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Abstract

Neural Networks applied to Machine Translation need a finite vocabulary to express tex-
tual information as a sequence of discrete tokens. The currently dominant subword vo-
cabularies exploit statistically-discovered common parts of words to achieve the flexibility
of character-based vocabularies without delegating the whole learning of word formation
to the neural network. However, they trade this for the inability to apply word-level
token associations, which limits their use in semantically-rich areas and prevents some
transfer learning approaches e.g. cross-lingual pretrained embeddings, and reduces their
interpretability. In this work, we propose new hybrid linguistically-grounded vocabulary
definition strategies that keep both the advantages of subword vocabularies and the word-
level associations, enabling neural networks to profit from the derived benefits. We test the
proposed approaches in both morphologically rich and poor languages, showing that, for
the former, the quality in the translation of out-of-domain texts is improved with respect
to a strong subword baseline.

1 Introduction

In Natural Language Processing (NLP) tasks, text is either received as input or gen-

erated as output (e.g. machine translation, language modeling). In order to process

text, it is common for neural networks applied to NLP tasks to split the original

character string into a sequence of substrings, and to represent each substring as

a discrete token. The granularity used to split the original text into substrings is

part of the design of any NLP system.

Languages themselves offer information packaged at different natural granularity

levels: sub-character information (e.g. radicals in Chinese characters), characters,

morphemes, words, multi-word expressions, sentences and documents. Apart from

the linguistically natural information packages, it is also possible to build synthetic

partitions (e.g. statistically-discovered subwords (Sennrich et al., 2016), byte-level
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representations (Costa-jussà et al., 2017)) as well as hybrid granularity levels (e.g.

hybrid word-character representations (Luong and Manning, 2016)).

The representation granularity defines how to split a piece of text into a sequence

of discrete tokens and is a key design aspect in any NLP system because it deter-

mines the type of information it can directly profit from. This way, a word-level

system can profit from word-level information (e.g. semantics), while a character-

level system does not have direct access to such a type of information.

The set of all possible tokens is referred to as vocabulary and, normally, the higher

the representation granularity, the larger the size of the vocabulary. This way, the

set of all possible words is larger than the set of all possible characters. Nevertheless,

given the open nature of language, any finite size word-level vocabulary is to face

the problem of words that are not part of the vocabulary and hence cannot be

properly represented.

The selection of an appropriate granularity level is also influenced by the capa-

bility of the downstream NLP system to handle the resulting vocabulary. This way,

while symbolic systems can handle very large vocabularies (i.e. several hundred

thousand different tokens), current neural networks can only handle moderately

large vocabularies (i.e. tens of thousand different tokens). This makes it desirable

for Neural network-based NLP systems to keep the vocabulary size constrained

while trying to maximize the representation ability.

The vocabulary is defined prior to the training of the neural network, normally

by means of an algorithmic approach that “extracts” the possible tokens from the

training data according to the chosen token granularity.

Character-level vocabularies define a token for each different character present in

the training data. Their size ranges from tens to thousands of characters, depending

on the language. In English, this would include all letters, both lowercase and

uppercase, punctuation symbols, blanks, etc. A character-level vocabulary allows

representing any text that contains the characters from the vocabulary, not only

the words from the training data.

Word-level vocabularies define a token for each different word present in the

training data. Given the huge amount of different words, only the N most frequent

words are kept in the vocabulary, dropping the less frequent ones. The selection

of hyperparameter N is driven by different factors, including hardware memory

constraints, scaling limitations of the network architecture (e.g. softmax for network

output) and the scarceness of lower frequency words in the training data (it is not

useful to represent words whose frequency of appearance in the training data is

not enough for the network to learn how to use them). A frequent default value is

N = 32K tokens. A special token <UNK> is usually introduced in the vocabulary in

order to represent words that are not part of the vocabulary (i.e. unknown words,

or out-of-vocabulary (OOV) words).

Multi-word level vocabularies extend word-based ones and try to find sequences of

words that form a single lexical unit or are part of an idiomatic construct (Mikolov

et al., 2013).

Subword vocabularies (Mikolov et al., 2012) have word pieces as tokens, which

are extracted statistically from the training data based on their frequency of ap-
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pearance. For languages with regular morphology, extracted subwords may match

morphological word parts, however, there is no guarantee of morphological sound-

ness. Subword vocabularies normally do not have an <UNK> token because, apart

from the multi-character subwords, there are usually single-character subwords that

allow to represent any input text.

Despite their flexibility, character-level vocabularies delegate the learning of word

formation to the network and the resulting token sequences are very long, which, for

some tasks like machine translation (MT), leads to a decrease in the quality due to

the model’s inability to handle long-range dependencies. On the other hand, word-

level vocabularies relieve the network completely from learning word formation, but

they frequently lead to OOV words and they aren’t aware of the connection of dif-

ferent forms of the same word, leading to worse training data utilization, especially

for highly inflected languages and agglutinative languages. Subword vocabularies

are a compromise between both, and are indeed used in the current state of the art

of several NLP tasks, like MT.

Nevertheless, an asset of word-level vocabularies is that tokens can be associ-

ated with the word they represent, which can be key to certain tasks related to

the meaning of the word or setups related to the word-level granularity (reuse of

pretrained word embeddings for sentiment classification, induction of cross-lingual

word embeddings); character and subword vocabularies lack such a trait and this

makes them less suitable for such tasks.

1.1 Contribution

In this work, we propose the use of linguistic information to create vocabularies with

the advantages of word-level and multiword-level representations and the flexibility

of subword-level tokens. This work is in the line of recent efforts by the scientific

community1 since our work focuses on the interpretability of the subword units

that our NMT systems are using while profiting from the linguistic information

available.

