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Abstract

We study here a natural situation when constraint programming can be entirely reduced
to rule-based programming. To this end we explain first how one can compute on con-
straint satisfaction problems using rules represented by simple first-order formulas. Then
we consider constraint satisfaction problems that are based on predefined, explicitly given
constraints. To solve them we first derive rules from these explicitly given constraints and
limit the computation process to a repeated application of these rules, combined with
labeling.

We consider here two types of rules. The first type, that we call equality rules, leads to a
new notion of local consistency, called rule consistency that turns out to be weaker than arc
consistency for constraints of arbitrary arity (called hyper-arc consistency in (Marriott &
Stuckey, 1998)). For Boolean constraints rule consistency coincides with the closure under
the well-known propagation rules for Boolean constraints. The second type of rules, that
we call membership rules, yields a rule-based characterization of arc consistency.

To show feasibility of this rule-based approach to constraint programming we show how
both types of rules can be automatically generated, as CHR rules of (Frühwirth, 1995). This
yields an implementation of this approach to programming by means of constraint logic
programming.

We illustrate the usefulness of this approach to constraint programming by discussing
various examples, including Boolean constraints, two typical examples of many valued
logics, constraints dealing with Waltz’s language for describing polyhedral scenes, and
Allen’s qualitative approach to temporal logic.

Note. A preliminary version of this article appeared as (Apt & Monfroy, 1999). In this
version we also present a framework for computing with rules on constraint satisfaction
problems and discuss in detail the results of various experiments.

1 Introduction

http://arxiv.org/abs/cs/0003076v2
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1.1 Background

This paper is concerned with two styles of programming: constraint programming

and rule-based programming.

In constraint programming the programming process is limited to a generation

of constraints and a solution of the so obtained constraint satisfaction problems

(CSP’s) by general or domain dependent methods.

In rule-based programming the programming process consists of a repeated ap-

plication of rules. A theoretical basis for this programming paradigm consists of

so-called production rules that were introduced in the seventies, see, e.g., (Luger

& Stubblefield, 1998)[pages 171-186], though the idea goes back to the works of

A. Thue and of E. Post in first half of twentieth century. The production rules

are condition-action pairs, where the condition part is used to determine whether

the rule is applicable and the action part defines the action to be taken. The most

known programming language built around this programming paradigm was OPS5

of (Forgy, 1981).

Recently, there has been a revival of interest in rule-based programming in the

context of constraint programming. The earliest example is the CHR language of

(Frühwirth, 1995) that is a part of the ECLiPSe system. (For a more recent and

more complete overview of CHR see (Frühwirth, 1998).) The CHR rules extend the

syntax of constraint logic programming by allowing two atoms in the conclusion and

employing guards. These rules are predominantly used to write constraint solvers.

Another example of a programming language in which rules play an important

role is ELAN. It offers a logical environment for specifying and prototyping deduc-

tion systems by means of conditional rewrite rules controlled by strategies. ELAN

is used to support the design of various rule-based algorithms such as constraints

solvers, decision procedures, theorem provers, and algorithms expressed in logic

programming languages, and to provide a modular framework for studying their

combinations. A general overview of ELAN can be found in (Borovansky et al.,

1998), whereas (Kirchner & Ringeissen, 1998) and (Castro, 1998) (to which we

shall return in Section 11) describe applications of ELAN to constraint program-

ming and constraint solving.

Also, in the hybrid functional and object-oriented language programming lan-

guage CLAIRE of (Caseau & Laburthe, 1996) rules are present. CLAIRE was de-

signed to apply constraint programming techniques for operations research prob-

lems. The rule-based programming is supported by means of production rules that

can be naturally used to express constraint propagation.

It is useful to mention here that also logic programming and constraint logic

programming are rule-based formalisms. However, these formalisms use rules dif-

ferently than rule-based programming described above. This distinction is usually

captured by referring to forward chaining and backward chaining. In rule-based

programming, as discussed above, forward chaining is used while in logic program-

ming and constraint logic programming backward chaining is employed. Intuitively,

forward chaining aims at a simplification of the considered problem and it main-

tains equivalence, while backward chaining models reasoning by cases, where each
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case is implicitly represented by a different rule. Both forms of chaining can be

combined and in fact such a combination is realized in the CHR language, in which

the CHR rules model forward chaining while the usual Prolog rules model backward

chaining.

1.2 Overview of Our Approach

The traditional way of solving CSP’s consists of combining constraint propaga-

tion techniques with search. Constraint propagation aims at reducing a CSP to an

equivalent one but simpler. In case of finite domains the most basic approach to

search consists of labeling, a repeated enumeration of the domains of the successive

variables.

The aim of this paper is to show that constraint programming can be entirely

rendered by means of rule-based programming. To this end we provide a framework

in which one computes on CSP’s by means of rules represented by simple first-

order formulas. In this approach the constraint propagation is achieved by repeated

application of the rules while search is limited to labeling. This yields a framework

for constraint programming more related to logic than the usual one based on

algorithms achieving local consistency.

The rules we shall consider are implications built out of simple atomic formulas.

In our study we focus on two types of rules. The first type, that we call equality

rules, are of the form

x1 = s1, . . ., xn = sn → y 6= t

where x1, . . ., xn, y are variables and s1, . . ., sn, t are elements of the respective vari-

able domains. The computational interpretation of such a rule is:

if for i ∈ [1..n] the domain of the variable xi equals the singleton {si}, then remove the
element t from the domain of y.

The second type of rules, that we call membership rules, are of the form

x1 ∈ S1, . . ., xn ∈ Sn → y 6= t

where

• x1, . . ., xn are variables and S1, . . ., Sn are subsets of the respective variable

domains,

• y is a variable and t is an element of its domain.

The computational interpretation of such a rule is:

if for i ∈ [1..n] the domain of the variable xi is included in the set Si, then remove the
element t from the domain of y.

To illustrate the use of these rules we study CSP’s that are built out of predefined,

explicitly given finite constraints. Such CSP’s often arise in practice. Examples in-

clude Boolean constraints, constraints dealing with Waltz’s language for describing

polyhedral scenes, Allen’s temporal logic, and constraints in any multi-valued logic.

To solve such CSP’s we explore the structure of these explicitly given constraints
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first. This information is expressed in terms of valid equality and membership rules.

The computation process for a CSP built out of these constraints is consists of two

phases: a generation of the rules from the explicitly given constraints and a repeated

application of these rules, combined with labeling.

To characterize the effect of the generated equality and membership rules we use

the notions of local consistency. These notions approximate in a loose sense the

notion of “global consistency”, see, e.g., (Tsang, 1993). We show that the first type

of rules leads to a local consistency notion that turns out to be weaker than arc

consistency for constraints of arbitrary arity. We call it rule consistency.

When the original domains are all unary or binary, rule consistency coincides with

arc consistency. When additionally the predefined constraints are the truth tables

of the Boolean connectives, these rules are similar to the well-known Boolean prop-

agation rules, (see, e.g., (Frühwirth, 1998)[page 113]). As a side effect, this shows

that the Boolean propagation rules characterize arc consistency. Rule consistency

is thus a generalization of the Boolean propagation to non-binary domains.

We also show that the membership rules lead to a notion of local consistency

that coincides with arc consistency. This yields a rule-based implementation of arc

consistency.

To show feasibility of this rule-based approach to constraint programming, we

automatically generate both types of rules, for an explicitly given finite constraint,

as rules in the CHR language. When combined with a labeling procedure such CHR

programs constitute automatically derived decision procedures for the considered

CSP’s, expressed on the constraint programming language level. In particular, we

automatically generate the algorithms that enforce rule consistency and arc consis-

tency.

The availability of the algorithms that enforce rule consistency and arc con-

sistency on the constraint programming language level further contributes to the

automation of the programming process within the constraint programming frame-

work. In fact, in the case of such CSP’s built out of predefined, explicitly given finite

constraints, the user does not need to write one’s own CHR rules for the considered

constraints and can simply adopt all or some of the rules that are automatically

generated. In the final example of the paper we also show how using the equality

rules and the membership rules, we can implement more powerful notions of local

consistency.

Alternatively, the generated equality rules and membership rules could be fed

into any of the generic Chaotic Iteration algorithms of (Apt, 1999a) and made

available in such systems as the ILOG solver. This would yield rule consistency and

an alternative implementation of arc consistency.

The algorithms that for an explicitly given finite constraint generate the appro-

priate rules that characterize rule consistency and arc consistency have (unavoid-

ably) a running time that is exponential in the number of constraint variables and

consequently are in general impractical.

To test the usefulness of these algorithms for small finite domains we implemented

them in ECLiPSe and successfully used them on several examples including the ones

mentioned above. The fact that we could handle these examples shows that this
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approach is of practical value and in particular can be used to automatically derive

practical decision procedures for constraint satisfaction problems defined over small

finite domains. Also it shows the usefulness of the CHR language for an automatic

generation of constraint solvers and of decision procedures.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In the next section we clarify the

syntax of the rules and explain how one can compute with them. In Section 3 we

illustrate the use of these computations by means of an example. In Section 4 we

prove that the outcomes of the computations we are interested in are unique. In

Section 5 we introduce some semantic aspects of the rules and in Section 6 we

formalize the concept of a CSP is built out of predefined constraints. Next, in

Section 7 we introduce the notion of rule consistency and discuss an algorithm that

can be used to generate the minimal set of rules that characterize this notion of local

consistency. Then, in Section 8 we compare rule consistency with arc consistency.

In Section 9 we study membership rules and discuss an algorithm analogous to the

one of Section 7. This entails a notion of local consistency that turns out to be

equivalent to arc consistency.

In Section 10 we discuss the implementation of both algorithms. They gener-

ate from an explicit representation of a finite constraint a set of CHR rules that

characterize respectively rule consistency and arc consistency. We also illustrate

the usefulness of these implementations by means of several examples. Finally, in

Section 11 we discuss other works in which a link was made between constraint

programming and rule-based programming and in Section 12 we assess the merits

of our approach. In the appendix we summarize the tests carried out by means of

our implementation of both algorithms.

2 Computing with Rules

In what follows we introduce specific type of rules and explain how one can compute

with them on constraint satisfaction problems. First, we introduce constraints.

