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Abstract

An entity mention in text such as “Washington” may correspond to many different named
entities such as the city “Washington D.C.” or the newspaper “Washington Post.” The goal
of named entity disambiguation is to identify the mentioned named entity correctly among
all possible candidates. If the type (e.g. location or person) of a mentioned entity can be
correctly predicted from the context, it may increase the chance of selecting the right
candidate by assigning low probability to the unlikely ones. This paper proposes cluster-
based mention typing for named entity disambiguation. The aim of mention typing is to
predict the type of a given mention based on its context. Generally, manually curated type
taxonomies such as Wikipedia categories are used. We introduce cluster-based mention
typing, where named entities are clustered based on their contextual similarities and the
cluster ids are assigned as types. The hyperlinked mentions and their context in Wikipedia
are used in order to obtain these cluster-based types. Then, mention typing models are
trained on these mentions, which have been labeled with their cluster-based types through
distant supervision. At the named entity disambiguation phase, first the cluster-based
types of a given mention are predicted and then, these types are used as features in a
ranking model to select the best entity among the candidates. We represent entities at
multiple contextual levels and obtain different clusterings (and thus typing models) based
on each level. As each clustering breaks the entity space differently, mention typing based
on each clustering discriminates the mention differently. When predictions from all typing
models are used together, our system achieves better or comparable results based on
randomization tests with respect to the state-of-the-art levels on four defacto test sets.

1 Introduction

We humans name things around us in order to refer to them. Many times, different

things can have the same name. For example, when you visit the disambiguation

page1 for the word “Washington” in Wikipedia, you see tens of cities and counties in

1 Visit https://simple.wikipedia.org/wiki/Washington (disambiguation)
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the United States that are named “Washington.” Moreover, the same word is used as

a hyperlink title to refer to several different articles throughout Wikipedia. Things

that can be denoted with a proper name are called named entities. The Knowledge

Base (KB) of a machine keeps the list of all known named entities to that machine.

When they are mentioned in a document, the task of identifying the correct named

entity that a mention refers to among all the possible entities in the KB is called

Named Entity Disambiguation (NED). Figure 1 gives three example sentences with

the mention “Washington”, each referring to a different named entity. For a human,

it is not hard to figure out which entity is being referred to by considering the clues

in the surrounding context of the mention. However, from a machine point of view,

each mention may refer to any one of the hundreds of named entities in its KB.

Washington is averaging 5.3 yards per carry this season with both Bynum and Nacua out 
there at the same time

But as Washington and his men marched westward over the Appalachian Mountains, they 
received stunning news

In Washington, the number of signatures required to qualify a directly initiated state statute 
for the ballot is equal to 8 percent of the votes cast for the office of governor

person
George Washington:

football team
Washington Huskies:

state
State of Washington:

Fig. 1. Mentions of different named entities with the same surface form

“Washington.”

NED, in general, is done in two steps. In the first step, the candidate named

entities in the KB are identified based on their lexical similarities to the given

entity mention. In the second step, which is the actual disambiguation step, each

candidate is scored based on some extracted features. The one with the highest score

is returned as the predicted named entity corresponding to the input mention. In

this field, the reference KB is most commonly based on Wikipedia, as is in our case.

In the literature, various approaches have been proposed to solve the NED task.

Early studies used entity-specific local features like the similarity of the candidate

to the document topic in order to score them individually (Bunescu and Pasca 2006;

Mihalcea and Csomai 2007). Cucerzan (2007) proposed the idea that entities in a

document should be correlated with each other and consistent with the topic of that

document. How well a named entity is connected to the surrounding named entities

is measured by coherence. They tried to optimize the coherence by including global

context-based features that take into account the surrounding candidates into the

disambiguation decision. Later studies looked at collective disambiguation, where

all candidates are considered together in the decision process, rather than individu-

ally (Kulkarni et al. 2009). Most of the collective models employed computationally

complex graph-based approaches in order to find the sub-graph of candidates with

the highest coherence. As the deep learning approaches advanced, Long Short-term

Memory (LSTM) (Phan et al. 2017) models have been used to capture the long-

range relations between words in the context, and attention-based neural networks

have been used (Ganea and Hofmann 2017) to pay more attention to the most rel-

evant segments in the surrounding context of mentions. Entity embeddings, which
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are continuous vector-based representations of named entities, have been optimized

to detect the relations between the candidate named entities and their context

(Yamada et al. 2016). A number of recent studies have investigated utilising the

category hierarchy of Wikipedia for Named Entity Disambiguation. Raiman and

Raiman (2018) proposed to integrate the symbolic structure of the category hi-

erarchy of the named entities in Wikipedia in order to constrain the output of a

neural network model. Murty et al. (2018) used the same principle of making use of

type hierarchy, but proposed a hierarchically-aware training loss. Onoe and Durrett

(2020) followed a similar approach, but rather than predicting the entities directly,

they only modeled the fine-grained entity properties, which represent detailed entity

type information. Then, they used that as a filtering mechanism at the disambigua-

tion step. In addition to all these new techniques, more and more studies have been

using Wikipedia as a vast resource for representation learning from its text and the

hyperlinked mentions in the text.

Predict Types of 
Mentions in NED 

data sets

Train Ranking 
Model with 

Predicted Types

Disambiguate 
NEs in Test sets

Train Mention 
Typing Model

Obtain 
Cluster-based 

Types

Fig. 2. The Workflow of the Proposed System (NE: Named Entity, NED: Named

Entity Disambiguation).

This research focuses on identifying the type of a mentioned named entity first

and then using this information to improve the prediction of the identity of that

named entity at the disambiguation step. The first step is called mention-level en-

tity typing, or mention typing in short. It is the task of predicting the type (e.g.

politician, city etc.) of a single mention given its surface form and its surround-

ing context. Prior studies on this task use manually curated type taxonomies, like

Wikipedia categories, and assign each named entity mention to one or more such

types. However, considering there are millions of named entities, such manual cura-

tion is inherently incomplete. Hence, we propose to obtain types automatically in

an unsupervised fashion and use these types to improve NED. The workflow of the

proposed approach is summarized in Figure 2. In the first step, we cluster named

entities based on their contextual similarities in Wikipedia and use the cluster ids

as types, hence cluster-based types. These types no longer correspond to conven-

tional discrete types as exemplified in Figure 1. Instead, each cluster-based type

represents a cluster of named entities that are mentioned in similar contexts. Since

the entities with the same conventional type tend to occur in similar context, it is

also likely to obtain clusters that implicitly correspond to these types, like person

or football team. In the second step, we train a mention typing model on the hy-

perlinked mentions in Wikipedia, which have been labeled with their cluster-based

types through distant supervision. In the third step, mentions in the NED data sets

are classified with this typing model. The fourth step involves using those type pre-

dictions as features for training an entity candidate ranking model. In the final step,
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for each entity mention in the NED test sets, the trained ranking model selects the

most possible entity candidate in the KB. We use a simple feed-forward neural net-

work model to score the candidates based on local context-independent and global

context-based features, which include the aforementioned predictions. Moreover, in

order to maximize the contribution from the context, we use five different ways

of representing entities, which leads to five different clusterings of them and, thus,

five cluster-based types for each entity. By using five different typing predictions

together, our system achieves better or comparable results based on randomization

tests (Yeh 2000) with respect to the state-of-the-art levels on four defacto test sets.

We publicly share our tools and data sets2.

Here is a summary of our contributions to the literature:

1. This research is the first at using clustering to obtain cluster-based mention

types and using these to improve the NED task.

2. We introduce five different ways of cluster-based mention typing based on

representing the context around a mention at three different levels. We show

that improved NED results are achieved when the different typing models are

used together.

3. In the candidate generation phase, we propose using the candidates of the

cooccurring mentions in the same document, which leads to higher gold recall

values than previously reported results.

The rest of this paper is organized as follows. In the next section, we give the

related work on NED, mention typing, and clustering. Section 3 introduces cluster-

based mention typing, where the methods for clustering named entities and then

predicting the cluster-based types are presented. Section 4 describes how to dis-

ambiguate the entities. It starts with our candidate generation method and then

explains the local context-independent and global context-based features used to

represent the mentions for disambiguation. It ends with the description of our rank-

ing model for disambiguation. Section 5 gives the details on our experimental setup.

Next, in Section 6, we present our results on the mention typing model and the dis-

ambiguation model, along with a detailed error analysis. Finally, Section 7 concludes

the paper with a discussion and future work.

2 Related Work

Named entity disambiguation is one of the most studied tasks in the Natural

Language Processing (NLP) literature. There are various approaches to formalize

the ranking of the entity candidates for disambiguation given an entity mention in

text. Early studies (Bunescu and Pasca 2006; Mihalcea and Csomai 2007) ranked

the candidates individually by using features like similarity between the candidate

and the test document. Cucerzan (2007), hypothesizing that entities should be cor-

related and consistent with the topic of the document, used features that optimize

the global coherence. Ratinov et al. (2011) and Yamada et al. (2016) used a two-step

2 Visit https://tabilab.cmpe.boun.edu.tr/projects/ned w cmt/ for more information.
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approach where they select the most likely candidates in the first step, calculate

their coherence score based on their surrounding selected candidates and then use

that score in the second step (i.e., the ranking step). Due to its simplicity, we also

adapt this two-step approach. Later studies (Kulkarni et al. 2009) considered the

ranking collectively, rather than individually. Graph-based approaches (Han et al.

2011; Hoffart et al. 2011) were proposed for collective disambiguation, where the

topic coherence of an entity is modeled as the importance of its corresponding

node in a graph. Several studies were conducted where different algorithms were

used to model node importance, including the personalized version of the PageR-

ank algorithm (Pershina et al. 2015), probabilistic graphical models (Ganea et al.

2016), inter-mention voting (Ferragina and Scaiella 2010), random walk (Han et

al. 2011; Guo and Barbosa 2016), minimum spanning tree (Phan et al. 2018), and

gradient tree boosting (Yang et al. 2018). Unless heuristics are used, these models

are, in general, computationally expensive, as they consider many possible relations

between the nodes.

In addition to the way to rank, representing the context, mention and entity is

another important aspect in NED. Han and Sun (2012) and Kataria et al. (2011)

used topic modeling to obtain word-entity associations. However, such models learn

a representation for each entity as a word distribution. Baroni et al. (2014) argued

that counting-based distributional models are usually outperformed by context-

predicting methods, such as embeddings. That said, improved embedding calcula-

tions with word2vec (Mikolov et al. 2013) led to many studies. Fang et al. (2013),

Zwicklbauer et al. (2016a), and Yamada et al. (2016) investigated learning entity

and word embeddings jointly, which enables a more precise similarity measurement

between a context and a candidate. They used the text in Wikipedia as the main

source for entity representations. In addition, the knowledge graph of Wikipedia has

also been exploited (Radhakrishnan et al. 2018). Zwicklbauer et al. (2016b) learned

multiple semantic embeddings from multiple KBs. In our study, we obtain the entity

embeddings with their EAD-KB approach. However, instead of using multiple KBs,

we make use of the context of the same KB in five different levels. When it comes

to deep learning approaches, Phan et al. (2017) employed Long Short-Term Mem-

ory (LSTM) networks with attention mechanism. Ganea and Hofmann (2017) used

attention mechanism over local context windows to spot important words and Liu

et al. (2019) expanded this to the important spans with conditional random fields.

While these approaches used neural networks with attention mechanism to model

the named entities and mentions together and pick the best matching candidate

entity, we used a simple LSTM to model the type prediction of the mentions only

and then used that information as an extra clue for a simple feed-forward neural

network-based ranking model. Other studies (Sun et al. 2015; Phan et al. 2017; Sil

et al. 2018) modeled context using the words located at the left- and right-hand

sides of the mention. Either the sentence or a small window is used as the context

boundary. Similar to these studies, we model the left and right context separately.