1.2 Manuscript Organisation

In Section 2 we provide a review of the works in the area of incorporating linguistic

information into neural NLP systems, especially for NMT. In Section 3 we describe

in detail our proposed approach, while in Section 4 we describe the experimental

setup used to evaluate it and explore the obtained results, followed by the discussion

in Section 5. Finally, in Section 6 we draw the conclusions of this work. Appendix A

provides information about the specific linguistic engine used as source for linguistic

information used in this work and its relation to the proposed approach.

1 Workshops on Subword and Character Level Models in NLP (Faruqui et al., 2017, 2018)
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2 Related Work

The first subword-based vocabularies were introduced by Schütze (1993), while their

first successful application to neural systems was with Byte-Pair Encoding (BPE)

(Sennrich et al., 2016). This approach consists in taking all words from the training

data and building subwords starting from a character-based vocabulary (with all

characters present in the training data) and creating new tokens by iteractively

merging the two tokens that appear together most frequently. BPE and some of

its variants, such as word pieces (Wu et al., 2016), are the dominant subword

vocabulary definition strategy in the state of the art neural machine translation

(NMT) architectures.

Linguistic information was first introduced in a neural NLP system by Alexan-

drescu and Kirchhoff (2006), who proposed a language model (LM) where words are

represented as a sequence of factors, that is, the word itself plus pieces of linguistic

information associated with the word, like its POS tag or the its morphological

characterization. Factors of different types are embedded in the same continuous

space and the sequence of the previous n − 1 embedded vectors is fed to the LM,

which consists in a multilayer perceptron. The LM then generates the probability of

the n-th token over the word space. In order to address the unknown word problem,

they compute the average of all words belonging to the same POS tag; this way,

if an unknown noun is to be fed to the network, all noun vectors in the embedded

space would be averaged to compute the average noun vector.

Shaik et al. (2011) study different morphologically-grounded subword partition

schemes applied to LM, including morpheme-based, syllable-based and grapheme-

based, as well as their mix in the same vocabulary with word-based representations

for the most frequent words. Vania and Lopez (2017) study the effects of subword

vocabularies in language models, including BPE and morphologically extracted

subwords with Morfessor (Virpioja et al., 2013). In their work, the predictions are

normal words selected among the most frequent ones, but the input of the model

are aggregations of subwords, either by mere addition or by means of biLSTMs.

The use of linguistic information was first introduced in NMT in the work by

Sennrich and Haddow (2016) (with precedents in SMT in the work by Ueffing and

Ney (2003) and Avramidis and Koehn (2008)), who incorporate several linguistic

features as input to the encoder of a standard sequence-to-sequence with attention

model (Bahdanau et al., 2015). These features include the word’s lemma, POS tag

and dependency type. The token granularity is subword level, making use of BPE to

split low frequency words. Word-level features are copied to each of the subwords in

the associated word. Both subword and linguistic features are encoded as discrete

tokens from different representation spaces. Each token space is associated with

a different embedded representation space, which a pre-defined dimensionality. At

encoding time, the subword and the linguistic features are represented as their

corresponding embedded vectors and then all vectors associated to a subword are

concatenated together into the final representation.

Ponti et al. (2018) further refined the approach by Sennrich and Haddow (2016)

by injecting Universal Dependency tags (de Marneffe et al., 2014) as linguistic
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features and modifying the source analysis trees (e.g. by rearranging dependencies

and introducing dummy nodes) to reduce the level of anisomorphism between source

and target languages, directly affecting syntactic dependency tags. This improves

translation quality, especially for typologically distant languages, as the linguistic

information preprocessing reduces the gap between the structures of source and

target languages.

In their work, Garcıa-Martınez et al. (2016) proposed to modify the decoder part

of a standard word-level sequence-to-sequence model to generate two elements per

position of the output sentence: the first element is the lemma of the word, while

the second element is the morphosyntactic information of the original word, which

is referred to as factors. Each of the two outputs per position casts the probability

over the lemma and factor space respectively. A similar approach was proposed by

Song et al. (2018) for the Russian language; they modify the decoder of a normal

sequence-to-sequence with attention model to generate first the stem of the current

word, and then its suffix based on the internal states and output of the decoder

units, and then using a composite loss with separate terms for stems and for suffixes.

The generation of proper surface forms of morphologically rich languages has been

studied in the literature, especially in transduction from morphologically simpler

languages (e.g. English to German translation). With that purpose, Conforti et al.

(2018) proposed to predict the morphological information of a morphologically rich

language from merely the lemmas and word capitalization scheme.

Finally, Passban (2017) studies different word segmentation strategies and their

influence over NMT translation quality. Some of the word segmentation approaches

evaluated include leveraging Morfessor’s unsupervised morpheme discovery (Creutz

and Lagus, 2002) and devising its own dynamic programming-based strategies.

3 Proposed Approach

In this work we propose two different strategies that rely on linguistic information

to provide morphologically sound vocabulary definitions for their use in neural

networks applied to NMT.

token encoding phasevocabulary extraction phase

the dogs are in the house

training 
corpus 7 6 2 8 9 7 5 1

vocabulary

token identifiers

encodinglinguistic 
engine

linguistic 
engine

Fig. 1. Vocabulary extraction and token encoding phases.

In the following sections we describe both the vocabulary extraction phase and

the token encoding phase for each of them, as illustrated in Figure 1. Note that the

vocabulary extraction phase takes place before training the network and the token



6 N.Casas, J.A.Alonso, R.Fanlo, M. R. Costa-jussà, J.A.R. Fonollosa

encoding phase takes place both at training time (to encode the training texts) and

at inference time.

3.1 Morphological Unit Vocabulary

The goal of the Morphological Unit Vocabulary is to serve as a linguistically-

grounded subword vocabulary. This vocabulary definition strategy relies on the

morphological analysis of a sentence, which comprises a sequence of morphological

units that may be lexical morphemes, multi-morpheme stems, separate inflectional

morphemes or even fixed/semiflexible multi-word expressions, e.g. “in front of”.