Consider a sequence of variables X := x1, . . ., xn where n ≥ 0, with respective

domains D1, . . ., Dn associated with them. So each variable xi ranges over the do-

main Di. By a constraint C on X we mean a subset of D1 × . . . × Dn. Given an

element d := d1, . . ., dn of D1 × . . .×Dn and a subsequence Y := xi1 , . . ., xiℓ of X

we denote by d[Y ] the sequence di1 , . . ., diℓ . In particular, for a variable xi from X ,

d[xi] denotes di.

Next, we define the rules we are interested in.

Definition 2.1

• Let x be a variable, a an element and S a set. By an atomic formula we mean

one of the following formulas: x = a, x 6= a, x ∈ S.

• By a rule we mean an expression of the form A1, . . ., Am →B1, . . ., Bn, where

each Ai and Bj is an atomic formula. ✷
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In what follows a rule will be always associated with some constraint. Then every

atomic formula x = a or x 6= a (respectively, x ∈ S) will be such that a belongs to

the domain of x (respectively, S is a subset of the domain of x).

Subsequently, we explain how to compute using the rules in presence of con-

straints. First, we limit our considerations to the rules of the form A1, . . ., Am → x 6=

a. We need to explain how to turn the disequality formula into an action. This is

done by identifying the disequality x 6= a with the assignment Dx := Dx − {a},

where Dx is the current domain of x. In other words, we interpret x 6= a as an

action of removing the value a from the current domain of the variable x.

This leads us to the definition of an application of such a rule. We need some

semantic notions first.

Definition 2.2

Consider a constraint C on a sequence of variables X , a variable x of X , and a

tuple d ∈ C.

• Given an atomic formula A involving x we define the relation |=d A as follows:

— |=d x = a iff d[x] = a,

— |=d x 6= a iff d[x] 6= a,

— |=d x ∈ S iff d[x] ∈ S.

• Given a sequence of atomic formulas A := A1, . . ., Am we define |=d A iff

|=d Ai for all i ∈ [1..m]. ✷

Definition 2.3

Consider a constraint C on a finite sequence of variables X and a rule of the form

A→ xi 6= a involving only variables from X .

Suppose that for all d ∈ C we have |=d A. Let C′ be the constraint obtained

from C by removing the element a from the domain Di of the variable xi and by

removing from C all tuples d such that d[xi] = a. Then we call the constraint C′

the result of applying the rule A→ xi 6= a to C.

If a ∈ Di, then we say that this is a relevant application of the rule A→ xi 6= a

to C. If C′ coincides with C, we say that this application of the rule A→ xi 6= a

to C maintains equivalence. ✷

So the application of the rule A→ xi 6= a to a constraint C on the sequence

x1, . . ., xn of variables with respective domains D1, . . ., Dn results in the constraint

C′ on the variables x1, . . ., xn with respective domainsD1, . . ., Di−1, D
′

i, Di+1, . . ., Dn,

where

• D′

i = Di − {a},

• C′ = C ∩ (D1 × . . .×Di−1 ×D′

i ×Di+1, . . ., Dn).

We say then that the constraint C is restricted to the domains D1, . . ., Di−1, D
′

i,

Di+1, . . ., Dn.

Now that we defined the result of a single application of a rule we proceed to

define computations. To this end we first introduce constraint satisfaction problems.

By a constraint satisfaction problem, in short CSP, we mean a finite sequence of
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variables X with respective domains D, together with a finite set C of constraints,

each on a subsequence of X . We write it as 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉, where

X := x1, . . ., xn and D := D1, . . ., Dn.

By a solution to 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 we mean an element d ∈ D1×. . .×Dn

such that for each constraint C ∈ C on a sequence of variables X we have d[X ] ∈ C.

We call a CSP consistent if it has a solution. Two CSP’s with the same sequence

of variables are called equivalent if they have the same set of solutions.

We now modify the definition of an application of a rule to a constraint to an

application of a rule to a CSP. To this end we attach each rule to a constraint

to which it is supposed to be applied. Even though the constraints change during

the computations we consider, it will be always clear from the context to which

constraint a given rule is attached.

Definition 2.4

Consider a CSP P and a rule A→ xi 6= a attached to a constraint C of P . Suppose

that for all d ∈ C we have |=d A. Define a CSP P ′ on the same variables as P as

follows:

• the domain of xi in P ′ equals Di − {a}, where Di is the domain of xi in P ,

• the domains of other variables in P ′ are the same as in P ,

• the constraints of P ′ are obtained by restricting the constraints of P to the

new domains.

We say then that the CSP P ′ is the result of applying the rule A→ xi 6= a to P .

If a ∈ Di, then we say that this is a relevant application of the rule A→ xi 6= a to

P . ✷

Finally, we introduce the crucial notion of a computation.

Definition 2.5

Consider a set of rules R of the form A→ x 6= a and an initial CSP P . By a

computation by means of R starting at P we mean a maximal sequence of CSP’s

P1, . . .,Pi, . . . such that each Pj+1 is the result of a relevant application of a rule

from R to Pj . ✷

Note that when the set of rules R is finite or when all domains in P are finite, all

computations starting at P are finite. The reason is that in each of these two cases

the number of elements mentioned in the conclusions of the rules in R is finite.

But each element can be removed from a domain only once and we insist that in

computations each rule application is relevant, from which the claim follows. If a

computation is finite, then no application of a rule from the considered set of rules

R to the final CSP is relevant, i.e., this final CSP is closed under the rules in R.

The computations are a means to reduce the domains of the variables while

preserving the equivalence of the considered CSP. The computations here considered

are in general insufficient for solving a CSP and in the case of CSP’s with finite

domains they have to be combined with labeling. Labeling can be modeled in the

above rule-based framework by introducing a rule that splits a given CSP into two,

the union of which is equivalent to the given CSP. The addition of such a rule to
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the considered framework leads to no conceptual difficulties and is omitted. On the

other hand, various forms of labeling strategies, like the one in which variable with

the smallest domain is chosen first, cannot be captured on this level.

The above string of definitions allowed us to define computations in which the

actions are limited to the applications of rules of the form A→ x 6= a acting on

CSP’s.

By limiting our attention to such type of rules we do not lose any expressiveness.

Indeed, consider first a rule of the form A→ x = a. To compute with it we interpret

the equality x = a as the assignment Dx := Dx ∩ {a}, where Dx is the current

domain of x. Then each rule A→ x = a is equivalent to the conjunction of the

rules of the form A→ x 6= b with b ∈ D − {a}, where D is the original domain of

x.

Next, consider a rule of the form A→ x ∈ S. To compute with it we interpret

the atomic formula x ∈ S as the assignment Dx := Dx∩S, where Dx is the current

domain of x. Then each rule A→ x ∈ S is equivalent to the conjunction of the

rules of the form A→ x 6= b with b ∈ D − S, where D is the original domain of x.

Finally, each rule of the form A→ B1, . . ., Bm is equivalent to the conjunction of

the rules of the form A→Bi for i ∈ [1..m].

Note that the rules of the form x1 = a1, . . ., xn = an → y 6= b are more expressive

than so-called dependency rules of database systems (see, e.g., (Ullman, 1988)).

These are rules of the form x1 = a1, . . ., xn = an → y = b. We just explained how

to model them by means of rules of the form x1 = a1, . . ., xn = an → y 6= b.

However, modeling in the other direction is not possible, as can be seen by taking

the variables x, y, each with the domain {0, 1, 2}, and the constraint C on x, y

represented by the following table:

x y

0 1

0 0

2 2

Then the rule x = 0→ y 6= 2 is not equivalent to a conjunction of the dependency

rules.

3 An Example

We now show how we can use the rules for computing by means of an example

kindly provided to us by Victor Marek. We solve here a simple logic puzzle from

(Fleming, 2000).

Below, given a set of variables x1, . . ., xn, each with the domain D we denote the

following set of rules:

{xi = a→ xj 6= a | i, j ∈ [1..n], i 6= j, a ∈ D}
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by all different(x1, . . ., xn). These rules formalize the requirement that the variables

x1, . . ., xn are all different. The puzzle is as follows.

To stave off boredom on a rainy Saturday afternoon, Ms. Rojas invented a game for
Denise and her two other children to play. Each child selected a different household object
(no two of which were in the same room) to describe to the others, who would try to guess
the item and its location in the house. Can you match each child with the item he or she
selected to describe, as well as the room of the house (one is the living room) in which each
is located?

Here are the clues provided:

1. The three children are Byron, the child who selected the book, and the one

whose item is in the den;

2. The rug is in the dining room;

3. Felicia selected the picture frame.

To solve this puzzle we use nine variables,

• child1, child2, child3, to denote the three children, Byron, Denise and Felicia,

• roomB , roomD , roomF , to denote the rooms of, respectively, Byron, Denise

and Felicia,

• itemB, itemD, itemF , to denote the objects selected by, respectively, Byron,

Denise and Felicia.

We postulate that the domain of child1 is {Byron}, of child2 is {Denise} and

of child3 is {Felicia}. Next, we assume that each roomi variable has the set

{den, dining, living} as its domain and each itemi variable has the set {book, frame, rug}

as its domain.

The initial set up of the story is formalized by the following rules:

• all different(roomB , roomD , roomF ),

• all different(itemB, itemD, itemF ).

This yields 36 rules but we shall group the rules with the same premise, so we

shall actually have 18 rules. The rules we shall need below will be, from the first

set:

(r1) roomB = dining→ roomD 6= dining, roomF 6= dining,

(r2) roomB = living→ roomD 6= living, roomF 6= living,

(r3) roomD = living→ roomB 6= living, roomF 6= living,

and from the second set:

(r4) itemB = rug→ itemD 6= rug, itemF 6= rug,

(r5) itemF = frame→ itemB 6= frame, itemD 6= frame.

Next, the first clue is formalized by means of eight rules out of which the only

ones of relevance below will be

(c1.1) → itemB 6= book,

(c1.2) itemD = book→ roomD 6= den.
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The second clue is formalized by means of six rules out of which the only one of

relevance below will be

(c2) itemB = rug → roomB 6= den, roomB 6= living.

Finally, the third clue is formalized by means of two rules:

(c3.1) → itemF 6= rug,

(c4.1) → itemF 6= book.