In addition, we propose representing the local and global context separately, in

three different ways, which in our results is empirically shown to provide a richer

way of characterizing entity mentions.
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Mention typing is the task of classifying the mentions of named entities with

their context dependent types. It is a relatively new study area and a specialized

case of corpus-level entity typing, which is the task of inferring all the possible

type(s) of a named entity from the aggregation of its mentions in a corpus. Some

of the recent studies on corpus-level entity typing used the contextual information

(Yaghoobzadeh and Schutze 2015), the entity descriptions in KB (Neelakantan and

Chang 2015; Xie et al. 2016) as well as multi-level representations at word, char-

acter and entity level (Yaghoobzadeh and Schutze 2017). The way Yaghoobzadeh

and Schutze (2017) represent the entities in terms of these three levels with in-

creasing granularity resembles our way of considering the context at different scales

by representing local and global context separately. In case of the mention-level

entity typing or mention typing in short, Ling and Weld (2012) proposed an en-

tity recognizer called FIGER, which uses a fine-grained set of 112 types based on

Freebase (Bollacker et al. 2008) and assigns those types to mentions. They trained

a linear-chain conditional random fields model for joint entity recognition and typ-

ing. Yosef et al. (2012) derived a very fine-grained type taxonomy from YAGO

(Mahdisoltani et al. 2013) based on a mapping between Wikipedia categories and

WordNet (Miller 1995) synsets. Their taxonomy contains a large hierarchy of 505

types organized under 5 top level classes (person, location, organization, event,

and artifact). They used a support vector machine-based hierarchical classifier to

predict the entity mention types. These studies usually created their training data

sets from Wikipedia using a distant supervision method, which is the practice that

we also employed. Mention typing has also recently been used to improve NED.

Raiman and Raiman (2018) used Wikipedia categories to incorporate the symbolic

information of types into the disambiguation reasoning. Gupta et al. (2017) used

type, description and context representations together to obtain entity embeddings.

Murty et al. (2018) employed CNN with position embeddings to obtain a represen-

tation of the mention and the context. Onoe and Durrett (2020) formulated NED

as purely a mention typing problem. However, all of these studies rely on manually

crafted type taxonomies. The main difference of our approach from these studies is

that we generated types automatically. We use clustering to partition the named

entity space of our KB into clusters, each holding entities that occur in a similar

context. Then, each cluster is assigned as a type to the entities in that cluster.

This makes our cluster-based types more context oriented than manually crafted

types. Moreover, since we obtain multiple clusterings based on different contextual

scopes, we ended up having multiple type sets, each exhibiting the characteristics

of the context differently, unlike the traditional manually crafted type sets in the

literature.

Clustering is a powerful tool to partition the data set into similar groups with-

out any supervision. There is a large variety of methods in the literature. They

can be mainly grouped into centroid-based clustering, such as K-means (Steinley

2006), density-based clustering, like DBSCAN (Ester et al. 1996), distribution-based

clustering, like the Expectation-Maximization algorithm (Jin and Han 2011), and

hierarchical clustering. Among them, centroid-based clustering, and more specifi-

cally K-means, is one of the most practical algorithms due to its simplicity and time
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complexity. One of the early application areas of clustering includes the clustering

of search results (Rijsbergen 1979) in the Information Retrieval field. Later studies

categorized named entities in order to improve document retrieval (Pasca 2004;

Teffera 2010). In the NLP field, clustering has been used to group similar words to-

gether. Brown and Mercer (1992) introduced Brown clustering which assumes that

similar words have similar distributions of words to their immediate left and right.

While this method assigns each word to one cluster (i.e., hard clustering), Pereira

et al. (1993) proposed a distributional clustering method which calculates the prob-

ability of assigning a word to each cluster (i.e., soft clustering). Word clustering has

been used to improve many tasks like statistical language modeling (Kneser and

Ney 1993), text classification (Slonim and Tishby 2001), and induction of part-of-

speech tags (Clark 2003). In the Named Entity Recognition task, Ren et al. (2015)

clustered text patterns that represent relations between certain types of named en-

tities in order to better recognize their mentions in text. In mention typing, Huang

et al. (2016) proposed a joint hierarchical clustering and linking algorithm to cluster

mentions and set their types according to the context. Their approach to clustering

is similar to ours. However, they rely more on knowledge base taxonomy in order

to generate human-readable types. In our case, we do not need to have human-

readable types, as mention typing is merely an intermediate step in order to obtain

additional contextual clues for named entity disambiguation. In the NED task, the

term “Entity Clustering” has exclusively been used for the co-reference resolution

(CR) task (Cardie and Wagstaff 1999), which is to detect and group the multiple

mentions of the same entity within a document or multiple documents (i.e. cross-

documents). If this task is done on mentions that have no corresponding entries

in KB, it is called “NIL clustering” (Ratford et al. 2011). In these studies, hier-

archical agglomerative clustering is mainly used due to its efficiency as it merges

similar mentions into a new group recursively in a bottom-up approach. When CR

is done within a document, the clustering only considers the merge combinations

within that document, which can be in the order of thousands. However, the number

of combinations in cross-document CR can be in the order of millions, which re-

quires more efficient clustering algorithms. Some of the proposed methods include

a distributed Markov-Chain Monte Carlo approach to utilize parallel processing

(Singh et al. 2011), a discriminative hierarchical model that defines an entity as

a summary of its children nodes (Wick et al. 2012) and the use of latent features

derived from matrix factorization of the surrounding context (Ngomo et al. 2014).

Moreover, Singh et al. (2010) proposed a discriminative model which is trained on

a distantly-labeled data set generated from Wikipedia. A recent review of the CR

literature is provided by Beheshti et al. (2017). CR has also been used in a joint

task with entity linking (Monahan et al. 2011; Dutta and Weikum 2015). Apart

from using mention clustering directly, Hendrickx and Daelemans (2007) clustered

10000 lemmatized nouns into 1000 groups based on syntactic relations in order to

learn features that are useful for the CR task. While clustering has been explicitly

used on mentions of named entities, to the best of our knowledge, our work is the

first study on clustering millions of named entities. Moreover, we represent entities

at different contextual levels and do the clustering for each level.
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3 Cluster-based Mention Typing

In the mention typing task, named entities in a KB are in general assumed to

be assigned to manually-crafted predefined type(s), and the task is to classify the

mentions of named entities to these predefined types based on their context. Con-

sidering that there can be millions of named entities in a KB, manually designed

predefined types are inherently incomplete. Therefore, in this study we propose

using clustering to define the entity types in an unsupervised fashion. We cluster

named entities that occur in similar contexts together and assign the correspond-

ing cluster id of an entity as a type label to that entity. As Mikolov et al. (2013)

argued, similar words occur in similar contexts, hence have similar word embed-

dings. That said, similar entities should have similar entity embeddings. When we

cluster named entities based on these embeddings, similar entities are expected to

be grouped into the same cluster and each cluster is expected to contain entities

of similar types based on common contextual clues. Note that these cluster-based

types do not necessarily correspond to regular named entity types, and they do

not need to. In our work, their only purpose is to represent the context so that

the named entity disambiguation model can decide how likely it is that a certain

candidate named entity is mentioned in the given context.

Cluster NEs 
and get 

Cluster-based 
Type            

for each NE

Label NE 
Mentions 
w/Cluster- 

based Types 
in Wikipedia

Learn to 
Predict 

Cluster-based 
Type of 

Mentions

Obtain
Embeddings

of Named 
Entities (NEs) 

in KB

Fig. 3. The Four Steps of Cluster-based Mention Typing.

As depicted in Figure 3, our cluster-based mention typing involves four steps.

First, we calculate the entity embeddings based on some contextual representation.

In the second step, clustering is applied to group similar entities based on their

embeddings. As we get the clusters, we assign the cluster id as a cluster-based type

to each entity in that cluster. In the third step, to train a typing model, we prepare

a training data set by automatically labeling the hyperlinked mentions of named

entities in Wikipedia articles with the assigned cluster-based types. In the final

step, we train a typing model with this auto-generated training data. At test time,

the typing model only uses the mention surface form and its surrounding context

to predict the cluster-based type. These cluster-based type predictions are used as

extra features at the entity disambiguation step.

In this study, we cluster entities in five different ways based on different represen-

tations of entities. We obtain four embeddings for each entity based on four different

(three contextual, one synset based) representations and use them to produce four

separate clusterings of the entity space with K-means. To increase the variety, we

also use Brown clustering, which requires no embeddings but takes simpler input.

At the end, we get five different mention typing models, one for each clustering.
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Before explaining each step in the following subsections, we first describe how to

represent the context of a mention in three different formats.

3.1 Three Different Representations of a Mention’s Context

The context of a mention is basically the content that resides at the left- and right-

hand side of the mention. These are called left and right contexts, respectively. In

this research, we represent this context in three different ways. Figure 4 shows a

document at the left-hand side where three entity mentions are underlined. At its

right, it shows the three different ways of representing the context specific to the

mention “Democratic Party”. For that particular mention, the dimmed sections are

not part of the used context.

Fig. 4. A Sample Document and the Different Types of Context used for the

Named Entity Mention of “Democratic Party”.

Word-based Context (WC) is a traditional context in the form of a sequence

of words adjacent to the mention at its left- and right-hand side. This context has

a local viewpoint, since only the words of the sentence that holds the mention are

used. This is shown in the second box of Figure 4, where the words in the same

sentence with the mention are kept as the word-based context. Surface Form-

based Context (SFC) keeps the surface forms of the mentions at the left- and

right-hand side of each mention, excluding all other words in between as shown

in the third box. Compared to WC, this includes words farther than the mention

into the context. They reflect the topic of the document better than the other

words. Entity-based Context (EC) only consists of entity ids surrounding the

mention, excluding all the words as shown in the fourth box. Considering the fact

that cooccurring entities are related and consistent with the topic of the document,

EC also reflects the topic of the document. Both SFC and EC present a global

viewpoint at the document level compared to the local viewpoint of WC that is

mostly based on the sentence level. Having said that, cluster-based types generated

with WC-type context may act more like traditional named entity types, as the

surrounding words might reflect their semantic roles better. On the other hand,

cluster-based types based on SFC and EC may act more like topic labels.
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3.2 Obtaining Entity Embeddings

We obtain four different embeddings for each entity in KB by using the Wikipedia

articles as training data. Three of those embeddings are based on the three different

ways of representing the context of the named entity mentions in text. The fourth

embedding is based on the synsets (or types in BaseKB terminology) in the YAGO

and BaseKB data sets that are associated with each entity. Figure 5 overviews the

process.

Embeddings of
Named Entities

word2vec E

word2vecf

word2vec

YAGO
+

BaseKB

word2vecf

Re-Formatted 
Context

Wikipedia
Articles

WC

ESFC

EEC

ESynC

Word-based 
Context 

Surface-based 
Context

Entity-based 
Context

Synset-based 
Context

Fig. 5. Steps of Obtaining Entity Embeddings by Using Different Types of

Context.

WC-based Entity Embeddings (EWC) are obtained by using the word2vec

tool (Mikolov et al. 2013) on the Wikipedia articles. Word2vec gets the input

as a sequence of tokens and calculates an embedding for each token (i.e., target

token) in the given input based on its window of surrounding tokens at the left-

and right-hand sides. Note that word2vec does not use the sentence boundaries

as context boundaries as in the definition of WC. Instead, it uses a window of

words around the mention. In order to obtain the embeddings for the entities, we

reformat the Wikipedia articles based on the EAD-KB approach (Zwicklbauer et al.

2016b). We replace the hyperlinked mention (i.e., a-href tag and the surface form

together) of each named entity with its Wikipedia id, which is a single unique token

that corresponds to that entity. As we run the word2vec tool on these reformatted

articles, we obtain embeddings for both regular words and entity ids.