During vocabulary extraction, all sentences in the training data are analyzed (see

details about such an analysis in Appendix A) and their morphological units are

used to elaborate the vocabulary, as shown in Figure 2. The specific information

from the node that is incorporated as a token comprises the string associated with

the node (being it a lexical morpheme, a word or a multi-word expression), together

with its category, which is loosely analogous to the Part-of-Speech (POS) tag (e.g.

noun stem (NST), verb stem(VST), noun flexion (N-FLEX)).

unit cat. #count
dog NST 413

s N-FLEX 150
work VST 75
the DET 1234

unit cat. token 
IDcat NST 0

s N-FLEX 1
dog NST 2
the DET 3
are VST 4
in PREP 5

training 
corpus

linguistic 
engine

vocabulary

morphological 
units

N most 
frequent

Fig. 2. Morphological subword vocabulary extraction.

In order to encode a text into a sequence of tokens, the text is analyzed by means

of a linguistic engine and the resulting morphological units are used as queries to

find the associated token indexes from the vocabulary table.

Given the high amount of possible tokens and the practical size limitations of a

vocabulary meant to be used with neural networks (described in Section 1), only

the N most frequent tokens from the training data are selected to be part of the

vocabulary.

If the analysis is driven by a lexicon, like in our case, this constrained vocabulary

implies a mismatch with the unconstrained vocabulary used by the linguistic engine:

when encoding the tokens of a text, the parse tree may contain terminal nodes that

we cannot encode because they are not part of the vocabulary, either because they

were not present in the training data or because their frequency of appearance

was not enough to grant an entry in the final size-limited vocabulary. In order to

eliminate such a vocabulary mismatch, once the Morphological Subword Vocabulary

is extracted, the lexicon used by the linguistic engine (which drives the extraction

of the morphological units) is pruned to remove any entry that is not part of the

extracted vocabulary. These results in the removal of low-frequency words that,
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the dogs are in the house

3 2 1 4 5 3 8

tokens

linguistic 
engine

DE
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FL

EX
s

VS
T

ar
e

PR
EP

in
DE

T
th

e
NS

T
ho

us
e

morphological units

Fig. 3. Token ID encoding process with the morphological unit vocabulary.

if encountered during the token encoding of a text, will be encoded as unknown

words.

Words that are not part of the training data are marked in the analysis as un-

known words. In order to cope with this OOV word situation, we can follow the

approach by Luong and Manning (2016) and reserve some of the tokens in the vo-

cabulary for character-based tokens. This way, any character found in the training

data has its own token in the reserve character-based token range. As with subword

vocabularies, this character-based subvocabulary makes <UNK> tokens not necessary

for Mophologic Unit Vocabularies.

token ID token info
0

~5

1000

special tokens: <pad>, <eos>

(optional) character-level tokens: a, 们, ي

morpho.units: (work, NST), (s, N-FLEX)

Fig. 4. Overall distribution of the morphological units vocabulary table.

The resulting layout of the tokens table is outlined in Figure 4, with an initial

range for special tokens like the end of sequence token or the padding token, an

optional small range for character-level tokens, and finally the largest range for the

morphological unit tokens.
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Some examples of the resulting Mophological Unit tokenization are:

• The dogs are in the house: (the, DET), (dog, NST), (s, N-FLEX), (are, VST),

(in, PREP), (the, DET), (house, NST), ⟨ /s ⟩
• My mom said I mustn’t tell lies: (my, DET), (mom, NST), (sai, VST),

(d, V-FLEX), (I, PRN), (must, VST), (n’t, ADV), (tell, VST), (lie, NST), (s, N-FLEX)

⟨/s⟩

3.2 Lemmatized Vocabulary

The goal of the Lemmatized Vocabulary is to decouple meaning from morpholog-

ical information in each word. For this, each word generates two tokens: one for

the lemma and one for the relevant morphological traits of the word (e.g. gender,

number, tense, case).

The source of linguistic information in this case is the morphosyntactic analysis

of the sentence, which provides information for each word about its POS tag and

its morphological features, such as gender, number, person, tense, case, etc. The

presence of these features is language-dependent (e.g. some languages lack case or

gender). Note that the morphological features do not contain information about the

semantics of the word, but only about the morphological traits that, when added

to the lemma, conform the specific surface form of the word.

During the vocabulary extraction phase, all sentences in the training data are

analyzed and the resulting lemmas and morphological features are used to elaborate

the vocabulary, as shown in Figure 5. For each word, the lemma is added to a

lemma frequency counter, and the morphological features are added to an analogous

morphological feature-set frequency counter.

lemma CAT #count forms

dog NST 413 dog, dogs

cat NST 150 cat, cats

be VST 75 be,is,are,..

squanch VST 1 squanch

lemma token ID

cat 10
house 11
dog 12
the 13
be 14
in 15

training 
corpus

linguistic 
engine

CAT morpholog. 
features token ID

NST singular 28000
NST plural 28001

VST
present, 

first person, 
singular

28002

lemmas

morphological feature sets
morphosyntactic 

analysis

N most 
frequent

Fig. 5. Lemmatized Vocabulary extraction.

In order to encode a text into a sequence of tokens, the text is analyzed by means

of the linguistic engine (see details about such an analysis in Appendix A). For each

word, we obtain the lemma and the set of its morphological features (e.g. verb in

present tense first person singular). For each lemma and for each morphological

feature set we then query the vocabulary table for the appropriate token ID. This
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is illustrated in Figure 6, where the reuse of morphological feature set token IDs is

highlighted in bold font.

the dogs are in the house

13 28021 12 28010 14 28002 15 28007 13 28021 11 28000

th
e

do
g

be in th
e

ho
us

e

lemmas morphological traits
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ET
:  

si
ng
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T:

  p
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l

VS
T:
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,  
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EP

D
ET

:  
si
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lar

morphosyntactic analysis

linguistic 
engine

Fig. 6. Token encoding phase with the lemmatized vocabulary.