So in total we have 34 rules but we shall use below only the ten rules made

explicit. The initial CSP has nine variables as introduced above and one single

“universal” constraint that consists of the Cartesian product of all the variable

domains. The computation consists of twelve steps and proceeds as follows.

1. Using the rule (c3.1) the domain of itemF is limited to {book, frame}.

2. Using the rule (c3.2) the domain of itemF is further limited to {frame}. Thus

itemF = frame is established.

3. Using the rule (r5) and the fact itemF = frame just established the domain

of itemB is limited to {book, rug}.

4. Using the rule (c1.1) the domain of itemB is further limited to {rug}. Thus

itemB = rug is established.

5. Using the rule (r5) and the fact itemF = frame established in step 2 the

domain of itemD is limited to {book, rug}.

6. Using the rule (r4) and the conclusion itemB = rug of step 4 the domain of

itemD is further limited to {book}. Thus itemD = book is established.

7. Using the rule (c2) and the fact itemB = rug established in step 4 the domain

of roomB is limited to {dining, living}.

8. Again using the rule (c2) and the fact itemB = rug established in step 4 the

domain of roomB is further limited to {dining}. Thus roomB = dining is

established.

9. Using the fact roomB = dining established in step 8 and the rule (r1) the

domain of roomD is limited to {den, living}.

10. Using the fact itemD = book established in step 6 and the rule (c1.2), the

domain of roomD is further limited to {living}. Thus roomD = living is

established.

11. Using the fact roomB = dining established in step 9 and the rule (r2) the

domain of roomF is limited to {den, dining}.

12. Using the fact roomD = living established in step 10 and the rule (r3) the do-

main of roomF is further limited to {den}. Thus roomF = den is established.

At this stage one can check that the resulting CSP with all singleton domains is

closed under all 34 rules. This yields the solution to the puzzle represented by the

following table:
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child room item

Byron dining rug

Denise living book

Felicia den frame

4 Outcomes of Computations

A natural question arises whether the outcome of computations using a finite set

of rules is unique. The answer is positive. To prove it we need a lemma concerning

iterations of inflationary and monotonic functions.

Definition 4.1

Consider a partial ordering (D, ⊑ ) with the least element ⊥ and a finite set of

functions F := {f1, . . ., fk} on D.

• By an iteration of F we mean an infinite sequence of values d0, d1, . . . defined

inductively by

d0 := ⊥,

dj := fij (dj−1),

where each ij is an element of [1..k].

• We say that an increasing sequence d0 ⊑ d1 ⊑ d2 . . . of elements from D

eventually stabilizes at d if for some j ≥ 0 we have di = d for i ≥ j.

• A function f on D is called inflationary if x ⊑ f(x) for all x.

• A function f on D is called monotonic if x ⊑ y implies f(x) ⊑ f(y) for all

x, y. ✷

We now need the following lemma from (Apt, 1999b).

Lemma 4.2

Consider a partial ordering (D, ⊑ ) with the least element ⊥ and a finite set of

monotonic functions F on D. Suppose that an iteration of F eventually stabilizes

at a common fixpoint d of the functions from F . Then d is the least common fixed

point of the functions from F .

It follows that all iterations of F that eventually stabilize at a common fixpoint

stabilize at the same element. We now prove the desired result.

Theorem 4.3

Fix an initial CSP P . Consider a finite set R of rules of the form A→ x 6= a. Then

all computations by means of R starting at P yield the same CSP.

Proof
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We already noted in Section 2 that all such computations are finite. Suppose that

P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉. We consider now the following partial ordering

(D, ⊑ ). The elements ofD are the sequences (E1, . . ., En) such that Ei ⊆Di for i ∈

[1..n], ordered componentwise w.r.t. the reversed subset ordering⊇. So (D1, . . ., Dn)

is the least element ⊥ in this ordering and

(E1, . . ., En) ⊑ (F1, . . ., Fn) iff Ei ⊇ Fi for i ∈ [1..n].

We replace in each rule each premise atom xi = a by xi ∈ {a} and xi 6= a by

xi ∈ Di − {a}. Since for all d ∈ D1 × . . .×Dn we have |=d xi = a iff |=d xi ∈ {a}

and |=d xi 6= a iff |=d xi ∈ Di − {a}, it follows that the applications of the original

and of the resulting rules coincide. This allows us to confine our attention to the

rule each premise of which is of the form z ∈ S.

Consider now a membership rule z1 ∈ S1, . . ., zm ∈ Sm → y 6= a associated with

a constraint C from C defined on a set of variables Y . We interpret this rule as a

function on the just defined set D as follows.

First, denote by C̄ the extension “by padding” of C to all the variables x1, . . ., xn,

i.e. C̄ ⊆D1 × . . .×Dn and d ∈ C̄ iff d[Y ] ∈ C. Next, given a constraint E and its

variable z denote the set {d[z] | d ∈ E} by E[z]. Finally, assume for simplicity that

y is xn.

The function f that corresponds to the rule z1 ∈ S1, . . ., zm ∈ Sm → y 6= t is

defined as follows:

f(E1, . . ., En) :=







(E1, . . ., En − {a}) if (C̄ ∩ (E1 × . . .× En))[zi]⊆ Si

for i ∈ [1..m],

(E1, . . ., En) otherwise.

Denote the set of so defined functions by F . By definition each function f ∈ F is

inflationary and monotonic w.r.t. the componentwise reversed subset ordering ⊇.

Now, there is a one-one correspondence between the common fixpoints of the

functions from F at which the iterations of F eventually stabilize and the outcomes

of the computations by means of R starting at P . In this correspondence a common

fixpoint (E1, . . ., En) is related to the CSP 〈C′ ; x1 ∈ E1, . . ., xn ∈ En〉 closed

under the rules of R, where C′ are the constraints from C restricted to the domains

E1, . . ., En. The conclusion now follows by Lemma 4.2.

5 Semantic Aspects of Rules

We now introduce a number of semantic notions concerning rules.

Definition 5.1

Consider a constraint C.

• We say that the rule A→B is valid for C if for all tuples d ∈ C

|=d A implies |=d B.

• We say that the constraint C is closed under the rule A→B if

(|=d A for all tuples d ∈ C) implies (|=d B for all tuples d ∈ C).
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• We say that the rule A→B is feasible for C if for some tuple d ∈ C we have

|=d A.

• We say that the rule A→B for the constraint C extends the rule A′ →B if

A contains all variables of A′ and for all tuples d ∈ C

|=d A implies |=d A′.

• Given a set of rules R, we call a rule minimal in R if it is feasible and it does

not properly extend a valid rule in R. ✷

To illustrate them consider the following example.

Example 5.2

Take as a constraint the ternary relation that represents the conjunction and(x, y, z).

It can be viewed as the following table:

x y z

0 0 0

0 1 0

1 0 0

1 1 1

In other words, we assume that each of the variables x, y, z has the domain {0, 1}

and view and(x, y, z) as the constraint on x, y, z that consists of the above four

triples.

It is easy to see that the rule x = 0→ z 6= 1 is valid for and(x, y, z). Further,

the rule x = 0, y = 1→ z 6= 1 extends the rule x = 0→ z 6= 1 and is also valid for

and(x, y, z). However, out of these two rules only x = 0→ z 6= 1 is minimal.

Finally, both rules are feasible, while the rules x = 0, z = 1→ y 6= 0 and x =

0, z = 1→ y 6= 1 are not feasible. ✷

Note that the definition of an application of a rule is so designed that a link with

semantics is kept in the following sense: if a rule r is valid for a constraint C, then

C is closed under r. Rules that are not feasible are trivially valid. Note also that a

rule that extends a valid rule is valid, as well. So validity extends “upwards”.

Note the use of the condition “A contains all variables of A′” in the definition

of the relation “the rule A→B extends the rule A′ →B”. Without it we would

have the following paradoxical situation. Consider the variables x, y, z, all on the

domains {0, 1}, and the constraint C on x, y, z defined by C := {(0, 0, 0), (1, 0, 1)}.

Then the rules x = 0→ z 6= 1 and y = 0→ z 6= 1 are both valid for C and for all

d ∈ C we have that |=d x = 0 implies |=d y = 0. So without the mentioned condition

we would have that the rule x = 0→ z 6= 1 extends the rule y = 0→ z 6= 1, which

would imply that the first rule is not minimal.

In the sequel the following observation will be useful.

Note 5.3
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Consider two finite and non-empty constraints C and E such that C ⊆ E and a set

of rules R. Then C is closed under all valid rules from R for E iff it is closed under

all minimal valid rules in R for E.

Proof

Suppose that C is closed under all minimal valid rules in R for E. Take a rule r

from R that is valid for E.

Case 1. r is feasible for E.

Then, because E is finite, r extends some minimal valid rule r′ in R for E. But

C is closed under r′, so it is closed under r, as well.

Case 2. r is not feasible for E.

Then r is not feasible for C either since C ⊆ E. Consequently, since C is non-

empty, C is closed under r.

In what follows we confine our attention to computations involving two types of

rules:

• equality rules : these are rules of the form x1 = s1, . . ., xm = sm → y 6= a; we

abbreviate them to X = s→ y 6= a, where X = x1, . . ., xm and s = s1, . . .sm,

• membership rules : these are rules of the form x1 ∈ S1, . . ., xm ∈ Sm → y 6= a;

we abbreviate them to X ∈ S → y 6= a, where X = x1, . . ., xm and S =

S1, . . .Sm.

By specializing in the last clause of Definition 5.1, defining a minimal rule, the

set R of rules to the set of equality rules and to the set of membership rules we

obtain the notions of a minimal equality rule and of a minimal membership rule.

For equality and membership rules the following straightforward characterization

of the “extends” relation will be of use.

