that

can be captured is the distance to the query (via positional embeddings). The

relatively good results of the CNN encoder indicate that most relevant information

can be captured by this mechanism.

The RNN encoder can use all non-local information via its bidirectional re-

currences, but at the same time RNNs have a bias towards local information as it

needs to go through fewer transformations. In our experiments this way of encoding

the entire sentence information via RNNs yields the best results overall.

Extractors. The pointer network is for none of the encoders the best extrac-

tor. However, differences to the other extractors are relatively small. The limitation

of the pointer network is that decisions for start and end position are not optimized

jointly (the score distribution over end positions cannot influence that over start

positions), and this fact may limit the model to gain the last percentage points of

extra performance needed.

9 Unless indicated otherwise, we discuss tuple-level scores.
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The neural CRF tagger is the best extractor for both the CNN and the RNN

encoder, achieving the best results overall. Start and end position are jointly mod-

eled and globally optimized via the tag sequence and the transition scores.

The table filling extractor models start and end positions jointly by design.

The biggest difficulty for the table filling extractor is the fact that the number of

negative labels (combinations of start and end positions that do not constitute a

correct answer) grows quadratically with the sentence length. Without correcting

for this imbalance by doubly weighting positive labels in the objective function,

recall values would be extremely low – for the CNN encoder without this reweighting

no answer would be extracted at all. Despite its relatively good performance, the

table filling extractor is therefore less stable than the pointer network or CRF

extractor.

Lookup layer. We include an ablation analysis, to examine how different input

representations interact with encoder layers and end-to-end models. For each en-

coder architecture, we take its best combination with a decoder and compare its

performance using the full input representation and its performance with a reduced

input representation (in terms of tuple-level f-measure), we report this difference

in Table 6. We ablate word embeddings, affix embeddings, position embeddings,

and we compare to a setup where the query is not wildcarded. We also compare to

a setup where the relation of interests was not given to the model (i.e. the model

loses the capability to distinguish between different relations).

The CNN and RNN models rely more on word embeddings, while the the

self-attention model relies more on affix embeddings. Position embeddings

are crucial for the self-attention encoder (Vaswani et al., 2017), in contrast, CNN

and RNN model sequential order by design and do not depend on position embed-

dings. Query wildcarding is the most important factor in representing the input.

Without query wildcarding, the model may be prone to overfit the queries seen

during training, and moreover the information about what element in the sentence

is the query is passed on to the model only via the relative position embeddings.

Not surprisingly, relation embeddings are essential to the performance of the

models.

Architecture Word Affix Position Query Relation

ATTN+Table 0.16 1.73 3.54 4.89 50.76

CNN+CRF 2.63 0.16 0.16 2.87 74.06

RNN+CRF 2.73 0.05 -0.29 3.71 79.99

Table 6. Performance of full input representation minus performance of re-

duced input representation, for Self Attention+Table Filling, CNN+CRF Tagger,

RNN+CRF Tagger. Ablated elements: Word embeddings, affix embeddings, posi-

tion embeddings, query wildcarding and relation embeddings.
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4.3.2 Baselines

Table 5 shows the performance of the BiDAF architecture adapted to relation ex-

traction as in Levy et al. (2017) upon training and testing on the open-type rela-

tion argument extraction task. We provide a full comparison (precision, recall, f-

measure, accuracy; instance and tuple level) of this baseline to our best-performing

(by tuple-level f-measure) encoder-extractor architectures (RNN/CRF, CNN/CRF

and RNN/Table).

The number of instances considered in PosAtt differs from that in answer ex-

traction models (BiDAF and our approaches), since for one query and relation (an

instance in answer extraction) there can be many or no answer candidates. We

therefore only consider tuple-level scores for comparison with PosAtt. PosAtt does

not have the freedom to predict any substring as an answer since it depends on an-

swer candidate identification as a preceding step in a pipeline. It consequently has

the lowest recall of all considered models. The good precision of PosAtt indicates,

however, that it is a very strong relation classification model.