As in the Morphological Unit Vocabulary (see Section 3.1), the mismatch between

the Lemmatized Vocabulary and the lexicon used for the morphosyntactic analysis

is solved by pruning the latter to only contain elements from the former. The same

way, unknown words are encoded by allocating a range of the token indexes for

character-based tokens and using such character-based subvocabulary to encode

any string that is marked as unknown. The distribution of the different elements

present in a Lemmatized Vocabulary is illustrated in Figure 7.

token ID token info
0

~5

1000

28000

special tokens: <pad>, <eos>

(optional) character-level tokens: a, 们, ي

lemmas: car, work

morpho.feature-sets: (NST, singular), (NST, plural)

Fig. 7. Overall distribution of the lemmatized vocabulary table.
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In order to cope with out-of-vocabulary words, we can reserve a range of tokens

for character-level tokens so that any word or numeral can be encoded whether it

was seen or not in the training data. The layout of the Lemmatized Vocabulary

table is outlined in Figure 7, where we can see an initial range for special tokens, an

optional range for character-based tokens, the largest range for the lemma tokens

and the final range for every possible morphological feature set found in the training

data. Note that another possibility to address the OOV words is to add the special

token <UNK> to represent them and have a post-processing step to handle such a

token; a frequent approach is to use the attention vector of sequence-to-sequence

models to replace any <UNK> token at the output with the word from the input

sentence with the highest attention value.

The nature of the linguistic engine we use gives us a morphosyntactic analysis

with some deviations from the original sentence: first, the words in the sentence are

rearranged to make turn its structure into a projective parse, if it was not projective

already. This way, the English sentence “Who do you want me to talk to?” is

rearranged as “You do want me to talk to who?”. A similar rearrangement occurs for

other cases like separable phrasal verbs, which are rearranged so that the preposition

sits next to the verb, and both form together a single multiword; this way “You let

me down” would be rearranged into “You let down me”, and “let down” would be a

single entity, with a single lemma and a single morphological feature set. This word

rearrangements and aggregations favor a semantical interpretation of the sentence

when used to represent the input to a neural system.

Given that the morphological information tokens always follow the lemma tokens,

and that there are words in natural languages that do only admit one surface form,

the lemmatized vocabulary can waste tokens that add no further information. In

order to avoid such a situation, we only include the morphological information

tokens if they are actually needed, that is, if the lemma they are associated to

admits more than one surface form and hence can be subject to morphological

variations.

Some examples of the resulting Lemmatized tokenization are:

• The dogs are in the house

lemma: the, morpho:(DET:(NU (PL SG))),

lemma: dog, morpho:(NST:(NU (PL) PS (3))),

lemma: be, morpho:(VST:(MD (IND) NU (PL) PF (FIN) PS (3)...)),

lemma: in, morpho:(PREP:()),

lemma: the, morpho:(DET:(NU (PL SG))),

lemma: house, morpho: (NST:(NU (SG) PS (3))),

⟨/s⟩
• My mom said I mustn’t tell lies:

lemma: my, morpho: (DET:(NU (PL SG)),

lemma: mom, morpho: (NST:(NU (SG) PS (3)),

lemma: say, morpho: (VST:(MD (IND) NU (SG)...),

lemma: I, morpho: (PRN:(CA (S) NU (SG) PS (1))),

lemma: must, morpho:(VST:(MD (IND) NU (SG)...),
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lemma: not,

lemma: tell, morpho:(VST:(MD (IND) NU (SG PL)...),

lemma: lie, morpho:(NST:(NU (PL) PS (3)),

⟨/s⟩

4 Experiments

In order to evaluate the vocabulary definition strategies proposed in Section 3, we

test them using machine translation as downstream task.

Neural Machine translation models compute the translation of a source sequence

of tokens x1, . . . , xT by predicting token by token of the translation sequence

y1, . . . , yT ′ , which has a potentially different length T ′:

p (y1, . . . , yT ′ |x1, . . . , xT ) =

T ′∏
t=1

p (yt|x, y1, . . . , yt−1)(1)

The currently dominant NMT architecture is the Transformer model (Vaswani

et al., 2017), which surpasses in translation quality the original sequence to sequence

models (Sutskever et al., 2011; Cho et al., 2014) and their variants with attention

(Bahdanau et al., 2015; Luong et al., 2015). In our NMT experiments, we make use

of the original implementation of the Transformer architecture by their authors, who

released it as part of the tensor2tensor library. We use a standard configuration

(transformer base), with the hyperparameter configuration shown in Table 1,

together with parameter averaging after convergence.

Table 1. Hyperparameters of the Transformer model for the NMT experiments.

attention layers 6

attention heads per layer 8

hidden size (embedding) 512

batch size (in tokens) 4096 (× 4 GPU)

training steps 20 epochs

vocabulary type word pieces

vocabulary size 32K

optimization algorithm Adam

learning rate warmup + decay

We performed experiments on English-German, French-English and Basque-

Spanish datasets. The purpose of choosing those languages is to test the proposed

vocabulary definition strategies both in morphologically rich languages (i.e. Basque,

German) and in morphologically simpler ones (i.e. English).