Note 5.4

i. An equality rule x1 = s1, . . ., xm = sm → y 6= a extends an equality rule

z1 = t1, . . ., zn = tn → y 6= a iff z1 = t1, . . ., zn = tn is a subsequence of

x1 = s1, . . ., xm = sm.

ii. A membership rule x1 ∈ S1, . . ., xm ∈ Sm → y 6= a extends a membership rule

z1 ∈ T1, . . ., zn ∈ Tn → y 6= a iff z1, . . ., zn is a subsequence of x1, . . ., xm and

for each i ∈ [1..n] we have Sπ(i) ⊆ Ti, where zi equals xπ(i). ✷

Given a CSP with finite domains we would like to solve it by considering com-

putations starting at it. But where do we get the rules from? Note that given a

constraint C and a rule r that is valid for C, the constraint C is trivially closed

under r. Consequently, an application of r to C is not relevant, i.e., it does not

affect C. So to obtain some change we need to use rules that are not valid for the

initial constraints. This brings us to the notion of a CSP based on another one.

6 CSP’s Built out of Predefined Constraints

In the introduction we informally referred to the notion of a CSP “being built out

of predefined, explicitly given constraints.” Let us make now this concept formal.
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We need two auxiliary notions first, where in preparation for the next definition we

already consider constraints together with the domains over which they are defined.

Definition 6.1

• Given a constraint C ⊆D1× . . .×Dn and a permutation π of [1..n] we denote

by Cπ the relation defined by

(a1, . . ., an) ∈ Cπ iff (aπ(1), . . ., aπ(n)) ∈ C

and call it a permutation of C.

• Given two constraints C ⊆D1 × . . .×Dn and E ⊆D′

1 × . . .×D′

n we say that

C is based on E if

— Di ⊆D′

i for i ∈ [1..n],

— C = E ∩ (D1 × . . .×Dn). ✷

So the notion of “being based on” involves the domains of both constraints. If C is

based on E, then C is the restriction of E to the domains over which C is defined.

Definition 6.2

We assume that the “predefined constraints” are presented as a given in advance

CSP BASE . Suppose that each constraint C of a CSP P is based on a permutation

of a constraint of BASE . We say then that P is based on BASE . ✷

In the above definition the use of permutations of constraints allows us to abstract

from the variable ordering used in BASE . The following example illustrates this

notion.

Example 6.3

Consider the well-known full adder circuit. It is defined by the following formula:

add(i1, i2, i3, o1, o2) ≡

xor(i1, i2, x1), and(i1, i2, a1), xor(x1, i3, o2), and(i3, x1, a2), or(a1, a2, o1),

where and, xor and or are defined in the expected way. We can view the original

constraints as the following CSP:

BOOL := 〈and(x, y, z), xor(x, y, z), or(x, y, z) ; x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {0, 1}〉.

BOOL should be viewed just as an “inventory” of the predefined constraints and

not as a CSP to be solved. Now, any query concerning the full adder can be viewed

as a CSP based on BOOL. For example, in Section 10 we shall consider the query

add(1, x, y, z, 0). It corresponds to the following CSP based on BOOL:

〈 xor(i1, i2, x1), and(i1, i2, a1), xor(x1, i3, o2), and(i3, x1, a2), or(a1, a2, o1) ;

i1 ∈ {1}, i2 ∈ {0, 1}, i3 ∈ {0, 1}, o1 ∈ {0, 1}, o2 ∈ {0}, a1 ∈ {0, 1}, a2 ∈ {0, 1},

x1 ∈ {0, 1} 〉.

✷

In what follows we consider computations that start with a CSP based on some

CSP BASE . In these computations we wish to maintain equivalence between the

successive CSP’s. To this end the following simple observation is crucial.
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Note 6.4

Consider two constraints C and E such that C is based on E. Let A→ x 6= a be a

rule valid for E. Then the application of A→ x 6= a to C maintains equivalence.

Proof

Assume that the rule A→ x 6= a can be applied to C, i.e., that for all d ∈ C we have

|=d A. Suppose now that the rule A→ x 6= a to C does not maintain equivalence.

Then for some d ∈ C we have d[x] = a. C is based on E, so d ∈ E. By the validity

of the rule for E we get d[x] 6= a. This yields a contradiction.

This observation provides us with a way of maintaining equivalence during a

computation: it suffices to use at each step a rule that is valid for a permutation

Cπ of a constraint of BASE . Such a rule is then attached (i.e., applied) to the

constraint based on Cπ. This is what we shall do in the sequel. Depending on the

type of rules used we obtain in this way different notions of local consistency.

7 Rule Consistency

In this section we consider a CSP P based on some finite CSP BASE and study

computations that use exclusively equality rules. The rules are obtained from the

constraints of BASE ; each of them is valid for a permutation Cπ of a constraint

C of BASE and is applied to the constraint of P based on Cπ . By Note 6.4 the

successive CSP’s are all equivalent to the initial CSP P . The computation ends

when a CSP is obtained that is closed under the rules used. This brings us to a

natural notion of local consistency expressed in terms of equality rules.

Definition 7.1

Consider a CSP P based on a CSP BASE . Let C be a constraint of P . For some

constraint f(C) of BASE and a permutation π, C is based on f(C)π .

• We call the constraint C rule consistent (w.r.t. BASE) if it is closed under

all equality rules that are valid for f(C)π.

• We call the CSP P rule consistent (w.r.t. BASE) if all its constraints are rule

consistent. ✷

In what follows we drop the reference to BASE if it is clear from the context.

Example 7.2

Take as the base CSP

BASE := 〈and(x, y, z) ; x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {0, 1}〉

and consider the following four CSP’s based on it:

1. 〈and(x, y, z) ; x ∈ {0}, y ∈ Dy, z ∈ {0}〉,

2. 〈and(x, y, z) ; x ∈ {1}, y ∈ Dy, z ∈ {0, 1}〉,

3. 〈and(x, y, z) ; x ∈ {0, 1}, y ∈ Dy, z ∈ {1}〉,

4. 〈and(x, y, z) ; x ∈ {0}, y ∈ Dy, z ∈ {0, 1}〉,
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where Dy is a subset of {0, 1}. We noted in Example 5.2 that the equality rule

x = 0→ z 6= 1 is valid for and(x, y, z). In the first three CSP’s its only constraint

is closed under this rule, while in the fourth one it is not closed since 1 is present

in the domain of z whereas the domain of x equals {0}. So the fourth CSP is not

rule consistent. One can show that the first two CSP’s are rule consistent, while

the third one is not rule consistent since it is not closed under the valid equality

rule z = 1→ x 6= 0.

When trying to generate all valid equality rules Note 5.3 allows us to confine our

attention to the minimal valid equality rules. We now introduce an algorithm that

given a finite constraint generates the set of all minimal valid equality rules for it.

We collect the generated rules in a list. We denote below the empty list by empty

and the result of insertion of an element r into a list L by insert(r, L).

By an assignment to a sequence of variables X we mean here an element s from

the Cartesian product of the domains of variables of X such that for some d ∈ C

we have d[X ] = s. Intuitively, if we represent the constraint C as a table with rows

corresponding to the elements (tuples) of C and the columns corresponding to the

variables of C, then an assignment to X is a tuple of elements that appears in some

row in the columns that correspond to the variables of X . This algorithm has the

following form, where we assume that the considered constraint C is defined on a

sequence of variables VAR of cardinality n.

Equality Rules Generation algorithm

L := empty;

FOR i:= 0 TO n-1 DO

FOR each subset X of VAR of cardinality i DO

FOR each assignment s to X DO

FOR each y in VAR-X DO

FOR each element d from the domain of y DO

r := X = s → y 6= d ;

IF r is valid for C

and it does not extend an element of L

THEN insert(r, L)

END

END

END

END

END

END

The test that one equality rule does not extend another can be easily implemented

by means of Note 5.4.i.

The following result establishes correctness of this algorithm.

Theorem 7.3

Given a constraint C the Equality Rules Generation algorithm produces in L

the set of all minimal valid equality rules for C.
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Proof

First note that in the algorithm all possible feasible equality rules are considered

and in the list L only the valid equality rules are retained. Additionally, a valid

equality rule is retained only if it does not extend a rule already present in L.

Finally, the equality rules are considered in the order according to which those

that use less variables are considered first. By virtue of Note 5.4.i this implies that

if a rule r2 extends a rule r1, then r1 is considered first. As a consequence precisely

all minimal valid equality rules are retained in L.

The above algorithm is completely straightforward and consequently inefficient.

It is easy to see that given a constraint defined over n variables, O(n·2n ·d2) rules are

considered in it, where d is the size of the largest variable domain. This shows that

in practice this algorithm is impractical for large domains and for constraints with

many variables. By representing the rules explicitly one could improve the running

time of this algorithm, trading time for space. Then the test that one rule does not

extend another could be eliminated from the algorithm by representing explicitly

the partial ordering defined by the relation “equality rule r1 extends equality rule

r2”. Each time an equality rule that is valid for C would be found, all the rules that

extend it would be now disregarded in further considerations. This would reduce

the number of rules considered and improve the average running time. However,

it is difficult to quantify the gain obtained and in the worst case still all the rules

would have to be considered.

In Section 10 and the appendix we present some empirical results showing when

the Equality Rules Generation becomes infeasible.

8 Relating Rule Consistency to Arc Consistency

To clarify the status of rule consistency we compare it now to the notion of arc

consistency. This notion was introduced in (Mackworth, 1977a) for binary relations

and was extended to arbitrary relations in (Mohr & Masini, 1988). Let us recall the

definition.

Definition 8.1

• We call a constraint C on a sequence of variables X arc consistent if for every

variable x in X and an element a in its domain there exists d ∈ C such that

a = d[x]. That is, each element in each domain participates in a solution to

C.

• We call a CSP arc consistent if all its constraints are arc consistent. ✷

The following result relates for constraints of arbitrary arity arc consistency to

rule consistency.

Theorem 8.2

Consider a CSP P based on a CSP BASE . If P is arc consistent, then it is rule

consistent w.r.t. BASE .

Proof
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Assume that P is arc consistent. Choose a constraint C of P and consider an

equality rule X = s→ y 6= a that is valid for f(C)π, where f and π are as in

Definition 7.1.

Suppose by contradiction that C is not closed under this rule. So for X :=

x1, . . ., xk and s := s1, . . ., sk the domain of each variable xj in P equals {sj} and

moreover a ∈ D, where D is the domain of the variable y in P .

By the arc consistency of P there exists d ∈ C such that d[y] = a. Because of

the form of the domains of the variables in X , also d[X ] = s holds. Additionally,

because P is based on BASE , we have d ∈ f(C)π . But by assumption the equality

rule X = s→ y 6= a is valid for f(C)π, so d[y] 6= a. A contradiction.