SFC-based Entity Embeddings (ESFC) do not rely on the immediate ad-

jacent words of the entity mention as in EWC . It is hard to represent this in a

linear bag-of-words context as word2vec expects. Hence, we use the word2vecf tool

(Levy and Goldberg 2014), which is an altered version of word2vec. While word2vec

assumes a window of tokens around the target token as context, word2vecf allows
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us to define the context tokens arbitrarily, one-by-one for the target token. It takes

the input in two columns, where the first column holds the target token and the

second column has a single context token. As exemplified in Figure 6, the input

file contains one row for each target and context token pair. We select a window

of mentions around each hyperlinked mention in Wikipedia and use the words in

their surface forms to create the input data for the word2vecf tool.

Barack_Obama
Barack_Obama
Barack_Obama
Barack_Obama
...

United
States
Democratic
Party
...

Input to get ESFC w/word2vecf:

Barack_Obama
Barack_Obama
Barack_Obama
Barack_Obama
...

wordnet_person
wordnet_us_president
wordnet_politician
wordnet_african_american
...

Input to get ESYN w/word2vecf:

Fig. 6. Input Samples from the Example Contexts in Figure 3 to Obtain ESFC

and ESY NC with the word2vecf Tool.

EC-based Entity Embeddings (EEC) are calculated by using the entity ids

of the surrounding mentions in the given EC. In this case, we remove all the words

in the Wikipedia articles and only keep the entity ids of hyperlinked mentions as

tokens. As we run word2vec on these reformatted articles, we get an embedding

for each mentioned named entity, which is calculated based on a window of the

mentioned named entities around it.

Synset-based Entity Embeddings (ESY N ) are the only type of entity embed-

dings that do not reflect the context-based similarity of entities, but their synset-

based similarity. In WordNet, a synset is a set of synonymous words grouped to-

gether. WordNet uses the synset records to define a hypernym hierarchy between

them to reflect which synset is a type of which other. YAGO v3.1 (Mahdisoltani

et al. 2013) uses those synsets as category labels to represent certain types of

named entities, such as person, musician, city etc. Moreover, YAGO extends the

WordNet synsets with its own specialized synsets, prefixed “wikicat” (e.g., word-

net person 100007846 is a hypernym of wikicat Men in the YAGO synset taxon-

omy). In YAGO data set, named entities are labeled with one or more synsets.

In addition to YAGO, we also use BaseKB Gold Ultimate Edition (Bollacker et

al. 2008) data set which is based on the last Freebase dump of April 19, 2015. It

contains over 1.3 billion facts about 40 million subjects, including 4 million from

Wikipedia. It is similar to YAGO, except it has its own simple type taxonomy,

independent of WordNet synsets. In our experiments, we combine the type defini-

tions from both YAGO and BaseKB data sets and call them synsets for the sake

of simplicity. By combining them, we aim to have a synset for as many named

entities as possible. We then use the associated synsets of named entities as their

context tokens, as word2vecf allows us to define custom context. We give the entity

ids in the first column and the associated types in the second column as shown in

Figure 6. In this process, we do not use all available synsets though. We replace

any specialized synset (ones starting with wikicat *) with its hypernym WordNet
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synset. We also filter out some BaseKB types that do not reflect type information

(e.g., base.tagit.topic and types with user names).

3.3 Clustering Named Entities

Now that we have entity embeddings, we can use them to cluster named entities.

In order to do that, we primarily use the K-means algorithm due to its simplicity

and time complexity. It is a centroid-based clustering algorithm. After setting the

number of centroids (i.e. K) manually at the beginning, it assigns every data point

to the nearest centroid. In this study, we use the euclidean distance between the

entity embedding and the centroid vectors. After the assignment step, the centroids

are recomputed. This process continues till a stopping criterion is met3. In addition

to K-means, we use the Brown clustering which is originally introduced to group

words that have similar distributions of words to their immediate left and right.

Both algorithms have time complexity that is linear in terms of the number of

items being clustered (Steinbach et al. 2000) provided that other factors are fixed.

Considering that we have over five million named entities in KB, this property

makes them very eligible for our experiments.

K-means C

Clusterings of
Named Entities

EX
X

C
BRO

Brown
Entity based 
Context

Fig. 7. Creating Different Clusterings of Named Entities with the K-means and

Brown Clustering Algorithms, where X ∈{WC,SFC,EC,SynC}.

As in Figure 7, we give entity embeddings (EX) to K-means as input. In case

of Brown, we use the Wikipedia articles in the Entity-based context format. After

getting clusters (CX), the cluster ids are assigned to entities as cluster-based types.

It is important to note that each clustering of the named entity space breaks that

space into groups. In terms of the named entity normalization task, the discrimina-

tive power of a clustering depends on how well it distinguishes the correct candidate

for a named entity mention from the other candidates. The ideal case occurs when

the correct named entity for a mention is placed in a different cluster from the

other most likely candidates and the cluster of the mention is also predicted to be

the same as its corresponding named entity. Using a high number of clusters makes

3 We stop iterating when there is no more than 1% change in the assignment of entities
to the clusters. We also allow at most 50 iterations.
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the clustering more discriminative as each cluster corresponds to a lower number of

entities. However, that also makes the typing model task harder as it increases the

ambiguity. In Section 5.3, we explore the right number of clusters for our experi-

ments. Moreover, since we have five different clusterings and each breaks the entity

space differently, using a combination of them is expected to make the aggregate

discriminative power even higher. Hence, using multiple clusterings can be seen as

an alternative to using a higher number of clusters. Note that Section 5.3 also ex-

plains our heuristic to select the best combination (in terms of number of clusters

for each clustering) in order to achieve a better performance at the disambiguation

step.

3.4 Preparing Training Data for the Typing Model

So far, we have described our approach for clustering named entities and assigning

the cluster ids to entities as types. In order to train a typing model to predict the

type of an entity mention in an input text, we need training data that includes men-

tions labeled with these types. We create the training data from the hyperlinked

mentions in Wikipedia articles using distant supervision. We label each hyperlinked

named entity mention with its assigned cluster-based type. Since we have five dif-

ferent clusterings, we produce five different training data sets.

As described in Section 3.1, we represent the context of a mention in three differ-

ent formats and three of our clusterings (namely, CWC , CSFC , CEC) are obtained

according to the corresponding context formats. Take CWC for example. Clusters

in CWC hold entities that are similar to each other in terms of word-based context

(WC). It is compatible to train a typing model for CWC with input in the WC for-

mat because labels are created from the characteristics that made up the input in

that format. Same is true for CSFC that goes with the surface form-based context

(SFC) and CEC with entity-based context (EC). Figure 8 exemplifies three training

instances in WC, SFC, and EC formats, respectively. They are generated based on

the example in Figure 4. Each instance consists of three input fields in addition to

the label; surface form of the hyperlinked mention, as well as left and right context

of that mention. Surface form is the common input. Like surface form, contexts in

the first two cases are in the form of words as exemplified in Figure 8. In case of

the third case, it is in entity ids.

Label Surface Form Left Context Right Context

Cluster_10 Democratic Party A member of the , he was the first African American to be elected to the presidency .

Cluster_232 Democratic Party Barack Obama U.S.

Cluster_43 Democratic Party Barack_Obama United_States

Fig. 8. Example Training Instances from Figure 3 in WC, SFC, and EC Formats,

Respectively.

In case of CSynC and CBRO, we use word-based context and surface form-based

context, respectively. In order words, we use the same formatted input for CWC and
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CSynC pair and CSFC and CBRO pair with the exception of the labels. Note that

clusters in the CSynC hold entities that are associated with similar synsets. Synsets

are like semantic categories and local context is better suited to infer which synsets

the mentioned entity is associated with. Hence, word-based context is used. On the

other hand, using global context is better suited to infer CBRO based types. We

choose to use the surface form-based context over the entity-based context. This is

due to the fact that surface form-based context can easily be obtained by gathering

the surface forms of the surrounding named entities. However, entity-based context

is only available after we get the best predictions from the first stage of our two-

stage disambiguation approach described in Section 4. In other words, by using the

surface form-based context, we are making the Brown-based mention typing model

available at the first stage, which increases the success rate of the first stage.

3.5 Specialized Word Embeddings for the Typing Model

When it comes to predicting the cluster of a mention with word-based context, it

is common practice to use word embeddings that are obtained from a data set that

is similar to the domain data. In our case, it is Wikipedia, which is a widely used

source to obtain word embeddings in the literature. In our experiments, we did not

use regular word embeddings calculated with word2vec. Instead, we propose two

word embeddings that are more discriminative at predicting the cluster of a given

mention. We use these word embeddings together to represent the word-based input

for the mention typing model.

Cluster-centric Word Embeddings (WCC): We hypothesize that word em-

beddings, which are obtained from the data that reflect the characteristics of the

problem, may be more effective at solving that problem. In this case, the problem

is to predict the cluster-based type of a mention. Hence, we inject a piece of cluster

information into the context in hope that word embeddings are being influenced by

their presence and become better at predicting the cluster-based type. In order to

accomplish that, in Wikipedia articles, we filter out the html tag (i.e., a-href) of the

named entity mentions and leave its surface form alone. At the same time, we add a

special token to the right-hand side of that surface form. That token corresponds to

the assigned cluster id of the mentioned named entity. Embeddings of those words

that are close to the specific cluster token are expected to be affected by that and

become indicators of that cluster. We use the word2vec tool on this modified data

set. Since the clustering of named entities is done at training time and does not

change based on the given test input, the same embeddings that are obtained at

training time are used at the test time. We obtain different word embeddings for

each of the five named entity clusterings, since entities are assigned to different

clusters in each case.

Surface Form-based Word Embeddings (WSF ): While word embeddings in

WCC are only based on the words surrounding the named entity mention, another

type of word embedding can be obtained with the words inside the surface forms
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exclusively. In order to do that, we use the Anchor Text data set4 of DBpedia (Auer

et al. 2007). It contains over 150 million (entity id, surface form) records, one for

each mention occurrence in Wikipedia. We extract around fifteen million unique

such records for almost all named entities in our KB, along with their frequencies.

We name this data set as the Surface Form Data Set. Since this data set only

includes the surface forms of the entities, but not their surrounding sentences, we

use the associated cluster ids of entities as context tokens with the word2vecf tool.

In other words, for each word in the surface form of a named entity, the cluster id

of that entity is given as a context word, which results in (surface form word, clus-

ter id) pairs. We also take the frequencies of the surface form records into account.

The more frequent one surface form is, the more important it is. Therefore, while

creating the training data set for WSF from the (surface form word, cluster id)

pairs, the number of instances included for each surface form word is proportional

to the logarithm of its frequency in the Surface Form Data Set.

3.6 Model to Predict Cluster-based Types

Now that we generate training data that includes labeled mentions with their cor-

responding named entities’ cluster-based type, we are ready to train a mention

typing model to predict those types. At the end, we end up having five typing mod-

els: Word model based on CWC , Surface model on CSFC , Entity model on CEC ,

Brown model on CBRO and Entity model on CEC .

We experiment with two different typing model architectures: Long Short-Term

Memory (LSTM) and Convolutional Neural Network (CNN) models. CNNs are

widely used for text classification, whereas LSTMs are effective at modeling se-

quences of items. Both models receive the same three-part input described in the

previous section. However, since we have two sets of word embeddings for surface

words as described in 3.5, we can represent the Surface-part as two inputs for both

models, one with WCC and the other with WSF . In our experiments, we seek to

compare both models and pick the best performing one. Details on these models

are given below.

3.6.1 LSTM-based Typing Model

In this model, each input part is given to a separate LSTM layer and their out-

put is concatenated and fed into the final softmax layer as illustrated in Figure 9.

Surface1 gets the Cluster-centric Word Embeddings (WCC), which are better at

discriminating cluster-specific words. Surface2 gets the Surface Form Word Em-

beddings (WSF ), which are optimized for discriminating cluster-specific surface

words seen in large set of surface forms. We use dropout layers (Srivastava et al.

2014) before and after the LSTM layers in order to prevent overfitting. Our prelim-

inary experiments led us to using bi-directional LSTM (BiLSTM) for the Surfacex

4 We use the English version of the Anchor Texts data set from DBPedia Downloads
2016-10 available at https://wiki.dbpedia.org/downloads-2016-10.
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and uni-directional one for the left and right ones. Moreover, reversing the order of

words in the right context produces better results. We argue that words that are

closer to the mention are more related to the mention and play a more important

role at the prediction.