As for uninformed baselines (like NER-based pipelined systems, that cannot de-

tect non-standard types), always predicting the empty answer would yield an ac-

curacy of 66.67%. For the f-measure there is no simple uninformed baseline, so the

base score for the f-measure would be close to 0. Hence, all models perform quite

well on the task, extracting answers with accuracies of ∼ 90%.

Clearly, our best performing Neural CRF Tagger has approximately +7% ab-

solute better f-measure in both instance and tuple wise evaluation. We attribute

the improvements of most of our encoder-extractor based models to the following

design choices:

• We wildcard the query entity (<QUERY> in Figure 2). This directs extractors

to focus their search for the slot filler on the vicinity of the query. Since most

answers occur close to the query, introducing this bias improves performance.

Wildcarding also prevents overfitting since the model cannot learn from the

specific lexical material of the query.

• The combination of prefix and suffix embeddings is advantageous because

most of the information about possible nonstandard entity types that is not

already captured by word embeddings is captured by these two affixes.

• BiDAF devotes modeling capacity to bidirectional attention (in order to detect

relevant parts of a question), which is irrelevant in the relation scenario since

the “question” is represented as exactly one token, i.e., the relation itself.

• CRF and Table-filling answer extraction can model start and end positions

jointly, while BiDAF predicts them independently.

To summarize, our experiments indicate that for relation argument extraction,

an RNN network with a tagging based answer extractor is superior to extractors

based on table filling or based on the prediction of start and end positions (as often

done by question-answering systems such as BiDAF).
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4.3.3 Discussion

We have extended and redefined the problem of slot filling to the task of open type

relation argument extraction (ORAE). The type of model we have proposed to

address ORAE is not just a model that solves relation classification (or slot filling);

it also jointly solves the task of finding the entities.

There are several advantages to this extension and redefinition of slot filling.

• In ORAE, the model can use all available information in the sentence and

optimize decision thresholds for the task at hand (i.e., filler identification),

avoiding tagging errors that it cannot recover from.

• In ORAE, the model can be trained by distant supervision. As long as there

are surface strings of entity pairs from a knowledge base, the model can be

trained. The co-occurrence requirement for two entities during training also

provides some disambiguation and filtering of spurious matches.

• Our definition of ORAE treats standard and non-standard named entity types

in completely the same way. This enables us to detect non-standard slot fillers

like job titles, products and industries that approaches based on named entity

tagging have difficulties with.

One shortcoming of the setup we presented in this article is that only one answer

is predicted per query instance. Although the model architecture can easily be

reformulated for a more general setting, the problem lies with the sparse distant

supervision training data that only rarely contains matches with multiple answers

within a given context. Given this lack of training data, it is not clear how the

parameters of such a more general model should best be estimated.

5 Related work

In opinion recognition, early work has focused on extracting opinion holders and

opinion items with CRFs and integer linear programming (Choi et al., 2006). See

(Culotta et al., 2006) and (Hoffmann et al., 2010) for other approaches to argument

tagging using traditional feature-based CRFs. This line of research has recently been

extended (Katiyar and Cardie, 2016) to a neural tagging scheme, where relations

(and the distance to the related token) are predicted per token by a long short-

term memory network (LSTM, (Hochreiter and Schmidhuber, 1997)). This setting is

quite different from ours since prediction is not conditioned on a query entity; apart

from the different problem formulation, this also implies that the model cannot be

trained with incomplete annotation via distant supervision (Mintz et al., 2009),

since training needs all labels to be present (not just those for the query Q). Zheng

et al. (2017) use a tagging scheme similar to (Katiyar and Cardie, 2016) to annotate

relation arguments in sentences. They do not condition on a query entity and need

to downweight non-argument labels to overcome sparsity in the training data.

Similarly, table filling models have been developed to extract entities and rela-

tions, see (Miwa and Sasaki, 2014) for the original feature-based formulation and

(Miwa and Bansal, 2016) for an RNN-based extension of the model. In contrast to
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our work, this model requires fully annotated data (no distant supervision), and

therefore has only been applied to relations with standard named entities (person,

location, organization), where the motivation for open-type argument extraction

is less strong. Another extension (Gupta et al., 2016) obtained improvements by

relying on already identified named entity spans. We compare a variant of neural

table filling that does not rely on any of these conditions with a range of alternative

argument extraction methods.