The converse implication does not hold in general as the following example shows.

Example 8.3

Take as the base the following CSP

BASE := 〈C ; x ∈ {0, 1, 2}, y ∈ {0, 1, 2}〉

where the constraint C on x, y that equals the set {(0, 1), (1, 0), (2, 2)}. So C can

be viewed as the following table:

x y

0 1

1 0

2 2

Next, take for D1 the set {0, 1} and D2 the set {0, 1, 2}. Then the CSP 〈C ∩

(D1 ×D2) ; x ∈ D1, y ∈ D2〉, so 〈{(0, 1), (1, 0)} ; x ∈ {0, 1}, y ∈ {0, 1, 2}〉 is based

on BASE but is not arc consistent since the value 2 in the domain of y does not

participate in any solution. Yet, it is easy to show that the only constraint of this

CSP is closed under all equality rules that are valid for C. ✷

We now show that if each domain has at most two elements, then the notions of

arc consistency and rule consistency coincide. More precisely, the following result

holds.

Theorem 8.4

Let BASE be a CSP each domain of which is unary or binary. Consider a CSP P

based on BASE . Then P is arc consistent iff it is rule consistent w.r.t. BASE .

Proof

The (⇒ ) implication is the contents of Theorem 8.2.

To prove the reverse implication suppose that some constraint C of P is not arc

consistent. We prove that then C is not rule consistent.

The constraintC is on some variables x1, . . ., xn with respective domainsD1, . . ., Dn.

For some i ∈ [1..n] some a ∈ Di does not participate in any solution to C.
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LetDi1 , . . ., Diℓ be the sequence of all domains in D1, . . ., Di−1, Di+1, . . ., Dn that

are singletons. Suppose that Dij := {sij} for j ∈ [1..ℓ] and let X := xi1 , . . ., xiℓ and

s := si1 , . . ., siℓ .

Consider now the equality rule X = s→ xi 6= a and take f(C)π, where f and

π are as in Definition 7.1. For appropriate domains D′

1, . . ., D
′

n of BASE we have

f(C)π ⊆D′

1 × . . .×D′

n.

Next, take some d ∈ f(C)π such that d[X ] = s. We show that d ∈ C. Since

C = f(C)π ∩ (D1 × . . .×Dn) it suffices to prove that d ∈ D1 × . . .×Dn. For each

variable xj lying inside of X we have d[xj ] = sj ∈ Dj . In turn, for each variable

xj lying outside of X its domain Dj has two elements, so, by the assumption on

BASE , Dj is the same as the corresponding domain D′

j of f(C)π and consequently

d[xj ] ∈ Dj , since d ∈ D′

1 × . . .×D′

n.

So indeed d ∈ C and hence d[xi] 6= a by the choice of a. This proves validity of

the equality rule X = s→ xi 6= a for f(C)π .

But C is not closed under this rule since a ∈ Di, so C is not rule consistent.

9 Membership Rule Consistency

In this section we consider computations that use exclusively membership rules. In

the previous section we saw that the notion of rule consistency is weaker than that

of arc consistency for constraints of arbitrary arity. Here we show that by using the

membership rules we obtain a notion of local consistency that coincides with arc

consistency.

First, let us clarify the notion of a membership rule by considering the following

example.

Example 9.1

Consider a constraint on variables x, y, z, each with the domain {+,−, l, r}, that is

defined by the following table:

x y z

+ + +

− − −

l r −

− l r

r − l

This constraint is the so-called fork junction in the language of (Waltz, 1975) for

describing polyhedral scenes. Note that the following three membership rules

r1 := x ∈ {+,−}→ z 6= l,

r2 := x ∈ {+}→ z 6= l,
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and

r3 := x ∈ {−}, y ∈ {l}→ z 6= l

are all valid. The membership rules r2 and r3 extend r1 while the membership

rule r1 extends neither r2 nor r1. Further, the membership rules r2 and r3 are

incomparable in the sense that none extends the other. ✷

Now, in analogy to Definition 7.1, we introduce the following notion.

Definition 9.2

Consider a CSP P is based on a CSP BASE . Let C be a constraint of P . For some

constraint f(C) of BASE and a permutation π, C is based on f(C)π .

• We call the constraint C membership rule consistent (w.r.t. BASE) if it is

closed under all membership rules that are valid for f(C)π.

• We call a CSP membership rule consistent (w.r.t. BASE) if all its constraints

are membership rule consistent. ✷

We now have the following result.

Theorem 9.3

Consider a CSP P based on a CSP BASE . Then P is arc consistent iff it is mem-

bership rule consistent w.r.t. BASE .

Proof

(⇒ ) This part of the proof is a simple modification of the proof of Theorem 8.2.

Assume that P is arc consistent. Choose a constraint C of P and consider a

membership rule X ∈ S → y 6= a that is valid for f(C)π , where f and π are as in

Definition 6.2.

Suppose by contradiction that C is not closed under this rule. So for X :=

x1, . . ., xk and S := S1, . . ., Sk the domain of each variable xj is included in Sj and

moreover a ∈ D, where D is the domain of the variable y.

By the arc consistency of P there exists d ∈ C such that d[y] = a. Because of

the form of the domains of the variables in X , also d[xi] ∈ Si for i ∈ [1..k] holds.

Additionally, because P is based on BASE we have d ∈ f(C)π. But by assumption

the rule X ∈ S → y 6= a is valid for f(C)π , so d[y] 6= a. A contradiction.

(⇐ ) This part of the proof is a modification of the proof of Theorem 8.4.

Suppose that some constraint C of P is not arc consistent. We prove that then C

is not membership rule consistent. The constraint C is on some variables x1, . . ., xn

with respective domains D1, . . ., Dn. For some i ∈ [1..n] some a ∈ Di does not

participate in any solution to C.

Take f(C)π, where f and π are as in Definition 9.2. For appropriate domains

D′

1, . . ., D
′

n of BASE we have f(C)π ⊆D′

1 × . . .×D′

n.

Let Di1 , . . ., Diℓ be the sequence of domains in D1, . . ., Di−1, Di+1, . . ., Dn that

are respectively different thanD′

1, . . ., D
′

i−1, D
′

i+1, . . ., D
′

n. Further, letX := xi1 , . . ., xiℓ

and S := Di1 , . . ., Diℓ .

Consider now the membership rule X ∈ S → xi 6= a. Take some d ∈ f(C)π such

that d[xij ] ∈ Dij for j ∈ [1..ℓ]. We show that d ∈ C. Since C = f(C)π ∩ (D1 ×
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. . . × Dn) it suffices to prove that d ∈ D1 × . . . × Dn. For each variable xj lying

inside of X we have d[xj ] ∈ Dj. In turn, for each variable xj lying outside of X

its domain Dj is the same as the corresponding domain D′

j of f(C)π in BASE and

consequently d[xj ] ∈ Dj, since d ∈ D′

1 × . . .×D′

n.

So indeed d ∈ C and hence d[xi] 6= a by the choice of a. This proves validity of

the rule X ∈ S → xi 6= a for f(C)π . But C is not closed under this membership

rule since a ∈ Di, so C is not membership rule consistent.

Example 8.3 shows that the notions of rule consistency and membership rule

consistency do not coincide. To see this difference better let us reconsider the CSP

discussed in this example.

We noted there that this CSP is not arc consistent and that it is rule consistent.

From the above theorem we know that this CSP is not membership rule consistent.

In fact, consider the following membership rule:

x ∈ {0, 1}→ y 6= 2.

This membership rule is valid for the base constraint C but the restricted con-

straint C ∩ (D1 ×D2) is not closed under this rule. In conclusion, the membership

rules are more powerful than the equality rules.

As in Section 7 we now provide an algorithm that given a constraint generates

the set of all minimal valid membership rules. We assume here that the considered

constraint C is defined on a sequence of variables VAR of cardinality n.

Instead of assignments that are used in the Equality Rules Generation

algorithm we now need a slightly different notion. To define it for each variable

x from VAR recall that we denoted the set {d[x] | d ∈ C} by C[x]. By a weak

assignment to a sequence of variables X := x1, . . ., xk we mean here a sequence

S1, . . ., Sk of subsets of, respectively, C[x1], . . ., C[xk] such that some d ∈ C exists

such that d[xi] ∈ Si for each i ∈ [1..k].

Intuitively, if we represent the constraint C as a table with rows corresponding

to the elements of C and the columns corresponding to the variables of C and we

view each column as a set of elements, then a weak assignment to X is a tuple

of subsets of the columns that correspond to the variables of X that “shares” an

assignment.

In the algorithm below the weak assignments to a fixed sequence of variables are

considered in decreasing order in the sense that if the weak assignments S1, . . ., Sk

and U1, . . ., Uk are such that for i ∈ [1..k] we have Ui ⊆ Si, then S1, . . ., Sk is con-

sidered first.

Membership Rules Generation algorithm

L := empty;

FOR i:= 0 TO n-1 DO

FOR each subset X of VAR of cardinality i DO

FOR each weak assignment S to X in decreasing order DO

FOR each y in VAR-X DO

FOR each element d from the domain of y DO
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r := X ∈ S → y 6= d ;

IF r is valid for C

and it does not extend an element of L

THEN insert(r, L)

END

END

END

END

END

END

The test that one membership rule does not extend another can be implemented

using Note 5.4.ii.

The following result establishes correctness of this algorithm.

Theorem 9.4

Given a constraint C the Membership Rules Generation algorithm produces

in L the set of all minimal valid membership rules for C.

Proof

The proof is analogous to that of Theorem 7.3. We only need to check that the

membership rules are considered in such an order that if a rule r2 extends a rule

r1, then r1 is considered first. This follows from directly from Note 5.4.ii.

10 Applications

In this section we discuss the implementation of the Equality Rules Genera-

tion and Membership Rules Generation algorithms and discuss their use on

selected domains.

10.1 Constraint Handling Rules (CHR)

In order to validate our approach we have realized in the Prolog platform ECLiPSe

a prototype implementation of both the Rules Generation algorithm and the

Membership Rules Generation algorithm. We made a compromise between

memory usage and performance so that we could tackle some non-trivial problems

(in terms of size of the domains of variables, and in terms of arity of constraints)

in spite of the exponential complexity of the algorithms. These implementations

generate CHR rules that deal with finite domain variables using an ECLiPSe library.