German nouns are inflected for number (singular and plural), gender (masculine,

feminine and neuter) and case (nominative, accusative, genitive and dative). French

nouns are inflected for number (singular and plural) and gender (masculine and

feminine). English nouns are only inflected for number (singular and plural) and
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case (nominative and genitive). Spanish nouns are inflected for number (singular

and plural) and gender (masculine and feminine). Basque nouns are inflected (or

rather they take suffixes for) number (singular, plural and “mugagabe”) and case

(nominative, ergative, genitive, local genitive, dative, allative, inessive, partitive,

etc.).

As far as verbs are concerned, German verbs have different inflections for 1st, 2nd

and 3rd person singular and 1st/ 3rd persons and 2nd person plural in the present.

French verbs are inflected for number and person, and gender in perfective com-

pound tenses. English finite present tense verbal forms are only inflected in the

3rd person singular. Spanish verbs are inflected for person (1st, 2nd and 3rd), num-

ber (singular and plural), tense (present, past, future), aspect (perfective, punctual

and progressive) and mood (indicative, subjunctive, conditional and imperative).

Basque verbs take different forms for person (1st, 2nd and 3rd, not only for the sub-

ject but also for the direct and indirect objects), number (singular and plural), tense

(present, past and future), aspect (progressive and perfect) and mood (indicative,

subjunctive, conditional, potential and imperative).

Also, German presents compounds, that is, concatenation of words with no sep-

aration in between:

bersetzungsqualitt → bersetzung (translation) + s + Qualitt (quality)

Speicherverwaltung → Speicher (memory) + Verwaltung (management)

For the English-German experiments, we make use of the WMT14 English-

German news translation data2. The characteristics of the used training dataset

are summarized in Table 2.

Table 2. Statistics of the German-English training data.

Corpus Sents. Words Vocab. Max.length Avg.length

German 96159821 3181111 2937 21.3

English
4520620

103664418 1909854 4225 22.9

For the French-English experiments, we make use of a combination of the News

Commentary corpus and the Europarl corpus. The characteristics of the resulting

training corpus are shown in Table 3

Table 3. Statistics of the French-English training data.

Corpus Sents. Words Vocab. Max.length Avg.length

French 64894699 145953 245 31.1

English
2085044

58984908 117311 237 28.3

For the Basque-Spanish experiments, we use the EiTB news corpus (Etchegoyhen

et al., 2016). Its characteristics are shown in Table 4.

2 http://www.statmt.org/wmt14/translation-task.html

http://www.statmt.org/wmt14/translation-task.html
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Table 4. Statistics of the Basque-Spanish training data.

Corpus Sents. Words Vocab. Max.length Avg.length

Basque 10102635 345351 318 18.3

Spanish
552752

15643597 225038 317 28.3

In order to evaluate the translation quality, we use BLEU (Papineni et al., 2002),

which consists of an aggregation of n-gram matches together with a penalty for

sentences shorter than the reference translations. The BLEU scores shown were

computed by means of the sacrebleu tool (Post, 2018) with the lower case setting.

Given the known problems BLEU presents (Callison-Burch et al., 2006), we also

include the METEOR (Banerjee and Lavie, 2005) scores, except for Basque, which

is not supported by METEOR.

Table 5. German-English and English-German translation quality (case-insensitive

BLEU score) with different source vocabulary strategies (* p < 0.05).

Vocabulary
de-en en-de

BLEU METEOR BLEU METEOR

word pieces 31.81 0.3537 26.35 0.4800 (baseline)

(Sennrich and Haddow, 2016) 30.20 0.3386 25.90 0.4653 (baseline)

lemmatized 31.14* 0.3521 25.49* 0.4697

morpho.units 31.33* 0.3505 25.89* 0.4764

Table 6. French-English and English-French translation quality (case-insensitive

BLEU score) with different source vocabulary strategies (* p < 0.05).

Vocabulary
fr-en en-fr

BLEU METEOR BLEU METEOR

word pieces 32.01 0.3554 34.36 0.5707 (baseline)

(Sennrich and Haddow, 2016) 27.60 0.3288 31.90 0.5430 (baseline)

lemmatized 29.66* 0.3404 33.68 0.5677

morpho.units 31.30* 0.3516 34.82 0.5758

Table 7. Basque-Spanish and Spanish-Basque translation quality (case-insensitive

BLEU score) with different source vocabulary strategies (* p < 0.05).

Vocabulary
eu-es es-eu

BLEU METEOR BLEU METEOR

word pieces 28.89 0.5072 24.48 - (baseline)

(Sennrich and Haddow, 2016) 24.16* 0.4654 21.45* - (baseline)

lemmatized 27.32* 0.4945 22.39* -

morpho.units 28.52 0.5045 23.83* -
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In Tables 5, 6 and 7 we can see the BLEU scores obtained by using different

source vocabulary definition strategies, for German↔English, English↔French and

Basque↔Spanish respectively. As baselines, we used a word piece vocabulary (Wu

et al., 2016) and the linguistic factored approach by Sennrich and Haddow (2016).

The word piece vocabulary was used for the original implementation of the Trans-

former model (Vaswani et al., 2017). The factored approach by Sennrich and Had-

dow (2016) is the standard way for incorporating linguistic information; we used

the same extra linguistic features as the authors, namely the lemma, POS tag and

syntactic dependency label; as a subword vocabulary is used, each feature is copied

to all subwords in the same word, and the position of the subword within the word

(beginning, end, middle) is also added as feature; all feature embeddings are con-

catenated together with the token embedding to form the subword representation.

In order to make this baseline comparable to the word piece baseline and to our

own work, we added the linguistic features to the Transformer model instead of the

original LSTM-based sequence-to-sequence with attention model from (Sennrich

and Haddow, 2016), keeping all the hyperparameters from the word piece baseline,

while using the same linguistic feature-related hyperparamers from (Sennrich and

Haddow, 2016), namely the feature embedding dimensionalities.