Concat

Softmax

Left 
LSTM

Surface1 
BiLSTM

Surface2 
BiLSTM

Right
LSTM

CC
: W

SF
: W

Fig. 9. LSTM-based Model for Mention Typing.

3.6.2 CNN-based Typing Model

CNN-based model is very similar to the LSTM-based model, except that the input

parts are given to the convolution layers. As pictured in Figure 10, each input part

is fed into the six convolution layers with kernel sizes 1 through 6. These layers

model the sequence of words in different lengths, like n-grams in a language model.

We use hyperbolic tangent as an activation function over the convolution layers

and apply max pooling layer prior to merging all into one layer before feeding to

the softmax layer. Like in the LSTM-based model, we use dropout after the word

embeddings and before the softmax layer.

Concat

Maxpool MaxpoolMaxpool Maxpool

Left 
Convolution
w/Kernels of 
Length 1-6

Surface1 
Convolution
w/Kernels of 
Length 1-6
(CCWE)

Surface2 
Convolution 
w/Kernels of 
Length 1-6

(SFWE)

Right 
Convolution
w/Kernels of 
Length 1-6

Softmax CC
: W

SF
: W

Fig. 10. CNN-based Model for Mention Typing.

4 Disambiguating Named Entities

Disambiguation of named entities is often formulated as a ranking problem. First, a

set of candidate named entities for a given mention are obtained. Then, each of them

is scored individually, resulting in a ranked list of candidates. Finally, the highest
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ranked candidate is returned as the final prediction. In our experiments, we use a

two-stage approach for ranking. At the first stage, we train our model and rank

the candidates with the available features and get a ranking probability for each

candidate. As a result of the first stage, the highest scored candidates are used to

define the entity-based context shown in Figure 4. This allows us to run the Entity

typing model, which accepts the context in terms of entities only. At the second

stage, we use those ranking probabilities to define new features that encapsulate

future insight. With the addition of new features, we again train our ranking model

and get the final ranking of the candidates. In the following subsections, we first

describe how we obtain the candidates. Next, we explain our disambiguation model

by first describing the features we used and then, the model itself.

4.1 Candidate Generation

In the literature, most of the studies do not mention how to index and search entities

to generate candidates based on the surface form of a mention. Some of the ones

(Hachey et al. 2013; Hakimov et al. 2016) providing this information report that

they use Apache Lucene5. Lucene provides fuzzy search property which tolerates

a certain percentage of mismatch at character level with the Damerau-Levenshtein

distance. However, such off-the-shelf tools consider each mention individually and

do not use contextual clues from other mentions in the same document. Moreover,

they do not provide additional information, such as the type of the matched surface

form, which we use as a feature (i.e. surface-form-type-in-binary in Table 1) at the

disambiguation step. Hence, we implemented our own candidate generation tool.

For the indexing, as in (Hoffart et al. 2011), we use all available surface forms

of named entities in DBpedia and Wikipedia (including anchor texts, redirect and

disambiguation records). In other studies, while some (Ling et al. 2015; Ganea and

Hofmann 2017) used additional web corpora, others (Ratinov et al. 2011; Phan et

al. 2018) used only Wikipedia. We index surface forms based on character tri-grams.

In case of searching, the pseudocode of our search procedure is in Algorithm 1.

Our algorithm works in two stages. In the first stage, it starts with searching

named entities matching with the mention surface form (Lines 17-25). It first re-

trieves indexed surface forms that have at least a certain amount of character tri-

gram overlap (T=60%) with the search query (i.e., mention surface form). Then, it

picks the ones that have the ratio of the edit distance at the character level to the

query length less than certain value (E=25%). If not, then it checks for the word

overlap. It can tolerate up to one word mismatch (D=1) if the query contains more

than one word (W=2). After this selection, all matched candidates are returned.

This first stage is similar to what off-the-shelf third party indexing and search tools

provide.

In the second stage of our algorithm, we expand the candidates of each mention

with the candidates from other mentions in the same document, since the same

5 Available at http://lucene.apache.org/

http://lucene.apache.org/
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Algorithm 1 Pseudocode of the candidate generation algorithm

1: procedure getMatchedNamedEntitiesForDocument(set of mentions, N)
2: matchedEntitiesForMentions = []
3: for each mention in set of mentions do
4: matchedEntities = getCandidatesForMention(mention)
5: add matchedEntities to matchedEntitiesForMentions
6: for each mentiona and mentionb pair in set of mentions do
7: if mentiona is completely seen in mentionb then
8: add matchedEntitiesb to matchedEntitiesa

9: for each mentiona in set of mentions do
10: for each matched entity in other mentions do
11: for each most frequently cooccurring entity of matched entity do
12: for each surface form of cooccurring entity do
13: if mentiona is completely seen in surface form then
14: add that entity to matchedEntitiesa

15: return scoreCandidatesThenPickTopN(matchedEntitiesForMentions, N)

16: procedure getCandidatesForMention(query)
17: matchedEntities = []
18: for each entity in the knowledge base do
19: for each surface form of entity do
20: if trigramOverlap(surface form, query) ≥ T% then
21: if editDistance(surface form, query) ≤ E% of query length then
22: add entity to matchedEntities
23: else if numWords(surface form) ≥W and numWordDiff(surface form,

query) ≤ D then
24: add entity to matchedEntities

25: return matchedEntities

entity can be mentioned more than once. We do this in two steps. The first step

looks at if the surface form of one mention is completely seen in the other’s (Lines

6-8). For example, “Barack Obama” can be first mentioned in full name and then

as “Obama” in the same document. The second expansion step uses the most

frequently cooccurring named entities (Lines 9-14) observed in Wikipedia articles.

We only include the ones that have a surface form that includes the mention surface

form in itself. At the end, we order the final set of candidates by scoring each

candidate based on a specific formula6 (Line 15) and return the highest scored 100

candidates as the final output.

4.2 Ranking Features for Disambiguation

Each candidate is scored according to certain properties. These properties are

named as features and their scalar values are turned into a vector which is given to

the ranking model as input. In our experiments, we use a total of twelve features.

6 We observed that the following candidate scoring gave the highest recall on
the AIDA.train set: score = entity frequency + num of occ in test doc*100 -
jaro winkler distance*10000, where entity frequency is the total number of times the
entity is seen in our Surface Form Data Set. We observe that Jaro-winkler distance
performs better than Levenstein edit distance in this final scoring stage.
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In order to understand how they are calculated, we first give the definitions of the

relevant variables, sets of values, and functions in Table 1.

Variable: Description

SFm Surface form of the mention

SF best
c Closest surface form of the entity c wrt SFm given by the candidate generator

Dc Doc2vec embedding of the candidate entity c

Dt Doc2vec embedding of the test document t

Ec Entity embedding of the candidate entity c

TSF
c Type of the surface form SF given by the candidate generator

T e
c Type of the candidate entity c

Pn
c Probability given by the typing model n for the entity c being in its cluster-based type

Rc Ranking probability of candidate entity c calculated by the first stage ranking

Set: Description

Sc Set of all surface forms for the candidate entity c seen in Surface Form Data Set

Cm Set of all candidates for the mention m

Ct
c Set of all occurrences of the same candidate c in test document t

Cprev
c Set of all previous occurrences of the candidate c wrt the mention m

Cnext
c Set of all future occurrences of the candidate c wrt the mention m

CtopNxM Set of highest ranked N candidates in the surrounding window of M mentions

Function: Description

freq(SFc) Number of times the surface form SF is seen for entity c in Surface Form Data Set

dist(A,B) Levenstein edit distance between two strings A and B

cos(A,B) Cosine similarity between two vectors A and B

log(A) Natural logarithm of the scalar value A

avg(
∑

) Average of the sum of the values

binarize(A) Binarized code of the number A

argmax(S) The maximum value among the set of values S

argsecmax(S) The second maximum value among the set of values S

Table 1. Variables, Sets, and Functions used at Defining Ranking Features.

Variables in Table 1 represent either strings, scalar values, or vectors. SFm and

Dt are the only variables that are not related to the candidate. Whereas, Dc, Ec,

and T e
c are candidate-specific and calculated offline, hence they do not depend on

the mention being considered. The rest of the variables depend on the mention.

Sets are variables that represent a set of values. For example, Sc corresponds to

all the surface forms of the candidate entity c. The rest includes a set of candidate

entities that are determined based on a specific position. Functions are applied on

these variables as well as sets in order to define more detailed features.

We group the ranking features into four main categories as shown in Table 2.

In the literature, the features used for disambiguation are basically divided into

two main categories, namely local context-independent and global context-based

features. In order to make it more explicit, we further break down the global features

into three sub-categories. Those are mention-level, document-level and second stage

features.

Local Features are those that consider the individual properties of the candidate

without taking into account any other candidate. For example, the feature surface-

form-edit-distance considers the edit distance between the most similarly matched
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Local Features :

surface-form-edit-distance dist(SF best
c , SFm)

entity-log-freq log(
∑

s∈Sc
freq(SF s

c ))

surface-from-type-in-binary binarize(T
SFbest

c
c )

entity-type-in-binary binarize(T e
c )

idt-typing-prob Pn
c , where n ∈ {Word,Surface,Synset,Brown,Entity}

Mention-level Features :

avg-surface-form-edit-distance avg(
∑

c′∈Cm dist(SF best
c′ , SFm) )

max-diff-surface-form-log-freq argmaxc′∈Cm freq(SFc′ )-freq(SFc), if freq(SFc) is not max

freq(SFc) - argsecmaxc′∈Cm freq(SFc′ ), otherwise

max-diff-doc-similarity argmaxc′∈Cm cos(Dc′ ,Dt)-cos(Dc,Dt),if cos(Dc,Dt) is not max

cos(Dc,Dt) - argsecmaxc′∈Cm cos(Dc′ ,Dt), otherwise

max-diff-idt-typing-prob argmaxc′∈Cm Pn
c′ - Pn

c , if Pn
c is not max

Pn
c - argsecmaxc′∈Cm Pn

c′ , otherwise

Document-level Features :

max-idt-typing-prob-in-doc argmaxc′∈Ct
c
Pn

c′

Second-stage Features :

max-ranking-score argmaxc′∈C
prev
c

Rc′ if Cprev
c is not empty

argmaxc′∈Cnext
c

Rc′ if Cnext
c is not empty & TSF

c′ = WikiID

0 , otherwise

max-cos-sim-in-context argmaxc′∈CtopNxM
cos(Ec, Ec′ ) * Pn

c′

Table 2. List of Features used by the Ranking Model and their Descriptions.

surface form (SF best
c ) of the candidate in our Surface Form Data Set and the actual

surface form (SFm) of the mention. The more distant they are, the less likely the

candidate is the actual one. In order to take into account the popularity of the

candidate, the feature entity-log-freq uses the total number of times that named

entity is seen in the Surface Form Data Set. It uses the logarithm to scale down

and smooth the values. The more popular the candidate is, the more likely it might

be mentioned. Another local feature doc-similarity is the cosine similarity between

the doc2vec7 embeddings of the test document and the Wikipedia article of the

candidate. The similarity between the two corresponds to the similarity between

the context of the test document and the context in which the candidate is expected

to be mentioned.