Constraint Handling Rules (CHR) of (Frühwirth, 1995) is a declarative language

that allows one to write guarded rules for rewriting constraints. These rules are re-

peatedly applied until a fixpoint is reached. The rule applications have a precedence

over the usual resolution step of logic programming.

A CHR program is a finite set of CHR rules. These rules are basically of two types

(there is a third type of rules which is a combination of the first two types): sim-

plification rules and propagation rules. When all guards are satisfied, a simplifica-

tion rule replaces constraints by simpler ones while preserving logical equivalence,
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whereas a propagation rule adds logically redundant constraints. More precisely,

these rules have the following form:

simplification H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

propagation H1, . . . , Hi ==> G1, . . . , Gj | B1, . . . , Bk

where

• i > 0, j ≥ 0, k ≥ 0,

• the multi-head H1, . . . , Hi is a non-empty sequence of CHR constraints,

• the guard G1, . . . , Gj is a sequence of built-in constraints,

• the body B1, . . . , Bk is a sequence of built-in and CHR constraints.

Our equality rules and membership rules can be modelled by means of propaga-

tion rules. To illustrate this point consider some constraint cons on three variables,

A,B,C, each with the domain {0, 1, 2}.

The Rules Generation algorithm generates rules such as (A,C) = (0, 1) →

B 6= 2. This rule is translated into a CHR rule of the form: cons(0,B,1) ==> B##2.

Now, when a constraint in the program query unifies with cons(0,B,1), this rule

is fired and the value 2 is removed from the domain of the variable B.

In turn, the Membership Rules Generation algorithm generates rules such

as (A,C) ∈ ({0}, {1, 2})→ B 6= 2. This rule is translated into the CHR rule

cons(0,B,C) ==>in(C,[1,2]) | B##2

where the in predicate is defined by

in(X,L):- dom(X,D), subset(D,L).

So in(X,L) holds if the current domain of the variable X (yielded by the built-in

dom of ECLiPSe) is included in the list L.

Now, when a constraint unifies with cons(0,B,C) and the current domain of the

variable C is included in [1,2], the value 2 is removed from the domain of B. So for

both types of rules we achieve the desired effect.

In the examples below we combine the rules with the same premise into one rule

in an obvious way and present these rules in the CHR syntax.

10.2 Generating the rules

We begin by discussing the generation of equality rules and membership rules for

some selected domains. The times given refer to an implementation ran on a Silicon

Graphics O2 with 64 Mbytes of memory and a 180 MHZ processor.

Boolean constraints As the first example consider the Boolean constraints, for

example the conjunction constraint and(X,Y,Z) of Example 5.2. The Equality

Rules Generation algorithm generated in 0.02 seconds the following six equality

rules:

and(1,1,X) ==> X##0.

and(X,0,Y) ==> Y##1.
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and(0,X,Y) ==> Y##1.

and(X,Y,1) ==> X##0,Y##0.

and(1,X,0) ==> X##1.

and(X,1,0) ==> X##1.

Because the domains are here binary we can replace the conclusions of the form

U ## 0 by U = 1 and U ## 1 by U = 0. These rules are somewhat different than

the well-known rules that can be found e.g. in (Frühwirth, 1998)[page 113], where

instead of the rules

and(1,1,X) ==> X##0.

and(1,X,0) ==> X##1.

and(X,1,0) ==> X##1.

the rules

and(1,X,Y) ==> X = Y.

and(X,1,Y) ==> X = Y.

and(X,Y,Z), X = Y ==> Y = Z.

appear. We shall discuss this matter in Section 11.

In this case, by virtue of Theorem 8.4, the notions of rule and arc consistency

coincide, so the above six equality rules characterize the arc consistency of the and

constraint. Our implementations of the Equality Rules Generation and the

Membership Rules Generation algorithms yield here the same rules.

Three valued logic Next, consider the three valued logic of (Kleene, 1952)[page 334]

that consists of three values, t (true), f (false) and u (unknown). We only consider

here the crucial equivalence relation ≡ defined by the truth table

≡ t f u

t t f u

f f t u

u u u u

that determines a ternary constraint with nine triples. We obtain for it 20 equality

rules and 26 membership rules. Typical examples are

equiv(X,Y,f) ==> X##u,Y##u.

and

equiv(t,X,Y) ==> in(Y,[f, u]) | X##t.

Six valued logic In (Van Hentenryck et al., 1992) the constraint logic programming

language CHIP is used for the automatic test-pattern generation (ATPG) for the

digital circuits. To this end the authors define a specific six valued logic and provide
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some rules (expressed in the form of so-called demons) to carry out the constraint

propagation. The and6 constraint in question is defined by means of the following

table:

and6 0 1 d dnot e enot

0 0 0 −− −− 0 0

1 0 1 d dnot e enot

d −− d −− −− d −−

dnot −− dnot −− −− −− dnot

e 0 e d −− e 0

enot 0 enot −− dnot 0 enot

The Equality Rules Generation algorithm generated 41 equality rules in

0.15 seconds, while the Membership Rules Generation algorithm generated

155 membership rules in 14.35 seconds. The generated rules enforce, respectively,

rule consistency and arc consistency, while it is not clear what notion of local

consistency is enforced by the (valid) rules of (Van Hentenryck et al., 1992)[page

133] because some of the latter ones allow equalities between the variables in the

premise. This makes the comparison in terms of strength of the entailed notion of

local consistency difficult. It is clear that our approach is more systematic and fully

automatic. (In fact, we found two typo’s in the rules of (Van Hentenryck et al.,

1992)[page 133].)

Propagating signs As a next example consider the rules for propagating signs in

arithmetic expressions, see, e.g., (Davis, 1987)[page 303]. We limit ourselves to the

case of multiplication. Consider the following table:

× neg zero pos unk

neg pos zero neg unk

zero zero zero zero zero

pos neg zero pos unk

unk unk zero unk unk

This table determines a ternary constraint msign that consists of 16 triples, for

instance (neg, neg, pos) that denotes the fact that the multiplication of two negative

numbers yields a positive number. The value “unk” stands for “unknown”. The

Equality Rules Generation algorithm generated in 0.08 seconds 34 equality

rules. A typical example is msign(X,zero,Y) ==> Y##pos,Y##neg,Y##unk.

In turn, the Membership Rules Generation algorithm generated in 0.6 sec-

onds 54 membership rules. A typical example is

msign(X,unk,Y) ==> in(Y,[neg, pos, zero]) | X##pos,X##neg
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that corresponds to the following two membership rules for the constraint msign(X,Z,Y):

(Z, Y ) ∈ ({unk}, {neg, pos, zero})→X 6= pos

and

(Z, Y ) ∈ ({unk}, {neg, pos, zero})→X 6= neg.

Waltz’ language for describing polyhedral scenes Waltz’ language consists of four

constraints. One of them, the fork junction was already mentioned in Example 9.1.

The Equality Rules Generation algorithm generated for it 12 equality rules

and the Membership Rules Generation algorithm 24 membership rules.

Another constraint, the so-called T junction, is defined by the following table:

x y z

r l +

r l −

r l r

r l l

In this case the Equality Rules Generation algorithm and the Membership

Rules Generation algorithm both generate the same output that consists of just

one rule:

t(X,Y,Z) ==> X##’l’,X##’-’,X##’+’,Y##’r’,Y##’-’,Y##’+’.

So this rule characterizes both rule consistency and arc consistency for the CSP’s

based on the T junction.

For the other two constraints, the L junction and the arrow junction, the gener-

ation of the equality rules and membership rules is equally straightforward.

10.3 Using the rules

Next, we show by means of some examples how the generated rules can be used to

reduce or to solve specific queries. Also, we show how using compound constraints

we can achieve local consistency notions that are stronger than arc consistency for

constraints of arbitrary arity.

Waltz’ language for describing polyhedral scenes The following predicate describes

the impossible scene given in Figure 1 and taken from (Winston, 1992)[page 262]:

imp(AF,AI,AB,IJ,IH,JH,GH,GC,GE,EF,ED,CD,CB):-

S1=[AF,AI,AB,IJ,IH,JH,GH,GC,GE,EF,ED,CD,CB],

S2=[FA,IA,BA,JI,HI,HJ,HG,CG,EG,FE,DE,DC,BC],

append(S1,S2,S), S :: [+,-,l,r],
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Fig. 1. Impossible scene

arrow(AF,AB,AI), l(BC,BA), arrow(CB,CD,CG), l(DE,DC),

arrow(ED,EG,EF), l(FA,FE), fork(GH,GC,GE), arrow(HG,HI,HJ),

fork(IA,IJ,IH), l(JH,JI),

line(AF,FA), line(AB,BA), line(AI,IA), line(IJ,JI),

line(IH,HI), line(JH,HJ), line(GH,HG), line(FE,EF),

line(GE,EG), line(GC,CG), line(DC,CD), line(ED,DE),

line(BC,CB).

where the supplementary constraint line is defined by the following table:

x y

+ +

− −

l r

r l

Here and elsewhere we use the ECLiPSe built-in :: to declare variable domains.

When using the equality rules obtained by the Equality Rules Generation

algorithm and associated with the fork, arrow, t, l, and line constraints, the

query

imp(AF,AI,AB,IJ,IH,JH,GH,GC,GE,EF,ED,CD,CB)

reduces in 0.009 seconds the variable domains to AF ∈ [+,-, l], AI ∈ [+,-], AB

∈ [+,-,r], IJ ∈ [+,-,l,r], IH ∈ [+,-,l,r], JH ∈ [+,-,l,r],

GH ∈ [+,-,l,r], GC ∈ [+,-,l,r], GE ∈ [+,-,l,r], EF ∈ [+,-],

ED ∈ [+,-,l], CD ∈ [+,-,r], and CB ∈ [+,-,l].

But some constraints remain unsolved, so we need to add a labeling mechanism

to prove the inconsistency of the problem. On the other hand, when using the mem-

bership rules, the inconsistency is detected without any labeling in 0.06 seconds.