We used the implementation of the factored NMT Transformer from OpenNMT-py

(Klein et al., 2017) with custom improvements in order to support specifying vocab-

ulary sizes and embedding dimensions for the linguistic features. For the linguistic

annotations we used Stanford’s corenlp (Manning et al., 2014) for English and

French, ParZu (Sennrich et al., 2009, 2013) for German, like in the original work

by Sennrich and Haddow (2016), LucyLT (Alonso and Thurmair, 2003) for Basque

and Spacy (Honnibal and Montani, 2017) for Spanish. Note that the Morphologi-

cal Units and Lemmatized vocabularies include the character-level subvocabulary

described in Section 3 to handle OOV words.

In all cases, the target language vocabulary strategy are word pieces in order to

ensure a proper comparison.

As part of the experiments carried out, we also evaluate the influence of the

proposed morphologically-based vocabularies on the translation quality for out of

domain texts. For this, we use the WMT17 biomedical test sets, namely the English-

German HimL test set3 the French-German EDP test sets4, and a sample of 1000

sentences of the Open Data Euskadi IWSLT18 corpus (Jan et al., 2018), which

contains documents from the Public Administration.

Given that these benchmarks are not included in sacrebleu, we used Moses’

multi-bleu.pl script, together with the standard tokenizer. The out-of-domain

results are summarized in Tables 8, 9 and 10.

In order to assess the statistical significance of the differences between our pro-

posed approaches and the word pieces baselines for the in-domain and out-of-

domain test, we made use of the bootstrap resampling approach (Koehn, 2004;

3 http://www.himl.eu/test-sets
4 https://www.statmt.org/wmt17/biomedical-translation-task.html

http://www.himl.eu/test-sets
https://www.statmt.org/wmt17/biomedical-translation-task.html
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Riezler and Maxwell, 2005)5, taking 95% as significance level (p < 0.05). Statistical

significance is reflected in the result tables with a * mark next to the BLEU score.

Table 8. German-English and English-German translation quality in

out-of-domain text (* p < 0.05)

Vocabulary
de-en en-de

BLEU METEOR BLEU METEOR

word pieces 40.77 0.4059 36.75 0.5547 (baseline)

(Sennrich and Haddow, 2016) 37.64 0.3723 33.86 0.5160 (baseline)

lemmatized 41.35* 0.4059 36.04 0.5496

morpho.units 41.57* 0.4076 36.67 0.5549

Table 9. French-English and English-French translation quality in out-of-domain

text (* p < 0.05)

Vocabulary
fr-en en-fr

BLEU METEOR BLEU METEOR

word pieces 16.85 0.2122 19.58 0.3763 (baseline)

(Sennrich and Haddow, 2016) 14.89 0.1993 18.02 0.3607 (baseline)

lemmatized 15.74* 0.2086 18.34* 0.3681

morpho.units 16.25 0.2146 19.36 0.3749

Table 10. Basque-Spanish and Spanish-Basque translation quality in

out-of-domain text (* p < 0.05)

Vocabulary
eu-es es-eu

BLEU METEOR BLEU METEOR

word pieces 16.94 0.4439 5.78 - (baseline)

(Sennrich and Haddow, 2016) 13.80* 0.3715 7.01* - (baseline)

lemmatized 19.85 0.4348 8.75 -

morpho.units 20.66 0.4423 9.06 -

The obtained English↔German results suggest that, while for the morpholog-

ically poor language (English) the translation quality is the same as the strong

subwords baseline, the quality for the morphologically rich language (German) is

improved in a statistically significant way. On the other hand, for English↔French

results are weaker in the case of the lemmatized vocabulary, while the morphologi-

cal units vocabulary presents comparable performance to the word pieces baseline.

5 Moses script bootstrap-hypothesis-difference-significance.pl was used to com-
pute the significance tests.
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For Basque and Spanish, we see a very large improvement of both lemmatized and

morphological unit vocabulary, with to 3.5 BLEU points more than the word pieces

baseline for Basque→Spanish and 3.2 BLEU points for Spanish→Basque. We con-

clude that for the morphologically poor language, the use of linguistic vocabularies

actually harms the translation quality for in-domain data, while for a morphologi-

cally rich language there is statistical evidence that the quality is higher than the

strong subword baseline for out-of-domain data for German and comparable for

French. This way, for the morphologically rich language with in-domain test data

and for the morphologically poor language with out of domain data there is no

statistical evidence to distinguish the quality of our proposed approaches from the

strong subword baseline.

Table 11. German-to-English out-of-domain examples.

1 Baseline (...) and were treated in intensive care stations

Morpho.units (...) and were treated in intensive care units

Reference (...) and were receiving care in intensive care units

2 Baseline (...) pest printing was regularly monitored

Morpho.units (...) the skull pressure was regularly monitored

Reference (...) had regular monitoring of pressure in the skull

3 Baseline Our objective was to investigate whether the number of

people who died changed by the appointment of antithrombin.

Morpho.units Our objective was to investigate whether the number of

people who died changed by administering antithrombin.

Reference Our goal was to investigate whether the number of

people who died changed by giving antithrombin.

4 Baseline it is not known whether the peripheral Iridium inhibits

the development or progression of a pigment plum in practice.

Morpho.units it is not known whether peripheral irridotomy inhibits

the development or progress of pigment glaucoma.

Reference it is unknown whether peripheral iridotomy reduces

the development or progression of pigmentary glaucoma.

5 Baseline (...) the use of Neuamine inhibitors

Morpho.units (...) the use of neuraminidase inhibitors

Reference (...) the use of neuraminidase inhibitors

Table 11 shows some examples comparing the German-to-English outputs from

out-of-domain text of the baseline and the Morphological Unit Vocabulary. The

examples show that our linguistically-driven morphological segmentation has a clear

impact on choosing more appropriate lexical units. Improvements come either from

infrequent or specific words (e.g. glaucoma, irridotomy) or from generic words that

are adequate for the particular context (e.g. units, administering).
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5 Discussion

The proposed linguistic knowledge-based vocabulary definition strategies offer a

way to profit from morphosyntactic information for downstream tasks like MT.