The two features entity-type-in-binary and surface-form-type-in-binary are binary

vectors that encode the type of the candidate entity and the surface form, respec-

7 We train Gensim’s Doc2vec tool on the Wikipedia articles with embedding size=300 and
set the other parameters to their default values in order to obtain document embeddings.
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Type Description

E
n
ti

ty
T

y
p

e
s Entities labeled w/following YAGO synsets and BaseKB types

Person wordnet person 100007846, people.person, ...
Organization wordnet organization 108008335, organization.organization, ...
Location wordnet site 108651247, location.location, ...
SportsTeam wordnet team 108208560, wordnet club 108227214, ...
Misc Any other dissimilar synset or type

S
u
rf

a
c
e

F
o
rm

T
y
p

e
s

When ...
WikiID SF is same as the MainTitle of the entity
Redirect SF is labeled as ”redirect” in Wikipedia dump files
Disambiguation SF is labeled as ”disambiguation” in Wikipedia dump files
FirstName the entity is Person-type and SF is a known first name (eg. John)
Surname the entity is Person-type and SF is a known surname (eg. Smith)
FirstWord SF is the first word in the main title of the entity
LastWord SF is the last word in the MainTitle of the entity
PrefixPhrase SF is prefix phrase in the MainTitle of the entity
SuffixPhrase SF is suffix phrase in the MainTitle of the entity
BeforeComma SF is the phrase before comma in the MainTitle of the entity
OrgAcronym SF comprised of first letters of MainTitle of the entity

Table 3. Entity Types and Surface Form (SF ) Types in SFDB.

tively. These types are based on the categorization of the entities and surface forms

defined in Table 3. We assign a type to each named entity in our KB based on

whether it is labeled with one of the pre-defined YAGO synsets or BaseKB types.

We define five main types. While Person, Organization, Location and Misc types

are common in the named entity recognition literature, we added the SportsTeam

type since many mentioned entities in AIDA data sets are of this type. In case of

the surface form types, we assign one or more applicable types to the SF best
c . Other

than Redirect and Disambiguation types in Table 3, the rest is based on the simi-

larity between the surface form and the MainT itle of the entity, which is obtained

from its Wikipedia ID by replacing any underscore character with the blank space

and discarding any phrase given in parenthesis. Certain combinations of these two

types can give clues about the likelihood of the candidate. For example, it is more

likely that mention of Person type entity is made in surface form of type FirstWord

or Organization type entity in OrgAcronym type surface form.

The final local feature idt-typing-prob is the probability (Pn
c ) of labeling the men-

tion with the pre-assigned cluster-based type of the candidate by the typing model

n. More precisely, when the typing model is applied to the input text containing

the mention, it outputs the probability of the mention belonging to each of the

cluster-based types. As we know the pre-assigned cluster-based type of the candi-

date, the probability of that type is set as Pn
c . Since we have five different typing

models, this feature contributes with five separate values. Note that each feature

that includes Pn
c contributes similarly.

Mention-level Features consider the relative value of an individual candidate’s

feature with respect to the other candidates’ for the same mention (Cm). The first

feature avg-surface-form-edit-distance takes the average of all surface-form-edit-
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distance feature values of Cm. Averaging helps us represent the edit distance of an

average candidate. We can argue that the higher it is, the more likely that none of

the candidates are the actual entity being mentioned. The features prefixed with

max-diff- compare the candidate’s corresponding feature value with respect to the

best value seen for the mention. The difference between the two values is used as

the feature value. If the value is already the best, then it uses the second best value.

The higher positive value it is, the more likely that the candidate is the actual one.

Or, the lower negative value it is, the less likely that the candidate is the one. max-

diff- converts a context independent value to a context dependent by representing

it with respect to the highest (or the next highest) seen value.

Document-level Features consider all occurrences (Ct
c) of the same candidate

in the same test document. We have one such feature and it uses the highest seen

Pn
c value for the considered candidate. When the same entity is seen as a candidate

in multiple mentions, each has its own Pn
c value depending on the position of the

mention in the document. The highest of them increases the chance of the other

occurrences of the same candidate with the lower Pn
c in the same document.

Second-stage Features are only available after the ranking model with the

previously described features is trained and applied on the candidates once. Second-

stage features use the ranking probability of each candidate (Rc). The first feature

max-ranking-score keeps the highest Rc among the previous occurrences of the same

candidate (Cprev
c ) in the same document. If there is no previous occurrence of the

candidate before the considered mention, then it looks at the future occurrences

(Cnext
c ) only if TSF

c′ of that candidate is WikiID. This means that having an occur-

rence of the candidate with high Rc increases the chance of the next occurrences

of the same candidate in the same document. The same effect for the early occur-

rences can only happen if the future occurrence is mentioned in its full title. The

second feature max-cos-sim-context uses the cosine similarity between the entity

embeddings (Ec) of the candidates8. This feature is set to the highest cosine sim-

ilarity value between the candidate and the highest ranked N candidates in the

surrounding window of M mentions.

4.3 Neural Network Model for Disambiguation

Our neural network for ranking candidate named entities is a two-layer feedforward

neural network and one softmax layer9 at the top. We use a dropout layer after

each feedforward layer. We turn the ranking task into a binary classification task,

where we classify each candidate as true or false candidate at the training time and

then use the output probability of the true class to rank the candidates at the test

time. For each candidate, we create its own input vector, which includes all numeric

values for the features described in Section 4.2. Since we do re-ranking, we have two

8 We use cooccurrence based entity embeddings obtained with the word2vecf tool. We
set the window size to 5 and number of iterations to 20 on top of default settings.

9 In our experiments, we observed that using the softmax layer instead of logistic regres-
sion in the PyTorch provides higher results for this binary classification task.
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disambiguation models in our experiments, the first one does the initial ranking and

the second one does the final ranking based on additional ranking insight obtained

from the first model. In both cases, we use the same network architecture, except

the fact that the first model does not include the second-stage features. The values

for those features are calculated from the output of the first model. Hence, in case

of the test sets, we first need to run the first model on them and get the ranking

scores for each candidate. After that, we can run the second model to get the final

ranking results.

5 Experimental Setup

5.1 Training and Test Data Sets

5.1.1 Data Sets for the Mention Typing

We derived our data sets from Wikipedia which includes over five million well-

written documents, each describing one named entity. Most of the mentions of

named entities and concepts in the documents are manually annotated with an

HTML anchor tag. However, Wikipedia Editing Guidelines suggest authors to an-

notate only the first occurrence of a named entity in the Wikipedia articles, which

means that most of the mentions are not annotated in the articles. Hence, we try

to auto-annotate the remaining occurrences in the documents. To do this, we look

for the word sequences (with greedy match) that are previously annotated in the

same document and then auto-annotate them at the rest of the document. This

process increases the number of mentions considerably with an acceptable error

rate. However, we did not try to annotate mentions with the partial names.

Num. of Average Num. of
Data Set Instances Tokens per Context

WC-SmallTrain 981,000 22.2
WC-LargeTrain 9,828,000 22.2
WC-Test 9,700 22.2
SFC-SmallTrain 500,000 28.9
SFC-LargeTrain 5,000,000 28.9
SFC-Test 50,000 29.0
EC-SmallTrain 500,000 14.8
EC-LargeTrain 5,000,000 14.8
EC-Test 50,000 14.8

Table 4. Statistics on the Data Sets for the Mention Typing Models.

After this pre-processing step, we create a separate data set for each context rep-

resentation. Note that we represent the context in three different levels as described

in Section 3.2. In case of word-based context (WC), we break the Wikipedia articles

into sentences and collect only those sentences that have at least one named entity

mention and the length is between 10-50 words. We use the sentence boundary de-

tector tool and tokenizer in the Stanford CoreNLP (Manning et al. 2014). We ended
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up having 46.8M such sentences. Out of those, we randomly selected sentences and

created WC-* data sets. In case of surface form-based context (SFC), we start with

the same sentences and then for each mention, we get the mention surface forms

of the previous and next 10 mentions in the same document. Again we randomly

selected instances and created SFC-* data sets. For the entity-based context (EC),

around each mention we collected the previous and next 10 named entities in the

same document. This is called EC-* data sets. Sample training instances are already

exemplified in Figure 8 in Section 3.4. For each type, we created small and large

training sets and a test set as given in Table 4. The number of instances and the

average number of tokens in the context (left and right combined) are also provided.

5.1.2 Named Entity Disambiguation Data Sets

There are a number of publicly available data sets with different characteristics

for the NED task. For training, development and test purposes, we use AIDA

(Hoffart et al. 2011), which is derived from Reuters news articles of the CoNLL

2003 NER task. Being the widely used and largest NED data set, it comes in three

pieces: AIDA.train (train), AIDA.testa (dev), and AIDA.testb (test). We report

the results on AIDA-testb as in-domain evaluation results, since all our training is

done on AIDA-train. In order to see how the model that is trained on AIDA.train

achieves on the data sets that exhibit different characteristics, we test that model on

a number of other test sets. This is called cross-domain evaluation. For this purpose,

we use MSNBC (Cucerzan 2007), AQUAINT (Milne and Witten 2008) and

ACE2004 (Ratinov et al. 2011), which are the next three most frequently used test

sets. ACE2004 is a subset of ACE2004 Coreference documents, while AQUAINT

contains news articles from the Xinhua, New York Times and Associated Press.

Since they are also used for wikification, they include Wikipedia concepts apart

from named entities. As the recent studies used the revised versions of these data

sets prepared by Guo and Barbosa (2016), we report our results on these revised

versions as well. Apart from these, we also consider three more test sets in order

to observe how our system performs on shorter documents. KORE50 (Hoffart et

al. 2012) includes 50 short sentences on various topics such as celebrities, music

etc. Most of the mentions are single-word such as first names, which makes the

deduction of the actual mentioned named entity very difficult. RSS-500 (Roder

et al. 2014) includes short formal text collected from a data set containing RSS

feeds of the newspapers compiled in (Goldhahn et al. 2012). The texts are on a

wide range of topics such as world, business, science etc. Reuters-128 (Roder et

al. 2014) is a small subset of the well-known Reuters-21587 corpus containing short

news articles about the economy.

Details about these data sets are given in Table 5. Note that since we use

Wikipedia as our reference KB, we map the DBpedia-based annotations in

KORE50, RSS-500 and Reuters-128 to the corresponding Wikipedia-based IDs.

The AIDA sets have the most annotations among all, which makes them suit-

able for training and development. KORE50, RSS-500, ACE2004, and Reuters-128

are the sets that have the smallest average number of mentions per document
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Data Set Domain RefKB #Mentions Avg#M/D Avg#W/S

AIDA.train news Wikipedia 18,448 19.5 15.7
AIDA.testa (dev) news Wikipedia 4,791 22.2 17.2
AIDA.testb (test) news Wikipedia 4,485 19.4 14.5
MSNBC news Wikipedia 656 32.3 28.8
MSNBCrev news Wikipedia 655 32.8 27.5
AQUAINT news Wikipedia 730 14.3 28.5
AQUAINTrev news Wikipedia 722 14.4 28.5
ACE2004 news Wikipedia 255 4.5 37.0
ACE2004rev news Wikipedia 256 4.5 38.6
KORE50 mixed DBpedia 143 2.9 14.6
RSS-500 RSS-feeds DBpedia 517 1.0 32.2
Reuters-128 news DBpedia 621 4.9 28.0

Table 5. Statistics on the Disambiguation Data Sets.

(Avg#M/D). In terms of sentence-based context size, the KORE50 and AIDA sets

have the smallest average number of words per sentence (Avg#W/S). Some of these

data sets include NIL annotations, which have no corresponding named entity at

the reference KB. As a design decision, we exclude such annotations and report the

results accordingly in our experiments.

5.2 Evaluation Metrics

In this study, we report the standard micro-average F1-score for the evaluation

of the cluster prediction model and the disambiguation model. F1-score is the har-

monic mean of the precision and recall measures. Precision measures the percentage

of machine’s predictions that are correct compared to the gold (human) annota-

tions. On the other hand, recall measures the percentage of the gold annotations

that are predicted correctly by the machine. In case of the disambiguation results,

a number of studies reported their results in bag-of-title (BoT) F1-score (Milne

and Witten 2008; Ratinov et al. 2011), which is designed for Wikification systems.

It is used to evaluate a NED system for indexing purposes. Hence, it discards the

duplicate gold annotations and predictions in a document and uses the same F1-

score metric on the filtered out numbers. Moreover, we report our results in InKB

accuracy in case of the AIDA test set due to the convention in the literature. On

the other test sets, we use a threshold on the ranking probability and do not assign

an entity to a mention if our system is not confident with the assignment (i.e., the

ranking probability is below the threshold). In our experiments, we use 0.03 as the

threshold.