Constraint Programming viewed as Rule-based Programming 29

In the well-known example of the cube given in Figure 12.15 of (Winston, 1992)[page

260] the membership rules are also more powerful than the equality rules and both

sets of rules reduce the problem but in both cases labeling is needed to produce all

four solutions.

Comparing the constraint solver based on the membership rules to the constraint

solver based on the equality rules is not easy: although propagation is more efficient

with the membership rules, the solver based on the equality rules can sometimes

be faster depending on the structure of the problem and on whether the labeling is

needed.

We also compared the solvers generated by the implementations of the Equality

Rules Generation and Membership Rules Generation algorithms to the

approach described in (By, 1997) and based on meta-programming in Prolog. We

ran the same examples and drew the following conclusions. For small examples

our solvers were less efficient than the ones of By (with factors varying from 2 to

10). However, for more complex examples, our solvers became significantly more

efficient, with factors varying from 10 to 500. This can be attributed to the increased

role of the constraint propagation that reduces backtracking and that is absent in

By’s approach.

Temporal reasoning In (Allen, 1983)’s approach to temporal reasoning the entities

are intervals and the relations are temporal binary relations between them. (Allen,

1983) found that there are 13 possible temporal relations between a pair of events,

namely before, during, overlaps, meets, starts, finishes, the symmetric

relations of these six relations and equal. We denote these 13 relations respectively

by b,d,o,m,s,f,b-,d-,o-,m-,s-,f-,e and their set by TEMP.

Consider now three events, A, B and C and suppose that we know the temporal

relations between the pairs A and B, and B and C. The question is what is the

temporal relation between A and C. To answer it (Allen, 1983) provided a 13 × 13

table. This table determines a ternary constraint between a triple of events, A, B

and C that we denote by allen. For example,

(overlaps, before, before) ∈ allen

since A overlaps B and B is before C implies that A is before C.

Using this table, the Equality Rules Generation algorithm produced for the

constraint allen 498 equality rules in 31.16 seconds. In contrast, we were unable

to generate all membership rules in less than 24 hours. This shows the limitations

of our implementation. We tried the generated set of equality rules to solve the

following problem from (Allen, 1983): “John was not in the room when I touched

the switch to turn on the light.”. We have here three events: S, the time of touching

the switch; L, the time the light was on; and J, the time that John was in the room.

Further, we have two relations: R1 between L and S, and R2 between S and J. This

problem is translated into the CSP 〈allen ; R1 ∈ [o−, m−], R2 ∈ [b, m, b−, m−], R3 ∈

TEMP〉, where allen is the above constraint on the variables R1, R2, R3.
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To infer the relation R3 between L and J we can use the following query 1:

R1::[o-,m-],

R2::[b,m,b-,m-],

R3::[b,d,o,m,s,f,b-,d-,o-,m-,s-,f-,e],

allen(R1,R2,R3),

labeling([R1,R2,R3]).

We then obtain the following solutions in 0.06 seconds:

(R1,R2,R3) ∈ {(m-,b,b), (m-,b,d-), (m-,b,f-), (m-,b,m), (m-,b,o),

(m-,b-,b-), (m-,m,e), (m-,m,s), (m-,m,s-), (m-,m-,b-), (o-,b,b),

(o-,b,d-), (o-,b,f-), (o-,b,m), (o-,b,o), (o-,b-,b-), (o-,m,d-),

(o-,m,f-), (o-,m,o), (o-,m-,b-)}.

To carry on (as in (Allen, 1983)), we now complete the problem with: “But

John was in the room later while the light went out.”. This is translated into: “L

overlaps, starts, or is during J”, i.e., R3 ∈ [o,s,d].

We now run the following query:

R1::[o-,m-],

R2::[b,m,b-,m-],

R3::[o,s,d],

allen(R1,R2,R3),

labeling([R1,R2,R3]).

and obtain four solutions in 0.04 seconds: (R1,R2,R3) ∈ {(m-,b,o), (m-,m,s),

(o-,b,o), (o-,m,o)}.

Three valued logic Next, consider the and3 constraint in the three valued logic of

(Kleene, 1952)[page 334] represented by the truth table

and3 t f u

t t f u

f f f f

u u f u

Typical examples of the 16 generated equality rules and of the 18 generated

membership rules are:

and3(u,u,X) ==> X##0.

and

and3(X,Y,Z) ==> in(X,[0, u]) | Z##1.

Consider now the query:

1 Since no variable is instantiated, we need to perform labeling to effectively apply the rules.
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[X,Y,Z,T,U]::[0,1,u], and3(X,Y,Z), and3(T,U,Z), Z##0,Y##u, X##u.

Using the membership rules we reach the answer in the form of a complete as-

signment to all the variables, namely X = 1,Y = 1,Z = 1,T = 1,U = 1, whereas

using only the equality rules we do not obtain any reduction and labeling is needed

to produce the same answer.

Full adder It is often the case that dealing with a compound constraint directly

yields a stronger notion of local consistency than when dealing with each of its

constituents separately. A prototypical example is the well-known alldifferent

constraint on n variables that can be decomposed into n·(n−1)
2 binary disequality

constraints. Then arc consistency enforced on alldifferent is stronger than arc

consistency enforced on each of the disequality constraints separately.

The same phenomenon arises for rule consistency. We illustrate it by means

of the already discussed in Example 6.3 full adder circuit. It can be defined by

the following constraint logic program (see, e.g., (Frühwirth, 1998)) that uses the

Boolean constraints and, xor and or:

add(I1,I2,I3,O1,O2):-

[I1,I2,I3,O1,O2,A1,A2,X1]:: 0..1,

xor(I1,I2,X1),

and(I1,I2,A1),

xor(X1,I3,O2),

and(I3,X1,A2),

or(A1,A2,O1).

The query add(I1,I2,I3,O1,O2) followed by a labeling mechanism generates the

explicit definition (truth table) of the full adder constraint with eight entries such

as

full_adder(1,0,1,1,0).

We can now generate the equality rules for the compound constraint (here the

full adder constraint) that is defined by means of some basic constraints (here

the and, or and xor constraints). These rules refer to the compound constraint

and allow us to reason about it directly instead of by using the rules that deal with

the basic constraints.

In the case of the full adder constraint the Equality Rules Generation

algorithm generated 52 equality rules in 0.27 seconds. The constraint propagation

carried out by means of these equality rules is more powerful than the one carried

out by means of the equality rules generated for the and, or and xor constraints.

For example, the query [X,Y,Z]::[0,1], full_adder(1,X,Y,Z,0) reduces Z to

1 whereas the query [X,Y,Z]::[0,1], add(1,X,Y,Z,0) does not reduce Z at all.

So rule consistency for a compound constraint defined by means of the basic

constraints is indeed in general stronger than the rule consistency for the basic

constraints treated separately. In fact, in the above case the equality rules for the

full adder constraint yield the relational (1,5)-consistency notion of (Dechter &
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van Beek, 1997), whereas by virtue of Theorem 8.4, the equality rules for the and,

or and xor constraints yield a weaker notion of arc consistency.

11 Related Work

11.1 Relation Between Constraint Programming and Rule-Based

Programming

In a number of papers a link was made between constraint programming and rule-

based programming. To start with, in (Montanari & Rossi, 1991) a general study

of constraint propagation was undertaken by defining the notion of a relaxation

rule and by proposing a general relaxation algorithm that implements constraint

propagation by means of a repeated application of the relaxation rules. However,

this abstract view of constraint programming cannot be realized in a simple way

since the application of a relaxation rule is a complex process.

In (Apt, 1998) we showed how constraint programming can be couched in proof

theoretic terms by viewing the programming process as the task of proving the

original CSP. In the proposed framework two types of rules were proposed: deter-

ministic ones and the splitting ones. Further, the deterministic rules were either

concerned with domain reduction or constraint reduction. In the former case the

rules were called domain reduction rules and in the latter case constraint reduction

rules. Such rules are high-level abstractions and on the implementation level they

can involve complex computations.

It is useful to see that the rule-based approach to constraint programming pro-

posed in this paper is an instance of this proof theoretic view of constraint pro-

gramming. Namely, the equality rules and the membership rules are examples of

the domain reduction rules while labeling, the formal treatment of which is omitted

here, is an example of a splitting rule.

The important gain is that the implementation of the considered here equality

rules and membership rules boils down to a straightforward translation of them

into the CHR syntax. This leads to an implementation of this approach to constraint

programming by means of constraint logic programming. The important limitation

is that this approach applies only to the CSP’s built out of predefined, explicitly

given finite constraints.

A similar approach to constraint programming to that of (Apt, 1998) was pro-

posed in (Castro, 1998). In his approach the proof rules are represented as rewrite

rules in the already mentioned in the introduction programming language ELAN.

The rules use a richer syntax than here considered by referring to arbitrary con-

straints and to expressions of the form x ∈ D, where D is the current domain of the

variable x. In particular no constraint specific rules were considered. Instead, the

emphasis was on showing how the general techniques of constraint programming,

in particular various search strategies, can be expressed in the form of rules.
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11.2 Generation of Rules

Let us turn now to an overview of the recent work on rules generation. Building

upon the work presented in (Apt & Monfroy, 1999) two articles appeared in which

algorithms were presented that aim at improving the expressivity of the rules and

at a more economic representation.

In (Ringeissen & Monfroy, 2000) rules similar to equality rules were considered.

The most significant improvement is the use of parameters (i.e., unspecified con-

stants) that leads to a decrease in the number of generated rules. Parameters are

also a means for deducing equalities of variables in the right-hand side of rules. For

instance, consider the following two rules with parameters a1 and a2 for a constraint

C taken from (Ringeissen & Monfroy, 2000):

x1 = a1 → x2 = a1 ∧ x3 = 1 (1)

x2 = a2 → x1 = a2 ∧ x3 = 1 (2)

Rule (1) means that whatever the value of x1 is, x2 is equal to x1 and x3 is equal to

1. From rules (1) and (2) an equality between the variables on the right-hand side

of the rule can be deduced (note that the resulting rule can always be applied):

→ x2 = x1 ∧ x3 = 1

To generate such rules with parameters (Ringeissen & Monfroy, 2000) combine

unification in finite algebra with a rule generation algorithm. The size of the gener-

ated set of rules significantly depends on an ordering on variables. It still needs to be

clarified what is the counterpart of the notion of a minimal rule in this framework

and whether the generated rules with parameters enforce rule-consistency.