The two main differences with other approaches like factored NMT (Sennrich and

Haddow, 2016) derive from the use of a semantics-aware linguistic engine and from

its non-aggregative management of linguistic information.

About the linguistic engine used, given that its ultimate goal is to perform rule-

base translation, it needs to analyze the semantics of the input sentence, and uses

it to disambiguate when multiple possible interpretations of a word are possible.

When the disambiguation is not possible (e.g. when the subject of a sentence is

not present and the verb conjugation admits more than one interpretation), the

uncertainty is reflected in the analysis and our proposed vocabularies use such an

information to compose the encoded representation. Another peculiarity of the used

linguistic engine is that its analyses are driven by a lexicon. This makes it possible

to adjust it to match the neural vocabulary in order to avoid mismatches between

word and multi-word representations in both sides.

The non-aggregative encoding strategy makes it possible for the systems address-

ing the downstream tasks to directly use linguistic information, but also makes the

resulting sequences longer. In order to further characterize the impact in sequence

length, we computed the distribution of the ratio of the sequence lengths of both the

Morphological Unit Vocabulary and the Lemmatized vocabulary with respect to a

normal space and punctuation-based tokenization. The vocabularies are extracted

from the training data, while the distribution is computed over a sample of 1000

sentences of the same dataset. We compute such a distribution for a configuration

of our vocabularies where the OOV words are encoded as an <UNK> token and also

where they are handled by a character-level subvocabulary, in order to understand

the influence of this type of words over the final sequence length. The distribution

of the same ratio for a word pieces vocabulary is also computed as reference. Figure

8 shows the distributions for the Morphological Unit Vocabulary, while Figure 9

shows it for the Lemmatized Vocabulary.

As we can see in Figures 8 (Morphological Units) and 9 (Lemmatized), the se-

quence length with the proposed morphologically-grounded vocabularies with re-

spect to the number of words in the sentence is higher than with word pieces (Wu

et al., 2016), especially when the character-level subvocabulary is used to cope with

the OOV words.

As shown in the figures, the differences in length depend on the morphological

characteristics of the specific language. For English, with a simpler morphology,

the ratio of sequence length with the proposed morphology-based vocabularies with

respect to word pieces is higher than with German, French or Basque, which have

richer morphology and hence needs also more word pieces for a single sentence.

This difference in length may affect the quality depending on the model’s ability

to handle long-range dependencies. For instance, when multi-head attention mech-

anisms are known to be able to properly handle such type of dependencies, while

RNNs present problems in that regard (Hochreiter, 1991; Bengio et al., 1994).
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English German
Wordpieces
Morpho. Unit + char
Morpho. Unit + unk

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Spanish

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Basque

0.5 1.0 1.5 2.0 2.5 3.0 3.5

French

Fig. 8. Distribution of the ratio of sequence length with the Morphological Unit

Vocabulary and a standard word-based tokenization.

The non-aggregative encoding strategy also allows using neural architectures

without any modification, unlike the factored approaches like those by Sennrich

and Haddow (2016) and Garcıa-Martınez et al. (2016), which need to account for

the different representation spaces for lemmas and factors and keep separate em-

bedding tables, which multiply the number of hyperparameters to tune, namely the

vocabulary size and embedding dimensionality for each of the linguistic features.

In this sense, the results obtained by factored approaches using the same hyper-

parameter configuration as Sennrich and Haddow (2016) offer inferior translation

quality compared to the word piece vocabulary; this can be attributed to the non

optimality of the hyperparameters for our specific datasets and the usage of the

Transformer architecture instead of the original LSTM sequence-to-sequence with

attention model from (Sennrich and Haddow, 2016).

Therefore, compared to word piece approaches and to the linguistic approach by

Sennrich and Haddow (2016), the mophological vocabularies approach is suitable

for scenarios where the source language is a morphologically rich language like

German, where the chosen neural architecture can handle long-range dependencies,

like the Transformer model (in order to cope with the longer sequences), and where

the available training data does not match the domain of the text the model is

going to be fed as input at inference time.
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English German
Wordpieces
Lemmatized + char
Lemmatized + unk

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Spanish

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Basque

0.5 1.0 1.5 2.0 2.5 3.0 3.5

French

Fig. 9. Distribution of the ratio of sequence length with the Lemmatized

Vocabulary and a standard word-based tokenization.

6 Conclusion

Our experiments show that the proposed morphology-based vocabulary definition

strategies provide improvements or maintain comparable quality in the translation

of out-of-domain texts for languages that present a rich morphology like German

and Basque. We also observe that no significant loss is suffered in translation quality

for morphologically poor languages like English in that type of texts. Further work

will consist of testing in other low-resourced NLP tasks which can benefit from

more linguistic information.

Qualitatively, whenever we inject linguistic information in our neural systems,

we are progressing in the interpretability of such systems. In this work we pro-

pose to do a linguistically-driven segmentation of our vocabulary, which enables

morphologically-aware interpretation of the performance in downstream tasks. This

is a line of research to be pursued in the future, especially in relation to the use of

linguistic vocabularies for text generation, for instance, using the proposed vocab-

ularies for the target side in NMT tasks.

A Rule-based Machine Translation as Source for Linguistic Knowledge

In this work, we propose to make use of linguistic information to define vocabularies

that confer certain desirable properties to the neural networks that use them.