5.3 Optimizing Clustering for Better Disambiguation

Important thing before getting into the experimental results is tuning of the clus-

tering for better disambiguation. As described in Section 3.3, how we cluster named

entities determines the effect of the discriminative power of clustering on the dis-

ambiguation step. The more clusters we use, the fewer entities each cluster has,
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hence the more discriminative the clustering becomes. For example, assume that

we have a list of candidates for a mention and this set of candidates are grouped

together based on their assigned cluster-based types. Think of one particular group

that contains the gold standard entity. All candidates in that group are given the

same chance of being the actual referred entity as they all have the same cluster-

based type. Therefore, when we have fewer entities in that group, we expect it to be

relatively easier to disambiguate the correct entity among all candidates compared

to when we have more entities in that group On the other hand, when we have

more clusters, this makes the typing model difficult to solve due to the increase in

the number of classes (i.e. types). Having said all these, we look for an optimization

to deal with this trade-off.

There are two main factors we considered for optimization. The first is the window

size chosen while calculating the entity embeddings on which we run the K-means

algorithm. The second and more important factor is the number of clusters to

be generated by the clustering algorithms. However, it is not feasible to try all

possible combinations and measure which one achieves the best performance at

the disambiguation step. That is because for each combination, we need to get the

clusterings, train their typing models, train the ranking model on their predictions

and then finally measure the disambiguation success. Instead, we introduce the

following three-step approach.

The first step is to produce a wide range of clusterings for the named entity space

with different window sizes for embeddings and different numbers of clusters. The

second step includes selecting a good sample of clusterings and training a typing

model with each selected clustering. Since we use multiple mention typing models

for disambiguation, the third step is to select one clustering for each typing model so

as to achieve high at the disambiguation step. In order to choose this combination,

we also propose a heuristic that minimizes the number of times we train the ranking

model. Below, we explain each step in more detail.

The first step involves creating various clusterings of named entities for each of

the five clustering approaches. The first and primary parameter is the number of

clusters. In case of the Brown-based approach, we run the tool with a number of

clusters from 1000 to 1500 in 100 incremental steps. For the other four clustering

approaches, we run the K-means algorithm with number of clusters from 600 to

3000 in 200 incremental steps. The second parameter is related to the calculation

of the entity embeddings which are only used by K-means. In case of Synset-based

approach, since there is no sequential context, we use word2vecf and the only pa-

rameter we change is the iteration. For the other three approaches, we use word2vec

and experiment with different values of the window parameter. We use window sizes

of 2 and 3. Using other values does not provide any better results. We set the iter-

ation parameter for the Synset-based approach to 20. At the end of the first step,

we get a total of 70 clusterings.

At the second step, we pick one or more parameter combinations for each clus-

tering approach. However, instead of selecting randomly, we proposed a metric that

helps us evaluate each clustering based on how well it might help discriminate the

candidates for the benefit of the disambiguation model. This metric is called Av-
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erage Gold Candidate Cluster Size (AGCCS). When we group the candidates of

the mention based on the clustering at hand, we end up having clusters of candi-

dates, or candidate clusters. The one that holds the gold (true) candidate is called

the gold candidate cluster. The smaller the size of the gold candidate cluster is,

the less number of candidates are being favored by the cluster prediction model

at the disambiguation step. In other words, it becomes more discriminative. For

each parameter combination, we calculated AGCCS value on the AIDA.train data

set, which includes over 18000 mentions with an average of 84 candidates for each

mention.
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Fig. 11. Change of Average Gold Candidate Cluster Size (AGCCS) as the Number

of Clusters is Increased for each Clustering Approach.

Figure 11 shows how AGCCS changes, as we increase the number of clusters.

Generally, it drops, because using more clusters leads to less number of entities

inside the clusters, hence the smaller size for the gold candidate cluster. Note that

AGCCS generally decreases fast at first but does not drop below 2.5. The dots in

Figure 11 show the chosen cases that we train a typing model for. We particularly
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pick the ones with the lowest AGCCS value. Moreover, we also consider some other

local minimums, since they are obtained with less number of clusters. At the end,

we have 19 different typing models calculated10, hence 19 dots in Figure 11.

The third step is to pick the best clustering combination. Note that based on

19 calculated typing models, we ended up having 540 different combinations11.

However, it is not feasible to train a disambiguation model for each combination

and pick the best performing one. Instead, we proposed a heuristic that scores the

typing model combinations according to Equation 1 . We omit the Entity typing

model in order not to involve the second-stage ranking into this procedure. After

getting the first-stage fixed, we pick the best performing Entity model which is

obtained with 2200 clusters.

argmin
w∈Word,s∈Surface,y∈Synset,b∈Brown

Pw + P s + P y + P b

where P t =
∑
m∈M

∑
cng∈{Cm−cg}

P t
cng
− P t

cg , if P t
cng

> P t
cg

(1)

Note that a typing model t outputs the probabilities of the cluster-based types

for a given mention. Since we know the pre-assigned cluster-based type of each can-

didate ctype, we also know P (ctype|mention), or P t
c in short. The ideal case from

the disambiguation point of view is to have all typing models assign the highest

probability to the gold candidate cg so that it can be easily distinguishable from

the rest of the candidates (i.e. Cm − cg), which are called non-gold candidates,

or cng. However, in a real world scenario, typing models can make a classification

mistake which leads to cng having higher probability than cg. We call them com-

peting non-gold candidates. Having higher typing model probability falsely favors

them in the disambiguation step. Having said that, Equation 1 chooses the model

combination such that it minimizes the aggregate probability difference between

gold candidate and competing non-gold candidates calculated over all mentions M .

For these calculations, we use the AIDA.train data set.

At the third step, instead of picking the typing model combination that has the

lowest value according to Equation 1, we select the lowest scored 10 combinations

and train a ranking model for each. Then, we score them on the AIDA.testa devel-

opment set and pick the one that achieves the highest disambiguation score. The

selected combination is Word model with 1000 clusters, Synset model with 1000

clusters, Brown model with 1300 clusters, and Surface model with 2400 clusters.

For the Entity model in the second-stage of the ranking, we use the model with

2200 clusters.

10 We have three Word models for 1000, 2000, 3000 clusters with window=2; six Surface
models for 1400, 1600 and 2400 clusters with window=2 and 800, 1000 and 2000 clusters
with window=3; two Entity models for 1000 and 2200 clusters with window=3; three
Synset models for 600, 1000, and 2000 clusters with iter=20; and five Brown models for
1000, 1100, 1200, 1300, and 1400 clusters

11 540 = 3 Word x 6 Surface x 3 Synset x 6 Brown x 2 Entity.
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6 Experimental Results

6.1 Evaluation of the Candidate Generator

In order to evaluate the candidate generator, we use the gold recall measure, which

is defined as the percentage of the annotated (gold) named entities in the data

set that have been suggested by the candidate generator. Table 6 gives the gold

recall values for our candidate generator and two other candidate generators in the

literature. Note that most of the NED studies use a smaller number of candidates

in order to discard the least possible cases before doing the ranking. Hence, Ratinov

(Ratinov et al. 2011) and Ganea (Ganea and Hofmann 2017) use the highest scored

20 and 30 candidates per mention, respectively. In our experiments, we use top 100

(N = 100) candidates in order to increase the recall of the NED system and to have

more negative examples during the training of the model. To evaluate our candidate

generator, we also calculate gold recall for top 20 and 30 candidates. Moreover, in

order to measure the contribution of the second stage of our candidate generation

algorithm described in Section 4.1, we also calculate these recalls without applying

the second stage. The results of the proposed candidate generator as well as the

ones of (Ratinov et al. 2011) and (Ganea and Hofmann 2017) are given in Table 6.

In addition to these, Hakimov et al. (2016) reported a recall of 97.7 on AIDA.train

when N = 100.

When we compare our recall values with other studies, in almost all cases our

proposed candidate generator achieves better performance except with respect to

the performance of Ratinov et al. (2011) on the AQUAINT. The results also show

that the second stage in the candidate generator produces a substantial improve-

ment. It means that using candidates from similarly titled surrounding mentions

and extending the candidates even further with their cooccurring entities from

Wikipedia results in higher recall values. The only exception is with the AQUAINT

and AQUAINTrev.

Ours w/o 2nd Stage Ours w/ 2nd Stage Ganea Ratinov

Data Set N=100 N=30 N=20 N=100 N=30 N=20 N=30 N=20

AIDA.train 97.97 97.56 97.16 99.74 99.22 98.61 - -

AIDA.testa 97.63 97.26 97.07 99.85 99.22 98.24 96.6 -

AIDA.testb 97.87 97.07 96.58 99.62 98.59 97.36 98.2 -

MSNBC 91.63 91.63 91.01 99.70 99.22 98.29 98.5 88.67

MSNBCrev 91.91 91.91 91.30 99.85 99.08 98.47 - -

AQUAINT 96.93 96.23 95.25 97.40 96.09 94.69 94.2 97.83

AQUAINTrev 97.92 97.37 96.68 98.06 96.95 96.12 - -

ACE2004 96.86 95.29 93.73 96.86 95.65 94.51 90.6 86.85

ACE2004rev 96.88 95.70 94.14 96.88 96.09 94.92 - -

KORE50 86.01 82.52 81.82 92.31 88.81 87.41 - -

RSS-500 88.39 86.27 85.69 89.56 87.43 86.85 - -

Reuters-128 88.41 87.60 87.28 95.65 90.82 89.21 - -

Table 6. Gold Recall Values for Candidate Generation on the NED Data Sets.

When we perform error analysis, we observe that in the case of KORE50, small



30 Arda Çelebi and Arzucan Özgür

context and mostly one word mentions result in low recall. In case of RSS-500, the

annotated mentions only include part of the existing surface form (e.g., only the

word “France” is annotated for the available surface form “Tour de France”). Since

we do not take into account the immediate surrounding words of the annotated

mentions during the search or use an off-the-shelf named entity recognizer (Phan

et al. 2017) to expand the boundaries, we achieve relatively low recall on RSS-

500. Table 7 reports the average number of candidates per mention generated for

N = 100. It also shows the average length of the mentions in characters and the

average edit distance between the surface form (SFm) of the mention and the best

matched surface form of the candidate (SF best
c ) per candidate. The highest values

for both metrics are seen in Reuters-128, while the average mention length values on

the AIDA sets also show their characteristic difference from the other sets, which is

important considering that we train our disambiguation model on the AIDA.train

and test it on the other sets.

Average Num. Average Average

Data Set of Candids (N=100) Mention Length Edit Distance

AIDA.train 84.65 8.9 1.7

AIDA.testa 84.35 9.0 1.8

AIDA.testb 84.45 8.9 1.9

MSNBC 92.97 10.2 2.6

MSNBCrev 94.22 9.9 2.5

AQUAINT 78.07 11.6 2.1

AQUAINTrev 78.22 11.6 2.1

ACE2004 79.15 11.0 2.2

ACE2004rev 79.17 11.0 2.2

KORE50 85.44 6.3 1.2

RSS-500 70.90 11.3 2.7

Reuters-128 72.79 12.6 3.8

Table 7. Statistics on the Candidates Generated for each NED Data Set.

6.2 Contribution of Specialized Word Embeddings in Mention Typing

Instead of using regular word embeddings (i.e. WR) as input for our mention typing

models, we introduced two different word embeddings in Section 3.5. Those are the

cluster-centric word embeddings (WCC) and surface form based word embeddings

(WSF ). WCC is proposed as an optimized version of WR, as it is influenced by

the applied clustering during the calculation. Both embeddings are obtained with

word2vec12 on all Wikipedia articles. They are used as an input to Left, Right and

Surface1 components (either LSTM or CNN layers shown in Figures 9 and 10) of

the typing model. In case of WSF , it is obtained with word2vecf13 from the large

12 We set window=2, size=300, and use the default values for the other parameters.
13 We set size=300, and use the default parameter values for the other parameters.
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surface form data set as described in Section 3.5. Different from the previous two

embeddings, WSF is used as an input to the Surface2 component of the typing

model. Note that, like Surface1 component, Surface2 also takes the words of

mention’s surface form as input but in WSF embeddings instead.