Sets of rules generated in (Abdennadher & Rigotti, 2000) are even more compact

and more expressive: multiple occurrences of variables and conjunction of con-

straints with shared variables are allowed in the left-hand side of rules. Moreover,

the user has the possibility to specify the admissible syntactic form of the rules:

more specifically, right-hand sides of rules can consists of more complex constraints

than (dis)-equality constraints. Here are two examples of rules (taken from two

different sets of rules of (Abdennadher & Rigotti, 2000)):

and(x, x, z)→ x = z. (3)

and(x, y, z), neg(x, y)→ z = 0. (4)

In rule (3) equality between variables is deduced using a double occurrence of the

variable x in the head, and rule (4) defines interaction between two constraints,

and and neg.

(Abdennadher & Rigotti, 2000) also investigated what form of local consistency is

enforced by the rules generated by their algorithms.When using the given constraint

together with equality (between a variable and a value) on the left-hand side, and

only disequality (between a variable and a value) on the right-hand side of the

rules, the generated rules enforce rule consistency. However, in general, the enforced
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local consistency is stronger than rule consistency. In particular, it is plausible that

membership rule consistency (i.e., arc consistency) is enforced when disequality

constraints are allowed both on the right- and left-hand sides of rules.

In (Apt, 2000) two sets of rules for Boolean constraints were compared. One of

them is the one presented in Subsection 10.2 and the other the already mentioned

set of rules from (Frühwirth, 1998)[page 113] (with one difference irrelevant for the

subsequent discussion). While both sets of rules enforce the arc consistency, it turns

out that they are not equivalent. In fact, if a Boolean CSP with non-empty domains

is closed under the rules from the second set, then it is closed under the rules from

the first set. The converse does not hold since the CSP 〈x ∧ y = z ; x ∈ {1}, y ∈

{0, 1}, z ∈ {0, 1}〉 is closed under the first set of rules but not under the second one,

since it is not closed under the rule and(1,X,Y) ==> X = Y.

11.3 Local Consistency Notions

In this paper we considered local consistency by focusing on individual, arbitrary,

non-binary, constraints. In the literature algorithms for achieving such notions of

local consistency usually concentrated on achieving arc consistency of non-binary

CSP’s. Among them the algorithm CN of (Mackworth, 1977b), and GAC4 of (Mohr

& Masini, 1988) are respectively based on ideas similar to the AC-3 and AC-4

algorithms for binary constraints. However, in practice CN is usable only for ternary

constraints and small domains, and has a large worst-case time complexity. On the

other hand, the large space complexity of GAC4 makes it usable only for constraints

of small size.

The GAC-schema of (Bessière & Régin, 1997) was designed to enforce arc consis-

tency on non-binary constraints while keeping a reasonable time and space com-

plexity. It is based on an AC-7 like schema and allows constraints to be given

explicitly, either in a positive way as in our case, or in a negative way, i.e., in the

form of “forbidden” tuples, or implicitly in the form of predicates. In order to make

our framework as general as the GAC-schema, we could think of generating the al-

lowed tuples by testing all possible tuples. However, this would almost always be

impractical because of space considerations.

In (Bessière, 1999) the following opinion was voiced on non-binary constraints:

“Perhaps we should accept the idea that the constraint solving tool of the next

years will apply different levels of local consistency on different constraints at each

node of the search tree, ...”. Our framework is amenable to such a view since we

can generate rules for enforcing various types of local consistencies. For example,

we can generate some equality rules for some constraints and some membership

rules for other constraints, and then apply only the resulting set of rules.

Another consideration is that our constraint solving process consists of two sep-

arate phases: first a generation of the rules (a sort of compilation of the truth table

of a constraint) which is done once and for all, followed by the application of the

rules. Thus, the set of generated rules can be modified during the application phase,

for example by combining some rules (for a more efficient application of the rules),
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by removing some rules or by strengthening some conditions to weaken the domain

reduction process.

While preparing this revised version of the paper we noted that a similar notion

to our rule consistency notion was introduced in the context of the theory of fuzzy

sets, see (Pedrycz & Gomide, 1998)[pages 252-261]. The notion there considered

deals with rules of the form “if x is A, then y is B”, where A and B are fuzzy sets.

In spite of the same name used (namely, rule consistency), the uses of both notions

are different. In our case, we employ it to reduce a specific CSP to a smaller one that

is rule consistent but can be inconsistent, while in the case of the fuzzy set theory

the corresponding notion is used to detect conditions for “potential inconsistency”

that arises when the rules express contradictory knowledge.

Finally, let us mention that rule generation appears in other areas of computer

science. Typical examples are: programs for machine learning that construct a model

of the knowledge using decision trees and production rules (see, e.g., (Quinlan,

1993)) inductive logic programming, a logic-based approach to machine learning

where logic programming rules are inferred from positive and negative examples

and a background knowledge (see, e.g., (Muggleton & de Raedt, 1994)), and data

mining that aims at extracting high-level representations in the form of patterns

and models from data (see, e.g., (Agrawal et al., 1996) where so-called association

rules are generated.).

12 Conclusions

The aim of this paper was to provide a framework in which constraint program-

ming can be entirely reduced to rule-based programming. It involved constraint

satisfaction problems built out of explicitly given constraints. In the case the latter

constraints are defined over small finite domains these CSP’s can be often solved

by means of automatically generated constraint propagation algorithms.

We argued that such CSP’s often arise in practice and consequently the methods

here developed can be of practical use. We believe that the approach of this paper

could be applied to a study of various decision problems concerning specific multi-

valued logics and this in turn could be used for an analysis of digital circuits (see,

e.g., (Muth, 1976) where a nine valued logic is used). Other applications could in-

volve non-linear constraints over small finite domains and the analysis of polyhedral

scenes in presence of shadows (see (Waltz, 1975)).

The introduced notion of rule consistency is weaker than arc consistency and can

be in some circumstances the more appropriate one to use. For example, for the

case of temporal reasoning considered in the last section we easily generated all

498 equality rules that enforce rule consistency whereas 24 hours turned out not be

enough to generate the membership rules that enforce arc consistency. (For a more

precise summary of the tests carried out see the appendix.)

In this paper, we focused on systematic and automated aspects of rule-based

constraint solvers. At present stage it is difficult to compare the performance of

our method (based on rule generation and subsequent rule application) with other
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methods based on classical constraint propagation algorithms. The reason is that

our approach is currently implemented by means of CHR rules that are applied

on top of Prolog while the built-in constraint propagation algorithms are usually

implemented at a lower level.

Finally, the notions of rule consistency and membership rule consistency could be

parametrized by the desired maximal number of variables used in the rule premises.

Such parametrized versions of these notions could be useful when dealing with con-

straints involving a large number of variables. Both the Equality Rules Gener-

ation algorithm and the Membership Rules Generation algorithm and their

implementations can be trivially adapted to such parametrized notions.

The approach proposed in this paper could be easily integrated into constraint

logic programming systems such as ECLiPSe. This could be done by providing an

automatic constraint propagation by means of the equality rules or the membership

rules for flagged predicates that are defined by a list of ground facts, much in the

same way as now constraint propagation for linear constraints over finite systems

is automatically provided.
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Appendix

Table 1 illustrates the generation of the equality rules and the membership rules for

various natural constraints. The first column gives the name of the constraint, the

second its arity, the third the cardinality of the domains of variables, and the fourth

the cardinality of the constraint. The subsequent two columns show the outcome

of the Equality Rule Generation algorithm: first the number of equality rules

generated, and then the computation time in seconds; the last two columns provide

this information for the membership rules.

The fork, t, msign, allen, and fulladder constraints represent the previously de-

scribed constraints. The noti and andi constraints, where i ∈ {3, 4, 6, 8, 9}, represent

the usual not and and operators for multi-valued logics. The b10m constraint is the

multiplication of digits from 0 to 9, i.e., b10m(X,Y,C, Z) stands for the constraint

X ∗ Y = Z + 10 ∗ C defined over the intervals [0..9]. The “−” symbol means that

we were unable to generate the rules in less than 24 hours.

The constraints for multi-valued logics are presented in a way that shows the

impact of the domain size and of the cardinality of the constraint in case of the

same arity and a similar structure.

In spite of its exponential running time, the Equality Rules Generation
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Constraint Arity Domain Cardinality Equality Gen. Member. Gen.
Size Rules (in s.) Rules (in s.)

fork 3 4 5 12 0.05 24 0.65
t 3 4 4 1 0.02 1 0.07

not 2 2 2 4 0.01 4 0.19
not3 2 3 3 6 0.02 6 0.29
not4 2 4 4 8 0.02 8 0.5
not6 2 6 6 12 0.03 12 0.14
not8 2 8 8 16 0.05 16 0.67
not9 2 9 9 18 0.07 18 1.57

and 3 2 4 6 0.02 6 0.08
and3 3 3 9 16 0.04 18 0.13
and4 3 4 16 26 0.08 43 0.6
and6 3 6 24 41 0.15 155 14.35
and8 3 8 64 96 0.57 622 351.16
and9 3 9 81 134 1.07 1294 1777

msign 3 4 16 34 0.08 54 0.6
fulladder 5 2 8 52 0.29 52 0.38
b10m 4 10 100 362 14.83 − −
allen 3 13 409 498 31.16 − −

Table 1. Generation of equality and membership rules

algorithm is still usable. On the other hand, the Membership Rules Generation

algorithm is much more costly for larger problems. Sometimes it also generates too

many rules for medium size problems (such as and9) and thus becomes unusable.

In general, it is difficult to decide which notion of local consistency should be used

to solve a given CSP. In particular (Sabin & Freuder, 1994) showed that in the case

of CSP’s consisting of binary constraints maintaining full arc consistency during the

backtracking search can be often more efficient than a more limited of constraint

propagation embodied in the so-called forward checking. However, empirical results

for CSP’s involving non-binary are missing and it is quite conceivable that for

such CSP’s imposing full arc consistency during the backtracking search can be

too costly. For these CSP’s a weaker form of constraint propagation, such as rule

consistency, could be an alternative.