20 N.Casas, J.A.Alonso, R.Fanlo, M. R. Costa-jussà, J.A.R. Fonollosa

There are multiple possible sources of linguistic information that could help define

NMT vocabularies. Some options include using stemming algorithms, lemmatizers,

POS-taggers and syntactic analyzers. While there exist several tools offering such

capabilities, their availability is normally constrained to a single language, and their

foundations are heterogeneous, including statistically-grounded, dictionary-based,

or using machine learning approaches. In this work, we opt for the Rule-based Ma-

chine Translation (RBMT) Lucy LT system (Alonso and Thurmair, 2003). This

tool relies on knowledge distilled and formalized by human linguists in the form of

lexicons and rules, and provides a consistent source of linguistic knowledge across

several languages, including English, German, Spanish, French, Russian, Italian,

Portuguese and Basque. Apart from translations, it provides linguistic analysis

byproducts at different levels, which are used here as sources of linguistic informa-

tion to devise the vocabularies proposed.

The Lucy RBMT system divides the translation process into three sequential

stages: analysis, transfer and generation, as illustrated in Figure 10.

parse 
+ 

analysis
transfer generationsource 

sentence
MIR 
tree

transfer 
tree

target 
sentence

word morphology features
… … …
… … …
… … …

monolingual lexicon

analysis grammar

source language

word morphology features
… … …
… … …
… … …

monolingual lexicon

generation grammar

target language

source 
word

target 
word applicability

… … …
… … …
… … …

transfer grammar

bilingual lexicon

source to target

Fig. 10. Workflow of rule-based machine translation systems.

The analysis phase receives a sentence in the source language. After being tok-

enized, the sentence is morphologically analyzed, leveraging a monolingual lexicon

to obtain all possible morphological readings of each word in the sentence. For

instance, for the English word “works”, the two valid morphological readings are:

“work” (NST) + “s” (N-FLEX)

“work” (VST) + “s” (V-FLEX)

where NST stands for Noun Stem, N-FLEX for Nominal Inflectional Suffix, VST for

Verb Stem and V-FLEX for Verbal Suffix.

A chart parser together with an analysis grammar converts the sequence of valid

morphological readings of the words comprising the sentence and outputs a parse

tree. The terminal nodes of the parse tree (i.e. the leave nodes) depend on the

monolingual lexicon used during the parse phase. Based on entries in such a lexicon,

the parser tries to find inflectional and derivational constructions.

An example of parse tree is shown in Figure 11.
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⟨s⟩

Fig. 11. Parse tree for sentence “The dogs stopped barking”.

The terminal nodes of the parse tree are the source of the morphologic analysis

used to create the Morphological Unit Vocabulary described in Section 3.1.

The parse tree is then applied a second set of rules that annotate, rearrange

and mutate the original parse tree nodes, to output an analysis tree, which re-

sembles a projective constituency tree (non projective constructs are rearranged

into projective versions). In this tree, words are no longer separated into different

nodes representing their morphological parts, but are assembled into a single node

with features expressing its morphological traits (e.g. gender, number, verbal tense,

person, case).

There is an extra post-processing sub-stage called mirification that performs

the final retouches, outputting the MIR (Metal Interface Representation6) tree.

An example of MIR tree is show in Figure 12. While there is a noticeable depth

reduction in comparison with the parse tree for the same sentence shown in Figure

11, there are also other non-evident differences: flexions have been merged with

their associated lemmas, and the morphological information has been condensed as

node features, which are not show in these tree representations.

The whole analysis phase is only dependent on the source language and can there-

6 Metal MT is the name of the system developed by the University of Texas and Siemens
on which the Lucy RBMT system was initially based (Lamiroy and Gebruers, 1989)
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Fig. 12. MIR tree for sentence “The dogs stopped barking”.

fore be reused for language pairs with the same source language. This phase relies

in a monolingual lexicon that contains entries for words in the source language, to-

gether with metainformation that allows their inflection and morphological deriva-

tion. It also relies in an analysis grammar, that is, a set of declarative rules that are

matched to the input tokens and structures and allow the iterative construction of

the parse and analysis trees.

The terminal nodes (i.e. leaves) of the MIR tree are used as the source of the

morphosyntactic analysis of the sentence used to create the Lemmatized Vocabulary

described in Section 3.2. In the MIR tree, terminal nodes represent at least one word:

during the analysis phase, any flexion node is merged with the main word node

and such a node gets annotated with morphological features like gender, number,

person, tense, case, etc. The presence of these features is language-dependent (e.g.

some languages lack case or gender). The morphological features are disambiguated

as much as possible taking information from other parts of the sentence (e.g. the

person of a verbal form may be disambiguated by the sentence subject). Where

not possible, the uncertainty is expressed (e.g. stating all the possible persons the

verbal form can be in).

The Lucy analysis takes into account the presence of multi-word expressions

(MWE) and handles them as a single element when they are included in the lexicon.

This helps in capturing the semantics of such constructs during the translation

process. This includes not only fixed MWEs (e.g. “in front of”), but also flexible

MWEs. For instance, verbal constructions like “take into account” are identified

and grouped into a single element.

In the transfer stage, the MIR tree is annotated and mutated into a transfer

tree that is suitable as input for the generation phase. There are different types of

transfer operations, such as language-pair dependent operations (e.g. mapping of

idiomatic expressions), contextual transfer and lexical transfer.

The transfer stage is language-direction dependent. It relies on a bilingual lex-

icon that contains word and expression translations, together with their context-

dependent applicability criteria. It also relies on a transfer grammar, that is, a set

of imperative rules that implement the needed transformations and annotations.



Linguistic knowledge-based vocabularies for NMT 23

The generation stage receives as input the transfer tree and generates the fi-

nal translation, performing any needed reorderings and adaptations. This stage is

only dependent on the target language (i.e. it can be reused for any source side

language). It relies on a monolingual target language lexicon, together with a gen-

eration grammar, that is, a set of imperative rules to generate the output sentence.
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