In order to measure the contribution of using WCC over WR and using additional

WSF , we trained both LSTM14- and CNN15-based models with different embedding

combinations for each typing model. Note that each typing model is trained and

tested on its own designated data set described in Section 5.1.1. To consider all

combinations in a feasible time frame, the small version of those data sets (the

ones named *-SmallTrain and *-SmallTest) are used. In Table 8, we measured how

accurately the typing model predicts the cluster-based type labels assigned to each

mention in the test sets. The results are given in F1 score.

Arch. Inputs Mention Typing Models

Type Left Surface1 Surface2 Right Word Synset Surface Brown Entity

LSTM WR WR NotUsed WR 67.5 66.6 66.1 68.6 67.1

LSTM WCC WCC NotUsed WCC +2.4 +1.9 +5.3 +4.4 +0.9

LSTM WR WR WSF WR +4.6 +1.0 +6.4 +4.8 +2.2

LSTM WCC WCC WSF WCC +5.3 +3.0 +7.0 +6.3 +2.5

CNN WR WR NotUsed WR 69.1 61.1 58.3 60.3 61.4

CNN WCC WCC WSF WCC +3.7 +7.5 +14.5 +10.6 +6.3

Table 8. Showing the Contribution of the WCC (over WR) and WSF Embeddings

When Typing Models are Trained and Tested on *-SmallTrain and *-SmallTest

Sets.

The first rows for the LSTM and CNN-based models in Table 8 consider the case

where we do not use any special word embedding except the WR. The following rows

show how much the F1-scores change with respect to the first row (i.e., the baseline),

first when we replace WR with WCC , then when we use WSF . Shown at the last

rows, using both special embeddings together increases the scores considerably, up

to 3 to 7 points. Their contribution is even more visible in case of the CNN-based

models. When we do the same analysis on the other NED sets, we also observe very

similar contribution levels. Based on these results, we use WCC and WSF together

in the rest of our experiments.

14 We set the learning rate to 0.1 and use the standard gradient descent optimizer with
Nesterov momentum of 0.9. We set the weight decay rate to 1.2e-06 and clip the gradi-
ents at 2.0. We set the hidden state size to 600 for all LSTM layers. Wherever applied,
dropout probability is set to 0.5. We use batch size of 200.

15 We use the same parameter values as in the LSTM-based model, except the clip value
is set to 1.0. The CNN filter sizes are set to 64.
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6.3 Cluster-based Mention Typing Results

In order to evaluate the cluster-based mention typing models, we train and test

our five different models on the *-LargeTrain and *-LargeTest sets defined in Sec-

tion 5.1.1. The results in F1-score are given in Table 9 for both the LSTM- and

CNN-based models. However, since they are tested on different sets, the F1-scores

are not comparable16 across the table. Hence, the average loss per instance is in-

cluded in parenthesis. It is calculated by normalizing the total cross entropy loss

value given by the model on the test set with the number of instances in that set.

Note that average loss per instance is a better evaluation metric than F1-score for

assessing the quality of the predictions for the disambiguation step, since the predic-

tion probabilities are used as features in the ranking model. F1-score only measures

how accurate the model predicts the true label, whereas average loss per instance

indirectly takes the model’s probability of that predicted label into account.

Arch. Type Word Synset Surface Brown Entity

LSTM 81.2 (1.10) 78.6 (1.52) 83.4 (0.80) 83.8 (0.68) 82.1 (0.74)

CNN 81.0 (1.09) 79.0 (2.14) 81.0 (0.83) 81.6 (0.75) 79.6 (1.43)

Table 9. F1-scores and Average Loss per Instance Values for the Mention Typing

Models Trained and Tested on the *-LargeTrain and *-LargeTest Sets.

When the context is local as in the Word and Synset models, CNN performs

similarly to LSTM. However, in general the LSTM-based models outperform the

CNN-based models. This is supported by both F1-score and average loss per in-

stance values. Hence, in the rest of our experiments, we use LSTM for all mention

typing models.

When we compare the different models with each other through the average loss

per instance value, the Synset model turns out to be the worst performer and the

Word model comes after that. This means that these two sentence-based models are

outperformed by the document-level typing models, namely Surface, Brown, and

Entity. This might be expected due to the larger context at the document-level. In

case of the worst performer, the synset-based model is based on clustering of the

entity embeddings that have not originated from the context, but are based only on

the similarity of the assigned synsets. In other words, the cluster-based type labels

used for training the Synset model are not optimized for the contextual similarity.

This might affect the success of the typing model which learns to predict based

on the contextual similarities. The Synset model not being optimal for the typing

model is also supported by the results in Table 8. Specialized word embeddings do

not help the Synset model much compared to the other models.

16 In order to keep the results as much comparable as possible, we train all typing models
based on the same number of clusters, which is 1000.
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6.4 Disambiguation Results

For the disambiguation step, we trained our disambiguation model17 on the

AIDA.train data set and did the feature selection based on the AIDA.testa de-

velopment set. We train our ranking model in two-stages. At the first stage, the

model is trained and run on all data sets. The ranking probabilities for the can-

didates are stored and used in the additional features, which are classified as the

second-stage features in Section 4.2. Our final results18 are obtained after training

the ranking model with all the features. The results are reported in Table 10 (for

test sets with large context) and Table 11 (for test sets with small context).

System MSN MSNrev AQU AQUrev ACE ACErev AIDAb

Phan et al. 2017 91.8 - - - 92.9 - -

Ganea and Hofmann 2017 - 93.7 - 88.5 - 88.5 92.2

Guo and Barbosa 2016 - 92.0 - 87.0 - 88.0 -

Yamada et al. 2016 - - - - - - 93.1

Phan et al. 2018 91.0 - 87.9 - 88.3 - -

Sil et al. 2018 - - - - - - 94.0

Le and Titov 2018 - 93.9 - 88.3 - 89.9 93.1

Radhakrishnan et al. 2018 - - - - - - 93.0

Raiman and Raiman 2018 - - - - - - 94.8

Fang et al. 2019 - 92.8 - 87.5 - 90.5 94.3

Liu et al. 2019 - - - 87.3 - 86.6 87.6

Cheng and Roth 2013 [BoT] 90.0 - 90.0 - 86.0 - -

Yang et al. 2018 [BoT] - 92.6 - 90.5 - 89.2 95.9

Ours

w/o Typing Models (Baseline) 87.3 88.4 84.5 87.0 80.8 82.0 81.4

w/4 T.Models (1st Stage) 91.9 92.6 88.4 90.7 89.5 90.3 89.9

w/5 T.Models (2nd Stage) 92.6 93.0 89.0 90.7 90.0 91.1 93.2

w/5 T.Models (2nd Stage) [BoT] 90.8 92.1 89.8 91.9 91.8 93.2 92.6

Table 10. Results in F1 and BoT F1 on the NED Test Sets with Large Context.

The upper part of the tables provides the results reported by the previous studies

in the literature. Note that the results from the two studies at the bottom are

given in BoT F1-score. The lower part of the tables presents our results given in

traditional micro F1-score and BoT F1-score. The first line in ”Ours” part shows

the results taken without using any features related to the mention typing models

or the second stage. We call it our baseline. As we add the features calculated with

the four typing models (namely Word, Synset, Surface, and Brown), we can observe

an increase of 2 to 8 points on all test sets. Next, we apply the second-stage, where

17 We set the learning rate to 0.05 and use the standard gradient descent optimizer with
Nesterov momentum of 0.9. The first and the second layers contain 500 and 300 units,
respectively. The dropout values after the first and the second layers are set to 0.1 and
0.7, respectively. The training data are given in batches of 400 instances.

18 We train our system 20 times with different seed values.
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we add the second stage features and the features calculated with the Entity typing

model. The results are improved further, especially on AIDA.testb with 3.3 points

increase.

In order to compare our results with the SOTA results in Table 10, we perform

the randomization test with respect to the studies that achieved close to our results.

On AQUAINT, we achieve better than Phan et al. (2018) at statistically significant

level19. On MSNBC, our higher F1-score turned out to be not statistically significant

compared to Phan et al. (2017). On the revised ACE2004, our higher result is not

statistically significant20 compared to Fang et al. (2019). On the revised AQUAINT,

our results are 2.2 points higher than Ganea and Hoffman (2017) and 1.4 points

higher in BoT F1 with respect to Yang et al. (2018). However, we are unable to

perform valid randomization tests21 with respect to their results.

System KORE50 RSS-500 Reuters-128

Phan et al. 2017 79.4 80.4 91.8

Phan et al. 2018 78.7 82.3 85.9

Ours

w/o Typing Models (Baseline) 40.4 68.9 72.0

w/4 T.Models (1st Stage) 56.1 74.4 76.5

w/5 T.Models (2nd Stage) 57.5 76.1 79.3

w/5 T.Models (2nd Stage) [BoT] 58.5 77.7 88.6

Table 11. Results in F1 and BoT F1 on the NED Test Sets with Short Context.

In case of test sets with shorter context, Table 11 shows that our best system

cannot achieve better performance than its counterparts. The worst performed test

sets compared to the SOTA results are KORE50 and RSS-500. KORE50 has the

lowest average number of words per sentence and RSS-500 has only one mention

per document on average. Our context-centric approach cannot utilize such short

context enough. This is in fact the most common problem for all NED systems. On

the other hand, Reuters-128 has a relatively larger context based on those metrics,

however its average number of edit distance per candidate is the highest with respect

to the other sets. That may cause the lower scores on Reuters-128. This is actually

connected to the fact that AIDA.train on which we train our disambiguation model

is characteristically different from these three data sets. One particular difference

19 We compared our 20 runs with the one run of them that produced the same reported
F-score and observed p-value=0.014 on average.

20 Table 10 includes the adjusted F1-score as they did not output prediction for 5 mentions
of 256 that we have. Their reported F1-score of 91.2 is on 251 mentions, on which we
achieve an F1-score of 91.7.

21 Ganea and Hoffman (2017) provided the output of one run. The F1-score calculated on
that run is 91.1, while the score reported in their study as the average of five runs is
88.5 ± 0.4. The provided output might be from their best run, while the score from our
best run is 91.5.
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to mention is that the average edit distances given in Table 6 in the AIDA sets are

lower than many of the other sets. Whenever our NED model gets candidates with

relatively higher edit distances on any of the test sets, it assigns low scores to such

candidates as expected. This affects the gold candidates disproportionately, when

there are alternative candidates with lower edit distances.

It is interesting to note that the AQUAINT test set contains many concepts (e.g.,

“power plant”, “radioactive waste” etc.) along with named entities. Our success

might be related to the fact that we train our typing models on Wikipedia, which

also includes the mentions of concepts.

6.5 Analysis of the Experiments

6.5.1 Ablation Study on the Ranking Features

In order to understand the contribution of the ranking features, we perform two

ablation tests. Moreover, since we do the ranking in two stages, we calculate the

contributions for both stages as well as for the baseline, which is the system that

doesn’t use any features obtained from the typing models. Before getting into the

analysis, one factor has to be noted while evaluating the contributions. The second

stage uses additional “second stage” features and their success depends on the

success of the features used in the first stage. Since those first stage features are still

used in the second stage, their contribution drops as they share their success with

the second stage features. Hence, it is more appropriate to evaluate the contribution

of the first stage features based on the results at the first stage.

The first test examines the contribution of each feature by excluding that feature

from the model. Table 12 lists all the features used in our experiments. Note that

some of them are not available (N/A) for certain stages. The results22 are shown in

the F1-scores taken on the AIDA.testa (dev) set. As each feature is excluded, the

drop in the F1 score is given. The first thing to notice is the high-level contribution of

edit distance based features. Surface form is the major factor at the disambiguation

task. The second thing is the decreasing contributions towards the second stage.