Wikireading (Hewlett et al., 2016) is the task of extracting infobox properties

from Wikipedia articles about a certain entity (similar to (Hoffmann et al., 2010)).

Some aspects of Wikireading are easier than the problem we are dealing with, for

example, it is guaranteed that there is an answer for every paragraph in the dataset,

and the query entity is guaranteed to be the topic of the article. Other aspects are

more difficult, for example, only 46% of the answers in the data set are contained

as exact strings, the majority has to be inferred. In contrast, we are concerned

with the problem of predicting whether relations hold between mentions as they

are expressed in text.

Another approach to overcoming reliance on named entity recognition in rela-

tion extraction is to do segmentation of text heuristically based on part-of-speech

patterns and cooccurrences, and then to proceed in the traditional instance-based

paradigm (Ren et al., 2017).

Traditional relation classification and, more generally, work deciding whether

a relation holds between two identified subparts of a sentence is also relevant.

Collobert et al. (2011) combined CNNs with position embeddings and CRFs for

semantic role labeling. Subsequent work confirmed that convolutional neural net-

works are appropriate models for relation classification (Zeng et al., 2014; dos Santos

et al., 2015; Adel et al., 2016; Vu et al., 2016). Other approaches have employed

RNN variants for representing sentences for relation classification (Verga et al.,

2016; Xu et al., 2016).

Another related field is that of question answering (QA). The introduction of

the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016) has

given rise to a large body of work on answer extraction. Seo et al. (2016) and Chen

et al. (2017) introduce an efficient method of aligning question and paragraph words

through an attention mechanism (Bahdanau et al., 2014) to obtain an answer span.

Wang et al. (2017) propose an architecture that, based on match LSTM, builds a

question aware passage representation and uses an attention-based pointer network

(Vinyals et al., 2015) to predict the start and end positions of the answer.

Recently, Levy et al. (2017) presented an approach that bridges question answer-

ing and query-driven answer extraction. They convert the traditional entity-driven

relation extraction to a QA setup by crowd-sourcing knowledge base relations into

natural language questions. They utilize the bidirectional attention flow networks

(BiDAF) of (Seo et al., 2016) to extract answers. We compare our experimental

results to this strong baseline.
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6 Conclusion

We have defined the task of Open-Type Relation Argument Extraction (ORAE),

where the model has to extract relation arguments without being able to rely on

an entity extractor to find the argument candidates. ORAE can be viewed as a

type of entity-driven slot-filling, the task of identifying and gathering relational

information about a query entity from a large corpus of text. However, the most

common approaches to slot-filling are pipelined architectures, in which relation

classification is an isolated step that heavily relies on pre-processing modules such

as named entity recognition, to which a large part of end-to-end errors can be

attributed. Our approach to ORAE has two conceptual advantages. First, it is

more general than slot-filling as it is also applicable to non-standard named entity

types that could not be dealt with previously. Second, while the problem we define is

more difficult than standard slot filling, we eliminate an important source of errors:

tagging errors that propagate throughout the pipeline and that are notoriously hard

to correct downstream.

We have presented a distantly supervised data set for training and evaluating

ORAE models, based on WikiData relations; the arguments in our dataset are

non-standard type named entities, e.g., notable work (which can be any title of a

book or other work of art) or product (which can be any product name).

We have experimented with a wide range of neural network architectures to solve

ORAE, each consisting of a sentence encoder, which computes a vector represen-

tation for every sentence position, and an argument extractor, which extracts the

relation argument from that representation. We experimented with convolutional

neural networks, recurrent neural networks, and self-attention as sentence encoders;

and with pointer network, conditional random fields tagging and table filling as ar-

gument extractors. Every encoder was combined with every extractor, and high

accuracy was obtained for most combinations. The combination of recurrent neural

network encoder with conditional random field extractor gave the best results, +4%

absolute f-measure better than a state-of-the-art pipelined model based on argu-

ment matching, and +7% absolute f-measure better than a previously proposed

adaptation of a question answering model.
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