Even though there are four groups of features shown in Table 12, for the sake of

contribution analysis, it is better to group them as surface form based (numbered

1,3,6,8), candidate based (2,7), typing model based (5,9,10), and ranking based

(11,12) features. Each group considers the disambiguation task from different as-

pects.

Surface form based features are mention oriented, completely independent

from the context. The results in Table 12 show that they keep their contribution

high at all stages. This can be attributed to the fact that other features do not

consider surface form. In other words, there is no contribution overlap between

surface form based features and other features.

Typing model features are mostly context driven. Their contribution in Ta-

ble 12 does not look notable at the individual level. However, the change between

22 We train each model 10 time with different seed values and report the average results.
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System Baseline 1st Stage 2nd Stage

All Features Included 82.1 93.3 94.4

Local Features:
- surface-form-edit-distance (1) -9.7 -4.0 -1.3
- entity-log-freq (2) -3.0 -1.1 -0.1
- surface-from-type-in-binary (3) -2.4 -1.6 -0.6
- entity-type-in-binary (4) -1.8 -0.9 -0.4
- idt-typing-prob (5) N/A -0.2 -0.2

Mention-level Features:
- max-diff-surface-form-log-freq (6) -4.2 -0.8 -0.4
- max-diff-doc-similarity (7) -4.1 -0.6 -0.2
- avg-surface-form-edit-distance (8) -0.6 -0.6 -0.3
- max-diff-idt-typing-prob (9) N/A -0.5 -0.3

Document-level Features:
- max-idt-typing-prob-in-doc (10) N/A -0.7 -0.2

Second-stage Features:
- max-ranking-score (11) N/A N/A -0.5
- max-cos-sim-in-context (12) N/A N/A -0.8

Table 12. Showing the Contribution of each Feature in F1 Scores by its Exclusion

at Different Stages on the AIDA.testa Development Set.

the Baseline and the 1st stage, which is 11.2, comes from adding the typing model

features. The low individual contributions can be explained by the fact that those

three features are derived from the same value hence, their contributions overlap.

Interestingly, using the highest typing model probability seen in other occurrences

of the same candidate in the same document (10) is more powerful than using the

typing model probability of the candidate (5) for the considered mention.

Candidate based features are more candidate specific, with no direct involve-

ment of the surface form. Their contribution drops substantially at the 2nd stage.

Even though (2) is widely used in the NED literature, it is calculated offline and

independent of the mention or its context. This might explain its low performance.

In case of (7), it is based on doc2vec embedding similarity between candidate’s

Wikipedia page and the test document. In other words, it is similar to the other

typing model features. The results support that their contributions overlap.

Ranking based features help us take into account the surrounding candidates.

The results show that they contribute quite well compared to others. Especially (12)

might be the main driver behind the F1 score improvement of the 2nd stage.

In our further analysis, we observe that using the max-diff version of the fea-

tures performs better than using the feature itself. max-diff compares the value

of the feature with respect to the highest value seen among its sibling candidates.

For example, using only doc-similarity does not contribute better than max-diff-

doc-similarity. The same is true for max-diff-surface-form-log-freq. We argue that
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this is related to the fact that doc-similarity and surface-form-log-freq are context

independent and applying max-diff makes them context dependent.

System 1st Stage 2nd Stage

All Mention Typing Model Features Included 93.3 94.4

- Word -1.1 -0.6

- Synset -1.4 -0.7

- Brown -0.6 -0.2

- Surface -0.6 -0.3

- Entity N/A -0.2

Table 13. Showing the Contribution of each Mention Typing Model in F1 Scores

by its Exclusion at Different Stages on the AIDA.testa Development Set.

Our second ablation analysis evaluates the contribution of each typing model.

Table 13 shows the amount of drop in F1 score when we exclude each typing model

from the 1st and 2nd stages on the AIDA.testa (dev) set. Note that features (5,9,10)

shown in Table 12 have multiple values, one for each used typing model t. Consid-

ering that the Synset typing model is the worst one at predicting the types as

shown in Table 9, it is surprising to see that it is the best contributing model.

Like Synset, the other local-context based model, namely the Word typing model

comes second. This indicates that typing models based on local (sentence-based)

context contribute to the success of NED more than typing models based on global

(document-based) context.

6.5.2 Error Analysis of the Ranking Model

In order to understand where our ranking model fails, we analyzed the failed cases

on the AIDA.testa (dev) set in detail. Our first analysis involves measuring the role

of the popularity of a candidate and the frequency of its surface form. It is intuitive

to assume that popular entities are more likely to be mentioned than less popular

entities. In our case, we define the popularity of a named entity as the total number

of times that named entity is seen in the Surface Form Data Set. Similarly, when

one surface form is seen more times with a certain entity than others, it is more

likely that that surface form refers to that entity whenever it is used. When one

surface form may refer to many entities, it causes ambiguity, which is the main

source of the failures for the ranking model.

In Table 14, we calculate certain ratios and percentages based on the popularity

of the candidate (F e) and the frequency of its surface form (F s). During these

calculations, G is the set of the gold (true) candidates, one for each mention in

the data set. G′ is its subset that only includes the ones (i.e. failed golds) that are

failed to be predicted correctly by our model. P ′ is the set of wrong predictions

that are suggested instead of gold candidates. Note that X is a variable in shown
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calculations and it should be replaced with either F e or F s, when appropriate.

Moreover, Xmax refers to the maximum value among all non-gold candidates of the

same mention for the selected X.

Case Description Calculation X = F e X = F s

[1] Ratio of failed golds’ X avg
∑

g′∈G′ Xg′/avg
∑

g∈G Xg 0.17 0.05

to all golds’ X

[2] Ratio of predictions’ X avg
∑

p′∈P ′ Xp′/avg
∑

g′∈G′ Xg′ 2.78 10.69

to failed golds’ X

[3] % of cases when gold’s X is
∑

g∈G[Xg > Xmax]/size(G) 0.36 0.48

higher than the max’s X

[4] % of cases when failed gold’s
∑

g′∈G′ [Xg′ > Xmax]/size(G′) 0.29 0.16

X is higher than the max’s X

Table 14. Analyzing the impact of the popularity of the candidate entity and its

surface form frequency when our system fails on the AIDA.testa (dev) set.

Case [1] in Table 14 looks at the ratio of failed golds’ popularity and form fre-

quency to the all golds’ in terms of averages. The values 0.17 for F e means that

the average popularity of failed golds is about five times lower than the average

popularity of the golds. In case of F s, we can say that when our system fails, the

form frequency of the gold candidate is 20 times less frequent than the average gold

candidate’s surface form.

In Case [2], we compare the values of wrongly predicted candidates and the

corresponding gold candidates. For F e, it shows that the popularity of the wrongly

predicted candidate is 2.78 times higher than the popularity of the actual gold

candidate. This is 10.69 times in case of F s, which means that the surface form

frequency plays more role than the popularity.

Case [3] measures the percentage of the cases when gold’s popularity or form

frequency is higher than any other sibling candidate. The nominator of [3] in Ta-

ble 14 counts for how many g Xg is higher than Xmax. The denominator normalizes

that value to get the percentage. Case [4] measures the same value for the failed

golds. In case of F e, the value 0.36 means that 36% of the time the golds are the

most popular candidate and it is 29% for the failed golds. In other words, most

of the time golds are not the most popular ones among the candidates23 and that

ratio does not change much among the failed golds. In case of F s, half of the time

gold candidates are the ones that the surface form refers to most. That ratio drops

considerably in case of failed golds. All in all, our system pays more attention to

23 This might be the reason why the entity-log-freq feature does not have a notable impact
on the disambiguation results.
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the form frequency than the popularity and prefers the candidates that the surface

form refers to most. This also aligns with Case [2].

In addition to this analysis, we also measure the role of edit distance at failures.

There are 15 gold candidates out of 4791 golds that have non-zero edit distance value

in the AIDA.testa set. Meaning that, none of their surface form in our database

matches with the surface form of the mention exactly. Our system fails 10 of those

15 cases. Compared to a total of 282 failures, it is less than 4% of errors. However,

in case of test sets like Reuters-128, it makes the difference.

Another aspect we analyze is how accurate our system predicts when there are

multiple mentions of the same entity. Out of 4791 mentions, 2863 of them involve

multi-mention cases. Our system fails at 153 of those cases, which does not look

significant. Yet, it also means that more than half of the total failures of our system

involve such cases. Moreover, in 60% of 153 cases, our system predicts none of the

instances of the multiple-times mentioned entity correctly.

7 Discussion and Future Work

In this study, we introduce a cluster-based mention typing approach. We cluster

named entities based on their contextual embeddings and assign those cluster ids

as type labels to entities. Our analysis shows that using a window as short as two to

calculate entity embeddings with word2vec turns out to give better clusterings for

the disambiguation task. We calculate five different clusterings of over five million

named entities, each considering different contextual aspect. Based on these, we

train five different mention typing models. The results show that LSTM-based

models achieve better results than CNN-based models. Moreover, the models that

use document-level context predict the cluster-based types better than the models

with sentence-level context. We also introduce two specialized word embeddings

that are influenced by the presence of cluster information during their calculation.

Their analysis shows that such influence helps the typing model better predict the

cluster-based types.

The second contribution of our study is to use the predictions of the mention

typing model as features for the disambiguation of named entities. Our analysis

shows that each typing model improves the disambiguation performance. However,

using one typing model is not enough to achieve state-of-the-art (SOTA) results. As

we use five of the models together, our system achieves better or comparable results

based on randomization tests with respect to the state-of-the-art levels on four de-

facto test sets. Considering that our ranking model is a simple two-layer feedforward

neural network, we score each candidate individually in a binary classification-based

approach rather than employing a collective disambiguation approach. Moreover,

we use the top 100 candidates rather than the top 20 and 30 as in previous works.

Achieving SOTA results indicates the potential of using mention typing models.

Our further analysis shows that even though the typing models with sentence-level

context obtain lower scores at predicting the types, they are the most contributing

models compared to document-level models at the disambiguation step.

Additionally, we study the candidate generation step. Our analysis shows that
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using candidates from similarly titled surrounding mentions and extending the can-

didates even further with their cooccurring entities from Wikipedia gives higher

recall values.

There are a number of areas that can be addressed as future work to improve the

proposed system. One of the disadvantages of our mention typing model is its de-

pendency on the context. The shorter it is, the worse it performs. One solution is to

utilize existing context as much as possible with techniques like attention. Similarly,

latest advances in embeddings such as BERT (Devlin et al. 2019) can be another

alternative, as their context-customized embeddings help better represent the con-

text. Another problem is the fact that our weakest typing model is the Synset-based

model. It can be argued that lack of contextual information in the Synset-based

types leads to a low performing typing model. Despite its high performance at the

disambiguation step, finding a solution to this drawback might improve our weak-

est model and lead to even better results. Another improvement area is related to

clustering. In our study, we obtain each clustering of the named entity space inde-

pendently from the others and pick the best combination for the disambiguation

step in Section 5.3. We face the dilemma of using larger cluster numbers to improve

their discriminative power for the disambiguation step versus being less accurate

at predicting the cluster-based types. These two contradicting criteria may lead

to a not optimal solution. Nevertheless, we still achieve SOTA results. However, a

more optimized clustering approach (such as customized K-means) that considers

these two criteria together can produce better clusters. Customized clustering can

even be designed to minimize the overlap between different types of clusterings.

Alternatively, feedback from the disambiguation step can be circled back to the

clustering step for iterative revision of clusters. One of the promising areas that our

cluster-based types can help improve is NIL clustering, which is the task of cluster-

ing the mentions of NIL entities (i.e., entities that have no corresponding entries in

the KB) and identifying all the mentions that correspond to the same NIL entity.

In addition to using the surface forms of the mentions, utilizing their context is

key to success. Prediction of the cluster-based types might provide extra clues for

this task. This can be especially helpful at the corpus level (i.e. cross-document) as

there is more context to use to predict cluster-based types.
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